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Abstract 
 

The UK and the world are moving away from central energy resource to 

distributed generation (DG) in order to lower carbon emissions. Renewable 

energy resources comprise a big percentage of DGs and their optimal 

integration to the grid is the main attempt of planning/developing projects 

with in electricity network. 

Feasibility and thorough conceptual design studies are required in the 

planning/development process as most of the electricity networks are 

designed in a few decades ago, not considering the challenges imposed by 

DGs. As an example, the issue of voltage rise during steady state condition 

becomes problematic when large amount of dispersed generation is 

connected to a distribution network. The efficient transfer of power out or 

toward the network is not currently an efficient solution due to phase angle 

difference of each network supplied by DGs. Therefore optimisation 

algorithms have been developed over the last decade in order to do the 

planning purpose optimally to alleviate the unwanted effects of DGs.   

Robustness of proposed algorithms in the literature has been only partially 

addressed due to challenges of power system problems such multi-objective 

nature of them. In this work, the contribution provides a novel platform for 

optimum integration of distributed generations in power grid in terms of their 

site and size. The work provides a modified non-sorting genetic algorithm 

(NSGA) based on MATPOWER (for power flow calculation) in order to find a 

fast and reliable solution to optimum planning.  

The proposed multi-objective planning tool, presents a fast convergence 

method for the case studies, incorporating the economic and technical 

aspects of DG planning from the planner‟s perspective. The proposed 

method is novel in terms of power flow constraints handling and can be 

applied to other energy planning problems. 
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Chapter 1 

Introduction 
 

1.1 Background  
 

Accommodating distributed generations (DG) into power system has shown 

a significant growth over the last decades. The DGs are potentially an 

attractive source of energy. They don‟t only provide sustainability and 

security to power system, but also are a doorway to low carbon technologies 

such as wind or solar power. UK renewable energy road map report shows 

that overall, renewable electricity capacity grew by 38% to 19.5 GW in the 

second quarter of 2013 across the majority of sectors in the UK [213]. The 

situation of DG penetration in power systems of 15 European member states 

in 2005 is shown in Figure 1.1 [215]. 

 

Figure 1.1 DG share of total generation capacity in 2005 [215] 
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Renewable energy source (RES) and Combined heat and power (CHP) have 

been represented in different colours but overall, the figure shows that ten 

countries have a DG capacity above 10%, and half of them are over 20%. 

The policy objective is 20% integration for the whole European member state 

in 2020 [215]. Therefore, it could be seen that, the integration of DGs has 

already begun and rate is obtaining a fast momentum. Any network planner 

or developers is bound to find the suitable areas and the required capacity 

for the reinforcement of power network. The reinforcement of network by 

increasing DG penetration can have an impact on distribution networks 

system costs. It may lead into extra costs or reduced costs (benefit) for the 

operator of distribution network (DSO). For example avoiding or delaying the 

need for costly network upgrades by providing new capacity in the short-term 

could reduce the investment cost. On the other hand distribution planner has 

to maximise the profit of the investments for the system development and to 

improve the performance of the system as well. In many case the goals are 

conflicting [54]. This is where optimisation techniques are aiding the 

planner/developers. In publications over decades the problem has been 

addressed. The most recent techniques show a shift from complex 

mathematical optimisation techniques to more heuristic techniques to avoid 

derivates and non-converging outcome [214]. Due to inherent confliction of 

technical and economic objectives, finding an appropriate balance among 

sets of conflicting objectives is of interest. The multi-objective evolutionary 

algorithm (MOEA) optimisation techniques are the ones that provide a frame 

work for identification of different parameters affecting the technical and cost-

orientated objectives, thus an efficient MOEA framework is the one that is 

adoptable to objectives in a power system and rapid in terms of 

mathematical calculations. The optimal solution could be varied based on the 

planner‟s goals and preferences. Before implementing any sort of 

optimisation, objectives constraints and scope of the studies should be 

defined. DG planning objectives are of various types represented in Table 

1.1. Table 1.1 could be a longer list but as explained, the objectives vary 

based on the perspective of network operator. Optimum integration of 

distribution generations are also based on power flow calculation. Power 
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flows calculation is an indispensable part of optimisation as the all variables 

are to be recalculated with the new variables. 

 

Table 1.1 Various objectives in DG planning 

Technical 
Objectives 

Economic Objectives Environmental 
Objectives 

Voltage  Cost of equipments  Green house gas 

emissions 

Energy 
produced 

Cost of operation and maintenance 
of equipment (O&M) 

CO2 emissions 

Energy not 
supplied 

Outage cost Radioactive waste 

 

Energy 
exported 

Cost of energy produced 

 

Noise 

Power losses Revenue 

 

 

Line loading  Profit 

 

 

Harmonics 
distortion 

Rate of return  

Fault level   

Installed 
capacity 

  

 

1.2 Aim and Objectives  
 

The main aim of the research is to develop an optimisation system that 

selects the best location and size of DG. In order to achieve this aim, the 

following objectives are set: 
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 Develop and test a multi-objective optimisation algorithm based on 

Pareto ranking and genetic algorithm (GA). 

 Develop better optimisation using non-sorting genetic algorithm II 

(NSGA-II). 

 Simulate the electrical system using MATPOWER analysis toolbox 

[208] as a robust simulation engine. 

 Use the optimisation tools with the simulation in selecting the best 

location and size of distributed generation. The multi-objectiveness is 

adopted due to the variety of objectives and inherent nature of 

objectives in optimum integration of power system. 

 

1.3 Contribution to Knowledge 
 

This work represents the first publicly available of NSGA-II- MATPOWER to 

find the optimum location and size of DGs in terms of the defined objectives. 

The novelty of the model allows for using any standard case defined in 

MATPOWER. As constraints such as equality constraints are bases of power 

flow calculation in MATPOWER, any unfit resolution would be discarded 

during the optimisation without a need for more than 50 iterations. Therefore 

the results are obtained in less than a few minutes for hundreds node power 

system networks.  The work also propose a function for shifting the optimum 

result to a point in which less power flow congestion is imposed on the slack 

bus hence decreasing the dependency of network from the substation. 

 

1.4 Thesis Outline 
 

Chapter 1 is this introduction which introduces the subject, give aim and 

objectives, the contributions and the thesis outline. 

Chapter 2 review some background material relevant to different 

optimisations methods with respect to power system in power system 

networks. 
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Chapter 3 describes the theory of heuristic and non-heuristic algorithms. In 

addition it provides a review on some analytical tool used for such 

algorithms. 

Chapter 4 gives details of the system implementation, including the 

simulation tool, the optimisation algorithm and the interfacing between the 

package and the optimisation tool which is implemented in Matlab. 

Chapter 5 applies the optimisation algorithm to different IEEE standard case 

systems. The results are obtained for all the systems and the performance is 

analysed and evaluated with respect to the best results. 

Chapter 6 summaries the result of analysis and discuss the further work 

Appendix A IEEE 14 bus network data 

Appendix B IEEE 30 bus network data 

Appendix C IEEE 118 bus network data 

 

1.6 List of Publications  

I. Zamani, M. Irving, “A novel approach to distributed energy resource 

planning using NSGA-II”, in Proc 47th International Universities Power 

Engineering Conference (UPEC), 4-7 Sept. 2012 

I. Zamani, M. Abbod, M. Irving, ”Analysis of decision making in multi-

objective DG allocation based on NSGA-II”, accepted in 49th  International 

Universities' Power Engineering Conference, 2014 
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Chapter 2 

Literature Review 

 

2.1 Introduction 
 

In this chapter an overview of the current literature on historical evolution of 

distributed generation and their relative planning methods applied in power 

system is presented. Technical and mathematical issues on the planning are 

discussed firstly. Non-linearity in power system is discussed next to illustrate 

the significance of the optimisation in power system. Optimisation comes 

with different objectives so in Section 2.5 multi objectiveness is discussed to 

illustrate how versatile objectives affect the methods used in dealing with 

multi-objective optimisation. In Section 2.6 an overview of the methods in 

power system and particularly on distribution generation planning is 

presented. Methods are divided into two main classes: conventional and 

heuristic optimisation. Furthermore in this Section the effort has been 

focused on the relative pros and cons of each technique with respect to its 

application in power system. In Section 2.7 it has been attempted to show 

how distribution generation term is perceived in different literature. One of 

the most important issues in distribution generation planning is the voltage 

stability. In Section 2.8 its imperative role in power system and different 

approaches in achieving the stability is presented. Distribution generation 

planning has also been classed in terms of time scale. In Section 2.9 the 

effort has been to distinguish the short and long term planning presented in 

literature. In the last Section of this chapter, the order of optimisation is 

discussed. The literature illustrates that optimisation is not only diversified by 

applying different methods, but also by the way that those techniques are 

applied. 

 



7 
 
 

2.2 Evolution in Distributed Generation and Grid 

Policies 

In the recent decade, distributed generation (DG) has been referred as one 

of the main solutions to address the global warming issue as a large number 

of DGs are devoid or are of low carbon emissions. Despite strong drivers 

towards bulk electricity production (centralization), distributed generation 

facilities constitute a collection of decentralized power production which offer 

less expensive, more flexible and less environmentally damaging alternatives 

to traditional utility-owned power plants [1], [2].  

The first attempts of increasing DG integration came into existence in 1970s, 

when fuel costs of fossil fuels skyrocketed as the small scale generation in 

United States proved economically practical. Consequently more 

investments on creating incentives to reduce the cost newer technologies 

resulted in drastic drop in the cost of PV panels and wind turbines [2]. 

Changes in policy started in late 1990s in United Kingdom and Denmark 

toward higher integration of distributed generation [3]. In response to that, 

OFGEM (the office of gas and electricity markets in the UK) implemented 

regulatory and policy frameworks in early 2000s which do not inhibit the 

growth of distributed generation. Some of the aims defined in regulation of 

the UK electricity industry report [4] are as follows:  

 Allowing generators the option of spreading the cost of connecting to 

the distribution network 

 Making it easier for domestic combined heat and power (CHP) 

generators customers with heating systems which can generate electricity to 

connect to the networks by establishing a standard connections procedure 

 Reimbursing distributed generators some of the initial connection fee 

when another generator connects to the same part of the network, which 

they have already paid for 

 Providing clearer information from distributors on preparation of 

quotations for connections to the network  
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 Investigating the best ways to record and meter the amount of 

electricity that is used against the amount that is put back onto the 

distribution network by a home with domestic CHP. 

Currently, the EU 2020 target of 20% of the EU energy consumption 

produced from renewable resources is the main motive for the expansion of 

distributed generation (DG) [5]. The most significant growth in DG 

technologies is depicted in Figure 2.-1 [5]. 

 

Figure 2.1. Growth of various DG technologies [5] 

 

2.3 Location and Size Issue 

2.3.1 Technical Issues 
 

One of the most important characteristic of a power network is power loss. 

To illustrate the significance of proper size and location a 3D plot versus 

power loss in a distribution network is depicted in Figure 2.2 [6]. 
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Figure 2.2. Effect of size and location of DG on system loss [6] 

 

From Figure 2.2 it is shown that location of distributed generation (DG) 

affects the loss. Also for a particular bus, by increasing the capacity of DG 

losses reduces up to a point and increases again and may exceed the initial 

losses, hence it is not a good idea to install as high capacity as possible in 

the network.  

The total size of added DG to the network is another dilemma in the 

optimization as increasing the penetration level of the DGs or maximizing the 

DG capacity is the main goal so many developers and distribution network 

operators (DNO) [7]. As a result it could lead to voltage rise or increased fault 

level. The installation of DG can affect the magnitude, duration, and direction 

of the fault current so it is required to verify that the change in magnitude, 

duration and direction of the fault current does not affect the operation of 

protection devices [11]. In DG sizing and sitting, a horizon of 5-20 years 

could be considered as part of a long term planning. During these years the 

structure of network might change because of newly structures such as 

substations. This dynamicity makes it really difficult to examine all possible 
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network configurations to find the optimal point [12] hence the network 

structure is assumed to be invariable during the planning period. Another 

affect of distribution generation is on the direction of power flow. DG will 

change the power flow in the distribution system, and the distribution system 

can no longer be considered as a system with unidirectional power flow. So 

the assumption of unidirectional power flow is no longer valid [61], [62], [63]. 

It will consequently affect the power distribution system operation and 

control. Therefore further analyses on impact of added DGs on the 

distribution systems should be considered. 

 

2.3.2 Exhaustive Calculations Issues 
 

Any single technical issue in Section 2.3.1 such as voltage rise can be 

approached by heuristic methods described in Section 2.6.2. Such methods 

are computationally exhaustive which search the space corresponding to the 

locations and capacities of DG plants that could be connected to a 

distribution network. However, the actual benefit brought by exhaustive 

analyses is that a number of technical issues and constraints could be 

included. Although exhaustive methods applied to a connection evaluated for 

a certain demand and generation scenario is not necessarily computationally 

intensive, this is not the case when multiple connections and the variability of 

demand and generation are considered, increasing considerably the 

computational burden of the exhaustive analysis [14]. 

2.4 Non-linearity in Power System 
 

Solution techniques for DG optimal allocation are interpreted as a mixed 

integer nonlinear optimization problem. Usually, it includes maximizing the 

system voltages or minimizing power loss and cost. The solution criteria vary 

from one application to another. Therefore, as more objectives and 

constraints are considered in the algorithm, more data is required, which 

adds difficulty to non-linearity of implementation [13]. In some optimization 

techniques such as loss sensitivity factor, where some of the buses are not 
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taking into account, the optimum point might be missed. Figure 2.3 illustrates 

this notion [6].  

 

 

Figure 2.3 Non-linearity in loss curve [6] 

 

2.5 Multi-Objectiveness  
 

Single objective optimization yields optimal solutions of a single aspect which 

may not be acceptable to the utilities [107]. Therefore, multi-objective 

approaches are required to solve the problem [9], [10]. The use of Multi-

objective optimisation (MO) techniques has a number of advantages. It 

allows the management of different objectives and makes it easier to take a 

decision in the end or before running the optimisation based on the view that 

system operator takes [8]. On the other hand multiple objectives might not be 

optimized simultaneously because of innate conflicts existing between them 

[104]. To tackle this problem there is generally three approaches to consider 

multi-objectiveness. 
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2.5.1 Priority Goal Programming  
 

This approach is built on the conventional techniques for generating trade-off 

surfaces. The objectives are aggregated into a single parameterized 

objective function and trade offs are determined based on the weighting 

coefficients values [104]. In the publication of Nangia et al. [10], weighting 

method is used to aggregate cost of generation function and system 

transmission losses to study the co-relation between each objective and its 

weight factor in an optimal power flow problem. In the work of Yun et al. 

[106], authors solved a voltage control problem by an extension of the 

simplex known as goal programming simplex by ranking the priority of the 

control objectives. Several objectives such as adjusting reactive power of 

generators are considered to increase the reliability and stability operation of 

a power system. In the publication of Abou El-Ela et al. [103] weighting 

factors are applied to obtain overall maximal composite benefits of added 

DGs. Priority goal programming is an easy and efficient approach to 

implement but requires extensive sensitivity analysis if prior assessment of 

weights is going to be used [10]. 

2.5.2 Sequential Achieving Objectives Programming 

 

In this approach one objective function is selected as master objective 

function. This is generally an objectives which is considered most important 

and it is minimized first [107]. The other objective functions are considered 

as slave which are added to other constraints. Then the master objective 

function is released, within a certain boundary, to optimize another slave 

objective function [104]. The process is repeated till all the objectives have 

been considered. In the work of Nangia et al. [107], a multi-objective optimal 

power flow (MOPF) problem is solved by sequential Goal Programming 

(SGP). Generation, system transmission losses, environmental pollution are 

considered in 6 different scenarios based on the order or objective 

minimisation. The final solution is decided based on regret analysis.  
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2.5.3 Pareto-Based Multi-Objective Algorithms 

 

In Pareto based multi-objective programming there is no single optimal 

solution that simultaneously optimises all the objective functions so in some 

literature it is referred to as non-deterministic approach [179]. In such cases, 

the decision makers are looking for the most desirable solution. In this 

method the concept of optimality is substitute with Pareto optimality [177]. In 

Pareto-based multi-objective algorithms all objectives are optimised at the 

same time and solutions which are not dominated by another solution are 

chosen and illustrated in an n-dimensional space as n represents the number 

of objectives. In other words in this methods multi-objective problem is 

directly addressed through the use of separate objectives and produce an 

optimum set of points (Pareto frontier) [178].  

 

2.6 Non-Heuristic and Heuristic Optimization 
 

The optimal integration of renewable has been done by various methods. 

Different formulations have been solved using calculus-based methods, 

search-based methods and combinations of these techniques. The calculus-

based methods such as linear programming are classes as non-heuristic. 

These optimisation methods treat the DG capacities as continuous variables 

while their locations remain fixed [15]. This Section presents a review of the 

various methods employed to date. They are categorized into two main 

category heuristic (conventional) and non-heuristic optimization. 

2.6.1 Non-Heuristic 
 

Non heuristic are also called conventional, classical or derivate-based 

optimisation. To search for the optimal solution in this class techniques such 

as gradient operators in a single path search are used [96]. Non-heuristic 

algorithms could be such as linear and non-linear programming, quadratic 

programming and interior-point methods. 
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2.6.1.1 Linear Programming  

 

Linear programming (LP) problems are problems with a linear objective 

function, linear constraints and continuous decisions variables [16]. The term 

“linear” means all the mathematical relationship among the variables are 

devoid of non-linearity [17]. Fundamentally, linearization applied on power 

flow or the results from an ac power flow generates an error, but it is not a 

significant one in the context of discrete distribution generation capacity [14]. 

In the publication of Liew and Strbac [100], an optimal power flow (OPF) was 

developed based on linear programming to investigate the potential benefits 

and cost of connected embedded wind generation. The developed OPF 

minimises the annual active generation curtailment cost within power, 

voltage and thermal constraints. In the work of Khodr et. al [101], another 

linear branch and bound mathematical model was presented to minimize the 

sum of investment costs, fuel costs, operation and maintenance costs, and 

unavailability costs. The optimisation gives the optimum number of units, size 

of DGs and their and type. In the publication of Keane and O‟Malley [102], a 

new methodology is developed using linear programming to find the suitable 

locations and size for DG on distribution networks. In this method individual 

voltage sensitivity characteristics are employed to characterize constraints, 

such as voltage, thermal and short circuit limits. In the work of Abou El-Ela et 

al. [103], linear programming (LP) is used to investigate the influences of 

varying ratings and locations of DG on the objective functions to maximize 

the weighted factor benefits of DGs. It is done by choosing the optimal sitting 

and sizing of DG with respect to system constraints. The literature showed 

advantages and disadvantages of LP applied in power system. It is reliable, 

especially about convergence properties. It is also quick in identifying 

infeasibilities. Another advantage of LP is its capability to accommodate a 

large number of power system operating limits. Nevertheless, despite all the 

advantages, it lacks accuracy as opposed to more accurate nonlinear power 

system model [18]. 
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2.6.1.2 Nonlinear Programming  

 

The term nonlinear in nonlinear programming (NLP) refers to fact that 

computation is based on the derivates. The first step in this method is to 

choose a search direction in the iterative procedure. The direction is set by 

the first partial derivatives of the equations hence; these methods are 

referred to as the first-order methods such as generalized reduced gradient 

(GRG). The successive quadratic programming (SQP) and Newton‟s method 

require the computation of the second-order partial derivatives of the power-

flow equations and other constraints (the Hessian) and are therefore called 

second-order methods [18]. In the work of Rau and Yih-Heui [109], the 

proposed second order algorithm is preferred over reduced gradient as the 

reduced gradient method fails to converge for positive injections .The second 

order algorithm computes the capacity of DGs in selected nodes to maximise 

the benefits of distributed generation expressed as an index of performance. 

In the publication of Ramos et al. [110], a non-linear programming solution 

was adopted to obtain the optimal generation planning by deriving objective 

functions such as the deterministic cost model. NLP methods have higher 

accuracy than LP and the convergence does not depend on the starting point 

[111]. However, when NLP is applied in large power system problems the 

disadvantages emerge. The main drawbacks is that NLP is not capable of  

satisfactorily handling  non-convexities and non-smoothness such as 

generator‟s prohibited operating zones, operating constraints of the 

transmission lines such as thermal limits and switchable VAR source 

constraints [40]. The second downfall is its slow convergent rate. It could be 

due to a zigzagging in the search direction. Furthermore, in NLP, different 

optimal solutions are depended on the starting point of the solution because 

the method can only find a local optimal solution [18].  

2.6.1.3 Quadratic Programming 

 

Quadratic programming (QP) is generally considered as subset of nonlinear 

programming. The name “quadratic” refers to the quadratic form of objectives 
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[111]. In the work of Finardi et al. [112], authors used a sequential quadratic 

programming algorithm to solve a unit commitment problem due to non-linear 

nature of sub problems resulting from decomposition. Lavei et al. [113] 

utilised quadratic optimisation for power flow optimisation to tackle the high 

non-linearity of constraints. 

