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HIGHLIGHTS 
 

Sound attenuation in perforated dissipative silencers including temperature gradients and 
mean flow is computed. 

 

A two-dimensional finite element eigenvalue problem is solved for a silencer cross section 
with transversal thermal variations. 

 

A point collocation scheme is presented to match the acoustic pressure and axial velocity 
at the silencer geometrical discontinuities. 

 

A significant reduction in the computational requirements is obtained compared to a full 
three-dimensional finite element approach. 
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Abstract 

This work presents a mathematical approach based on the point collocation technique to 

compute the transmission loss of perforated dissipative silencers with transversal temperature 

gradients and mean flow. Three-dimensional wave propagation is considered in silencer 

geometries with arbitrary, but axially uniform, cross section. To reduce the computational 

requirements of a full multidimensional finite element calculation, a method is developed 

combining axial and transversal solutions of the wave equation. First, the finite element method 

is employed in a two-dimensional problem to extract the eigenvalues and associated 

eigenvectors for the silencer cross section. Mean flow as well as transversal temperature 

gradients and the corresponding thermal-induced material heterogeneities are included in the 

model. In addition, an axially uniform temperature field is taken into account, its value being the 

inlet/outlet average. A point collocation technique is then used to match the acoustic fields 

(pressure and axial acoustic velocity) at the geometric discontinuities between the silencer 

chamber and the inlet and outlet pipes. Transmission loss predictions are compared favorably 

with a general three-dimensional finite element approach, offering a reduction in the 

computational effort. 
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1. Introduction 

Dissipative silencers are widely used in automotive applications due to their acoustic 

efficiency in the mid and high frequency range. A review of the bibliography published 

during the last years shows the rise of multidimensional techniques [1-9] to characterize 

the acoustic behavior of silencers in comparison with one-dimensional techniques, due to 

their higher accuracy in the silencer operating frequency range. 

 

Among the multidimensional techniques, the finite element method (FEM) presents 

versatility when the silencer has a complex geometry [4, 5] or when more realistic 

operating conditions are considered, such as the presence of mean flow [2], heterogeneous 

properties of the dissipative material [10, 11] and temperature variations [12]. The 

presence of high temperature and thermal gradients in dissipative silencers modifies their 

acoustic attenuation performance and the difficulties associated with experimental 

measurements at high temperatures make it necessary to find computational approaches 

useful to evaluate the acoustic behavior of the silencer. These numerical techniques have, 

however, the disadvantage of being computationally expensive when a high number of 

degrees of freedom is considered. In order to avoid this problem in silencers with 

arbitrary (but axially uniform) cross section, Kirby [4, 7] obtained the axial wavenumbers 

(eigenvalues) and pressure modes (eigenvectors) associated with the silencer cross 

section using a two-dimensional FE model. This transversal eigensolution was then 

combined with the point collocation technique [4] and, in a later work, with the mode-

matching method [6, 7], to obtain the wave amplitudes corresponding to the sound 

propagation within the different silencer regions. To match the transversal solution with 

the axially propagating waves, the point collocation technique takes into account the 

compatibility conditions of the pressure and axial acoustic velocity at the silencer 

geometric discontinuities. Although this approach delivers a considerable reduction in the 

computational effort compared to the full three-dimensional FEM, attention has to be paid 

to some numerical issues, such as those found in the point collocation approach [4, 13, 14], 

where predictions exhibit a high sensitivity to silencer geometry and also the collocation 

grid. 
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Temperature variations within a silencer can reach, in some configurations, values 

around 200ºC [15] and more than 100ºC [16] in the axial and radial directions, 

respectively. As the temperature distribution can affect the acoustic behavior of the 

silencer considerably, several authors studied the influence of these gradients in the 

silencer transmission loss. Kim et al. [17] applied an analytic multidimensional approach 

to some reactive configurations considering axial temperature variation and mean flow. In 

this work, the silencer was divided into segments of uniform temperature to model the 

acoustic effect of the thermal gradient, obtaining the acoustic fields in each segment by 

using the corresponding continuity conditions. Wang et al. [18] combined, for a reactive 

geometry, a segmentation procedure with the boundary element method (BEM) 

considering uniform mean flow and a linear axial temperature gradient. Sánchez-Orgaz et 

al. [12] considered both axial and radial thermal gradients in a dissipative configuration 

including an absorbent material and a perforated duct carrying mean flow. As it was 

shown in this work, the impact of axial thermal variations on the acoustic behavior of 

dissipative silencers is not as relevant as the radial distribution for the numerical cases 

under consideration; this is the reason why the current investigation only retains 

transversal thermal gradients while assuming an axially uniform temperature in both the 

central duct and the outer chamber, its value being the average temperature of the inlet 

and outlet sections. A significant reduction in the computational expenditure is then 

expected if this assumption is suitably combined with the aforementioned point 

collocation technique. Since the radial temperature gradients can have a considerable 

influence on the absorbent material properties [12, 19-21], these gradients have been 

included in the present work by means of an approach allowing the consideration of non-

homogeneous properties in the silencer cross section. As the material heterogeneities also 

have an effect on the acoustic impedance of the perforated surface [22-25], the techniques 

used in the current context to characterize the silencer performance are numerical in 

general, due to the complexity of the computations required. 

 
The approach presented by Kirby [4] is here extended to silencers with transversal 

temperature gradients in the absorbent material and a central perforated passage carrying 

mean flow. The corresponding thermal-induced material heterogeneities are included in 

the model through a pressure-based wave equation valid for heterogeneous absorbent 

materials whose equivalent density and speed of sound depend on the spatial coordinates. 

A 2D FE approach is applied to the silencer cross section, providing the corresponding 

acoustic eigenvalues (wavenumbers) and eigenvectors (pressure modes). The complete 3D 

acoustic field is finally computed combining the transversal solutions of the wave equation 
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with the point collocation technique to match the pressure and axial acoustic velocity at 

the expansion/contraction geometrical discontinuities. The results obtained with the 

proposed mathematical approach are compared with full 3D finite element predictions, 

showing an excellent agreement while delivering a reduction in the computational effort. 