2.6.1.4 Newton Methods 

 

The second order partial derivates of power flow equations is required for 

this method. The Newton approach was brought to the attention in the 

publication of Sun et al. [114] as a tool for obtaining the optimal power flow. 

In literature application of the Newton method in OPF problems have been 

popular [49], [109]. Newton method is simple and efficient in equality 

constraints handling and very popular in optimal power flow problems, 

because it is simple in treating inequality constraints [115]. However, this 

method lacks the ability of searching global optimum and easily traps in local 

optima in optimal planning of the DG problem. Distribution of distributed 

generation problem has severe non-linearity due to the physical constraints 

such as balance between power supply and demand, limitation for the total 

dispersed generation injection capacity [49]. 

2.6.1.5 Interior Point Method 

 

Interior point methods (IP) were originally applied in OPF problems. Although 

this method was used for solving linear problems, it was extended later for 

QP and NLP forms [111], [123]. IP has been used for several power 

engineering optimization problems, including state estimation [116] optimal 

power flow [117], [118], [119], [120], hydro-thermal coordination [121], [122], 

voltage collapse and reliability evaluation [123], [124], and fuel planning 

[125]. In the work of Grenville et al. [123] the insolvability issue was rectified 

by applying interior point model to unsolvable states in an optimal power flow 

case. One of the drawbacks of IP methods is their difficulty in finding 

infeasibility. The computation of each iteration of an IP algorithm is 



17 
 
 

dominated by the solution of large linear systems; therefore, the performance 

of any IP code is highly dependent on the linear algebra [117]. 

2.6.1.6 Mixed-Integer Programming  

 

Mixed-integer programming (MIP) optimization represents a powerful 

framework for mathematically modelling power system problems that involve 

discrete and continuous variables [20]. Variables such as transformer tap 

ratio, phase shifter angle and unit on or off status could be defined as 

discrete variables [111]. A mixed integer non-linear programming problems 

(MINLP) variables with values of 0 or 1 represent whether a new DG source 

should be installed [18] so decision variables can only take integer values. It 

is usually used when fractional units are not an option like the number of 

positional DGs. When some of the variables are continuous, the problem is 

mixed-integer. Different methods that have addressed the solution of MINLP 

include the branch and bound method (BB) [18] and generalized benders 

decomposition (GBD). Branch and bound method (BB) is used for integer 

programming [18], [20]. The BB method is generally only attractive if the NLP 

problems are relatively inexpensive to solve, or when only few of them need 

to be solved.  This could be either because of the low dimensionality of the 

discrete variables or because the internality gap of the continuous NLP 

relaxation is small [20]. General benders decomposition (GBD) is another 

method used to solve nonlinear mixed integer problems. In this method, the 

problem is divided into a master (integer or mixed integer) and slave problem 

(nonlinear programming) which are solved independently [21]. GBD applied 

in the publications of Gomez et al. [22] and Granville et al. [23] show 

improvement in the efficiency in solving a large-scale network by reducing 

the dimensions of the individual sub problems. The results illustrate a 

prominent reduction of the number of iterations, computation time, and 

memory usage. Also, decomposition allows the application of a separate 

method for the solution of each sub problem, which makes the approach very 

attractive [111]. 
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2.6.2 Heuristic Methods 
 

Mathematical models of optimisation problems may become so complex as 

the size of power system network expands so that conventional optimisation 

techniques presented in Section 2.6.1 methods and other deterministic 

techniques might not be applicable to them. Alternatively, a new class of 

optimization techniques called as heuristics is applied for the solution. The 

term heuristic is linked to algorithms mimicking some behaviour in nature, 

e.g., the principle of evolution through selection and mutation (genetic 

algorithms or the self organization of ant colonies (ant colony optimization) 

[24].  

 Properties of Heuristic Algorithms 

A heuristic should be capable of providing high quality (stochastic) 

approximations to the global optimum. A well behaved heuristic is robust to 

changes in problem characteristics. It means the whole class of the problem 

should be addressed not a single problem. Another important property of 

such algorithms is that despite of its name, a heuristic might be stochastic, 

does not contain subjective elements [24]. 

 Classification of Heuristics 

The most popular way to classify heuristic algorithms is based on trajectory 

methods and population-based methods. The objective in trajectory method 

is to find efficient neighbourhood functions that give high quality local optima 

[24]. The iterative techniques applied in this optimization avoid the program 

to fall into local optima. On the other hand population-based heuristics use a 

population of solutions which evolve during a certain number of iterations, 

returning a population of solutions when the stop condition is fulfilled [25]. 

Therefore population based is more efficient in terms of searching the whole 

space but it comes at the cost of more computational operations [24]. Table 

2.1 shows some example of heuristic classed into two categories. 
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Table 2.1 Heuristic optimisations [25] 

Trajectory Heuristic Population Based Heuristic 

Simulated Annealing Genetic Algorithm 

Threshold Accepting Differential Evolution 

Tabu Search Ant colony 

Hill Climbing Particle Swarm Optimisation 

Greedy randomized adaptive search 

procedures 

Scatter search 

Variable neighbourhood search Path re-linking 

Iterated local search Artificial bee colony optimization 

 

2.6.2.1 Simulated Annealing  

 

Simulated annealing (SA) is based on an analogy between combinatorial 

optimization and the annealing process of solids. Similar to the classical local 

search an improvement of the solution for a move from a solution to a 

neighbour solution is always accepted. Simulated annealing minimizes 

numerical functions of a large number of variables. Moreover, the algorithm 

accepts also a move uphill, but only with a given probability. Random uphill 

jumps provide escapes from local energy wells. Therefore, it converges 

asymptotically to the global optimal solution with probability one [18]. The SA 

method was originally proposed to solve the unit commitment problem [126] 

and proved highly robust in handling unit commitment constraints. Further 

SA-based algorithms were applied to network tearing [128], maintenance 

scheduling [129], capacitor placement [130], distribution planning [131] and 

economic dispatch problem [132]. In 1994 a SA method was proposed by  

Wong and Wong [127] to determine the optimum hydrothermal short-term 

schedule which showed worst schedule found by this algorithm is very close 

to the exact solution (only 0.118% higher than that found by the gradient 

method). A comprehensive approach to strategic planning of VAR 

compensators in a non-sinusoidal distribution system was presented by Chu 

et al. [133]. The algorithm is based on simulated annealing to determine the 

optimal locations, types and sizes, and settings of VAR compensators. SA 
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employed by Chu et al. [133] shows how SA allows the modelling can be 

done on realistic (discrete) rather than continuous values. In the work done 

by Billinton and Jonnavithula [134], simulated annealing is proposed to 

determine the number and location of switches as a combinatorial non-linear, 

non-differentiable optimisation problem considering investment, operation, 

maintenance, and outage costs. The solution to the problem is proved 

suitable for large scale distribution systems. Similarly, Jiang and Baldick 

[135] used SA to optimise switch configuration of a distribution system. Due 

to the well behaved characteristic of SA for a large combinatorial optimization 

problem, it was adopted for loss minimization in the work of Jeon et al. [136]. 

SA approach managed to avoid local minima by expanding the cost function 

by adding the operating conditions of a distribution system. Test results 

confirmed the robustness of the proposed approach. The optimization 

method presented by Nahman and Peric [137], adopts the SA for a search 

within the graph consisting of all line routes of a newly planned network. The 

initial feasible minimum cost solution is determined by applying a steepest 

descent approach. This solution is a modified step by step SA searching for 

the minimum total cost solution using simulated annealing technique to 

search for the minimum total cost solution including the customer cost 

caused by load. The algorithm efficiently produced a feasible solution that 

was very close to the optimal solution. 

2.6.2.2 Tabu Search  

 

The term Tabu Search (TS) was first used in 1986 by Glover [138]. Tabu 

search is particularly designed for finite discrete search spaces. It is an 

iterative search method which uses a search algorithm at each iteration to 

find the best solution in some subset of the neighbourhood, generated from 

the best solution obtained at the last iteration [139]. Choosing neighbourhood 

is done in a way to avoid cycling, i.e. finding the same solution more than 

once [24].Therefore it can achieve an optimal or suboptimal solution within a 

reasonably short time and reduce on the number of iteration. Fundamentally 

this efficiency is achieved by employing a short term memory, known as the 

Tabu list .This list contains of recent visited solutions [24]. In the publication 
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of Abido [140], TS algorithm was proposed to solve the OPF problem. It was 

shown that unlike the traditional optimization techniques, TS can easily deal 

with non-convexity of objective functions regardless of a starting point, giving 

a lesser cost compared to the evolutionary programming. TS approaches 

have also been proposed for the unit commitment problems [141], [142], 

[143]. In the work of Borghetti et al. [141] even a straightforward 

implementation of TS proved to give good results in a short computing time. 

Tabu search was also proposed for feeder reconfiguration in the publication 

of Mori and Yogita [145], in a parallel approach to reduce computational 

efforts and accuracy. Similarly in the work of Li et al.  [146], TS algorithm was 

used for another network reconfiguration problem in order to reduce the 

resistive line losses under normal operating condition. TS has been modified 

to become a more viable solution in power system optimisation problems.  

For instance in the publication of Purushothama and Jenkins [147], a 

combined SA and TS approach was used to solve the unit commitment to 

extend the stochastic neighbourhood algorithm. The same hybrid 

combination was used by Jeon and Kim [148] to improve the computation 

time and convergence property in a feeder reconfiguration problem. Other 

TS hybrid methods are such as modified Tabu search (MTS) [149] and 

improved Tabu search (ITS) [150]. In the latter loss minimization 

reconfiguration in large-scale distribution systems was achieved by ITS. 

2.6.2.3 Ant Colony  

 

Ant colony (AC) was first introduced in 1992 [27], [28]. It is inspired from 

ants‟ movement for food. First an ant explores its neighbourhood randomly. 

Trace of pheromone on the ground which will guide other ants to the food. 

Pheromone traces are defined based on the quantity and quality of the food 

affecting the intensity of it [24]. The AC algorithm was first implemented for 

the TSP. The TSP is the problem of finding minimum cost of travelling to a 

finite number of cities along with the cost of travel between each pair of them 

and returning to the starting point [154]. Ant Colony algorithms have recently 

been used in power system problems as powerful tools to solve problems 

such as optimal reconfiguration of distribution systems [29], optimal 
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placement of capacitors in distribution systems [30], scheduling problems 

including the unit commitment and economic dispatch problems [31], [32], 

[33], optimum switch relocation, network reconfiguration problems for 

distribution systems [34], [35], [36] and planning problems [37], [38], [39]. In 

the work of Gomez et al. [152] the AC is defined at the optimization layer and 

combined with a distribution system load-flow algorithm to solve the primary 

distribution system planning problem. It calculates the location and the 

characteristics of the circuits with regard to minimizing the investment an 

operation costs. In the publication of Alvarado et al. [151], an improved 

version of the ant system algorithm was adopted in a distribution planning 

problem. The objective function of the problem was defined as the sum of the 

total costs, considering the fixed and operational loss costs. The results 

show an improvement compared to the original AC. In the work of Ippolito et 

al. [154] authors used AC for the planning of electrical distribution systems 

expansion. The results demonstrated that AC is more robust than SA with 

higher quality because it has a lower standard deviation. 

2.6.2.4 Particle Swarm Optimization  

 

Particle Swarm Optimization (PSO) is another population based optimization 

method proposed by Eberhart and Kennedy [41]. It is a computational 

intelligence-based technique introduced for continuous functions. PSO is not 

largely affected by the size and nonlinearity of the problem, and is efficient in 

terms of convergence in many problems. Therefore it can be effectively 

applied to different optimization problems in power systems [47]. Advantages 

of PSO could be summarized as follows: 

 Number of parameters are limited so adjusting them is easier 

 It has more effective memory capability than genetic algorithm 

because, every particle remembers its own previous best value as 

well as the neighbourhood best 

 PSO is more efficient in maintaining the diversity of the swarm .It is 

because each particle gets passive additional information from 
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another particle that is selected at random. This could enhance the 

diversity of the swarm [42] 

 

The first applications of PSO were only capable of handling nonlinear 

continuous optimization problems. By further development of this technique 

its capability to handle a wide class of complex problems increased [156], 

[157]. One of the first publication on PSO in power system appeared in the 

work of Gilli and Winker [24]. PSO was used to minimize the real power 

losses of an electric power grid. Later on, similar problems were addressed 

in the works of Yoshida et al. [159], [161] and Fukuyama and Yoshida [160] 

by following the trend. Since power flow calculations involve solving a system 

of nonlinear equations, PSO technique demonstrated effectiveness in solving 

this difficult optimization [155] hence it has been applied in economic 

dispatch [162], [163], [164], reactive power control [158], [159], [161], [165], 

[166], optimal power flow [167], [168], [169], power system controller designs 

[170], [171], [172] and feeder reconfiguration problem [173], [174]. PSO has 

also been applied to many DG planning problems. In the publication of 

Kuersuk and Ongsakul [43], the PSO method was implemented to obtain 

optimal location and sizes of DGs. In the work of Kai Zou et al. [44], the 

technique was implemented to design a new optimization framework for 

distribution system planning. It is based on the integration of ordinal 

optimization [15] with tribe PSO. In tribe PSO, the particles, informers, and 

tribes are three basic elements. The informer is a particle, which passes 

useful information to other particles. The tribe is a group of particles that 

share the information with each other [44]. In the publication of Kannan et al. 

[175], PSO was employed to minimize the total cost of the generation 

expansion planning problem. In the similar problem PSO was adopted in 

solving the expansion planning problem of a transmission line network in the 

work of Sensarma et al. [176]. 

2.6.2.5 Genetic Algorithm  

 

Genetic algorithm (GA) is an artificial intelligence technique for optimization 

developed in 1970s by John Holland. Similar to other population based 
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heuristic techniques it is based on natural selection such as mutation, and 

crossover [46]. The first application of GA in power system was done in 

1990s on reactive power dispatch problem by Iba in 1994 [48]. Later on in 

some other publications [11], [45] the solution of DG allocation using GA was 

investigated [11], [45]. Efficiently solving the optimal sitting and sizing of 

distributed generators through GA was illustrated in the publication of 

Silversti and Buonaao [45]. In the work of Popovic et al. [50], a GA 

methodology for optimizing and coordinating the placement of distributed 

generators in a distribution network was introduced in order to enhance the 

reliability of the system. It is evident that the optimal integration problem of 

distributed energy resources in the distribution system by GA has been used 

often in the literature. In some literature GA has been preferred over other 

heuristic as it is inherently suited to solve location problems [14], [52], [53]. 

GA is also combined with other techniques for the optimum results. For 

instance in the publication of Kim et al. [49], conventional GA with improved 

genetic operators was introduced to obtain a better search solution in optimal 

distribution of dispersed generation where as Harrison combined GA with 

optimal power flow to provide a means of finding the best locations within a 

distribution network [51]. One of the frequently used combination of GA is 

with ε-constrained [53], [54] as far as the optimisation is defined by one 

object functions [14]. However, combining objectives into one objective in 

power system problems requires a strong knowledge of exploring space [14] 

so GA has also been evolved into another form in recent years named as 

non sorting genetic algorithm (NSGA) introduced by Deb [55]. In Chapter 

three this method will be discussed more. 

 

2.7 Distribution Generation Types 
 

Distributed generation (DG) provides electric power in the power system. It is 

featured by characteristics such as small size, compact, and clean electric 

power generating units which are located at or near an electrical load 

(customer) [56]. However some DGs such as compound heat and power 

(CHP) are not completely clean and are referred as traditional DG in some 
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literature. On the other hand in the second category fall more modern DGs 

such as PV or wind turbine which are completely environmentally friendly. 

From the technical point of view, DGs are classed into different types based 

on the injection type or their capacity. 

2.7.1 DG Injection Model 

 

There are four type of DG in terms of the power they provide to the system. 

The first type is only capable of supplying only real power. Certain type of 

DGs like photovoltaic (PV) will produce real power only [58]. Therefore PV 

systems are designed to operate at unity power factor. This design benefits 

residential customer, since they are billed only for the active power that they 

consume .It is also possible that PV systems may be operated at non-unity 

power factor but it is due to the utility regulations approval [59].   

 

The second type of DG is those which are capable of supplying only reactive 

power. Devices such as synchronous condensers and SVCs are as such. 

Induction generators in wind turbines supply real power but consuming 

reactive power so they are in the third group. The reactive power 

consumption consist of the magnetizing current, proportional to the square of 

the voltage, and the reactive power losses in the leakage reactance, 

proportional to the square of the current [60] . The forth group is capable of 

providing both real and reactive power injection, such as synchronous 

generators. Therefore, the use of DGs utilizing overexcited synchronous 

generators will allow on-site production of reactive power [76]. Synchronous 

generators are widely used for steam and combustion engine driven plants 

such as Combined Heat and Power (CHP) plants. 

2.7.2 DG Sizes 

 

According to [57] DGs can also be defined in terms of their capacity. There is 

a consensus that DG capacity cannot exceed 100-150 mW due to the 

technical constraints, so they are divided into four size types: 

 Micro distributed generation: 1 Watt < 5 kW 

 Small distributed generation: 5 kW < 5 mW 
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 Medium distributed generation: 5 mW < 50 mW 

 Large distributed generation : 50 mW < 150 mW 

 

As an example micro-turbines are classes as small distributed generation. 

Their scale is 0.4–1 m3 in volume [56]. 

 

2.8 Voltage Stability in Power System 
 

Integration of DGs brings about the steady-state and the dynamics of the 

distribution system. These impacts were discussed in Section 2.3.2. 

However, voltage instability problem in a network is one of the most harmful 

disturbances on power system. As of Section 2.7.1 most DGs cannot 

produce reactive power. Thus, they cannot support voltage stability during 

dynamic state. Therefore, it is necessary to consider voltage stability 

constraints for planning and operation of distribution systems [67]. Voltage 

stability has become rather important in modern power systems, as systems 

are being operated close to their security limits [64]. That is why in distributed 

generation planning voltage stability has been one of key issue to address 

[66]. Voltage stability is to do with ability of the system to keep the voltage 

magnitude while transporting active and reactive powers. There are two 

types of voltage stability. Short-term (transient), which is up to a few seconds 

and long-term (steady state) voltage stability at timescales up to several 

minutes. In optimisation most of the discussion is about long-term voltage 

stability. It is useful for indicating the possible voltage collapse, where the 

term voltage collapse refers to the situation where the system is no longer 

able to maintain the voltage [65]. Dynamic analysis is becomes more 

significant when a better understanding of voltage stability phenomena is 

required [68]. In DG planning a voltage-stability index was introduced in 2001 

to search for the most sensitive buses to voltage collapse in radial networks 

[69]. Bus indices for considering the effect of aggregated DGs into the 

voltage security of a transmission grid are developed in [71] based on the 

voltage stability margin (VSM) which is based on P-V curve concept. The P-

V concept will be discussed in the next Section 2.8.1. In order to determine 
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the most suitable sites for DGs a voltage sensitivity based approach related 

is proposed. Voltage sensitivity index (VSI) is used to identify and rank the 

nodes within the network with respect to receiving new generation. It is 

assumed that generators can connect to any point in the network subject to 

security constraints and are not restricted in their location by generator 

controllers or existing protection devices [50].  

2.8.1 P-V Analysis  

 

PV analysis is a widely graphical used tool, in analysis of voltage stability in 

power system. The active power (P) can either represent the total active 

power load in an area or the power flow across an interconnection between 

two areas and the state variable (V) is the voltage at a certain bus. The P-V 

curve is obtained by increasing the load demand and solving the new power 

flow. Figure 2.4 from [76] shows the impact of a DG on voltage stability of a 

bus.  

 

Figure 2.4 P-V curve enlargement of voltage stability margin [76] 

 

 

As illustrated by instillation of a DG unit moves the operation point from point 

A to point B on the associated P-V curve, which results in an increase of the 

node voltage and enhancement in voltage security. The stability margin 

increases from m0 to m DG [76]. 
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2.8.2 Continuation of Power Flow 

 
In some literatures optimum location of DG units in distribution networks is 

based on the analysis of power-flow continuation [77]. After that, the DG 

units with certain capacity will be installed in these buses via an objective 

function and an iterative algorithm. In this algorithm, continuation power-flow 

method is used for determination of the voltage collapse point or maximum 

loading. Voltage stability analyses can be assessed by obtaining voltage 

profiles of critical buses as a function of their loading conditions. PV curves 

provide valuable information about the system‟s behaviour in different load 

level .It has been used by the electric power industry for assessing voltage 

stability margins and the areas prone to voltage collapse [75].  

2.8.3 Modal Analysis 

 
Modal analysis was proposed by Gao [72]. It can discover the instability 

characteristics and can be used to find the best sites for reactive power 

compensation, generator re-dispatch, and load-shedding programs [70]. 

Modal analysis involves calculation of Eigen values and eigenvectors of the 

power flow Jacobian [73]. Using these values near the point of voltage 

collapse identifies vulnerable buses to voltage collapse. It also gives 

information about the loads responsible for voltage collapse. Unlike 

continuation of power flow, when a modal analysis is used; there is no need 

to drive the system to its maximum stress level [74]. 

2.9 Planning 

 

DG planning in general consists of justifying the allocation patterns of energy 

resources and services, formulation of local policies regarding energy 

consumption, economic development and energy structure, and analysis of 

interactions among economic cost, system reliability and energy-supply 

security [25]. Planning in this thesis however is restricted to DG optimal 

integration which is defined in structured approach to optimise the location, 

number and size of distributed resources. In the literature planning is viewed 

as two types: short-term and long-term planning.  
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2.8.1 Short-Term Planning 

 

The purpose of short-term planning is to make sure that system can continue 

to serve customer load while meeting all standard. The product of short-term 

process is series of decisions made for the allocation of distribution 

generation in the lead time. As an example the lead time could be four 

meaning that decision is made four years before implementation [78]. Short-

term load forecasts are required for the control and scheduling of power 

systems [79]. This is illustrated in Figure 2.5. The result is different projects 

in terms of required any ancillary services or a source of active or reactive 

power to the network. In addition, sometimes it is required to install some 

voltage regulator or change the transformers tap within the network to 

compensate voltage drop and to have a smooth voltage profile. 

 

 

Figure 2.5 The short term planning process [78] 

 

2.9.2 Long-Term Planning 

 

Similar to short-term planning, the long-term DG planning has the objective 

of determining the least-cost expansion plan which ensures a reliable supply 

to the future electricity demand. The reliability issue is concerned with an 

adequate energy supply even under adverse conditions, which are uncertain 

[82]. Unlike short-term planning, long-term planning product is not a decision, 
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but a long range plan [80]. Major events could affect the power system 

network in a long period meaning that the existing uncertainty should be 

considered. The possible projects are not necessarily going to be 

implemented. As illustrated in Figure 2.6 a multi-scenario assures that short-

term decision fits various long range situations.  

 

Figure 2.6 The long-term planning process [80] 

 

Uncertainties in power system have various many types. The main sources 

of uncertainties include the uncertain fuel prices, demand growth, and 

equipment outages [83]. To deal with the load uncertainties load duration 

curve was introduced in [97]. It is a simple model which describes the total 

time through a certain period. The demand is described over a certain period 

shown in Figure 2.7.  

 

Figure 2.7 Load duration curve [99] 
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The load duration curve can be approximated by a piecewise constant curve 

with k segments as shown in Figure 2.8. The downside of this model is that 

doesn‟t consider technical restrictions and stochastic fluctuations. 

 

 

Figure 2.8 Approximated load duration curve [99] 

 

The assessment of DG costs, in particular fuel costs, total demand of a 

network and generation fluctuated generation of DGs can all be considered 

as random variables. In such situation, a stochastic generation planning 

model is needed. In the publication of Mo [85], a stochastic dynamic 

programming was used to incorporate discrete expansion sizes, correlations 

and autocorrelations among uncertain variables including fuel prices and 

demand, and economies of scale in investment costs. Due to the 

discrepancy in time scales, the overall planning problem was decomposed 

into investment and operational pieces [83]. 

2.10 Order of Optimization 
 

Optimal integration of distribution is not only concerning with methods but 

also with how the optimisation technique is used in order to address the 

problem comprising challenge of  optimal capacity evaluation [87], DG 

optimal location [88], and optimal sizing [89], [90], [91]. In the literate the 

approaches could be divided into three classes: Approaches concerning with 
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finding optimal locations for defined DG capacities, finding optimal DG 

capacities at defined locations, and the combined approach. 

2.10.1 Pre-Specified Capacity 

 

In this approach optimisation engine attempts to find the best sites for DGs of 

specified, discrete, capacities .This approach has been taken in the works of 

Nara et al. [88], Kim et al. [92] and Kuri et al. [93]. In some literature the 

assumption is that optimal DG site and size is a multiple of a given capacity 

[94]. The downfall of pre specifying capacity is that some solutions that are 

not the equivalent to the standard will not be selected. It will undermine the 

optimality of the system. To avoid the problem, a large range of capacities 

should be examined to increase the search space exploration capability [51], 

[86]. 

2.10.2 Pre-Specified Location 

 

In the second approach optimisation engine attempts to find DG capacities at 

each location specified before running it [51]. The methods tend to use 

continuous functions of capacity solved using method discussed in Section 

2.5. The disadvantage of this approach appears where the optimal locations 

found by the optimisation engine may already contain small DGs suggesting 

that very small plant would not be economic. Pre-specifying a minimum 

capacity at each bus would disable the optimisation to find a feasible 

solution. Choosing a number of best locations out of number of buses is the 

combinations of r locations in a network of n buses represented by  𝑛
𝑟
  thus 

even in a small distribution network, it adds significant burden [95]. 

2.10.3 Combined Approach 

 

By using search based methods in the optimisation, combined size and 

location optimisation approach became an option so the complex power 

system problem was no longer restricted to calculus based methods which 

treat the DG capacities as continuous variables while their locations remain 

fixed [15]. The combined approached has widely been taken in the literature 
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[11], [53], [88], [92], [93] usually running the same method on a particular 

instance of a problem for several times to obtain the optimised solution. This 

approach allows exploration of a range of interesting problems but mostly at 

the expense of predefinition of the number of DG units [51]. 

2.11 Summary  
 

In this chapter a review of literatures about planning distribution generations 

in power system network was presented. In Section 2.2 a short history of 

incorporating DGs into electricity network and their effect on network policies 

was presented. The literature planning perspective is with respect to finding 

the optimum capacity and location of candidates DGs. Therefore in Section 

2.3 and 2.4 the significance of optimisation was justified in terms of technical 

and mathematical issues. The issues in optimum placement and location are 

defined with respect to various objectives which were presented in Section 

2.5 as multi-objectiveness. To solve either multi-objectives or single-objective 

optimisation problem, various numerical and heuristic optimisation 

techniques have been published. Section 2.6 discussions elaborate on the 

techniques and their application in solving the optimisation in a power system 

network. Each technique was discussed in terms of their advantages and 

disadvantage or their history of development in power system. Following 

Section 2.6, the properties of the presented techniques were also 

enumerated. Distribution generations in the calculations are perceived 

differently in publications hence Section 2.7 presented a review on their size, 

power injection model and their energy types. Section 2.8 presented main 

analysis tools and how they are utilised in the optimisation. Section 2.9 is 

about the view that network operator takes in terms of short or long-term 

planning or the approximation of load. The last Section 2.10 presents an 

overview of the way the design variables are programmed in terms of their 

priorities in optimisation. 
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Chapter 3 

Optimisation Theory and 

Algorithms  
 

3.1 Introduction 

 

In Chapter 2 an up to date literature review was presented. In this Chapter 

the attempt is made to represent a background of literature which includes 

mathematical formulas of applied theories based on Chapter 2 literature. As 

the optimisation is main goal of the thesis, the first Section of this Chapter 

addresses this area. The elements of optimisation such as variables and 

objectives are presented to illustrate how existing approaches could be taken 

advantages of in DG planning. Heuristic and non-heuristic methods are 

elaborated in terms of their implementation aspects. For this reason Pseudo 

codes of heuristics are presented. Distribution generation planning is very 

dependent on load and generation modelling so the next Section focuses on 

load and generation studies particularly load flow. As optimisation implies, it 

is restricted to technical elements. Therefore constraints come next in the 

Section to provide an insight to those elements. One of the biggest 

constraints is cost of planning which is the topic of last Section. The value of 

investment over the horizon years should be considered as well as capital 

and running cost of added DGs to gives the planner an economic 

perspective in planning. 

3.2 Optimisation Techniques  
 

 The need for higher efficiency and effectiveness optimisation tools is 

increasing to ensure that electrical energy of the standard quality can be 

provided at the lowest cost / higher reliability. In Chapter 2 applications of 

various optimisation techniques in power system were presented. 
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Optimisation is such a broad realm that takes books to articulate; however 

there are basic elements in all optimisation which are necessary to be 

discussed here. Due to high non-linearity nature of power system problems, 

optimisation techniques have been a popular subject in power system. For 

instance network loss which was discussed in Chapter 2 under technical 

issues Section 2.2.1 is highly non-linear. The non-linearity of the network real 

power loss could be understood from equation (3-1a). 

𝑃𝐿 =   [𝛼𝑖𝑗  𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗  + 𝛽𝑖𝑗 (𝑄𝑖𝑃𝑗 + 𝑃𝑖𝑄𝑗 )]

𝑁

𝑗=1

𝑁

𝑖=1

 

 

(3-1a) 

where                   

𝛼𝑖𝑗 =
𝑟𝑖𝑗

𝑉𝑖𝑉𝑗
cos(δ𝑖 − δ𝑗 ) , 𝛽𝑖𝑗 =

𝑟𝑖𝑗

𝑉𝑖𝑉𝑗
sin(δ𝑖 − δ𝑗 ) 

 

(3-1b) 

The elements of every optimisation are its variables, objectives and 

constraints. There are different type of variables, objectives and constraint in 

power system optimisation problem as of any their optimisation. 

3.2.1 Variables 
 

In any optimisation there are three types of variables: control variables state 

variables and constraint variables. Control or independent variables such as 

generator outputs or transformer tap changing, corresponds to those that can 

be arbitrarily manipulated, within their limits, in order to minimize or maximise 

the objective function. States or dependant variables such as load bus 

voltage magnitudes and angles correspond to variables that are set as a 

result of the controls, but must be monitored. Constraint variables are 

variables associated with the constraints .In conventional optimisation 

techniques Lagrangian multipliers is a type of constraint variable [180]. 
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3.2.2 Single-Objective Based and Multi-Objective Approaches 
 

Over the past decades, power system problems utilised single-objective 

optimisation methods with simplified assumptions to reduce the complexity of 

the problem [181]. A variety of optimisation techniques have been proposed 

to solve the problems of optimal integration of DGs in terms of operations 

and planning for decades [96]. In a broader perspective, literature shows that 

these techniques could be brought under single objective or multi-objective 

category applied in reactive power planning or VAR planning, 

economic/environment dispatch, transmission/distribution network expansion 

planning, etc. Single-objective optimisations include techniques such as the 

weighted sum method, the ε-constraint method and the goal programming 

method, etc. [181]. In weighted sum, the method is to transform all objectives 

into an aggregated scalar objective function problem by using weighted 

criteria. One specifies scalar weights for each objective to be optimized, and 

then combines them into a single function that can be solved by any single-

objective optimization method. Determining how to weight different objectives 

could become problematic in some optimisation techniques particularly in 

conventional methods, as they require good knowledge of the systems. The 

ε-constraint method suggests optimizing a single-objective function while 

dealing with all other objectives as constraints. The goal programming 

method is based on minimizing a sum of deviation of objectives from user-

specified targets. In following these approaches are presented in details. 

3.2.2.1 Weighted Method 

 

 This approach is in general known as the weighted-sum or scalarization 

method. It is the simplest and the most famous single objective approach 

used for to tackle the multi-objective optimization. This approach is based on 

achievement of conflicting goals by converting a multi-objective optimization 

problem into a single-objective one [185]. The weighted-sum method 

minimizes a positively weighted convex sum of the objectives to produce a 

unique objective function [182]. It is represented in equation (3-2). 



37 
 
 

𝑚𝑖𝑛  𝛾𝑖 . 𝑓𝑖(𝑥)

𝑁

𝑖=1

 
 

 

(3-2a) 

 𝛾𝑖 = 1

𝑁

𝑖=1

 
 

 

(3-2 b) 

𝛾𝑖 > 0 , 𝑖 = 1,… , 𝑁 (3-2 c) 

𝑥 ∈  𝑆 (3-2 d) 

 

Weighting coefficients 𝛾𝑖  do not necessarily correspond directly to the relative 

importance of the objective functions. Nevertheless, weight assignment is the 

most challenging part of the optimization and solving the optimization 

problem. In this approach optimal solution is highly sensitive to weight 

selection. Furthermore, weighted-sum method is reliable only when all the 

data are expressed in exactly the same unit or numerical weights can be 

precisely assigned to the achievement of each goal [185]. 

3.2.2.2 ε- constraint Method 

 

ε-constraint method was proposed in 1983 [183]. One objective out of n is 

minimized and the remaining objectives are constrained to be less than or 

equal to given target values. The problem is defined as the following  

 

min𝑓2 (𝑥) (3-3a) 

𝑓𝑖 𝑥 ≤  ε𝑖  , ∀ 𝑖 ∈ {1, … ,𝑁} (3-3b) 

𝑥 ∈  𝑆 (3-3c) 

One advantage of the ε -constraints method is that it is able to achieve 

efficient points in a non-convex Pareto curve [182]. The concept of Pareto 

curve is presented in Section 3.2.2.4. 
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3.2.2.3 Pareto Based Multi-objective Method 

 

In power system multi-objective optimisation no unique solution can 

simultaneously optimise all of the objectives of a multi-objective problem as 

they are normally conflicting. Methods presented above in Sections 3.2.2.1 

and 3.2.2.2 which rely on prior assumptions, have been employed to 

overcome the issue. As opposed to such approaches, the multi-objective 

problem could directly generate optimum set of points called as Pareto 

frontier through the use of separate objectives [178]. In general, multi-

objective minimisation problem with 𝑛 decision variables and 𝑚 objective 

functions associated with inequality and equality constraints can be 

mathematically stated as (3-4). 

Minimize 𝐹 𝑥  = [𝑓1 𝑥  , 𝑓2 𝑥  ,… , 𝑓𝑚 (𝑥 )] 

 

(3-4a) 

Subject to 𝑕 𝑥  ≤ 0 

 

(3-4b) 

𝑔 𝑥  = 0 (3-4c) 

 where 

𝑥 = [𝑥1 , 𝑥2 , … , 𝑥𝑛 ] (3-4d) 

 

Finding a set of trade-off optimal solutions on which no improvement is 

possible in any objective function without previously sacrificing at least one 

objective function is called Pareto-optimal solutions [181]. Mathematically 𝑥 ∗ 

are called Pareto optimal if there does not exist another 𝑥  such that 𝑓(𝑥 ) ≤

𝑓(𝑥 ∗) for all objectives .This notion has been shown in Figure 3.1 for a two 

objective problem. 
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Figure 3.1 f1 and f2 are to be minimised from [181] 

 

3.2.2.4 Goal Programming Method 

 

Goal programming method attempts to find specific goal values of objectives. 

It is based on minimizing a sum of deviation of objectives from user-specified 

targets [181]. A set of design goals  𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑘] are associated with a 

set of objectives, 𝑓(𝑥) = [𝑓1 𝑥 , 𝑓2 𝑥 , … , 𝑓𝑚 (𝑥)]. The optimization goal can be 

formulated as (3-5). 

 𝑓𝑖 𝑥 = 𝑡𝑖   𝑖 = 1,… , 𝑘  (3-5) 

 

Equation (3-5) can be written using different types. Less than or equal to t as 

in (3-6) 

𝑓(𝑥) ≤ 𝑡 (3-6) 

Greater than or equal to t as in (3-7) 

𝑓(𝑥) ≥ 𝑡 (3-7) 

or within a range as in (3-8) 

𝑓 𝑥 ∈ [𝑡𝑖𝑛𝑓 , 𝑡𝑠𝑢𝑝 ] (3-8) 
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Two non-negative deviation variables (n and p) are introduced to satisfy the 

presented goals from (3-5) to (3-8). In (3-6) the positive deviation p is 

subtracted from the objective function. The deviation p quantifies the amount 

by which the objective function has not satisfied the target t. The objective of 

goal programming is to minimize the deviation p as expressed in (3-9) 

𝑓 𝑥 − 𝑝 ≤ 𝑡 , 𝑛 = 0 (3-9) 

Similarly for (3-7) the objective is to minimize the deviation n so as to find the 

solution that minimizes the deviation. It is shown in (3-10) 

𝑓 𝑥 + 𝑛 ≥ 𝑡 , 𝑝 = 0 (3-10) 

Therefore, to solve a goal programming problem, each goal is converted into 

at least one equality or inequality restriction, and the objective is to minimize 

all p and n deviations. The relative degree of goal achievement is controlled 

by the vectors of weighting coefficients, 𝑤 and β, and is expressed as a 

standard optimization problem expressed in (3-11) [203]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝑤𝑗𝑝𝑗 + β𝑗𝑛𝑗 )
𝑘

𝑗=1
 

(3-10) 

subject to  

𝑓 𝑥 − 𝑝𝑗 + 𝑛𝑗 = 𝑡𝑗    𝑗 = 1,2, … , 𝑘 (3-11) 

𝑥 ∈ Ω,     𝑛𝑗  , 𝑝𝑗 ≥ 0  

Because of 𝑤 and β , goal programming depends on the choice of these 

weighting factors.  

3.2.4 Non-Heuristic Optimisation Techniques 
 

Optimisation techniques applied in power system attempt to use models to 

determine critical operating conditions of a power system to obtain secure 

power dispatches. The optimal integration DG resources were presented in 

Chapter 2 from different perspectives but here a more in depth background 

of the techniques are discussed. The integration techniques are comprised of 
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conventional and heuristic techniques. The first type of methods also known 

as applied mathematical methods are based on mathematical programming 

algorithms such as linear and non-linear programming, mixed integer non-

linear programming and interior-point methods [96] .The second class of 

optimisation was introduced as many power system formulations might not 

be satisfied by strict mathematical assumption particularly if the global 

optimisation is of interest [184].  

3.2.3.1 Linear and Nonlinear Programming 

 

An example of a linear problem is written: 

 

min𝑓  𝑥 = 𝑎𝑥 + 𝑏 

 

(3-12a) 

𝑔𝑗  𝑥 = 𝑐𝑥 + 𝑑 = 0 𝑗 = 1,2. . 𝑝 

 

(3-12b) 

𝑕𝑘 𝑥 = 𝑟𝑥 + 𝑠 ≤ 0 𝑘 = 1,2. . 𝑞 

𝑥 ∈  ℝ 

𝑎, 𝑏, 𝑐, 𝑑, 𝑟, 𝑠 ∈  ℝ  

 

(3-12c) 

where 𝑥 is the vector of decision variables. 𝑓  𝑥  is the objective or goal 

function. For example objective could be investment, fuel, operation and 

maintenance and unavailability costs of the system as in [101]. The objective 

is always to the restrictions given by 𝑔 𝑥  the equality and 𝑕 𝑥  inequality 

constraints. 𝑎, 𝑏, 𝑐, 𝑑, 𝑟 and 𝑠 are the vectors of real numbers that define the 

linear relationships of the problem. The sum of the powers generated by 

each group of generation units must be equal to the power that flows from 

the correspondent fictitious node to the load node or zero node so equality 

constraints 𝑔 𝑥  in that sense would be 
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 𝑃𝑖𝑗

𝑁𝑢

𝑗=1

= 𝑃𝑖0  

 

(3-13) 

𝑖𝑗 corresponds to the any two branch in the power system network. 

Other inequality constraint could vary but most of optimisation techniques 

applied in DG planning have the following constraints in common: 

 maximum power for each group of generators[101]  

 minimum capacity of the generator array 

 limits on power generated by each generator 

 limits on the number of DGs 

 possible limits on the location of DGs 

 limits on line currents (thermal limit) 

The above constraints are discussed in Section 3.4. Any optimisation results 

should be within these constraints known as feasible region. In nonlinear 

problems feasible region is bounded by constraints, as illustrated in as 

Figure 3.2 illustrates an initial solution is estimated, and then the algorithm 

iteratively approximates to the (local) optima solution. 

 

Figure 3.2 Nonlinear optimisation problem (min f(x)=cos (10x).sin (5x).𝒆−𝒙) [98] 

The feasible set of the nonlinear programming problem can always be 

represented as (3-14). 
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𝐶 =  𝑥 ∈  ℝn h 𝑥 = 0, l ≤  𝑥 ≤ 𝑢} 

 

(3-14) 

where  𝑕: ℝn → ℝm  (When an inequality constraint 𝑔(𝑥) ≤ 0 appearsin the 

original formulation it can be replaced by 𝑔 𝑥 + 𝑧 = 0, 𝑧 ≥ 0). Feasible 

methods for solving NLP generate a sequence of approximations 𝑥𝑘  ∈ C 

such that 𝑓(𝑥𝑘+1) is sufficiently smaller than 𝑓(𝑥𝑘) for all 𝑘. Reduced gradient 

belongs to this class of methods. Usually, each iteration of feasible method 

consists of two phases. In the “predictor phase”, given a feasible 𝑦 ∈ C a 

better approximation 𝑧 is computed in the tangent set to 𝐶 that passes 

through 𝑦. In the “corrector phase”, feasibility is restored. Starting with (the 

generally infeasible) 𝑧 one tries to find a new feasible point 𝑥 such that 𝑓(𝑥) 

is sufficiently smaller than𝑓(𝑦). In reduced gradient (GRG) methods the 

restored point is obtained (if possible) by modifying only the value of m basic 

variables [19]. 