The influence of a number of parameters on the acoustic attenuation performance is then 

investigated, including the effect of the transversal thermal gradient. 

2. Mathematical approach 

A dissipative silencer with arbitrary (axially-uniform) cross section is shown in Fig. 1. 

The geometry is divided into four subdomains: the inlet/outlet pipes and a perforated 

central duct (all carrying mean flow), denoted respectively as ΩI, ΩO and ΩA, and an outer 

chamber ΩM with absorbent material. The density and speed of sound in the air 

(ΩI∪ΩA∪ΩO) are denoted by ρa and ca, whereas ρm and cm are used for the equivalent 

acoustic properties [20] of the dissipative region. 

 

 

Fig. 1. Perforated dissipative silencer with transversal temperature gradient and mean flow. 

 

As indicated in the Introduction, transversal temperature variations are taken into 

account over the cross section of the absorbent material SM. In addition to the silencer 

geometrical simplification along its length Lm (commonly found in practical applications), 

axial uniformity is also considered for the variables such as ρa, ca, ρm, cm, the perforated 

duct impedance 
pZ  and the mean flow Mach number M, in order to reduce the 

computational expenditure as much as possible when compared to a three-dimensional 

finite element analysis. Therefore, any axial temperature gradient is omitted in the 
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mathematical approach, the inlet/outlet temperature average being used to compute the 

relevant properties and the silencer performance. The validity of this hypothesis is based 

on earlier models [12] and it will be discussed later with some numerical examples. In the 

intake and exhaust systems of reciprocating internal combustion engines, the mean flow 

velocity is small enough for the flow to be assumed as incompressible [1]. This hypothesis 

is considered in the current investigation. 

 

2.1. Acoustic model of the silencer transversal section 

The governing pressure wave equation for the central passage in the presence of a 

moving medium can be written as [1] 

 
2

2 2
2Δ 2 0a a

a a a a
p pp M j M k k p
z z

∂ ∂
M M + =

∂ ∂
 (1) 

where pa is the acoustic pressure, ka is the air wavenumber, defined as ka = ω/ca(ω being 

the angular frequency) and j denotes the imaginary unit. 

 

In the absence of mean flow, the suitable wave equation for a heterogeneous absorbent 

material can be expressed as [10, 12] 

 
21 0m

m m
m m

kp p
ρ ρ

 
p p + = 
 

 (2) 

where pm is the acoustic pressure and km = ω/cm is the fiber characteristic wavenumber. This 

equation allows the consideration of the transversal temperature variations within the outer 

chamber and the corresponding material non-homogeneous properties ρm and cm. 

 

An eigenvalue analysis is carried out from Eqs. (1) and (2) as follows. Since axial 

uniformity along the z axis is assumed for the material properties and the silencer cross 

section, the solution of the wave equations is decomposed into axial and transversal 

functions by using separation of variables. This is also valid for the inlet and outlet ducts, 

but it is relatively straightforward and the details will be omitted for the sake of brevity. 

The acoustic pressure in the chamber is therefore expanded in the form 

 ( ) ( ), , Ψ , zj k z
Cp x y z x y eM=  (3) 

where 
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 ( ) ( ) ( )
( ) ( )

Ψ , , ,
Ψ ,

Ψ , , ,

A
A

M
M

x y x y S
x y

x y x y S
 ∈= ∈

 (4) 

kz being the axial wavenumber and ΨA and ΨM the pressure modes associated with the 

transversal section. 

 

Therefore, the two-dimensional governing equation in the cross section for the central 

perforated duct can be written as follows 

 ( )( )2 2 2Δ Ψ 2 1 Ψ 0A A
xy a a z zk M k k M k+ M M M =  (5) 

where the subscript xy represents the 2D transversal coordinate system and Δxy is the 

corresponding Laplacian operator. For the outer dissipative chamber, the two-dimensional 

equation is 

 
2 21 Ψ Ψ 0.M Mm z

xy xy
m m

k k
ρ ρ

  M
p p + = 

 
 (6) 

 

2.2. Wavenumbers and pressure modes: transversal eigenvalue problem 

Considering first Eq. (5), a FE discretization of the perforated duct cross section is used, 

together with the Green’s theorem and the weighted residuals method [26]. This leads to 

the following equation for the central duct, 

 ( )( ) ∂
M p p + M M M =M

∂∫ ∫ ∫ 2 2 2

Γ

Ψ2 1 Γ
A A p

A
T A T A T

xy xy a a z zS S
dS k M k k M k dS d

n
N NΨ N NΨ N  (7) 

where N are the usual FE shape functions. 

 

For the outer chamber, the same procedure is applied to Eq. (6), and the governing 

equation can be written as 

2 2

Γ Γ

1 1 Ψ Γ.
M M M p

M
T M T M Tm z

xy xyS S
m m m

k kdS dS d
ρ ρ ρ n∪

M ∂
M p p + =M

∂∫ ∫ ∫N NΨ N NΨ N   (8) 

 

Some boundary conditions are required to solve the problem. The outer wall of the 

chamber is considered rigid and impervious [1], yielding 

 p ⋅ =Ψ 0, on ΓM
xy M Mn  (9) 



7 
 

nM being the outward unit normal vector. After applying Eq. (9), the integrals on the right 

hand side (see Eqs. (7) and (8)) are evaluated over Γp only. The acoustic coupling between 

both subdomains is carried out by means of the perforated duct impedance, considering 

continuity of the normal acoustic velocity [1, 6]. The kinematic conditions applied over Γp 

are expressed as follows 

 ⋅ = =M ⋅ =M = on ΓA A nA M M nM n pu u uu n u n  (10) 

 
Ψ ΨA M

n
p

u
Z
M

=


 (11) 

where Eq. (11) is directly related to the perforated duct acoustic impedance, defined as the 

ratio of the pressure jump to the acoustic velocity normal to surface. Then, considering the 

previous equations and the relation between the normal acoustic velocity and normal 

pressure gradient [1, 6], the following expressions are obtained 

 ( )Ψ Ψ Ψ1 1
A A M

z z
a n a z n a a n a a

p

k kρ jωu Mc jk u ρ jω Mc u ρ jω Mc
n ω ω Z

∂ M   =M M =M M =M M   ∂     
 (12) 