 

3.2.3.2 Mixed-Integer Nonlinear Programming  

 

The most basic form of a mixed-integer nonlinear programming (MINLP) 

problem when represented in algebraic form is depicted in equation (3-15). 

min𝑍 = 𝑓 𝑥, 𝑦  (3-15a) 

𝑠. 𝑡. 𝑔𝑗  𝑥, 𝑦 ≤ 0 𝑗 ∈ 𝐽 (3-15b) 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌  

where f, g are convex, differentiable functions, J is the index set of 

inequalities, and 𝑥 and 𝑦 are the continuous and discrete variables, 

respectively.  The set 𝑋 is commonly assumed to be a convex compact set, 

e.g. 𝑋 =  𝑥 𝑥 ∈ ℝn, 𝐷𝑥 ≤ 𝑑 , 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈} the discrete set Y corresponds to a 

polyhedral set of integer points, 𝑌 =  𝑦 𝑦 ∈ Zm, 𝐴𝑦 ≤ 𝑎 } , and in most 

applications is restricted to 0-1 values, 𝑦 ∈ {0,1}𝑚. In most applications of 

interest the objective and constraint functions f g are linear in (e.g. fixed cost 

charges and logic constraints). Mixed integer non-linear programming could 
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get different forms such as branch and bound method [18] and generalized 

bender decomposition method. Branch and bound methods start with a 

relaxed version of the integer problem. Relations are defined as in equation 

(3-16). 

min𝑍𝐿𝐵
𝑘 = 𝑓(𝑥, 𝑦) (3-16a) 

𝑠. 𝑡. 𝑔𝑗  𝑥, 𝑦 ≤ 0 𝑗 ∈ 𝐽 (3-16b) 

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌  

𝑦𝑖 ≤ 𝛼𝑖
𝑘   𝑖 ∈  𝐼𝐹𝐿

𝑘  (3-16c) 

𝑦𝑖 ≥ 𝛽𝑖
𝑘  𝑖 ∈  𝐼𝐹𝑈

𝑘  (3-16d) 

 

where YR is the continuous relaxation of the set Y, and 𝐼𝐹𝐿
𝑘 ,  𝐼𝐹𝑈

𝑘   are index 

subsets of the integer variables yi  𝑖 ∈ 𝐼, which are restricted to lower and 

upper bounds, 𝛼𝑖
𝑘 , 𝛽𝑖

𝑘  at the kth step of a branch and bound enumeration 

procedure [20]. The BB method starts by solving first the continuous NLP 

relaxation.  If all discrete variables take integer values the search is stopped. 

Otherwise, a tree search is performed in the space of the integer variables yi , 

i ∈ 𝐼. These are successively fixed at the corresponding nodes of the tree, 

giving rise to relaxed NLP of the form (3-9) which yield lower bounds in the 

descendant nodes. 

3.2.3.3 Interior Point Method  

 

The first step in every interior point method (IP) is transforming an inequality 

constrained optimization problem to equality constrained. The next steps are 

formulating Lagrange function by a logarithmic barrier functions, setting the 

first order optimality conditions, and applying Newton‟s method to the set of 

equations coming from the first-order optimality conditions [186]. An equality 

constrained nonlinear optimization problem has the form (3-5a) and (3-5b). 

The optimality conditions can be formulated using Lagrange function. 
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𝐿 𝑥, 𝑦 = 𝑓 𝑥 − 𝑦𝑇𝑔(𝑥) 

 

(3-17) 

𝑦 is called Lagrange multiplier. The first order optimality conditions are  

∇𝑥𝐿 𝑥, 𝑦 = ∇𝑓 𝑥 − ∇𝑔(𝑥)𝑇𝑦 = 0 

 

(3-18) 

∇𝑦𝐿 𝑥, 𝑦 = −𝑔(𝑥) = 0 

 

(3-19) 

An optimal solution to nonlinear (3-10) must satisfy equation (3-12). Newton 

method is used to solve (3-10). Based on Taylor‟s theorem in a general 

smooth nonlinear function 𝑓:ℝn → ℝn   

𝑓 𝑥 = 0 

 

(3-20) 

𝑓 𝑥0 + ∆𝑥 ≅ 𝑓 𝑥0 + ∇𝑓(𝑥0)∆𝑥  

 

(3-21) 

𝑥0 is an initial guess to equation (3-13). Assuming that  ∇𝑓(𝑥0) is not singular 

∆𝑥  defines search direction as equation (3-15). 

∆𝑥= −∇𝑓(𝑥0) (3-22) 

 

New point is calculated from equation (3-16) 

𝑥1 = 𝑥0 + 𝛼. ∆𝑥  (3-23) 

 

𝛼 is called step size scalar and is chosen in the interval (0,1]. Iteratively the 

solutions are generated until the objective 𝑓 𝑥  close enough to zero. 
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3.2.4 Heuristic Optimisation Techniques 
 

In conventional techniques derivates of functions may not be very useful 

when the objective is highly variable. The example is shown in Figure 3.3 . 

 

Figure  3.3 A highly variable objective (cost)  

In Figure 3.3 cost function is highly variable and methods such as gradient 

would not yield promising results. Heuristic techniques which are based on 

population are able to break the space into variety of sub spaces in order to 

find the optimum (near optimum) point.  

3.2.3.4 Simulated Annealing  

 

Simulated annealing (SA) is a refinement of the local search which is 

illustrated in the following pseudo code. 

Pseudo-code for the classical local search procedure 

1: Generate initial solution  𝑥𝑐  

2: while stopping criteria not met do 

3: Select  𝑥𝑛 ∈  𝑁(𝑥𝑐) (neighbour to current solution) 

4: if 𝑓(𝑥𝑛)< 𝑓(𝑥𝑐) then 𝑥𝑐 = 𝑥𝑛  

5: end while 
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The stopping criterion is defined by a given number of iterations or a number 

of consecutive iterations without change/improvement for the current solution 

[25]. Pseudo code for simulated annealing from the publication of Gilli and 

Winker [24] is represented as follows: 

Pseudo code for simulated annealing 

 

1: Generate initial solution 𝑥𝑐 , initialize 𝑅𝑚𝑎𝑥  and 𝑇 

2: for 𝑟 = 1 to 𝑅𝑚𝑎𝑥   do 

3: while stopping criteria not met do 

4: Compute 𝑥𝑛 ∈ 𝑁(𝑥𝑐) (neighbour to current solution) 

5: Compute ∆= 𝑓(𝑥𝑛) –𝑓(𝑥𝑐) and generate 𝑢 (uniform random variable) 

6: if  ∆< 0  or 𝑒−∆/𝑇 > 𝑢 then 𝑥𝑐 = 𝑥𝑛
 

7: end while 

8: Reduce 𝑇 

9: end for 

 

𝑇 is the temperature gradually reduced in the process. 

3.2.3.5 Tabu Search  

 

Pseudo code from the work of Gilli and Winker [24] is as follows: 

Pseudo code for Tabu search  

 

1: Generate current solution 𝑥𝑐  and initialize tabu list 𝑇 = ∅ 

2: while stopping criteria not met do 

3: Compute 𝑉 =  𝑥  𝑥 ∈ 𝑁 𝑥𝑐  \𝑇  

4:  Select 𝑥𝑛 = min(𝑉)  

5: 𝑥𝑐 = 𝑥𝑛  and 𝑇 = 𝑇 ∪ 𝑥𝑛  
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6: Update memory 

7: end while 

3.2.3.6 Ant Colony  

 

The significance of the ant colony (AC) algorithms is that each artificial ant 

works individually but communicates with other ants through the pheromone 

trails. The pheromone trail could be altered by other ants. This alteration is 

based on other ants‟ experiences for their next move so an optimal solution 

is achieved [40]. Ant Colony pseudo code from the work of Gilli and Winker 

[24] is as follows: 

 

Pseudo code for ant colony 

 

1: Initialize pheromone trail 

2: while stopping criteria not met do 

3: for all ants do 

4: Deposit ant randomly 

5: while solution incomplete do 

6: Select next element in solution randomly according to pheromone trail 

7: end while 

8: Evaluate objective function and update best solution 

9: end for 

10: for all ants do Update pheromone trail (more for better solutions) end for 

11: end while 

3.2.3.7 Particle Swarm Optimization  

 

Particle swarm optimization (PSO) technique provides a population-based 

search process. Solutions are called particles. In the search procedure their 

position (state) changes with time. Particles fly around in a search space. 

During flight, the position of each particle is adjusted according to its own 
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experience (this value is called Pbest), and according to the experience of a 

neighbouring particle, PSO updates a population of solution vectors by an 

increment called velocity [43]. The process is illustrated in Figure 3.4. 

 

Figure 3.4 Updating the position of a particle P_i^((k)) with velocity [24] 

 

The position of particle in the 𝑘𝑡𝑕  generation 𝑃𝑖
(𝑘)

 gets updated to 𝑘 +

1 𝑡𝑕  generation. There are two directions considered. The direction from the 

current position of the particle to the best position (𝑃𝑖
 𝑘 → 𝑃𝑏𝑒𝑠𝑡 𝑖  ) and the 

direction from the current position to the best position for all particles 

(𝑃𝑖
 𝑘 → 𝑃𝑏𝑒𝑠𝑡 𝑔𝑏𝑒𝑠𝑡  ). Both directions are subject to random perturbation by a 

random number between 0 and 1. The pseudo code for Particle swarm is as 

follows: 

Pseudo code for Particle swarm optimisation  

1: Initialize parameters 𝑛𝑝 , 𝑛𝑔 and 𝑐 

2: Initialize particles 𝑃𝑖
 0 

 and velocity 𝑣𝑖
 0 

 , 𝑖 = 1,… , 𝑛𝑝  

3: Evaluate objective function 𝐹𝑖 = 𝑓(𝑃𝑖
(0)

) , 𝑖 = 1,… , 𝑛𝑝  

4: 𝑃𝑏𝑒𝑠𝑡 = 𝑃(0), 𝐹𝑏𝑒𝑠𝑡 = 𝐹, 𝐺𝑏𝑒𝑠𝑡 = 𝑚𝑖𝑛𝑖(𝐹𝑖), 𝑔𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑖(𝐹𝑖) 

5: for 𝑘 = 1 to 𝑛𝐺  do 
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6: for 𝑖 = 1 to 𝑛𝑝  do 

7: ∆ 𝑣𝑖 = 𝑐 𝑢  𝑃𝑏𝑒𝑠𝑡 𝑖 − 𝑃𝑖
(𝑘−1)

 + 𝑐 𝑢 (𝑃𝑏𝑒𝑠𝑡 𝑔𝑏𝑒𝑠𝑡 − 𝑃𝑖
(𝑘−1)

)  

8: 𝑣𝑖
(𝑘)

= 𝑣(𝑘−1) + ∆ 𝑣𝑖  

9: 𝑃𝑖
(𝑘)

= 𝑃𝑖
(𝑘+1)

+ 𝑣𝑖
(𝑘)

 

10: end for 

11: Evaluate objective function 𝐹𝑖 = 𝑓 𝑃𝑖
 𝑘  , 𝑖 = 1,… , 𝑛𝑝  

12: for 𝑖 = 1 to 𝑛𝑝  do 

13: if 𝐹𝑖 < 𝐹𝑏𝑒𝑠𝑡 𝑖  then 𝑃𝑏𝑒𝑠𝑡  𝑖
= 𝑃𝑖

(𝑘)
 𝑎𝑛𝑑 𝐹𝑏𝑒𝑠𝑡 𝑖 = 𝐹𝑖  

14: if 𝐹𝑖 < 𝐺𝑏𝑒𝑠𝑡  then 𝐺𝑏𝑒𝑠𝑡 = 𝐹𝑖  𝑎𝑛𝑑 𝑔𝑏𝑒𝑠𝑡 = 𝑖  

15: end for 

16: end for 

3.2.3.8 Genetic Algorithm  

 

Crossover creates new candidates for the solution which combines part of 

the genetic of each previous candidate named as parent. It is then applied a 

random mutation. Mutation randomly perturbs a candidate solution. In the 

occurring iterations reproduction keeps the most successful solutions found 

in a population, discarding the rest from the population pool. 

The pseudo code for genetic algorithm from [24] is as follows: 

 

Pseudo code for genetic algorithm 

1: Generate initial population P of solutions 

2: while stopping criteria not met do 

3: Select 𝑃′ ⊂ 𝑃 (mating pool), initialize 𝑃′′ = ∅  (set of children) 

4: for 𝑖 = 1  to n do 

5: Select individuals 𝑥𝑎and 𝑥𝑏  at random from 𝑃′  

6: Apply crossover to 𝑥𝑎  and 𝑥𝑏  to produce 𝑥𝑐𝑕𝑖𝑙𝑑  

7: Randomly mutate produced child 𝑥𝑐𝑕𝑖𝑙𝑑  

8 : 𝑃′′ = 𝑃′′  ∪  𝑥𝑐𝑕𝑖𝑙𝑑  
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9: end for 

10: 𝑃 = survive(𝑃′ , 𝑃′′ ) 

11: end while 

 

However, combining objectives into one objective in power system problems 

requires a strong knowledge of exploring space [14] so GA has also been 

evolved into another form in recent years named as non sorting genetic 

algorithm (NSGA) introduced by Deb [55].  

 

3.3 Load and Generation Modelling 
 

Electricity load-generation modelling is very importance in the management 

of power systems. Long-term and short-term load power consumption 

modelling is required for capacity planning, maintenance scheduling, 

operation and planning and control of power systems [187], [188]. Loads can 

be either modelled as constant power or constant impedance. In the 

publication of Ochoa et al. [189] load is modelled as a constant power and 

represents the maximum and minimum load demand in two different 

scenarios. However the load modelling is devoid of time variation of load 

levels. In time variations load modelling approaches, the analysis of load 

(and also generation) hourly intervals for the horizon of a year or more than a 

year is presented. It consequently leads to 8760 analysis intervals per year 

[190]. To overcome the uncertainty of load and generation in a yearly horizon 

analytical and mathematical modelling is adopted. Deterministic load 

modelling and probability load flow (PLF) are two adopted approach in 

distribution generation operation and planning. 

3.3.1 Deterministic Load Modelling 
 

In some literature static load condition is adopted. Different load scenarios 

such as peak load [44] could be considered as distribution system load 

varies in different time of day. In this load pattern, a single load point is 
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considered in each scenario. In the work of Khalesi et al. [195] light, average 

and peak load levels are conditions in which the optimisation is based upon. 

To address the security of a system a worst case scenario is defined as full 

capacity generation at the point of minimum load [7]. 

3.3.2 Probability Load Flow  
 

Probabilistic load flow (PLF) was introduced as opposed to deterministic load 

flow which uses specific values of power generations and load demands of a 

selected network configuration to calculate system states and power flows. 

Firstly introduced in 70s [191] the uncertainties is modelled as input random 

variables with probabilistic density functions (PDF) or cumulative density 

functions (CDF). The output states are calculated as random variables with 

PDFs or CDFs [192]. Analysis of the distribution network operation and 

planning under uncertainties takes advantages of PLF to evaluate the impact 

of renewable energy resources. Based on [191] branch flows are assumed to 

be linearly related and active and reactive power independent from each 

other. Furthermore normal distribution and discrete distribution are assumed 

for the load and generation respectively [194]. In other words in conventional 

generation dispatch and grid configurations are considered as discrete 

random variables while and variable generation are treated as continuous 

random variables [193]. The PLF can be solved numerically, i.e. using a MC 

method, or analytically, e.g. using a convolution method, or a combination of 

them [194] so PDFs of stochastic variables of system states and line flows 

can be obtained. Because of linear assumptions made in analytical PLF, it is 

less accurate than mathematical approach such as MC. The general form of 

active and reactive power could be presented in equation (3-16). 

𝑌 =  𝑓(𝑋) 

 

(3-24) 

The linearized form can be written as  

𝑋 ≅ 𝑋 + 𝐴(𝑌 − 𝑌 ) (3-25) 
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where 

 𝐴 = (
𝜕𝑓

𝜕𝑋
  ) |𝑋=𝑋  

−1
 

 

(3-26) 

 A is named as sensitivity coefficient matrix. In deterministic Newton 

Raphson method the Jacobian matrix A is computed in each iteration 

whereas in PLF it is calculated once. If a convolution technique is used, the 

derivate would be expressed as in (3-19). 

𝑓 𝑋𝑖 = 𝑓 𝑌1 − 𝑌  1 ∗ 𝑓 𝑌2 − 𝑌  2 ∗ … ∗ 𝑓(𝑌𝑛 − 𝑌  𝑛) 

 

(3-27) 

 Monte Carlo Simulation  

Monte Carlo simulation (MCS) is a numerical method to solve the 

probabilistic load flow (PLF) problem. MC method requires large number of 

simulations, which is very time-consuming. MC is in principle doing 

deterministic load flow for a large number of times with inputs of different 

combinations of nodal power values. Therefore, the exact nonlinear form of 

load flow equations as shown in equations (3-28) and (3-29) can be used in 

the PLF analysis. 

𝑃𝑖 = 𝑈𝑖  𝑈𝑘

𝑛

𝑘=1

 𝐺𝑖𝑘  cos 𝜃𝑖𝑘 +  𝐵𝑖𝑘  sin 𝜃𝑖𝑘   

 

(3-28) 

𝑄𝑖 = 𝑈𝑖  𝑈𝑘

𝑛

𝑘=1

 𝐺𝑖𝑘  sin 𝜃𝑖𝑘 − 𝐵𝑖𝑘  cos 𝜃𝑖𝑘   

 

(3-29) 

𝑃𝑖𝑘 = −𝑡𝑖𝑘𝐺𝑖𝑘  𝑈2
𝑖 + 𝑈𝑖𝑈𝑘(𝐺𝑖𝑘 cos 𝜃𝑖𝑘 + 𝐵𝑖𝑘 sin 𝜃𝑖𝑘  ) (3-30) 
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𝑄𝑖𝑘 = 𝑡𝑖𝑘𝐵𝑖𝑘  𝑈2
𝑖 − 𝐵𝑖𝑘𝑈𝑖

2 + 𝑈𝑖𝑈𝑘(𝐺𝑖𝑘 sin 𝜃𝑖𝑘 − 𝐵𝑖𝑘 cos 𝜃𝑖𝑘  ) 

 

(3-31) 

𝑄𝑖(𝑠𝑕) =  𝑈2
𝑖𝐵𝑖(𝑠𝑕) 

 

(3-32) 

where 𝑃𝑖  and 𝑄𝑖  are the net active and reactive power injection at bus 

𝑖. 𝑃𝑖𝑘  and 𝑄𝑖𝑘  are the active and reactive power flows in line 𝑖𝑘 at the bus 

𝑖 side. 𝑈𝑖  and 𝑈𝑘  are the voltage magnitude at bus 𝑖 and 𝑘. 𝜃𝑖𝑘  is the angle 

difference between the voltages at bus 𝑖 and 𝑘 . 𝐺𝑖𝑘  and 𝐵𝑖𝑘  are the real and 

imaginary part of the corresponding admittance matrix [194]. 

3.4 Constraints  
 

The optimum integration of distribution generation occurs under certain 

operating constraints. In literature, various constraints have been considered 

in the distribution generation planning. Constraints are divided into two 

classes: equality and inequality constraints. The equality constraints are 

power conservation limit. These are the power flow equations that govern the 

power flow in a network and must be satisfied throughout the optimization 

process [196]. Inequality constraints are such as thermal limit of branches or 

voltage limit of bus bars. In the following, constraints applied in distribution 

generation proper planning are presented. 

3.4.1 Equality Constraints 

 

The total active and reactive power generation of the traditional 

generation( 𝑃𝐺𝑇  and 𝑄𝐺𝑇) and DG units ( 𝑃𝐷𝐺𝑇  and 𝑄𝐷𝐺𝑇 )   must be equal to 

total load demand ( 𝑃𝐷𝑇  and 𝑄𝐷𝑇) and the total active and reactive power loss 

( 𝑃𝐿𝑇 and 𝑄𝐿𝑇). 

 

𝑃𝐺𝑇 + 𝑃𝐷𝐺𝑇 − 𝑃𝐷𝑇 − 𝑃𝐿𝑇 =  0 (3-33) 
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𝑄𝐺𝑇 +  𝑄𝐷𝐺𝑇 − 𝑄𝐷𝑇 − 𝑄𝐿𝑇 =  0 

 

(3-34) 

3.4.2 Inequality Constraints 
 

The inequality constraints denote the limits on physical devices in the power 

system as well as the limits designed to ensure system maintain in the 

defined security margin. 

3.4.2.1 Voltage Profile Limit 

 

Stability criteria require that bus voltage magnitudes be kept at acceptable 

levels. Mathematically, such restrictions can be expressed as follows: 

|𝑉𝑖
𝑚𝑖𝑛 | ≤ |𝑉𝑖| ≤ |𝑉𝑖

𝑚𝑎𝑥 |   ∀ 𝑖 ∈ {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠} 

 

(3-35) 

3.4.2.2 Line Thermal Limit 

 

The line thermal rating is the loading that corresponds to maximum allowable 

conductor temperature under the assumption of thermal equilibrium 

[198].The power carrying capacity of feeders is represented by MVA limits 

(𝑆𝑘) through any branch  𝑘  must be well within the maximum thermal 

capacity (𝑆𝑘
𝑚𝑎𝑥 ) of the lines [197].  

 

𝑆𝑘 ≤ 𝑆𝑘
𝑚𝑎𝑥  ∀ 𝑖 ∈ {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑕𝑒𝑠} 

 

(3-36) 
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3.4.2.3 Phase Angle Limit 

 

The bus voltage angle 𝛿𝑖  at bus 𝑖 is restricted by its upper and lower limits for 

all buses . 

 

𝛿𝑖
𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑖

𝑚𝑎𝑥  ∀ 𝑖 ∈ {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑠𝑒𝑠} 

 

(3-37) 

 

3.4.2.4 Active and Reactive Power Generation Limit 

 

The generated power from both traditional generator and installed DGs 

represented by 𝑃𝑔𝑒𝑛  and 𝑄𝑔𝑒𝑛  must be restricted by its lower and upper limits. 

 

𝑃𝑔𝑒𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒𝑛 ≤ 𝑃𝑔𝑒𝑛

𝑚𝑎𝑥   

 

(3-38) 

𝑄𝑔𝑒𝑛
𝑚𝑖𝑛 ≤ 𝑄𝑔𝑒𝑛 ≤ 𝑄𝑔𝑒𝑛

𝑚𝑎𝑥  (3-39) 

 

3.4.2.5 Substation Transformer Capacity Limit 

 

The total power supplied by the substation transformer 𝑆𝑙𝑜𝑎𝑑
𝑡𝑜𝑡𝑎𝑙  should be 

within the substation‟s transformer capacity limit (𝑆𝑠𝑠𝑡
𝑚𝑎𝑥 ).Another reason for 

limiting power in substation is that exporting power beyond the substation 

(reverse flow of power though distribution substation), will lead to very high 

losses [6].Hence the substation power transmission should be limited.  
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𝑆𝑙𝑜𝑎𝑑
𝑡𝑜𝑡𝑎𝑙 ≤ 𝑆𝑠𝑠𝑡

𝑚𝑎𝑥   (3-40) 

 

3.4.2.6 Number of DG Limit 

 

The total number of DGs to be placed in a distribution network has to be 

bounded by a maximum number of DGs (𝑁𝐷𝐺
𝑚𝑎𝑥 ). 

 

𝑁𝑑𝑔 ≤ 𝑁𝐷𝐺
𝑚𝑎𝑥   

 

(3-41) 

 

 3.4.2.7 Short Circuit Level/Ratio Limit  

 

A short circuit calculation is considered to ensure that fault current with DG 

(𝑆𝐶𝐿𝑟𝑎𝑡𝑒𝑑 ) should not increase rated fault current of currently installed 

protective devices. 

 

𝑆𝐶𝐿𝑊𝐷𝐺 ≤ 𝑆𝐶𝐿𝑟𝑎𝑡𝑒𝑑   

 

(3-42) 

 

In addition, in transient studies short circuit ration limit could be taken into 

account. Short circuit ratio is the ratio of generator power (𝑃𝐷𝐺 ) at each bus 

to short circuit level at each bus (𝑆𝐶𝐿𝐵𝑈𝑆 ).If the short circuit  ratio remain less 

than 10%, as European standard EN50160, 1994 suggests, the system will 

remain stable [197]. 

 

𝑃𝐷𝐺𝑖

𝑆𝐶𝐿𝑖 .𝐶𝑜𝑠 (∅)
 × 100 ≤ 10%  ∀ 𝑖 ∈  ℕ 

 

(3-43) 
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3.4.2.8 Power Factor Limit 

 

Distributed generators have been assumed to operate in power factor control 

mode. This necessitates a constraint on power factor. 

 

 

𝐶𝑜𝑠  ∅𝐷𝐺 = P
 PDG

2 + QDG
2 = constant   

 

(3-44) 

where, 𝑃𝐷𝐺  is real power output of DG, 𝑄𝐷𝐺  is reactive power output of DG, 

and  ∅𝐷𝐺  is constant power factor angle of DG. 

3.4.3 Curtailment Limitations 

 

Curtailed energy means energy which could have been generated but was 

not, due to curtailment forced by use-of-network limitations [199]. In 

curtailment some of DG power is temporarily reduced or directed to a dump 

load. The power exported is limited to the maximum power that does not 

cause the local network voltage to exceed its limit. This varies with the time 

of day and season. 

3.5 Planning Cost 
 

DG reduces the system‟s capital cost by deferring distribution facilities [202]. 

However, it incurs costs which should be calculated. Alongside of minimising 

the environmental impacts and maximisation of the system reliability, 

minimise costs is one of the major objectives of the distribution generation 

planning. In planning, total cost is normally defined as the sum of the 

discounted (present value) of the investment cost for newly added DGs, fixed 

operational and maintenance (O&M) and variable operational costs for newly 

added and existing generation units [177]. As the planning occurs in a 5 to 

20 year horizon the value of money also changes; hence “present worth 

value” and “discount rate” are defined to consider this effect. Based on 
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equation (3-45) if the present worth factor P is equal to 0.9 the value of an 

asset worth £100 (𝑋) after a year would be 90. 

 

𝑉𝑎𝑙𝑢𝑒 𝑡𝑜𝑑𝑎𝑦 𝑜𝑓 𝑋 𝑝𝑜𝑢𝑛𝑑𝑠 𝑡 𝑦𝑒𝑎𝑟𝑠 𝑎𝑕𝑒𝑎𝑑 = 𝑋 ×  Pt  

 

(3-45) 

  

Present worth factor discounts the value of future costs because they lie in 

the future [201]. The discount rate (𝑑) used in invest cost formula is the year 

to year reduction in value. If 𝑑 = 11.11%, £ 111.11 a year from now is worth 

100 today. So the present worth is expressed as equation (3-46). 

 

 

𝑃(𝑡) = 1 /(1 + 𝑑)t  

 

(3-46) 

 

where  𝑡 is future year. For a year 𝑡 = 1. 

 

3.5.1 Investment Cost  

 

𝐶1 =   𝑑𝑡(𝑖𝑛𝑡 − 𝑠𝑛𝑡 )𝑝𝑛𝑡𝑢𝑛𝑡𝑛∈𝑁𝑛𝑒𝑤𝑡∈𝑇   

 

(3-47) 

 

where  𝑇 is length of planning horizon, 𝑁𝑛𝑒𝑤  is  newly installed DGs. 𝑑𝑡  is 

discount rate, 𝑖𝑛𝑡  and 𝑠𝑛𝑡  are investment cost  and salvage value of added 

DG in time period ( £/MW) respectively. 𝑝𝑛𝑡   is power capacity of DGn in time 

period t (MW). 𝑢𝑛𝑡  is either 0 or 1 representing the presence of DGn at time 

period t. 

3.5.2 Fixed Operational and Maintenance Cost  

 

Fixed cost is a one-time cost that is spent during construction and installation 

and does not depend on loading variation to be served after operation. It 
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consists of construction, installation, equipment, land, permits, site 

developing and preparation, taxes, insurance, labour, and testing costs [202]. 

The cost is expressed in equation (3-48). 

 

𝐶2 =   𝑑𝑡𝑓𝑛𝑡𝑝𝑛𝑡𝑋𝑛𝑡𝑛∈𝑁𝑡∈𝑇   

 

(3-48) 

 

where 𝑁 is number of generating units,𝑓𝑛𝑡  is fixed operational and 

maintenance cost of DGn (£/MW) and  𝑋𝑛𝑡  is cumulative number of nth 

generating unit up to time period. 

3.5.3 Generation (Variable or Running) Cost 
 

A variable (running) cost exists as the system is in service .It depends on the 

loading required including the cost of fuel, electric system losses, inspection, 

maintenance, and regular modification like parts replacement, taxes, and 

insurance [202]. This is expressed in (3-49). 

 

𝐶3 =   𝑑𝑡𝑣𝑛𝑡𝑔𝑛𝑛𝑡𝑛∈𝑁𝑡∈𝑇   

 

(3-49) 

 

 𝑣𝑛𝑡  is variable operational and maintenance  cost of generating unit n in time 

period t (£/MW). 

3.5.4 Annual DG Cost  
 

In some literature cost of DGs is expressed in terms of their levelized value. 

It involves finding a constant annual cost over a lengthy period of time .In 

general the present worth Q, levelized over the next n years is expressed as   

 

𝑄𝐿𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑 = 𝑄 𝑑 ×  1 + d n /( 1 + 𝑑 𝑛 − 1)   

 

(3-50) 
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Levelized cost presents the real value of the total cost of building and 

operating a generating plant over its economic life converted to equal annual 

payments. Costs are levelized in real currency (here pound sterling) to 

remove impact of inflation.  

3.6 Summary 
 

In this Chapter a theoretical background of DG planning optimisation 

techniques and methods as well as the element of optimisation such as 

constraints and cost was presented. The focus of this Chapter was to provide 

a background on DG planning optimisation and different route taken to 

achieve this goal. For this reason the mathematical formulas of different 

related equations were defined in Section 3.2.The correlation of optimisation 

methods and variables were represented in Figures to demonstrate the 

objectives and restrictions of equations. As every optimisation techniques, 

discussed in literature is  converted to computer codes for the application in 

power system, the pseudo codes of most popular techniques in the literature 

were also presented. Load flow calculation, as the basis of all optimisation in 

power system, was discussed in Section 3.3 with respect to the theory and 

different approach for their modelling. Section 3.4 presented the theory on 

the practical limitations in power system and how and what type of 

constraints are represented and applied in planning. The last Section 

presented a theory on economics of DG investments and its representation 

over a period of time considered for the planning purpose. 

 

 

 

 

 

 

 

 

 

 



62 
 
 

Chapter 4 

Non-Sorting Genetic Algorithm-II 

and Implementation for Power 

System 
 

4.1 Introduction  
 

The attempt in Chapter 3 was to give an insight in theories applied in power 

system distribution generation planning. The optimisation technique in this 

thesis is based on multi-objective evolutionary algorithm known as non-

dominated sorting genetic algorithm II (NSGA-II). As its name implies, 

NSGA-II is a developed version of genetic algorithm hence the concept is 

introduced at the beginning of the Chapter as well as benchmark functions to 

evaluate the performance of it compared to GA.  The Chapter 4 then 

presents a description on implementation of the theories presented so far for 

power system design objectives. NSGA-II is coded in MATLAB in order to be 

utilized in finding optimum size and location in the power system which is the 

next topic in this Chapter. In this topic the discussion on how MATPOWER is 

linked to the optimisation engine is discussed. MATPOWER is a package of 

MATLAB M-files for solving power flow problems [208]. Power system 

characteristics and constraints are translated to code through objective 

functions and constraints in the next topic. As the code is MATLAB based, 

*.m files are tailored for the DG planning. As the core of the NSGA-II is 

adopted from a work done by Deb [55], variables, functions and constraints 

have been redefined based on the power flow calculations. The power flow 

parameters are passed back and forth in a loop in each NSGA generation of 

solutions until the maximum number of generation is expired. The flowchart 

of how the programs works is also included to make the coding and 

programming process more understandable.  
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4.2 Genetic Algorithm 
 

As discussed in Chapter 3, Genetic algorithm (GA) is a search heuristic that 

mimics the process of natural selection. By simulating the survival of the 

fittest among string structures, the optimal string (solution) is searched by 

randomised information exchange. In every generation, a new set of artificial 

strings is created using bits and pieces of the fittest of the old ones [204]. GA 

has been very successful in finding optimum location problem. Also it is 

simple and easy to implement the code as it can have as many positions as 

the number of bus candidate to DG connection defined as binary a vector 

[14]. The GA approach to optimization is typically to encode potential 

solutions to the problem as fixed length binary strings. A population of these 

individuals are evaluated by a fitness function. An objective functions 

measures how well a potential solution will solve the problem. In GA, the 

complexity (length of the binary strings) must be specified at the start. A 

genetic algorithm works by building a population of chromosomes which is a 

set of possible solutions to the optimization problem. Within a generation of a 

population, the chromosomes are randomly altered in hopes of creating new 

chromosomes that have better evaluation scores. The next generation 

population of chromosomes is randomly selected from the current generation 

with selection probability based on the evaluation score of each chromosome 

4.2.1 Initialization  
 

Initialization involves setting the parameters for the algorithm, creating the 

scores for the simulation, and creating the first generation of chromosomes. 

In a standard GA seven parameters are set: 

 The genes value is the number of variable slots on a chromosome 

 The codes value is the number of possible values for each gene 

 The population size is the number of chromosomes in each 

generation 

 Crossover probability is the probability that a pair of chromosomes will 

be crossed 
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 Mutation probability is the probability that a gene on a chromosome 

will be mutated randomly 

 The maximum number of generations  is a termination criterion which 

sets the maximum number of chromosome populations that will be 

generated before the top scoring chromosome will be returned as the 

search answer 

 Generations with no change in highest-scoring (elite) chromosome is 

the second termination criterion which is the number of generations 

that may pass with no change in the elite chromosome before that 

elite chromosome will be returned as the search answer 

The attempted optimisation is to find the code for each gene in the solution 

chromosome that maximizes the average score for the chromosome. Finally, 

the first generation of chromosomes are generated randomly [206]. 

4.2.1 Evaluation 
 

Each of the chromosomes in a generation must be evaluated for the 

selection process. This is accomplished by looking up the score of each 

gene in the chromosome, adding the scores up, and averaging the score for 

the chromosome. As part of the evaluation process, the elite chromosome of 

the generation is determined. 

4.2.2 Selection and Reproduction 
 

Chromosomes for the next generation are selected using the roulette wheel 

selection scheme [207] to implement proportionate random selection. Each 

chromosome has a probability of being chosen equal to its score divided by 

the sum of the scores of all of the generation‟s chromosomes. In order to 

avoid losing ground in finding the highest-scoring chromosome, elitism [207] 

has been implemented in this benchmark. Elitism reserves two slots in the 

next generation for the highest scoring chromosome of the current 

generation, without allowing that chromosome to be crossed over in the next 

generation. In one of those slots, the elite chromosome will also not be 

subject to mutation in the next generation. 
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4.2.3 Crossover 
 

In the crossover phase, all of the chromosomes (except for the elite 

chromosome) are paired up, and with a probability they are crossed over. 

The crossover is accomplished by randomly choosing a site along the length 

of the chromosome, and exchanging the genes of the two chromosomes for 

each gene past this crossover site [206]. 

 

Figure 4.1 Example of one point crossover [206] 

4.2.4 Mutation 
 

After the crossover, for each of the genes of the chromosomes (except for 

the elite chromosome), the gene will be mutated to any one of the codes. 

With the crossover and mutations completed, the chromosomes are once 

again evaluated for another round of selection and reproduction. 

4.3 Non-dominated Sorting Genetic Algorithm II 
 

Non-dominated sorting genetic algorithm II (NSGA-II) was introduced in 2002 

by Deb [55] to tackle the high computational complexity of genetic algorithm 

and other similar multi-objective evolutionary algorithms.  

4.3.1 Improvement in Non-dominated Sorting Genetic 

Algorithm   
 

NSGA-II is an improved version of NSGA. NSGA algorithm is based on 

several layers of classifications of the individuals. Before selection is 

performed, the population is ranked on the basis of non-domination. All non-

dominated individuals are classified into one category. The diversity is 
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maintained classified individuals are shared with their dummy fitness values, 

then this group of classified individuals is ignored and another layer of non-

dominated individuals is considered. However as classification of individuals 

is not very efficient in NSGA, NSGA-II was introduced. As shown in Figure 

4.2 builds a population of competing individuals, ranks and sort each 

individual to create offspring and combines parents and offspring before 

partitioning the new combined pool into front. A crowding distance is applied 

to each member which is used in its selection operator to keep a diverse 

front [205]. 

 

Figure 4.2 Flow diagrams that shows the way NSGA-II works. Pt and Qt are the parents and 
offspring population at the generation t.F1 are the best solutions from the combined 

populations.F2 are the second best solutions and so on [205] 

 

A problem with M objectives and N populations in a non-dominated sorting 

size has a complexity of O (MN3) in NSGA. By improving the algorithm in 

NSGA-II the overall complexity is reduced to O (MN2). Furthermore diversity 

and speed of NSGA-II is also improved [55]. The flowchart of NSGA-II is 

depicted in Figure 4.3. 
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Figure 4.3 Flowchart of NSGA-II [219] 

 

4.3.2 Benchmarking Functions 
 

As NSGA rely heavily on random number generators, benchmarking 

functions are used in order to evaluate the performance of it in reaching the 

global solution. Most widely-used benchmark functions are Rastrigin, 

Griewank, and Sphere which have a value of 0 at the minimum point [zero, 

zero] in the coordinates. 

4.3.2.1 Rastrigin Function 

 

Rastrgin function is defined as equation (4-1). 

𝑅𝑎𝑠 𝑥 = 20 + 𝑥1
2 + 𝑥2

2 − 10(cos 2𝜋𝑥1 + cos 2𝜋𝑥2) (4-1) 

  

As demonstrated in Figure 4.4 Rastrigin is a function with many local minima 

but one global occurring at the point [zero zero] [216]. 
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Figure 4.4 Two-dimensional Rastrigin function [216] 

Number of design variables are set to 1 (one dimensional) and upper and 

lower bound are set from -5000 to 5000. As the NSGA-II program is design 

for more than one objective, two objectives are defined as equal. The lower 

band and upper band are set the same. Population size and maximum 

generation are set to 50 and 200 respectively. As one dimensional Rastrigin 

has one design variable and one objective, the number of design variables 

are set to 2 as shown in Table 4.1 

Table 4.1 Specifying optimisation model in NSGA-II in Matlab  

 

 

 

 

 

 

 

options = nsgaopt();                    % create default options 

options.popsize = 50;                   % population size 
options.maxGen  = 200;                   %max generation 
options.numObj = 2;                     % number of objectives 
options.numVar = 2;                     % number of design variables 
options.numCons = 0;                    % number of constraints 
options.lb = [-5000  -5000];            % lower bound of x 
options.ub = [5000    5000];            % upper bound of x 
options.objfun = @rastrigin_func_obj;   % objective function  
options.plotInterval = 5;               % interval between two calls  
result = nsga2(options);                % begin the optimization 
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The second step in defining the problem in NSGA-II is to create Rastrigin 

objective function. The objective function is specified by options.objfun 

parameter created by the function nsgaopt().𝑥 illustrated in Table 4.2 

Table 4.2 Creating Rastrigin objective function in NSGA-II  

 

 

 

 

 

 

 

 

 

𝑥 is the design variables vector which its length must be equal to length of 

options.numVar. 𝑦 is the objective values vector which its length must be 

equal length of options.numObj. After running the NSGA-II the solutions are 

illustrated in a 2-D space as Figure 4.5 

 

Figure 4.5 Depiction of two Rastrigin function in NSGA-II optimisation 

 

y = [0,0]; 
cons = []; 
% Objective function : Test problem 'rastrigin' 
d = 1; 
sum = 0; 
for ii = 1:d 

     
    sum = sum + (x(1)^2 - 10*cos(2*pi*x(1))); 
end 

  
y(1) = 10*d + sum; 
y(2) = 10*d + sum; 
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Any of objective 1 or objective 2 in the optimisation should ideally be 0. 

Figure 4.5 shows the results have converged toward 0. However in order to 

get numerical values for the design variable and objective function, the last 

generation of population in NSGA-II is brought in Table 4.3.  