 Ψ Ψ Ψ .
M A M

m nM m n m
p

ρ jωu ρ jωu ρ jω
n Z

∂ M
=M = =

∂ 
 (13) 

Now, substituting Eqs. (12) and (13) into Eqs. (7) and (8) yields, respectively 

  

 
( )( )

( )

2 2 2

*

Γ

2 1

1 Γ

A A

p

T A T A
xy xy a a z zS S

T A Ma z
a

p

dS k M k k M k dS

ρ jω kM c d
Z ω

M p p + M M M

 = M M 
 

∫ ∫

∫

N NΨ N NΨ

N NΨ N Ψ

 

 


 (14) 

 ( )
2 2

*

Γ

1 Γ
M M p

T M T M T A Mm z
xy xyS S

m m p

k k jωdS dS d
ρ ρ Z

M
M p p + =M M∫ ∫ ∫N NΨ N NΨ N N Ψ NΨ   


 (15) 

 

where the integrals in the right hand side of Eqs. (14) and (15) correspond to the FE load 

vectors. These involve similar shape functions N = N* for conforming discretizations, while 

different interpolation functions should be considered for non-conforming meshes [27], N* 

being those associated with region SM in Eq. (14) and with region SA in Eq. (15), 

respectively. Conforming FE are assumed hereafter, thus N and N* being equal. 
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In compact form, the previous FE integrals can be denoted as 

 
*

Γ Γ

, ,

Γ, Γ.
A A

p p

T T
A xy xy AS S

T T
AA AM

dS dS

d d

= p p =

= =

∫ ∫
∫ ∫

K N N M N N

F N N F N N
 (16-19) 

Further rearranging gives 

 2AA a
A a A AA

p

ρ jωk
Z

=M + MK K M F
  (20) 

 2AA a a
a A AA

p

ρ jMcM k
Z

=M +D M F
  (21) 

 ( )21AA
AM=M MM M  (22) 

 AM a
AM

p

ρ jω
Z

=K F
  (23) 

 AM a a
AM

p

ρ jMc
Z

=MD F
  (24) 

and finally Eq. (14) can be written as 

 ( ) ( )2 .AA AA AA A AM AM M
z z zk k k+ + + + =K D M Ψ + D Ψ 0   (25) 

 

Applying the same procedure to the governing equation of the outer chamber, Eq. (15), 

the following FE matrices are defined 

 

2

1 2

*

Γ Γ

1 1, ,

Γ, Γ,

M M M

p p

T T Tm
M xy xy M MS S S

m m m

T T
MM MA

kdS dS dS
ρ ρ ρ

d d

= p p = =

= =

∫ ∫ ∫

∫ ∫

K N N M N N M N N

F N N F N N
 (26-29) 

and introducing the notation 

 1
MM

M M MM
p

jω
Z

=M + MK K M F


 (30) 

 2
MM

M=MM M  (31) 
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 MA
MA

p

jω
Z

=K F


 (32) 

Eq. (15) can be written in compact form as 

 ( )2 .MM MM M MA A
zk+ + =K M Ψ + Ψ 0   (33) 

 

Thus, the final system of equations obtained from Eqs. (25) and (33) yields 

 2
AA AM AA AM AA A

z zMA MM MM M
k k

          
+ + =                    

0+ + D D M 0 Ψ
0+ + 0 0 0 M Ψ




 (34) 

that can be rewritten in compact matrix form as 

 ( )2
z zk k+ + =K D M Ψ 0  (35) 

where the following matrices have been defined 

 , , , .
AA AM AA AM AA A

MA MM MM M

       
= = = =      
       

+ + D D M 0 ΨK D M Ψ
+ + 0 0 0 M Ψ





 (36) 

 

A final eigenvalue problem is obtained from Eq. (35), expressed as 

 1 1 z
z z

k
k kM M

    
=    M M    

0 I Ψ Ψ
M K M D Ψ Ψ

 

 
 (37) 

I being an identity matrix and 0 a matrix containing zeros. 

 

The solution of the eigenproblem defined by Eq. (37) is the basis for the modal expansion 

presented in section 2.3. For higher order modes, a negative imaginary part of the axial 

wavenumber kz is associated with progressive waves while a positive one is associated with 

regressive waves. Previous to the application of the point collocation technique, the eigenvalues 

and their associated eigenvectors have to be sorted [4] into an ascending order by the modulus 

of the imaginary part of the incident waves and by the imaginary part of the reflected waves (an 

example is provided in Table 1 for the first ten wavenumbers). 
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Table 1 
Eigenvalues associated with the chamber cross section obtained for a mesh with element size 
0.01 m: Case A1 (see details in section 3 and also in Table 3), E fiberglass, M=0.1, f =1000 Hz. 

Modal number Progressive wave 
eigenvalues 

Regressive wave 
eigenvalues 

n = 1 14.2133 − 6.8088 j −16.8420 + 8.4747 j 

n = 2 42.1178 − 33.0851 j −42.0454 + 32.9917 j 

n = 3 23.3069 − 59.3160 j −22.9048 + 59.3167 j 

n = 4 12.4230 − 103.6184 j −12.3971 + 103.2916 j 

n = 5 −0.4809 − 141.6255 j −2.9570 + 143.5955 j 

n = 6 9.1813 − 151.1745 j −7.4097 + 151.7867 j 

n = 7 6.2222 − 198.7567 j −6.1072 + 198.7827 j 

n = 8 4.4589 − 248.8107 j −4.8210 + 248.0599 j 

n = 9 0.2814 − 263.7742 j −1.4565 + 267.1160 j 

n = 10 4.1654 − 299.9358 j −3.9687 + 300.1044 j 

 

2.3. Pressure and velocity fields 

Here, the acoustic fields adopt a modal representation [4, 6, 7, 13, 14]. The acoustic pressure 

in a particular region (inlet/outlet ducts and chamber) can be written in terms of a modal 

expansion, containing incident as well as the reflected waves. For the inlet duct, the following 

expression is considered [1, 4] 