Table 4.3 Numerical results obtained from figure 4.5 for Rastrigin function  

      x1      x2 Objective function 
(y1) 

Objective function 
(y2) 

1.13E-05 1.05359 2.55E-08 2.55E-08 

-0.00014 -0.18874 3.72E-06 3.72E-06 

-0.00019 -0.28141 7.11E-06 7.11E-06 

-0.00021 -1.54046 9.12E-06 9.12E-06 

0.000382 1.89638 2.90E-05 2.90E-05 

0.000403 1.52715 3.22E-05 3.22E-05 

0.000427 0.287396 3.61E-05 3.61E-05 

0.0005 -0.07304 4.97E-05 4.97E-05 

-0.00053 -0.19094 5.49E-05 5.49E-05 

-0.00069 -2.36221 9.38E-05 9.38E-05 

0.000725 0.570738 0.000104 0.000104 

-0.00076 -0.17046 0.000114 0.000114 

-0.00084 0.911065 0.00014 0.00014 

-0.00094 0.672011 0.000175 0.000175 

0.000975 -1.62829 0.000189 0.000189 

-0.00102 -1.42237 0.000207 0.000207 

0.001031 -0.64148 0.000211 0.000211 

0.0012 -0.11216 0.000286 0.000286 

0.001259 -1.42544 0.000314 0.000314 

0.001261 -1.59871 0.000316 0.000316 

-0.00127 -0.70056 0.00032 0.00032 

0.001281 -1.34025 0.000325 0.000325 

-0.00137 -0.6321 0.000372 0.000372 

0.001376 -0.65282 0.000375 0.000375 

-0.00141 -0.04805 0.000394 0.000394 

-0.00149 1.6961 0.000438 0.000438 

-0.00161 0.912579 0.000512 0.000512 

-0.00164 -0.66005 0.000535 0.000535 

-0.00176 0.137743 0.000617 0.000617 

-0.00178 -2.60601 0.000632 0.000632 

0.001876 0.66181 0.000698 0.000698 

0.002013 1.05228 0.000804 0.000804 

-0.00213 0.418779 0.000896 0.000896 

-0.00241 -0.81313 0.001149 0.001149 

-0.00242 1.95225 0.001165 0.001165 

0.00245 -2.01123 0.001191 0.001191 

0.002561 -0.67277 0.001301 0.001301 
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0.002625 1.31758 0.001367 0.001367 

0.002733 -0.8192 0.001482 0.001482 

0.00298 0.036302 0.001761 0.001761 

-0.00302 -1.46323 0.001808 0.001808 

0.003112 -1.27657 0.001921 0.001921 

0.003279 -1.0339 0.002133 0.002133 

0.003321 -0.8797 0.002188 0.002188 

-0.0034 -1.22207 0.002295 0.002295 

0.003414 0.289927 0.002312 0.002312 

0.003546 2.22896 0.002494 0.002494 

-0.00355 -0.15683 0.002503 0.002503 

0.003607 0.249731 0.002582 0.002582 

-0.00365 2.15033 0.002649 0.002649 

  

The average result from Rastrigin objective function is  8.32 ∗  10−4 which is 

close to zero.  

Rastrigin function is also applied in GA in Matlab optimisation toolbox. 

Fitness function for GA solver is with one variable result is 70 ∗ 10−4 which is 

further than point zero compared to NSGA-II. The GA result snapshot is 

illustrated in Figure 4.6. 
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Figure 4.6 GA optimisation result for Rastrigin in Matlab optimisation toolbox 

 

4.3.2.2 Griewank Function 

 

Griewank function is defined as equation (4-2). 

𝑓 𝑥 =  
𝑥𝑖

2

4000

𝑑

𝑖=1

− (cos
𝑥𝑖

 𝑖

𝑑

𝑖=1
) + 1 

(4-2) 
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The Griewank function has many local minima which are regularly 

distributed. The complexity is shown in Figure 4.7 for a d=2 dimensional 

space. 

Figure 4.7 Two-dimensional Griewank function shown in different range [217] 

The global minimum occurs as zero. Griewank objective function is defined 

in NSGA-II as Table 4.4. 

Table 4.4 Creating Griewank objective function in NSGA-II 

 

 

  

 

 

 

 

function [y, cons] = griewank_func_obj(x) 
% Objective function : Test problem 'griewank'. 
y = [0,0]; 
cons = []; 
d = 1; 
sum = 0; 
prod = 1; 
for ii = 1:d 
sum = sum + x(1)^2/4000; 
    prod = prod * cos(x(1)/sqrt(ii)); 
    sum = sum + x(2)^2/4000; 
    prod = prod * cos(x(2)/sqrt(ii)); 
 

y(1)=sum-prod+1; 
y(2)=sum-prod+1; 

  
end 
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After running the NSGA-II the solutions are illustrated in a 2-D space as 

Figure 4.8. 

 

Figure 4.8 Depiction of two Griewank function in NSGA-II optimisation 

 

The design variables and Griewank values are shown in Table 4.5.  

Table 4.5 Numerical results obtained from figure 4.8 for Griewank function  

     x1     x2 Objective function        
(y1) 

Objective function 
(y2) 

-0.00665 -0.00845 5.78E-05 5.78E-05 

0.012725 -0.00246 8.40E-05 8.40E-05 

0.003999 0.014973 0.00012 0.00012 

-0.01568 0.003963 0.000131 0.000131 

0.00232 0.017158 0.00015 0.00015 

0.018473 -0.00307 0.000175 0.000175 

-0.00379 0.021459 0.000238 0.000238 

-0.00054 0.02399 0.000288 0.000288 

0.018594 0.019096 0.000355 0.000355 

0.018331 0.019715 0.000362 0.000362 

-0.00928 0.026482 0.000394 0.000394 

-0.02499 -0.02305 0.000578 0.000578 

0.018952 0.028907 0.000598 0.000598 
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-0.02891 0.020135 0.000621 0.000621 

-0.00377 0.035092 0.000623 0.000623 

-0.00724 0.035071 0.000641 0.000641 

-0.02865 -0.02641 0.000759 0.000759 

0.038997 0.014304 0.000863 0.000863 

-0.03351 -0.02991 0.001009 0.001009 

-0.03658 0.026498 0.00102 0.00102 

0.045054 -0.00596 0.001033 0.001033 

0.045926 0.009824 0.001103 0.001103 

0.04514 0.01514 0.001134 0.001134 

-0.0059 -0.04966 0.001251 0.001251 

0.042742 -0.02752 0.001292 0.001292 

0.047744 -0.01874 0.001316 0.001316 

0.047473 0.019633 0.00132 0.00132 

-0.01405 0.049637 0.001331 0.001331 

-0.0433 -0.03036 0.001399 0.001399 

-0.04177 -0.03351 0.001434 0.001434 

-0.05383 0.001597 0.00145 0.00145 

0.046646 -0.02819 0.001485 0.001485 

-0.04755 0.028237 0.001529 0.001529 

-0.0272 0.049748 0.001607 0.001607 

-0.01091 0.055725 0.001612 0.001612 

0.013286 -0.0609 0.001943 0.001943 

-0.05916 0.019785 0.001946 0.001946 

-0.05114 -0.03612 0.00196 0.00196 

0.027406 -0.05648 0.00197 0.00197 

0.019242 -0.06044 0.002012 0.002012 

0.026658 0.058549 0.002069 0.002069 

0.002305 0.06572 0.002163 0.002163 

-0.04006 0.052743 0.002193 0.002193 

-0.05357 -0.0406 0.002259 0.002259 

-0.00756 -0.06678 0.002259 0.002259 

-0.06683 -0.00724 0.00226 0.00226 

-0.05605 0.03764 0.002279 0.002279 

0.061696 -0.02759 0.002284 0.002284 

0.067396 -0.02317 0.002539 0.002539 

0.004634 -0.07121 0.002547 0.002547 

 

The average value of Griewank function extracted from Table 4.5 is 1.24 ∗

 10−3 which is very close to the local minima zero. The objective value in GA 

is 1.75 ∗ 10−4. 
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4.3.2.3 Sphere Function 

 

Sphere function is defined as equation (4-3). 

𝑓 𝑥 =  𝑥𝑖
2

𝑑

𝑖=1

 
(4-3) 

As demonstrated in Figure 4.9 Sphere is a function with one global minimum 

occurring at the point [zero zero] in a 2D space [218]. 

 

Figure 4.9 Two-dimensional Sphere function [218] 

 

Sphere objective function is defined in NSGA-II as Table 4.6. 

Table 4.6 Creating Sphere objective function in NSGA-II  

 

 

 

 

function [y, cons] = sphere_func(x) 

 
y = [0,0]; 
cons = []; 

  

   
y(1) = sum(x(1).*x(1), 2); 
y(2)=sum(x(1).*x(1), 2); 
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Running NSGA-II for Sphere function the Figure 4.10 is obtained. 

 

Figure 4.10 Representation of Sphere function in NSGA-II 

 

The population data extracted from 4.10 is represented in Table 4.7. 

 

Table 4.7 Numerical results obtained from figure 4.10 for Sphere function  

x1 x2 objective function 
(y1) 

objective function 
(y2) 

-2.84E-06 2.05643 8.05E-12 8.05E-12 

0.000318 1.22841 1.01E-07 1.01E-07 

-0.00033 0.677294 1.09E-07 1.09E-07 

0.000344 3.00756 1.18E-07 1.18E-07 

0.0005 -0.38494 2.50E-07 2.50E-07 

0.00066 1.76799 4.35E-07 4.35E-07 

-0.00071 2.46865 5.04E-07 5.04E-07 

-0.00077 0.253847 5.88E-07 5.88E-07 

-0.00096 0.245169 9.25E-07 9.25E-07 

-0.00102 -0.22657 1.04E-06 1.04E-06 

0.001139 2.50175 1.30E-06 1.30E-06 

0.001234 0.518075 1.52E-06 1.52E-06 

0.001252 1.76465 1.57E-06 1.57E-06 

0.001429 2.05266 2.04E-06 2.04E-06 
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0.001471 -0.20379 2.17E-06 2.17E-06 

-0.00151 4.83346 2.28E-06 2.28E-06 

-0.00159 0.36375 2.53E-06 2.53E-06 

-0.00165 0.301775 2.73E-06 2.73E-06 

-0.00183 2.48137 3.34E-06 3.34E-06 

0.00193 3.02346 3.73E-06 3.73E-06 

0.002035 2.6622 4.14E-06 4.14E-06 

-0.00213 0.52973 4.52E-06 4.52E-06 

0.002254 2.41821 5.08E-06 5.08E-06 

0.002327 2.69397 5.41E-06 5.41E-06 

-0.00242 -1.03824 5.84E-06 5.84E-06 

0.002452 3.72479 6.01E-06 6.01E-06 

-0.00255 0.715182 6.51E-06 6.51E-06 

0.002659 1.27894 7.07E-06 7.07E-06 

-0.00275 2.85821 7.56E-06 7.56E-06 

-0.00287 -0.14653 8.22E-06 8.22E-06 

-0.00289 0.984226 8.33E-06 8.33E-06 

-0.00308 1.04962 9.49E-06 9.49E-06 

-0.00315 1.55341 9.93E-06 9.93E-06 

0.003228 3.28419 1.04E-05 1.04E-05 

-0.00325 2.40346 1.06E-05 1.06E-05 

-0.00332 3.03454 1.10E-05 1.10E-05 

-0.00342 1.77666 1.17E-05 1.17E-05 

0.003514 2.36098 1.23E-05 1.23E-05 

0.003569 3.50778 1.27E-05 1.27E-05 

0.003593 2.2046 1.29E-05 1.29E-05 

0.003662 0.606202 1.34E-05 1.34E-05 

0.003663 2.09338 1.34E-05 1.34E-05 

-0.00375 1.03409 1.40E-05 1.40E-05 

0.003766 2.48511 1.42E-05 1.42E-05 

0.003774 -0.1284 1.42E-05 1.42E-05 

0.003784 4.81653 1.43E-05 1.43E-05 

-0.00381 0.685965 1.45E-05 1.45E-05 

0.003845 1.76904 1.48E-05 1.48E-05 

0.003858 2.42627 1.49E-05 1.49E-05 

0.004026 1.84202 1.62E-05 1.62E-05 

 

The average value for Sphere objective function is 6.8 ∗  10−6. The value for 

GA is equivalent to 6.1 ∗  10−5 which is a bigger number than value obtained 

from NSGA-II. Therefore NSGA-II yielded a more accurate result. 
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4.4 NSGA-II and MATPOWER Implementation 
 

The proposed program invokes a function which evaluates system variables, 

including voltage magnitudes and phase angles, using the MATPOWER 4.1 

power flow (PF) [15]. The overall structure is shown in Figure 4.11. 

 

Figure 4.11 Flowchart of the proposed technique 

 

4.4.1 Steps toward Building the Code 

 

NSGA-II code is adopted from work done by Deb [55] written in MATLAB. 

Optimisation parameters such as number of design variables, number of 

objectives, number of constraints, should be specified in the NSGA-II 

optimisation options structure to solve the optimisation problem. The 

structure is created by function nsgaopt(). The objective function is created 

as an *.m file and specify the function handle options.objfun to this function.  

4.4.2 First Step – Setting up Parameters 

 

The optimization model specification is specified as Table 4.8. 
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Table 4.8 Specifying optimisation model in NSGA-II for a power system network  

 

 

 

 

 

 

 

 

 

 

In Table 4.8 four variables are defined. The first two variables are location of 

DG and the second two are the size of DG in MW. Upper and lower bound 

are specified with respect to the case of study. In a 30 bus case each of 

buses except the first bust (slack bus) are the candidates so the range of first 

and second variables are set from 2 to 30. The third and fourth variables 

range is [0,100] meaning that capacity of each DG could vary from none to 

100 MW. As the location is a normal number not a real number, the integer 

code is set to 2 in options.vartype vector. At the start of the optimisation, 

uniform random population is initialised. Binary tournament selection and 

intermediate crossover are performed on variables. Crossover rate is 2 per 

number of variable. Mutation type is Gaussian which adds a normally 

distributed random number to each variable. Child and S are defined in 

equations (4-4) and (4-5) [55]. 

 

Child = Parent + S * Rand*(Ub-Lb) (4-4) 

S = Scale*(1 - Shrink×CurrGen / MaxGen) (4-5) 

 

where S is the deviation from the standard normal distribution. As the 

optimization progress proceeds, Shrink decreases the mutation range. Ub, 

Lb, CurrGen, and MaxGen represent upper bound, lower bound, current 

generation and maximum generation respectively. 

clc; 

clear all; 

close all; 

options = nsgaopt();                    % create default options 

options.popsize = 50;                   % population size 
options.maxGen  = 50;                   %max generation 
options.numObj = 2;                     % number of objectives 
options.numVar = 4;                     % number of design variables 
options.numCons = 0;                    % number of constraints 
options.lb = [2 2 2 2];                 % lower bound of x1,x2,x3,x4 
options.ub = [30 30 100 100];           % upper bound of x1,x2,x3,x4 
options.objfun = @objfun;         % objective function  
result = nsga2(options);                % begin the optimization 
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4.4.3 Second Step - Creating Objective Functions  

 

The objective function is specified by options.objfun parameter created by 

the function nsgaopt(). Its prototype as shown in Table 4.2, 4.4 and 4.6 is 

depicted in Table 4.9 

 

Table 4.9 Prototype of objective function creation in NSGA-II  

 

 

where x, y are defined as  

x : Design variables vector, its length must equals options.numVar.  

y : Objective values vector, its length must equals options.numObj.  

cons variable is a vector defined for constraint violations. Its length must 

equals options.numCons. If there is no constraint, it returns empty vector. 

Any variable(s) which are passed to nsga2 function will be finally passed to 

this objective function. For example, if the line in Table 4.10 is called, the two 

addition parameter passed to nsga2 model and param will be passed to the 

objective function in Table 4.11. 

 

Table 4.10 NSGA-II call function  

 

 

 

Table 4.11 Parameters pass from Table 4.10 to objective function  

 

 

  

Table 4.12 shows objective functions calls another function named as 

Raphson to do the power flow calculation.  

 

 

 

 

 

[y, cons] = objfun(x, varvargin)  

 

result = nsga2(opt, model, param) 

 

[y,const]=objfun(x, model, param) 
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Table 4.12 Calling power flow from MATPOWER  

 

 

 

 

 

 

 

The objective functions calls another function named as Raphson to do the 

power flow calculation based on MATPOWER. In this function, x(1) and x(2) 

are the locations and x(3) and x(4) are the capacities. The return values from 

MATPOWER are Vm,  Pl, S, Ctotall, Sumfloww. Vm is a vector of voltage 

magnitudes corresponding to nodes. Pl is the total real power loss of the 

system, Ctotall is the total cost of the added DG. Sumfloww is the real power 

flow associated with slack 1 (from bus 1 to bus 2 and 3 in 30 bus case for 

example). Objective could be chosen, altered or defined in this *.m file. For 

example adding average load voltage deviation in a 30 bus case Table 4.12 

is completed as shown in table 4.13 

Table 4.13 Calling power flow from MATPOWER with average load voltage deviation as 

the objective 

 

 

 

 

 

 

 

 

 

 

Vector of voltage shown as Vm are returned from the sub-function Raphson. 

Raphson sub-function is explained in Section 4.4.4. 

Constraints are also defined here. In equations (4-1e) and (4-1f) an example 

is represented to show the constraints handling. 

function [y, cons] = TP_Test_objfun(x) 

y = [0,0]; 

cons = []; 

[Vm, Pl,s,Ctotall,Sumfloww] = Raphson (x(1),x(2),x(3),x(4)) 

 

function [y, cons] = TP_Test_objfun(x) 

y = [0,0]; 

cons = []; 

[Vm, Pl,s,Ctotall,Sumfloww] = Raphson (x(1),x(2),x(3),x(4)) 

ALVD=0; 

for k=1:30 

ALVD=(((1.060-Vm(k))/1.060).^2)+ALVD; 

end 
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Objectives 

𝑓1 𝑥 = 𝑥1 (4-6) 

𝑓2 𝑥 = (1 + 𝑥2)/𝑥1 (4-7) 

 

Design variables  

𝑥1 ∈ [0.1,1.0] (4-8) 

𝑥2 ∈ [0,5] (4-9) 

 

Constraints 

𝑔1 𝑥 = 𝑥2 + 9𝑥1 ≥ 6 (4-10) 

𝑔2 𝑥 = −𝑥2 + 9𝑥1 ≥ 1 (4-11) 

 

The constraint violation for the above optimisation problem is written as 

Table 4.14. 

Table 4.14 Defining constraints in code for equations (4-10) and (4-11) 

 
 

 

 

 

 

 

 

 

 

 

 

Similarly if there are any constraints on the size or capacity of DG placed on 

a bus it can be defined as presented. For example consider the following 

constraints as (4-12), (4-13), and (4-14). 

 

𝐵𝑢𝑠 30 < 10 𝑀𝑊 (4-12) 

𝐵𝑢𝑠 10 < 3 𝑀𝑊 (4-13) 

c = x(2) + 9*x(1) - 6;  

if(c<0)  

cons(1) = abs(c);  

end  

c = -x(2) + 9*x(1) - 1;  

if(c<0)  

cons(2) = abs(c);  

end  
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𝑇𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 60 𝑀𝑊 (4-14) 

 

 

 

The applied code is defined as Table 4.15. 

 

Table 4.15 Defining constraint in NSGA-II with respect to constraints of inequalities (4-

12), (4-13) and (4-14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c = 10-x(3); 

         if (x(1)==30)&&(c<0)|| (x(2)==30)&&(c<0) 

         cons(1) = abs(c); 

         end 

 c = 10-x(4); 

        if (x(1)==30)&&(c<0)|| (x(2)==30)&&(c<0) 

        cons(2) = abs(c); 

        end 

 c = 3-x(3); 

          if (x(1)==10)&&(c<0)|| (x(2)==10)&&(c<0) 

             cons(3) = abs(c); 

         end 

   c = 3-x(4); 

          if (x(1)==10)&&(c<0)|| (x(2)==10)&&(c<0) 

            cons(4) = abs(c); 

         end 

 c = 60-x(3)-x(4); 

         if (c<0) 

      cons(5) = abs(c); 

      end 
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4.4.4 Third Step – Power Flow Calculations 

 

Loading the power system case is done in MATPOWER. Raphson sub-

function invokes power flow (PF) for obtaining the value of variables to be 

passed to the second stage. Table 4-16 codes show the beginning of this 

sub-function. 

 

 

Table 4.16 Loading power flow calculation by calling Raphson file and loading case 30 

in MATPOWER 

 

 

 

 

 

 

 

The sub-function loads case30 in MATPOWER [208]. The last line gives the 

last row of generator data. To add m capacity to bus n the code is Table 

4.17. 

 

 Table 4.17 Adding m1 capacity to bus number n1 

 

 

 

It means m1 MW is added to the bus located at row n1. If m1 is added to row 

7 it means it is added to bus 7, hence the care has been taken to make sure 

the line and bus numbers corresponds to each other in the case.m file. 

Similarly the same is done for the next added generators. 