 ( ) ( ) ( )( )
1

, , Ψ , Ψ ,
I I
n nj k z j k zI I

I n n n n
n

p x y z I x y e I x y e
+ M

∞
M M+ + M M

=

= +∑  (38) 

while the axial acoustic velocity is given by 

 ( ) ( ) ( )
1

Ψ , Ψ ,1, ,
I I
n nj k z j k zI I I xy

n n n n n n
zI I I

na a a n a n

k I x y e k I x y e
u x y z

ρ c k Mk k Mk

+ MM M+ + + M M M∞

+ M
=

 
 = +
 M M 

∑  (39) 

where I
nk + , nI+  and Ψ ( , )I

n x y+  are, respectively, the axial wavenumber, the pressure modal 

amplitude and the corresponding pressure mode for the n-th modal term, all of them belonging 

to the incident wave. Similarly, I
nk M , nIM  and Ψ ( , )I

n x yM  denote those terms belonging to the 
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reflected waves. The previous definitions can be also used to describe the acoustic fields in the 

outlet duct, by suitably replacing the modal terms  I
nk + , nI+  and Ψ ( , )I

n x y+  by O
nk + , nO+  and 

Ψ ( , )O
n x y+  (progressive waves) and I

nk M , nIM  and Ψ ( , )I
n x yM  by O

nk M , nOM  and Ψ ( , )O
n x yM  

(regressive waves). It is worth noting that, for ducts with rigid walls, progressive and regressive 

modes are equal, that is, Ψ ( , )n x y+  = Ψ ( , )n x yM , even in the presence of mean flow [1]. The 

fundamental mode consists of a plane wave and the associated wavenumber is given by 

 1 .
1

I akk
M

± ±
=

±
 (40) 

To compute the acoustic attenuation, the inlet duct is usually assumed to contain an incident 

plane wave only. Thus, Eqs. (38) and (39) can be rewritten as follows 

 ( ) ( )1
1 1

1
, , Ψ Ψ ,

I I
nj k z j k zI I

I n n
n

p x y z I e I x y e
+ M

∞
M M+ + M M

=

= +∑  (41) 

 ( ) ( )
1

1 1
1

Ψ ,1, , Ψ
I
n

I
j k zI I

n n nj k zI
zI I

na a a n

k I x y e
u x y z I e

ρ c k Mk

M

+
MM M M∞

M+ +
M

=

 
 = +
 M 

∑  (42) 

where for simplicity 1 1Ψ 1II+ + = . 
 

The pressure field in the chamber is described by the following expression 

 ( ) ( ) ( )( ), ,

1
, , Ψ , Ψ , .z n z nj k z j k z

C n n n n
n

p x y z C x y e C x y e
+ M∞

M M+ + M M

=

= +∑  (43) 

Here, it is worth noting that pC = pA in ΩA and pC = pM in ΩM. From Eq. (43), the acoustic velocity 

field can be expressed as [1, 4] 

 
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ M

+ M

M M+ + + M M M∞

+ M
=

M M+ + + M M M∞

=

  
  = + ∈

  M M
  =

 
 = + ∈
 
 

∑

∑

, ,

, ,

, ,

1 , ,

, ,

1

Ψ , Ψ ,1, , ,

, ,
Ψ , Ψ ,1, , ,

z n z n

z n z n

j k z j k zA A
z n n n z n n n

zA A
na a a z n a z n

zC
j k z j k zM M

z n n n z n n n
zM M

nm m m m

k C x y e k C x y e
u x y z x y S

ρ c k Mk k Mk
u x y z

k C x y e k C x y e
u x y z x y S

ρ c k k




(44) 

where again uzC = uzA in ΩA and uzC = uzM in ΩM. 

 

2.4. Axial coupling at the geometrical discontinuities. Point collocation. 

To obtain the complete description of sound propagation within the silencer, acoustic 

fields need to be matched at the geometrical discontinuities, that is, the sudden expansion 
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between the inlet duct and the chamber and the sudden contraction between the chamber 

and outlet pipe. Compatibility conditions are provided by the physical requirements that 

acoustic pressure and axial velocity be equal at the expansion/contraction and that axial 

velocity normal to the rigid endplates be zero [1, 4]. Therefore, at the expansion of the 

silencer the compatibility equations are expressed as 

 ( ) ( ) ( ), ,0 , ,0 , ,I A I Ap x y p x y x y S S= ∈ ≡  (45) 

 ( ) ( ) ( ), ,0 , ,0 , ,zI zA I Au x y u x y x y S S= ∈ ≡  (46) 

 ( ) ( ), ,0 0, ,zM Mu x y x y S= ∈  (47) 

while at the contraction these yield 

 ( ) ( ) ( ), , , ,0 , ,A m O O Ap x y L p x y x y S S= ∈ ≡  (48) 

 ( ) ( ) ( ), , , ,0 , ,zA m zO O Au x y L u x y x y S S= ∈ ≡  (49) 

 ( ) ( ), , 0, , .zM m Mu x y L x y S= ∈  (50) 

 

If the acoustic pressure and axial velocity in the previous Eqs. (45)-(47) are substituted by 

their corresponding modal expansions given by Eqs. (41)-(44), the following equations are 

obtained 

 ( ) ( ) ( )( ) ( )
∞ ∞

M M + + M M

= =

+ = + ∈∑ ∑
1 1

1 Ψ , Ψ , Ψ , ,I A A
n n n n n n A

n n
I x y C x y C x y x y S  (51) 

 
( ) ( ) ( ) ( )

+ + + M M MM M M∞ ∞

M + M
= =

  
+ = + ∈     M M M   
∑ ∑ , ,

1 1 , ,

Ψ , Ψ ,Ψ ,1 11 ,
A AI I

z n n n z n n nn n n
AI

n na a a n a a a z n a z n

k C x y k C x yk I x y
x y S

ρ c k Mk ρ c k Mk k Mk
 (52) 

 
( ) ( ) ( ), ,

1

Ψ , Ψ ,1 0 , .
M M

z n n n z n n n
M

nm m m m

k C x y k C x y
x y S

ρ c k k

+ + + M M M∞

=

 
+ = ∈  

 
∑  (53) 

 

Eq. (51) is now enforced pointwise at N1 collocation points coinciding with the nodes of the 

FE mesh in section SI≡SA. Similarly, Eqs. (52) and (53) are applied at N1 and N2 nodes of the 

sections SA and SM, respectively. In addition, the modal expansions are truncated to a suitable 

number of terms to guarantee a solvable system of equations. Thus, N1 equations are obtained 

for the acoustic pressure field continuity, Eq. (51), that can be written as 
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 ( )
1 1 2

, , ,
1 1

1
N N N

I A A
n n q n n q n n q

n n
I C C

+
M M + + M M

= =

+ = +∑ ∑Ψ Ψ Ψ    (54) 

where q = 1, …, N1 and ,
I
n q
MΨ  and ,

A
n q
±Ψ  refer to the q-th nodal value of transversal pressure 

modes for the inlet pipe and central passage. Similarly, for the axial acoustic velocity continuity 

over section SA, the modal summations in Eq. (52) are truncated and enforced at the FE nodes, 

yielding 

 
1 1 2

, , , , ,

1 1 , ,

1 .
I I A AN N N
n n n q z n n n q z n n n q

I
n na n a z n a z n

k I k C k C
k M k k M k k M k

M M M + + + M M M+

M + M
= =

 
+ = +  M M M 
∑ ∑

Ψ Ψ Ψ  
 (55) 

For the rigid wall condition, Eq. (53), the number of collocation points is N2 and the same 

number of equations are generated, that is,  

 ( )
1 2

, , , ,
1

0
N N

M M
z n n n q z n n n q

n
k C k C

+
+ + + M M M

=

+ =∑ Ψ Ψ   (56) 

for q= 1, …, N2. As in the previous case, ,
M
n q
±Ψ  refers to the q-th nodal value of transversal 

pressure mode for the absorbent material. 

 

The compatibility equations (48)-(50) at the contraction can be also written in terms of 

modal expansions. For the computation of the silencer transmission loss, the usual 

anechoic termination is considered here [1], that is, no outlet reflections are included in 

the analysis and therefore 0nOM =  n∀ . Thus, 

 ( ) ( )( ) ( ) ( )
+ M∞ ∞

M M+ + M M + +

= =

+ = ∈∑ ∑, ,

1 1
Ψ , Ψ , Ψ , ,z n m z n mj k L j k LA A O

n n n n n n A
n n

C x y e C x y e O x y x y S  (57) 

 

( ) ( )

( ) ( )

+ MM M+ + + M M M∞

+ M
=

+ + +∞

+
=

 
 +
 M M
 

 
∈  M 

∑

∑

, ,
, ,

1 , ,

1

Ψ , Ψ ,1

Ψ ,1= ,

z n m z n mj k L j k LA A
z n n n z n n n

na a a z n a z n

O O
n n n

AO
na a a n

k C x y e k C x y e
ρ c k Mk k Mk

k O x y
x y S

ρ c k Mk

 (58) 

( ) ( ) ( )
, ,

, ,

1

Ψ , Ψ ,1 0 , .
z n m z n mj k L j k LM M

z n n n z n n n
M

nm m m m

k C x y e k C x y e
x y S

ρ c k k

+ MM M+ + + M M M∞

=

 
 + = ∈
 
 

∑  (59) 

Truncating the series with the same criteria as for the expansion, the equations at the 

collocation points are given by 
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 ( )1 2 1
, ,

, , ,
1 1

z n m z n m

N N N
j k L j k LA A O

n n q n n q n n q
n n

C e C e O
+ M

+
M M+ + M M + +

= =

+ =∑ ∑Ψ Ψ Ψ    (60) 

 

+ MM M+ + + M M M + + ++

+ M +
= =

 
 + =
 M M M
 

∑ ∑
  , ,1 2 1

, , , , ,

1 1, ,

z n m z n mj k L j k LA A O ON N N
z n n n q z n n n q n n n q

O
n na z n a z n a n

k C e k C e k O
k M k k M k k M k
Ψ Ψ Ψ

 (61) 

 ( )1 2
, ,

, , , ,
1

0.z n m z n m

N N
j k L j k LM M

z n n n q z n n n q
n

k O e k O e
+ M

+
M M+ + + M M M

=

+ =∑ Ψ Ψ   (62) 

 

The algebraic system (54)-(56) and (60)-(62) consists of 4 N1 + 2 N2 equations with the 

same number of unknowns. This is readily solved for each excitation frequency to obtain 

the unknown pressure amplitudes nIM , nC + , nC M  and nO+ . 

 

Finally, the acoustic attenuation can be computed by means of the transmission loss, 

defined as [1] 

 1 120 ΨOTL log O+ += M  (63) 

considering that the inlet and outlet ducts are long enough to guarantee the rapid decay of 

higher order evanescent modes. 

 

3. Temperature-induced property variations 

 

3.1. Absorbent material. Transversal variations of the equivalent acoustic properties 
An absorbent material can be defined by its equivalent acoustic properties [20], such as 

the speed of sound cm and the density ρm (both complex and frequency dependent), or 

equivalently by its characteristic impedance Zm and wavenumber km. The model employed 

here is an extension of the empirical power law proposed by Delany and Bazley [28] for 

rigid fibrous materials, used to calculate cm and ρm in terms of the steady airflow resistivity 

R. Due to the temperature variations considered in the current investigation, the resistivity 

is coordinate-dependent over the cross section of the chamber, that is, R = R(x, y). The 

latter can be calculated at each FE integration point by means of the Christie’s power law 

[19] as follows, 

 ( )( ) ( ) ( ) +
=  

+ 

0 6

0
0

273 15
273 15

.
T x , y .

R T x , y R T
T .

 (64) 
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where R(T0) is the resistivity at the reference temperature T0 and T(x, y) is the 

temperature at the integration point. Once the resistivity is computed, the equivalent 

impedance and wavenumber can be obtained in terms of a number of coefficients ai, i = 1, 

2, …, 8 derived from a curve fitting process following laboratory measurements, and a 

dimensionless frequency parameter ξ = ρa f/R, f being the frequency [20, 28]. For the E 

fiberglass used in all the computations hereafter, the coefficients are a1 = 0.220, a2 = 

−0.585, a3 = 0.201, a4 = −0.583, a5 = 0.095, a6 = −0.669, a7 = 0.169 and a8 = −0.571, and the 

reference resistivity is R(T0 = 25ºC) =30716 rayl/m (for a filling density ρb = 120 kg/m3). 