Runpf(mpc); executes the power flow which by MATPOWER default is set to 

Newton-Raphson. The code is shown in Table 4.18. 

function [Vm,PI,S,Ctotal,Sumflow]=Raphson(n1,n2,m1,m2); 

define_constants; 

mpc=loadcase(‘case 30’); 

size(mpc.gen,1); 

 

mpc.gen (n1,PG) = m1; 
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Table 4.18 Executing MATPOWER power flow 

 

 

 

 

 

 

To get the losses, losses function is called and their real sum in calculated as 

shown in Table 4.19. 

 

 

Table 4.19 Calculating the sum of real losses  

 

 

 

 

The cost of the DG is also a multiple of DG capacities represented in an 

hourly cost function. Hence it is coded as Table 4.20.  

 

Table 4.20 Computing the investment and o&m cost 

 

 

 

 

Adepr is the inverse of levelized value which was discussed in the previous 

Chapter. The cost functions will be explained more extensively in the next 

Chapter. 

 

4.5 Summary 
 

In summary, this Chapter presents an in-depth insight into implementation of 

the methodology which is based on non-dominated sorting genetic algorithm 

II. This heuristic method of optimisation is adopted as it has been proved to 

[MVAbase, bus, gen, branch, success, et]=runpf(mpc); 

Vm=bus(:,8); 

Losses=get_losses(MVAbase, bus, branch); 

 

Plvec=real(Losses); 

Pl=sum(Plvec); 

 

 

CinDG=(Cinv1*m1+Cinv2*m2)/(Adepr*8760);  

ComDG=Com1*m1+Com2*m2; 
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be one of the efficient algorithms for solving single and multi-objective 

optimization techniques [209]. This Chapter explains how this optimisation 

method is implemented to solve the efficient planning of DGs in a power 

system network. MATPOWER which is package of *.m files for power flow 

calculation is used as a sub-function to the main optimisation engine. A more 

detailed discussion on GA and NSGA are presented in the beginning of the 

Chapter to show how elements of optimisation such as variables, objectives 

and constraints could be linked or redefined in our power system problem. 

Extracts of codes are included to illustrate the transition of the process. The 

coding process as a whole is divided into three stages, each stage dealing 

with one aspect of the optimisation. All in all, this Chapter attempts to 

translate the theories of optimisation and power system into one practical 

framework written in MATLAB.  
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Chapter 5 

Results and Discussion 
 

5.1 Introduction 
 

In this chapter different test systems are applied to the proposed optimisation 

engine. Optimisation engine, as discussed in chapter 4, is a two stage 

hierarchy multi-objective programming based on Matlab. MATPOWER - 

Matlab cases are used as standard IEEE test systems. In order to obtain 

realistic results, the factors such as investment cost are updated based on 

the current market values. The objective and constraints are added one by 

one to facilitate the step by step analysis. The version of MATPOWER in 

optimisation attempts is 4.1. Matlab version used is 7.10 (R 2010 a). The 

cases are chosen from Mapower cases; however the codes have been 

modified in order to adapt it to the NSGA-II optimisation engine without 

changing the bus data. The attempt is to show the efficiency of the 

optimisation as well as its potential for applying the changes based on the 

view a planner takes. The cost penalty function as an example is introduced 

to manage the amount of power flow going to coming from the slack bus, 

hence creating less congestion on branches. The objectives are total 

network real loss and the cost of added DG. The cost of added DGs is 

divided into running and capital cost irrespective of type of DG. The cost is 

represented as an hourly function over a 5 year period hence the inflation is 

considered in the calculations. DGs are assumed to produce real power to 

the system. As the IEEE 14, 30 and 118 cases, which are used in the 

optimisation, belong to a Medium voltage range, the capacity quantities are 

in MW scale. Each of candidate DGs are capacities which could represent 

not solely a small DG but an array of DGs such as a wind farm. The power 

flow is based on AC Newton power flow. 
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5.2  IEEE -14 Bus Test System 
 

This system consists of 4 generators, 11 loads and 20 branches. The total 

real load of the system is 259 MW. The schematic of the IEEE-14 bus test 

system illustrated in Figure 5.1. 

 

Figure 5.1 Single line representation of IEEE 14 test system used in the optimisation [210] 

 

Table 5.1 shows the current active and reactive generation of the system in 

MW. 

Table 5.1 Generation in IEEE 14 bus system 

Bus Number Pg (MW) Qg (MW) 

1 232.4 -16.9 

2 40 42.4 

3 0 23.4 

6 0 12.2 

8 0 17.4 

 

The complete data of IEEE 14 bus is presented in Appendix A. 
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To start with, two objectives are defined as such 

1- Total function Pl and  

2- Costs of the additional DG are defined as main objectives. 

The first objective is the total real loss of the entire network. The cost is 

represented as hourly cost function. For every type of DG cost of investment 

calculated as the size of DG multiplied by its investment cost for 1 megawatt. 

Taking into account its levelized value over 5 years for long term studies 

[201], 𝐶𝑖𝑛  𝐷𝐺  is represented as  

 

𝐶𝑖𝑛𝐷𝐺 =
𝐶𝑖𝑛𝑣1 × 𝑚1 + 𝐶𝑖𝑛𝑣2 × 𝑚2

𝐴𝑑𝑒𝑝𝑟 × 8760
 

(5-1) 

where 𝑚1 𝑚2 are the sizes of first DG and second DG. 𝐶𝑖𝑛𝑣1 and 𝐶𝑖𝑛𝑣2are the 

investment cost for the first and second DG (£/MW). 𝐶𝑖𝑛𝑣1 and 𝐶𝑖𝑛𝑣2 are 

assumed to be 5000(£/𝑀𝑊) and 𝐶𝑜𝑚  𝐷𝐺  as  50 (£/𝑀𝑊). 

Inverse of levelized value is represented by 𝐴𝑑𝑒𝑝𝑟 and is defined as 

 

(1 + 𝑑)𝑇 − 1

𝑑(1 + 𝑑)𝑇
 

(5-2) 

The discount rate represented by d is the expected rate of reduction in value 

from year to year [201] and T is the future time. Operation and maintenance 

(O & M) cost is normally assumed 1% of initial installed cost. The design 

variables are restricted to 2 to 14 for the buses and 0 to 50 MW for the 

potential DG capacities. 

The result of first multi-objective optimisation is illustrated in Figure 5.2. 
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Figure 5.2 Bi-dimensional Pareto front of IEEE 14 bus for first objective as network real loss 
and second objective as hourly cost of candidate capacities for the maximum capacity of 50 

MW 

 

The total operation time is less than 34 second on Intel core i7 620 M at 2.67 

GHz. The bi-dimensional space is due to two objective definitions. The first 

objective is represented in MW. 

The population data is represented in Table 5.2. 

Table 5.2 Population data of Figure 5.2 

Row 1st bus 2nd 
bus 

Capacity 1 
(MW) 

Capacity  
(MW) 

Obj1 Obj2 

1 8 3 50 45 4.67479 4764.3 

2 8 3 0 0 13.3933 0 

3 8 3 0 0 13.3933 0 

4 3 8 47 24 6.20697 3560.69 

5 6 3 0 33 9.47018 1654.97 

6 6 3 8 24 9.76525 1604.82 

7 3 8 50 30 5.56698 4012.05 

8 8 3 31 45 5.86101 3811.44 

9 6 3 0 37 9.07493 1855.57 

10 6 3 2 15 11.2855 852.56 

11 3 8 50 10 7.05605 3009.03 
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12 8 3 8 48 7.38165 2808.43 

13 8 3 1 27 9.99643 1404.22 

14 8 3 0 24 10.422 1203.61 

15 8 3 1 26 10.1039 1354.07 

16 6 3 0 6 12.5905 300.903 

17 3 8 50 32 5.43336 4112.35 

18 3 8 44 0 8.42396 2206.63 

19 6 3 0 11 11.9523 551.656 

20 8 3 2 6 12.3743 401.205 

21 6 3 2 20 10.7009 1103.31 

22 3 8 0 5 12.8444 250.753 

23 6 3 0 20 10.8732 1003.01 

24 8 3 0 2 13.1212 100.301 

25 8 3 0 40 8.78963 2006.02 

26 6 3 3 1 12.9773 200.602 

27 8 3 48 44 4.85624 4613.85 

28 8 3 0 13 11.7047 651.957 

29 8 3 1 45 8.24463 2306.93 

30 8 3 21 45 6.58499 3309.94 

31 3 8 50 39 4.98727 4463.4 

32 3 8 45 4 7.97739 2457.38 

33 8 3 10 43 7.63222 2657.98 

34 8 3 46 41 5.18609 4363.1 

35 3 8 50 13 6.81477 3159.49 

36 8 3 21 44 6.66458 3259.79 

37 3 8 48 25 6.0596 3660.99 

38 8 3 1 8 12.2243 451.355 

39 3 8 50 24 5.98438 3711.14 

40 8 3 21 45 6.58499 3309.94 

41 6 3 0 23 10.5332 1153.46 

42 8 3 0 1 13.2567 50.1506 

43 8 3 0 10 12.0777 501.506 

44 3 8 50 40 4.92627 4513.55 

45 3 4 13 1 11.6769 702.108 

46 8 3 0 19 10.9887 952.861 

47 6 3 0 38 8.97877 1905.72 

48 8 3 0 42 8.60469 2106.32 

49 6 3 1 14 11.4938 752.259 

50 8 3 0 42 8.60469 2106.32 

 

It must be noted that in a multi-objective optimisation, there is no preference 

over the contradictory objectives, so in planner views, each of the results in 

table 5.2 could be chosen. In our case, as the weights of significance of 

objectives are equal, the middle point or knee point is chosen as the 
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compromised result. The row number 25 and 50 of Table 5.2 shows that the 

third bus is the optimised location with the capacity of 40 MW. The 

compromised results is also could be perceived by the frequency of bus 

number. Bus number 8 and 6 are the other alternatives for the loss reduction. 

If the planner decides get less real loss at the cost of more investment, row 

number 4 states that a DG equal to the capacity of 24 MW should be 

connected to the bus. In order to compare the loss before and after, 40 MW 

of capacity is added to the third bus and Power flow is run. The snapshot of 

the result is illustrated in Figure 5.3. 

 

Figure. 5.3 Power flow result of IEEE 14 bus system with the new 40 MW DG added to bus 
number 3 

The initial total power loss is 13.937 MW. 

5.3  Line Current Magnitude Constraints  
 

All power system operators ensure their  system adhere to thermal limits on 

transmission lines in order to avoid line deformation. Also, thermal limits are 
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used  as surrogates for voltage stability. The IEEE test problems do not 

include data on these limits [211]. In order to get a feasible solution high 

limits of thermal limits on IEEE 14 bus system are assumed 50 MW in 

[208,209]. To decrease the line congestion the capacities limits could be 

varied. In the first attempt capacity limits are set to maximum of 20 MW. The 

Figure 5.4 illustrates the Pareto front. 

 

Figure 5.4  Bi-dimensional Pareto front of IEEE 14 bus for first objective as network real loss 
and second objective as hourly cost of candidate capacities for the maximum capacity of 20 

MW 

 

It could be noted that the knee point gives one DG connected to bus 3 with 

the capacity of 19 MW (row number 8 in Table 5.3). Hence we apply the 

constraints on the capacity to observe the outcome on line congestion. 

Running the power flow with the new capacity on the third bus is illustrated in 

Figure 5.5 
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Figure 5.5 Power flow of IEEE 14 bus with 19 MW DG on the third bus 

 

As Figure 5.5 illustrates the congestion on most lines are increased. This is 

due to the high demand in bus number 2 (Pd= 21.7 MW , Qd =12.7 MVAr) 

and 3 (Pd= 94.2 MW , Qd =19 MVAr). The optimisation engine has to 

converge subject to equality constraints. Hence the power flow is 

compensated from the slack bus. The increase in line congestion in two 

different cases of added 19 MW DG and 40 MW DG to bus number 3 is 

illustrated in Figure 5.6. 
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Figure  5.6 Branch flow comparison of two independent cases. One for additional 19MW and 
second for additional 40 MW on the bus number 3. Decreasing the introduced DG capacity 

doesn’t help the line congestion problem. 

Figure 5.6 shows that in a power system network arbitrary capacity 

manipulation on a pre-determined bus (here bus number 3), is not a robust 

solution for determining the size of a DG. In order to solve the issue, a 

penalty cost function is introduced in 5.4. 

Comparing Figure 5.2 and 5.4, it is observed that the results also exist at the 

near bottom of the Figure 5.2 (line 46 of Table 5.2) which confirms the 

consistency of the optimisation. To get the total loss of 8.7 and hourly cost as 

2006 (row 25 in table 5.2) in the second Pareto (Figure 5.4) .The population 

generated from Figure 5.4 is illustrated in Table 5.3. 

Table 5.3 population generated from Figure 5.4 

Row 
1st 
bus 

2nd 
bus 

Capacity 1 
(MW) 

Capacity2 
(MW) Obj1 Obj2 

1 3 8 0 0 13.3933 0 

2 3 8 20 20 8.97558 2006.02 
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3 3 8 20 20 8.97558 2006.02 

4 3 8 0 0 13.3933 0 

5 3 8 14 0 11.5827 702.108 

6 3 8 14 2 11.3741 802.409 

7 3 8 18 0 11.1053 902.71 

8 3 8 19 0 10.9887 952.861 

9 3 8 19 7 10.2879 1303.91 

10 3 8 19 2 10.7848 1053.16 

11 3 8 20 11 9.79332 1554.67 

12 3 8 20 4 10.4702 1203.61 

13 3 8 19 6 10.3858 1253.76 

14 3 8 20 17 9.24165 1855.57 

15 3 8 20 18 9.15224 1905.72 

16 3 8 20 19 9.06355 1955.87 

17 3 8 20 8 10.079 1404.22 

18 3 8 20 10 9.88781 1504.52 

19 3 8 12 5 11.3074 852.56 

20 3 8 20 10 9.88781 1504.52 

21 3 8 20 8 10.079 1404.22 

22 3 8 1 0 13.2567 50.1506 

23 3 8 2 0 13.1212 100.301 

24 3 8 1 0 13.2567 50.1506 

25 3 8 3 0 12.9868 150.452 

26 3 8 2 0 13.1212 100.301 

27 3 8 4 0 12.8536 200.602 

28 3 8 3 0 12.9868 150.452 

29 3 8 5 0 12.7215 250.753 

30 3 8 4 0 12.8536 200.602 

31 3 8 6 0 12.5905 300.903 

32 3 8 5 0 12.7215 250.753 

33 3 8 6 0 12.5905 300.903 

34 3 8 7 0 12.4606 351.054 

35 3 8 8 0 12.3318 401.205 

36 3 8 7 0 12.4606 351.054 

37 3 8 9 0 12.2042 451.355 

38 3 8 8 0 12.3318 401.205 

39 3 8 9 0 12.2042 451.355 

40 3 8 10 0 12.0777 501.506 

41 3 8 11 0 11.9523 551.656 

42 3 8 10 0 12.0777 501.506 

43 3 8 12 0 11.8279 601.807 

44 3 8 11 0 11.9523 551.656 

45 3 8 13 0 11.7047 651.957 

46 3 8 12 0 11.8279 601.807 

47 3 8 13 0 11.7047 651.957 

48 3 8 20 0 10.8732 1003.01 
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49 3 8 20 3 10.5698 1153.46 

50 3 8 19 3 10.6839 1103.31 

 

The result of the second row of Table 5.3 is very close to knee point of 

Figure 5.2 (row 25 of Table 5.2) but it offers two DG at buses 3 and 8 equal 

to 20 MW. As of Figure 5.2 it could be observed that the frequency of 8 was 

more than any other candidate buses .This is corroborated when tighter line 

limits is applied. If the planner decision allows the cost to go up to 2000 

£/MWhour then the beginning of Pareto at the top (second row of Table 5.3) 

.Power flow is run with the two 20 MW added DG. The results are shown in 

Figure 5.7. 

 

Figure 5.7 Power flow result of IEEE 14 bus system with two new 20 MW DGs added to bus 
number 3 and 8 
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5.4 Slack bus Penalty Function 
 

Slack Bus provides or absorbs active/reactive power from the system in 

order to maintain power flow equality constraints. In the case of big loads it 

has to import power from the network. If DGs are chosen big enough the 

effect could be reversed; however as it was shown in 5.3 the congestion 

problem is not necessarily solved. Optimising power flow (OPF) which was 

discussed in chapter 3 by numerical means have been utilised but 

convergence is still an issue since value of the converged load flow Jacobian 

could become singular [212]. As the multi-objective introduced NSGA-II 

optimisation is keeping the defined objectives (in our case, cost and real 

power flow), a penalty function on the cost could shift the optimisation point 

to a less import or export of power flow from the slack bus. The proposed 

function is defined as  

 
𝐶𝑠𝑢𝑝𝑠𝑙𝑎𝑐𝑘 = 𝑒(0.0461∗𝑠𝑢𝑚𝑓𝑙𝑜𝑤 ) 𝑖𝑓 𝑠𝑢𝑚𝑓𝑙𝑜𝑤 ≥ 0

𝐶𝑠𝑢𝑝𝑠𝑙𝑎𝑐𝑘 = 𝑒−(0.0461∗𝑠𝑢𝑚𝑓𝑙𝑜𝑤 )  𝑖𝑓 𝑠𝑢𝑚𝑓𝑙𝑜𝑤 < 0
  

 

 

(5-3) 

𝑠𝑢𝑚𝑓𝑙𝑜𝑤 =  𝑏𝑖

𝑏

𝑖=1

 

 

 

(5-4) 

 

𝐶𝑠𝑢𝑝𝑠𝑙𝑎𝑐𝑘  is the active power flow to or from the slack bus. 𝑠𝑢𝑚𝑓𝑙𝑜𝑤 is the 

summation of branch power flows. The function is illustrated in Figure 5.8 
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Figure 5.8 Penalty function defined to control the power flow on the slackbus 

 

As 5.8 illustrates, the power flow from the point 50 MW is more heavily 

penalised. The reason is that 50 MW is considered the thermal constraints 

on branches. 

The cost is then added to the cost of additional DGs. Therefore the new cost 

for the objective function is defined as  

𝐶𝑇𝑜𝑡𝑎𝑙 = 𝐶𝑖𝑛  𝐷𝐺 + 𝐶𝑜𝑚  𝐷𝐺 + 𝐶𝑠𝑢𝑝𝑠𝑙𝑎𝑐𝑘   

 

(5-5) 

where 𝐶𝑖𝑛  𝐷𝐺  is the initial cost and 𝐶𝑜𝑚  𝐷𝐺  is the running cost of DGs. 

 

5.5 Running the Optimisation with the Additional 

Penalty Function 
 

In a nutshell, the purpose of introducing the penalty function was to reduce 

the congestion on the lines. In order to run the power flow with the new 

values, it is required to obtain the new capacity and location of the IEEE 14. 
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Figure 5.9 Pareto front with the cost penalty function 

The generated population of Figure 5.9 is illustrated in Table 5.4 

Table 5.4 population generated from Figure 5.9 

Row 1st 
Bus 

2nd 
Bus 

Capacity 1 
(MW) 

Capacity 2 
(MW) 

Obj 1 Obj 2 

1 8 6 50 50 5.94164 5332.34 

2 6 8 26 50 7.03327 4820.26 

3 8 6 50 26 7.03327 4820.26 

4 8 6 50 50 5.94164 5332.34 

5 8 6 50 49 5.97824 5297.72 

6 8 6 50 48 6.01561 5263.88 

7 8 6 50 47 6.05374 5230.84 

8 8 6 50 49 5.97824 5297.72 

9 8 6 50 46 6.09264 5198.66 

10 8 6 50 48 6.01561 5263.88 

11 8 6 50 45 6.1323 5167.37 

12 8 6 50 47 6.05374 5230.84 

13 8 6 50 44 6.17273 5137.02 

14 8 6 50 46 6.09264 5198.66 

15 8 6 50 43 6.21394 5107.66 

16 8 6 50 45 6.1323 5167.37 

17 8 6 50 42 6.25591 5079.35 
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18 8 6 50 44 6.17273 5137.02 

19 8 6 50 43 6.21394 5107.66 

20 8 6 50 41 6.29866 5052.12 

21 8 6 50 42 6.25591 5079.35 

22 8 6 50 40 6.34218 5026.04 

23 8 6 50 41 6.29866 5052.12 

24 8 6 50 39 6.38647 5001.16 

25 8 6 50 40 6.34218 5026.04 

26 8 6 50 38 6.43154 4977.55 

27 8 6 50 39 6.38647 5001.16 

28 8 6 50 37 6.47739 4955.28 

29 8 6 50 38 6.43154 4977.55 

30 8 6 50 36 6.52401 4934.4 

31 8 6 50 37 6.47739 4955.28 

32 8 6 50 35 6.57142 4914.99 

33 8 6 50 36 6.52401 4934.4 

34 8 6 50 34 6.6196 4897.13 

35 8 6 50 35 6.57142 4914.99 

36 8 6 50 33 6.66856 4880.89 

37 8 6 50 34 6.6196 4897.13 

38 6 8 32 50 6.71831 4866.36 

39 8 6 50 33 6.66856 4880.89 

40 8 6 50 31 6.76884 4853.63 

41 6 8 32 50 6.71831 4866.36 

42 8 6 50 30 6.82015 4842.78 

43 8 6 50 31 6.76884 4853.63 

44 8 6 50 29 6.87225 4833.91 

45 8 6 50 30 6.82015 4842.78 

46 8 6 50 28 6.92513 4827.13 

47 8 6 50 29 6.87225 4833.91 

48 8 6 50 27 6.9788 4822.54 

49 8 6 50 28 6.92513 4827.13 

50 8 6 50 27 6.9788 4822.54 

 

As the results in Table 5.4 indicate, bus number 3 is no longer recognized as 

the optimum place for DGs, although the biggest load is located at this bus. 