The dimensionless frequency parameter calculated as ξ(x, y) = ρa f/R(x, y) is also 

dependent on the coordinates. Thus, the equivalent characteristic impedance Zm and 

wavenumber km of the absorbent material are also functions of the coordinates and can be 

obtained by means of the following expressions [10, 20, 28] 

 ( ) ( ) ( )( ( ) )6 8

5 7, , 1 , ,a a
m aZ x y Z x y a ξ x y ja ξ x y= + M  (65) 

 ( ) ( ) ( )( ( ) )4 2

3 1, , 1 , ,a a
m ak x y k x y a ξ x y ja ξ x y= + M  (66) 

Za = ρa ca and ka = ω/ca being the air characteristic impedance and wavenumber, 

respectively. All the coefficients ai are considered constant in spite of the temperature 

variations, as in previous works [12]. This is consistent with the high temperature results 

presented by Christie [19] and the recent experimental measurements carried out by 

Williams et al. [21], which have shown the validity of this hypothesis to provide an 

accurate prediction of the absorbent material properties. 

 

From Eqs. (65) and (66), the equivalent density and speed of sound can be readily 

obtained as cm = ω/km and ρm = Zm/cm. These values are introduced in the finite element 

integrals (26)-(28) to obtain the final eigenvalue problem (37). 

 

3.2. Acoustic impedance of the perforated duct 

Several authors have shown the influence of the mean flow and the absorbent material 

properties on the acoustic impedance of the perforated duct [22-25]. The model of Lee and 

Ih [23], used in the present work, has been proved to be accurate enough when compared 

with experimental results. The dimensionless impedance of the perforated screen in the 

presence of a grazing mean flow can be expressed as 

 α β= = +p
p

a a

Z
ζ j

ρ c
 (67) 
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where the real and the imaginary part of ζp can be defined as follows 

 
( )( )( )( )+ M + + +0 1 2 3 41 1 1 1

= crit hα α f f α M α d α t
α

σ
 (68) 

 
( )( )( )( )0 1 2 3 41 1 1 1

= .hβ β d β t β M β f
β

σ
+ + + +

 (69) 

It is worth to remark that in Eq. (67) the tilde has been intentionally omitted from the 

impedance Zp in comparison with Eq. (11) to indicate that the effect of the absorbent 

material is not still included on the acoustic behavior of the perforations.  

 

In Eqs. (68) and (69), M is the local mean flow Mach number at the average temperature 

between the  inlet and outlet sections (for further details about the temperature field see 

section 3.3), dh the hole diameter, tp the thickness, σ the porosity and f the frequency. The 

critical value fcrit can be calculated using the expression 

 
( )

( )
1 2

3

1
= .

1crit
h

φ φ M
f

φ d
+

+
 (70) 

The values of the coefficients in Eqs. (68)-(70) were derived from a curve fitting procedure 

to experimental results [23] and are given in Table 2. 

 

Table 2 
Coefficients for the calculation of the acoustic impedance. 

Real part (α) Imaginary part (β) fcrit 

α0 = 3.94∙10−4 β0 = −6.00∙10−3 φ1 = 412 

α1 = 7.84∙10−3 β1 = 194 φ2 = 104 

α2 = 14.9 β2 = 432 φ3 = 274 

α3 = 296 β3 = −1.72 −− 

α4 = −127 β4 = −6.62∙10−3 −− 

 
The influence of the absorbent material on the acoustic impedance of the perforated 

duct has to be also included and it can be taken into account by means of the equivalent 

density of the material [22, 25]. The following expression is used 

 ( ) ( )( ) ( )0.425 , 1
, a h m p p a

p p p a a p

j k d ρ x y ρ F σ
Z x y ρ c ζ

σ

 M
 = +
 
 

  (71) 
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where xp, yp are the transversal coordinates of the particular point where the perforated 

acoustic impedance is being evaluated. Eq. (71) includes the effects of the mean flow as 

well as the absorbent material through ζp and ρm, respectively. Finally, F(σ) is related to 

the acoustic interaction between perforations and it has been obtained by means of  the 

following expression [6] 

 ( ) ( ) ( )3 5
1 1.055 0.17 0.035 .F σ σ σ σ= M + +  (72) 

 

3.3. Transversal temperature field 

The temperature field in the exhaust system of an automobile depends on many parameters, 

such as the details of the geometrical configuration, the properties of the different materials 

composing the exhaust devices, as well as the engine load and speed. In an earlier work [12], it 

was shown that in spite of the fact that axial temperature gradients can reach values over 100ºC, 

their influence on the silencer attenuation is relatively low, while transversal gradients can have 

a great influence on the transmission loss. Therefore, with a view to obtain a numerical 

approach with a significant reduction in the computational expenditure, the acoustic impact of 

the axial temperature variation is neglected in the current investigation compared to the 

transversal one; the temperature along the silencer axis is assumed constant and equal to the 

average value at the inlet and outlet sections. The transversal gradient in the chamber is 

retained in the acoustic model due to its considerable influence on the acoustic behavior of the 

silencer [12]. The numerical test cases presented in the next section approximate the transversal 

temperature distribution for an axisymmetric configuration by a quadratic polynomial function 

 ( ) 2
0 1 2chamberT r c c r c r= + +  (73) 

where r is the radial coordinate. Three coefficients are included in Eq. (73) to provide a good 

agreement with the logarithmic temperature distribution found in cylindrical domain [29]. The 

quadratic temperature field within the chamber is defined, for example, by prescribing the 

temperature at three locations: (1) at the perforated screen surface; (2) at the outer radius of the 

chamber; and (3) at the midpoint between (1) and (2). In this simplified temperature field, no 

temperature jump has been considered in the perforated surface nor temperature variation has 

been taken into account inside the perforated central passage, since its dimensions are usually 

much smaller than those associated with the chamber. 
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4. Results 

The configuration under study consists of an axisymmetric silencer whose dimensions 

are Lm = 0.3 m, R1 = 0.0268 m and R2 = 0.091875 m (see Fig. 2). In addition, the length of 

the inlet/outlet pipes in the finite element discretizations is Li = Lo = 0.1 m to guarantee 

plane wave propagation conditions in the inlet/outlet sections. 

 

 
Fig. 2. Silencer with axisymmetric geometry including an axially and radially-varying 

temperature field. 

 

The temperature fields considered in the computations are shown in Table 3. As can be 

seen, only radial thermal variations are considered in cases A1, A2 and A3, defined through 

Eq. (73). These are used for validation of the proposed approach by comparison with full 

3D FE computations (see section 4.1. for details). In cases B1, B2 and B3, the temperature 

field T(r, z) includes both radial and axial temperature gradients, the acoustic impact of 

the latter and the possible limitations of the current approach being discussed in section 

4.2. In addition, some results are presented in section 4.3 regarding the numerical 

influence of the number of nodes and collocation points associated with the 2D transversal 

FE mesh. 
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Table 3 
Temperature distributions. 

Case Inlet 
temperature  

Outlet 
temperature  

Inner radius 
temperature R1  

Mean radius 
temperature  

Outer radius 
temperature R2  

 Ti (ºC) To (ºC) Tt_i/Tt_o (ºC) Tm_i/Tm_o (ºC) Tch_i/Tch_o (ºC) 

A1 250 250 250 / 250 185.48 / 185.48 150 / 150 

A2 325 325 325 / 325 228.22 / 228.22 175 / 175 

A3 400 400 400 / 400 270.96 / 270.96 200 / 200 

B1 300 200 300 / 200 235.48 / 135.48 200 / 100 

B2 400 250 400 / 250 303.22 / 153.22 250 / 100 

B3 500 300 500 / 300 370.96 / 170.96 300 / 100 

 

4.1. Validation 

In order to validate the current numerical approach based on point collocation, several 

computations have been carried out considering different temperature fields with radial thermal 

gradient corresponding to cases A1, A2 and A3 (see Table 3). The numerical test problem for 

each temperature field has been computed twice, including the point collocation technique 

presented here and a full 3D finite element formulation [12]. For the latter, two possibilities are 

considered: (1) An in-house code developed in Matlab®, based on a hybrid 3D FE formulation 

that combines a velocity potential formulation in the central passage and a pressure based-wave 

equation in the outer chamber [12]; and (2) the FE commercial package COMSOL Multiphysics® 

software [30]. The in-house FE code allows the consideration of axial and radial temperature 

gradients, as well as heterogeneous mean flow due to temperature variations, while the 

commercial package has been only used to validate the point collocation technique when a 

uniform temperature field of 200ºC is considered in the whole silencer, in the absence of mean 

flow. From the results shown in Fig. 3, it is evident that good agreement exists in general 

between the computations provided by the full 3D FE formulation and the point collocation 

technique, which validates the current approach form a practical point of view. Additionally, it 

can be also observed that an increase of temperature gradients and mean flow reduces the 

attenuation of the dissipative silencer, shifting the maximum value of the transmission loss to 

higher frequencies. 
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Fig. 3. Transmission loss of a dissipative silencer: —, uniform temperature, M=0, COMSOL; ooo, 

same, point collocation; —, case A1, M=0.1, in-house code, full 3D FEM; ooo, same, point 

collocation; —, case A2, M=0.1, in-house code, full 3D FEM; ooo, same, point collocation; —, case 

A3, M=0.1, in-house code, full 3D FEM; ooo, same, point collocation. 

 
4.2. General temperature fields and TL computations with average values 

The application of the point collocation technique requires a uniform temperature along the 

silencer axis. With a view to assess the impact of this simplification, more general temperature 

fields are considered in this section including both axial and radial thermal gradients (see cases 

B1, B2 and B3 in Table 3). The configurations B1, B2 and B3 are calculated using the 

aforementioned hybrid full 3D FEM formulation [11, 12]. In the outer dissipative chamber, the 

following quadratic law is taken into account [12, 29] 

 ( ) 2 2
0 1 2 3 4 5,chamberT r z T T z T r T z r T z r T r= + + + + +  (74) 

where Tchamber depends on the radial and axial coordinates. The temperature field is defined from 

the temperature values depicted in Fig. 2 and detailed in Table 3. In the central pipe, only an 

axial gradient is considered due to its relatively small dimensions, according to the following 

expression 

 ( ) 6 7tT z T T z= +  (75) 

where T6 and T7 are computed as well by considering the temperature values at the 

inlet/outlet sections, denoted as Ti and To, respectively (see Table 3). 
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The point collocation technique computations of cases A1, A2 and A3 are compared 

with the full 3D FE transmission loss calculations of configurations B1, B2 and B3. It is 

worth noting that the radial gradient ΔTrad is given by ΔTrad = 100 °C for A1 and B1, ΔTrad = 

150 °C for A2 and B2 and ΔTrad = 200 °C for A3 and B3, respectively. In addition, all the 

computations have been carried out considering a mean flow Mach number M=0.1. 

 

Two facts can be observed in Fig. 4. First, from a general point of view, as the thermal 

gradients become higher the attenuation achieved by the silencer is lower. On the other hand, 

the differences between the transmission loss curves obtained considering both radial and axial 

thermal gradients simultaneously (cases B1, B2 and B3 computed with the full 3D FE approach), 

and those considering only radial temperature variations (cases A1, A2 and A3 calculated with 

the point collocation technique) are stronger as the temperature gradients are higher. For 

example, the maximum TL discrepancy between the uniform axial temperature field A1 and case 

B1 is 0.56 dB, while in cases A2 and B2 the discrepancy is about 0.66 dB and in cases A3 and B3 

approximately 0.78 dB. However, these values are considered relatively small from a practical 

point of view, and therefore the slight acoustic impact of replacing the axial temperature 

gradient by the average value (while retaining the transversal thermal gradient) is clearly 

compensated by the benefits of a significant reduction of the computational effort if the point 

collocation technique is used compared to the full 3D FE approach. Further details are provided 

in section 4.3. 
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Fig. 4. Transmission loss of a dissipative silencer: —, A1, point collocation; ---, B1, in-house code, 

full 3D FEM; —, A2, point collocation; ---, B2, in-house code, full 3D FEM; —, A3, point 

collocation; ---, B3, in-house code, full 3D FEM. 

 
4.3. Numerical influence of the transversal FE mesh 

Several computations are carried out in this section with an increasing refinement of the 2D 

transversal FE mesh associated with the silencer cross section. As the element size is refined, a 

higher number of nodes is included in the calculations; thus, the accuracy of the solution 

corresponding to the eigenvalue problem is improved and, additionally, the compatibility 

conditions of the acoustic fields are enforced at an increasing number of collocation points. As it 

is shown in this section, this finally leads to a better computation of the silencer transmission 

loss. 

 

As it was found in earlier studies for silencers with homogeneous materials [4, 7, 13, 14], the 

number of collocation points and their location have an important effect on the solution 

accuracy. In the present work, the nodes of the transversal finite element mesh are chosen as 

collocation points to match the acoustic fields (pressure and axial acoustic velocity). The impact 

of the element size (and therefore the number of nodes and collocation points) has been studied 

here by refining the finite element mesh and computing the associated relative error. This can be 

achieved by comparing the solution of the point collocation technique with a “reference” 

solution obtained with the full multidimensional FE in-house code previously mentioned in 

section 4.1. The “reference” transmission loss has been obtained with a FE mesh consisting of 8-

node quadratic quadrilateral axisymmetric elements, whose approximate size is 0.002 m. This 
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provides about 50 quadratic elements per wavelength for the maximum frequency fmax = 3200 

Hz considered in the calculations [31]. The meshes associated with the transversal 

discretizations of the point collocation technique are composed of 3-node quadratic one-

dimensional elements (note that the geometry under analysis is axisymmetric and therefore the 

silencer cross section is represented by a line), and their corresponding relative error has been 

computed as follows 

 ( ) ( ) ( )2 2

1 1
% 100.

nfreq nfreq
ref ref

i i i
i i

Error TL TL TL
= =

= M∑ ∑  (76) 

All the calculations have been executed with frequency increments of 20 Hz in the range 

from fmin = 20 Hz to fmax = 3200 Hz, and therefore the number of frequencies is given by 

nfreq = 160 in the summations of Eq. (76). The number of nodes corresponding to each 

transversal mesh and the approximate element size for the application of the point 

collocation technique appear in Table 4. 

Table 4 
Number of nodes of each finite element mesh. 

Number 
of nodes 6 8 14 16 20 22 24 28 30 34 42 50 

Element 

size (m) 
0.065 0.032 0.02  0.015 0.0125 0.01 0.009 0.008 0.007 0.006 0.005 0.004 

 

As can be seen in Fig. 5 (in log–log plot), a reduction of the relative error (%) is 

achieved as the number of nodes in the mesh is increased and the accuracy can be 

considered satisfactory from a practical point of view. The convergence rate tends to 

stabilize for meshes having a sufficiently high number of nodes. It can be also noticed that 

the convergence trend showed by the error is similar for all the temperature gradients 

considered in the computations. 
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Fig. 5. Relative error (%) between the TL obtained with the point collocation technique (with 

different transversal FE meshes) and the full 3D FEM, mean flow Mach number M=0.1: —, case 

A1; —, case A2; —, case A3. 

 

The computation expenditure was also obtained for the previous simulations and the results are 

depicted in Fig. 6. The numerical calculations have been carried out on a Quad-Core, 2.33 GHz 

machine with 32 GB of RAM and the estimation of the computation time has been generated 

with the tic toc Matlab® function. The results show that point collocation computation times are 

below 1 minute in all the cases under study and similar values are obtained for the three 

temperature gradients considered in the calculations. It is worth noting that the full 

multidimensional FE formulation requires a considerably higher effort (more than 1 hour per 

analysis). 
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Fig. 6. Computation times of the point collocation technique with different transversal FE 

meshes, mean flow Mach number M=0.1: —, case A1; —, case A2; —, case A3. 

 

5. Conclusions 

A transversal finite element-based eigenvalue problem has been combined with the point 

collocation technique to model the multidimensional acoustic behavior of perforated dissipative 

silencers with transversal temperature gradients in the presence of mean flow. The method 

reduces the computational requirements of a full multidimensional finite element computation 

in silencers with arbitrary but axially uniform cross section. The proposed acoustic model 

considers the thermal variations over the silencer cross section, while the axial temperature 

gradient is replaced by a uniform temperature equal to the average value at the inlet and outlet 

sections. Thus, the model implemented here is primarily intended for use with silencers for 

which axial temperature variations have a reduced acoustic impact compared to the transversal 

thermal gradients. For the perforated central passage, the convective wave equation has been 

considered to incorporate the influence of the mean flow. Concerning the outer chamber, the 

absorbent material has been modelled by its complex equivalent acoustic properties. The 

temperature-induced variations of these properties have been considered through a pressure-

based wave equation valid for heterogeneous absorbent materials whose equivalent density and 

speed of sound depend on the spatial coordinates. The coupling between the perforated central 

duct and the dissipative outer chamber has been carried out through the corresponding acoustic 
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impedance, whose model has been modified to include the variation of properties with 

temperature. 

 

First, the aforementioned 2D FE-based eigenvalue problem has been solved for the silencer 

cross section, providing the corresponding acoustic eigenvalues (wavenumbers) and 

eigenvectors (pressure modes). Then, the complete 3D acoustic field has been computed 

combining the transversal solutions of the wave equation with the point collocation technique to 

match the pressure and axial acoustic velocity at the expansion/contraction geometrical 

discontinuities. To validate the results obtained using the proposed approach, a comparison has 

been carried out with full 3D FE computations, showing an excellent agreement. The influence of 

a number of parameters on the acoustic attenuation performance has been shown, including the 

effect of the transversal temperature gradient. 
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