Buses number 6 and 8 are the optimum locations and the knee point on the 

Pareto (row 20), suggest two DG with capacity of 50 and 41 on bus 8 and 6 

respectively. The capacities are added to and power flow is run to investigate 

the congestion on branches. 
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Figure 5.10 Power flow results of IEEE 14 with the added penalty function 

Comparing Figure 5.10 and 5.6, shows there is significant reduction on the 

dependency of network on the slack bus. Furthermore, expect for the 

substation and  bus number 3, all other buses adhere to the 50 MW limit. 

Although the added capacity is 51 MW more than 40 MW case (128% 

capacity increase), the improvement on the congested buses 1, 2, 4, 5 and 7 

is significant. The reason is the introduction of penalty cost function which 

prefers bus 6 over 3 as the best location. 

5.6 Optimisation of IEEE 30 Bus System 
 

In order to verify the results from previous section, the optimisation is run for 

IEEE 30 bus system. This system consists of 6 generators, 21 loads, and 41 

branches with total load of 283.4 MW.    

The schematic of the IEEE-14 bus test system illustrated in Figure 5.11. 
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Figure 5.11 Single line representation of IEEE 30 test system used in the optimisation [210] 

 

Table 5.5 shows the current active and reactive generation of the system in 

MW. 

Table 5.5 Bus generation data of IEEE 30 bus system 

Bus Number Pg (MW) Qg (MW) 

1 23.54 0 

2 60.97 0 

22 21.59 0 

27 26.91 0 

23 19.2 0 

13 37 0 

 

The complete data of IEEE 30 bus is presented in Appendix B. 

Objectives functions are defined as total real power loss and cost of DGs. 

The location upper and lower band is set to [2 (two), 30 (thirty)]. Other 
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parameters of optimisation such as number of iteration remain the same. 

Having run the optimisation, the proposed optimised locations are bus 

number 8 and 19. The simulation time remains fast at 49.33 seconds .The 

Pareto front is illustrated in Figure 5.12 

 

Figure 5.12 Pareto front of IEEE 30 bus system for cost and total real network loss 

Table 5.6 shows the population data of Figure 5.12. 

Table 5.6 The population data generated from 5.12 

Row Bus 1 Bus 2 Capacity 
1 

(MW) 

Capacity 
2 

(MW) 

Obj 1 Obj 2 

1 8 19 28 17 1.20878 2927.56 

2 12 8 0 0 2.14668 0 

3 12 8 0 0 2.14668 0 

4 8 19 10 14 1.38811 1561.37 

5 19 8 4 0 1.9824 260.228 

6 19 8 3 0 2.03509 195.171 

7 8 19 12 15 1.33964 1756.54 

8 8 19 0 12 1.65694 780.683 

9 8 19 13 15 1.32537 1821.59 

10 8 19 16 14 1.30133 1951.71 

11 8 19 26 15 1.21756 2667.33 
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12 8 19 16 15 1.2877 2016.76 

13 8 19 0 14 1.60189 910.797 

14 8 19 18 15 1.26687 2146.88 

15 8 19 2 15 1.5298 1105.97 

16 8 19 1 15 1.55359 1040.91 

17 8 19 4 14 1.50595 1171.02 

18 8 19 7 14 1.44313 1366.2 

19 8 19 7 13 1.46494 1301.14 

20 8 19 20 17 1.23476 2407.11 

21 8 19 7 14 1.44313 1366.2 

22 19 8 5 0 1.9324 325.285 

23 19 8 5 0 1.9324 325.285 

24 19 8 6 0 1.88508 390.342 

25 19 8 6 0 1.88508 390.342 

26 19 8 7 0 1.84044 455.399 

27 19 8 8 0 1.79845 520.455 

28 19 8 7 0 1.84044 455.399 

29 17 8 2 0 2.0715 130.114 

30 12 8 0 1 2.11256 65.0569 

31 19 8 9 0 1.75912 585.512 

32 19 8 8 0 1.79845 520.455 

33 8 19 19 15 1.25773 2211.94 

34 8 19 9 16 1.37219 1626.42 

35 8 19 0 9 1.75912 585.512 

36 19 8 10 0 1.72244 650.569 

37 8 19 19 16 1.24851 2276.99 

38 17 8 2 0 2.0715 130.114 

39 8 19 21 15 1.24201 2342.05 

40 12 8 0 1 2.11256 65.0569 

41 19 8 11 0 1.68838 715.626 

42 19 8 10 0 1.72244 650.569 

43 8 19 9 16 1.37219 1626.42 

44 8 19 0 11 1.68838 715.626 

45 8 19 24 15 1.2248 2537.22 

46 19 8 13 0 1.62812 845.74 

47 8 19 24 15 1.2248 2537.22 

48 8 19 0 13 1.62812 845.74 

49 8 19 1 14 1.5766 975.854 

50 8 19 1 14 1.5766 975.854 

 

The knee point or the trade-off point suggests 14 MW for bus number 19.The 

loss has been reduced to 1.893 MW from the initial 2.444 MW. Figure 5.13 

shows power flow results of the additional 14 MW on bus 19.  
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Figure 5.13 Power flow results of IEEE 30 with the additional 14 MW DG on bus 19 

 

Figure 5.13 shows there is no significant congestion on branches. To verify 

the penalty function effects, the cost penalty function is applied and the 

Pareto front is obtained in Figure 5.14. 
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Figure 5.14 Pareto front of IEEE 30 bus system including the penalty function 

 

Figure 5.14 results are very similar to 5.12 which didn‟t have a penalty 

function. The reason is that, the line congestion does not exist on IEEE 30 

hence, the there is no overly flow of power to be penalized. The population 

generated from Figure 5.14 is demonstrated in Table 5.7. 

Table 5.7 Population data generated from 5.14 

Row 1st Bus 2nd  Bus Capacity 1 
(MW) 

Capacity 2 
(MW) 

Obj 1 Obj2 

1 12 8 0 0 2.14668 3.26642 

2 19 8 17 26 1.21021 2799.77 

3 12 8 0 0 2.14668 3.26642 

4 20 8 14 15 1.33495 1887.86 

5 19 8 14 5 1.48414 1237.4 

6 19 8 13 13 1.3589 1692.53 

7 20 8 15 16 1.30936 2018.09 

8 8 10 0 1 2.11006 68.1709 

9 19 8 12 0 1.65694 782.52 

10 19 8 16 24 1.21864 2604.3 

11 19 8 13 0 1.62812 847.492 
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12 19 8 14 0 1.60189 912.468 

13 19 8 13 2 1.57714 977.448 

14 19 8 14 2 1.55218 1042.43 

15 19 8 15 8 1.40532 1497.4 

16 19 8 15 22 1.23543 2408.86 

17 19 8 15 24 1.2248 2539.15 

18 19 8 11 11 1.43715 1432.4 

19 20 8 11 15 1.39073 1692.53 

20 19 8 14 18 1.27926 2083.21 

21 19 8 4 0 1.9824 262.924 

22 10 8 3 0 2.03389 198.001 

23 19 8 5 0 1.9324 327.853 

24 19 8 4 0 1.9824 262.924 

25 19 8 14 7 1.44313 1367.4 

26 19 8 6 0 1.88508 392.789 

27 19 8 5 0 1.9324 327.853 

28 19 8 14 3 1.52863 1107.42 

29 19 8 14 22 1.24535 2343.73 

30 19 8 7 0 1.84044 457.731 

31 19 8 6 0 1.88508 392.789 

32 19 8 14 3 1.52863 1107.42 

33 19 8 8 0 1.79845 522.678 

34 19 8 7 0 1.84044 457.731 

35 19 8 9 0 1.75912 587.631 

36 19 8 8 0 1.79845 522.678 

37 19 8 19 16 1.25862 2278.59 

38 10 8 2 0 2.07151 133.082 

39 10 8 3 0 2.03389 198.001 

40 10 8 2 0 2.07151 133.082 

41 19 8 10 0 1.72244 652.589 

42 19 8 9 0 1.75912 587.631 

43 19 8 13 11 1.3908 1562.41 

44 19 8 11 0 1.68838 717.552 

45 19 8 10 0 1.72244 652.589 

46 19 8 11 0 1.68838 717.552 

47 19 8 18 16 1.2621 2213.46 

48 19 8 15 5 1.46366 1302.4 

49 19 8 15 5 1.46366 1302.4 

50 19 8 17 16 1.2681 2148.34 

 

Table 5.7 suggests bus 19 and 8 as the best locations. The trade-off point in 

row 12 is approximately the same as the results of Table 5.6 which would 

decrease the loss equivalent to 23 percent of its initial value. 
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5.7 Optimisation of IEEE 118 Bus System 
 

In this stage a larger system is used for the optimisation and locating the size 

and site of two candidate DG with respect to their cost and the minimization 

of the real power loss. IEEE 118 bus system consists of 54 generators, 99 

loads, and 186 branches with total load of 5677 MW. The full data of the 

network is presented in Appendix C. 

The schematic of the IEEE-118 bus test system illustrated in Figure 5.15. 

 

Figure 5.15 Single line representation of IEEE 118 test system used in the optimisation [210] 

 

Table 5.8 shows the current active and reactive generation of the system in 

MW. 
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Table 5.8 IEEE 118 generation data 

Bus Number Pg (MW) Qg (MW) 

10 450 0 

12 85 0 

25 220 0 

26 314 0 

31 7 0 

46 19 0 

49 204 0 

54 48 0 

59 155 0 

61 160 0 

65 391 0 

66 392 0 

69 516.4 0 

80 477 0 

87 4 0 

89 607 0 

100 252 0 

103 40 0 

111 36 0 

 

Bus 69 is type 3 (slack bus). Running the power flow, the total loss is 

obtained as 132.863 MW. In order to find the best location and capacity, the 

optimisation is run. The maximum capacity of both DGs is kept at 50 MW. 

The Pareto front is illustrated in Figure 5.16. 
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Figure 5.16 Pareto front of IEEE 118 bus system with 50 MW cap for each DG 

  

The Pareto is not well distributed. Looking at the results in Table 5.9 makes it 

clearer. 

Table 5.9  Population data corresponding to Figure 5.16 

Row 1st bus 2nd bus Capacity 1 
(MW) 

Capacity 2 
(MW) 

Obj 1 Obj 2 

1 38 94 0 0 132.482 0 

2 38 94 0 0 132.482 0 

3 40 42 50 40 121.695 5855.12 

4 40 112 50 33 122.119 5399.73 

5 40 112 46 23 123.525 4488.93 

6 40 112 50 22 123.161 4684.1 

7 40 42 50 39 121.79 5790.07 

8 63 40 0 4 132.05 260.228 

9 40 42 48 28 123.09 4944.33 

10 40 42 45 36 122.59 5269.61 

11 40 42 45 34 122.791 5139.5 

12 40 112 42 19 124.445 3968.47 

13 40 112 37 6 126.742 2797.45 

14 40 112 34 4 127.418 2472.16 
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15 38 40 0 25 129.083 1626.42 

16 40 112 50 9 124.739 3838.36 

17 40 42 38 11 126.139 3187.79 

18 40 42 39 12 125.898 3317.9 

19 55 112 2 9 131.293 715.626 

20 40 42 41 12 125.66 3448.02 

21 63 36 0 2 132.464 130.114 

22 40 42 40 18 125.073 3773.3 

23 38 112 0 6 131.722 390.342 

24 40 112 44 2 126.467 2992.62 

25 38 40 0 15 130.45 975.854 

26 40 38 11 3 130.793 910.797 

27 38 40 0 20 129.757 1301.14 

28 38 40 0 22 129.485 1431.25 

29 38 40 0 23 129.351 1496.31 

30 38 40 0 27 128.819 1756.54 

31 40 40 0 30 128.555 1951.71 

32 63 42 1 8 131.456 585.512 

33 40 112 44 10 125.318 3513.07 

34 40 112 42 13 125.169 3578.13 

35 40 112 48 18 123.84 4293.76 

36 40 40 0 17 130.337 1105.97 

37 40 42 29 18 126.395 3057.68 

38 40 42 28 6 128.026 2211.94 

39 38 40 1 17 130.097 1171.02 

40 40 112 48 18 123.84 4293.76 

41 40 42 34 7 127.128 2667.33 

42 38 40 0 12 130.875 780.683 

43 40 112 36 3 127.311 2537.22 

44 38 40 0 32 128.17 2081.82 

45 40 42 35 7 127.003 2732.39 

46 42 40 4 4 131.668 520.455 

47 38 40 0 31 128.298 2016.76 

48 38 40 0 28 128.687 1821.59 

49 40 112 47 16 124.194 4098.59 

50 40 112 47 16 124.194 4098.59 

 

The most frequent buses are bus number 40, 112, 42 and 38 with the 

frequency of 42, 17, 15 and 14 times which except for bus number 40, 

doesn‟t yield a preference over other location. This is due to limit on the size 

of generators. In 5.6 the total real load is 283.4 and the capacity cap is 

assumed approximately 1/3 of the demand so 100 MW (50 MW each) is a 

realistic assumption as the DG penetration level is chosen up to 30% of the 
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demand. In IEEE 118 the total real demand is 5677 MW hence the capacity 

limit of each DG should be increased. The limit is set to 500 MW for each 

and the simulation is run again. Figure 5.17 shows the Pareto result. 

 

Figure 5.17 Pareto front of IEEE 118 bus system with 500 MW cap for each DG 

As illustrated in 5.17, the distribution shows a drastic improvement. Looking 

at the population correspond to the Pareto in Table 5.10 the optimum 

location for the DGs are perceived. 

Table 5.10 Population data corresponding to Figure 5.17 

Row 1st bus 2nd 
bus 

Capacity 1 
(MW) 

Capacity 2 
(MW) 

Obj 1 Obj 2 

1 42 63 0 0 132.664 0 

2 40 56 190 213 106.826 26217.9 

3 42 63 0 0 132.664 0 

4 40 56 152 162 108.134 20427.9 

5 40 56 175 204 106.96 24656.6 

6 40 56 89 11 120.951 6505.69 

7 40 56 164 131 108.789 19191.8 

8 41 38 49 0 126.501 3187.79 

9 40 56 63 26 122.046 5790.07 

10 40 56 126 62 114.041 12230.7 
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11 40 63 55 0 125.288 3578.13 

12 40 56 116 140 110.382 16654.6 

13 40 56 100 18 119.371 7676.72 

14 40 56 132 86 112.169 14182.4 

15 42 63 8 0 131.5 520.455 

16 40 63 40 0 127.075 2602.28 

17 40 56 87 39 118.605 8197.17 

18 40 64 27 0 128.884 1756.54 

19 40 63 66 0 124.082 4293.76 

20 40 56 151 93 110.936 15873.9 

21 40 56 132 73 112.973 13336.7 

22 40 56 148 117 109.86 17240.1 

23 40 56 142 132 109.459 17825.6 

24 40 56 175 177 107.304 22900 

25 40 51 22 0 129.886 1431.25 

26 40 56 175 113 109.268 18736.4 

27 40 56 61 0 124.814 3968.47 

28 40 42 98 41 117.692 9042.91 

29 40 56 92 71 115.732 10604.3 

30 40 56 176 161 107.627 21924.2 

31 40 42 56 17 123.417 4749.16 

32 40 45 103 32 118.204 8782.69 

33 40 63 34 0 127.836 2211.94 

34 40 56 63 20 122.608 5399.73 

35 40 56 83 69 116.617 9888.65 

36 40 56 59 50 120.369 7091.21 

37 40 56 125 35 116.144 10409.1 

38 40 56 113 59 115.057 11189.8 

39 40 56 66 45 120.064 7221.32 

40 40 63 31 0 128.227 2016.76 

41 40 56 176 161 107.627 21924.2 

42 40 64 17 0 130.265 1105.97 

43 40 56 140 85 111.844 14637.8 

44 40 56 78 0 123.059 5074.44 

45 40 56 175 177 107.304 22900 

46 40 56 76 71 117.091 9563.37 

47 40 56 113 67 114.49 11710.2 

48 40 56 138 64 113.266 13141.5 

49 40 42 2 12 130.838 910.797 

50 40 56 151 86 111.326 15418.5 

The most frequent locations are buses number 40 and 56. The trade-off is 

picked on row 37 of table equivalent to 125 and 35 MW respectively. There is 

11% loss reduction down to 117.5 MW .The result is demonstrated in Figure 

5.18. 
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Figure 5.18 Power flow of IEEE 118 bus system with two added DG on bus 40 and 56 equivalent 
to 125 and 35 respectively 

  

5.8   Summary 
 

In this chapter the proposed NSGA-II – MATPOWER was applied on IEEE 

bus systems. The optimisation engine is programmed to avoid singular 

Jacobian matrix for the convergence. The capacities and locations were 

considered as design variables and objective functions as total real power 

loss of system and cost of additional DGs.  As swing bus compensates for 

the equality constraint to maintain the demand/generation flow, in some 

cases such as IEEE 14 and 30 bus system, it could demand a huge flow 

from substation that might lead to congestions on the line. For such cases, a 

cost penalty function was introduced as parabola curve to increase the cost 

hence the optimisation search for better location and sizes if possible. The 

proposed parabola is an exponential function. Besides convergence, the 

optimisation is fast taking advantage of deterministic Newton power flow 
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calculations. It was demonstrated for all cases that significant improvement 

in loss was achieved with the discussion on the cost of DG and preference of 

DNO for choosing array of non-dominated solutions represented in a Pareto 

front.  
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Chapter 6  

Conclusions and Further Work 
 

6.1 Conclusions 
 

This chapter firstly presents the conclusion of this thesis, which is divided 

into five groups: conclusion from the multi-objectiveness and DG integration 

issues, heuristic and non-heuristic optimisation, planning cost, design 

variables and Pareto-based optimisation. This chapter also summarises the 

contributions of this thesis and proposes further work for the improvement 

and development of the planning framework presented. 

6.1.1 Conclusion from the Multi-Objectiveness and 

Integration Issues 
 

The comprehensive review of different multi-objective methods in power 

system problems and DG integration is presented in Chapter 2 and the 

related detailed theories in Chapter 3 shows the numerical challenges of 

finding optimum location and size of DG resources. It is also imperative to 

present the challenges and differences in literature with regards to DG 

models which is presented in Sections 2.7 and 2.8. Analysis tools are 

significant to evaluate the models and goals in planning the DG location and 

size. Uncertainties in DG planning and order of evaluation is the other aspect 

of it which is discussed in Sections 2.9, 2.10 and 3.3. The integration issues 

and significance of multi-objectiveness in DG resources optimum allocation 

are summarised next: 

 There are various objectives in the optimisation of potential DG 

integration which in most cases, are in contrast with each other, 

meaning that increasing one objective will decrease the second one. 

In addition in most cases, there is no linear co-relation between 

defined objectives which results in non-convexity of searching space. 
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Therefore it imposes numerical challenges in the efficient and 

applicable method. 

 

 Traditionally, aggregation of objectives in the optimisation was the 

dominant solutions by using techniques such as weighting methods or 

sequential programming (master-slave) which didn‟t give the ability of 

individual analysis on each objective.   

 

6.1.2 Conclusion from the Heretic and Non-Heuristic 

Optimisation  
 

The optimisation techniques in addressing the optimum size and location 

issues or their application in power system to lower the cost and increase the 

reliability, is mainly divided into two main categories of heuristic and 

conventional (non-heuristic) algorithms presented in Section 3.2. Any power 

system is limited to its technical and environmental constraints. Section 3.4 

presents the concepts on how power flow should be managed within equality 

and inequality constraints with respect to existing algorithms in Section 3.2. 

6.1.3 Conclusion from the Planning Cost 
 

Addition of DG to a power system network has the potential of decreasing 

the cost imposed to a system. For example the proper (optimum) placement 

of a DG leads to differing network feeders or substation upgrades which 

happens as a result of load growth. The balance of technical issues and the 

cost is always a big part of any network developer. In Section 3.5 the 

concept of cost over a period of time considering the inflation is described. 

The definition of cost discussed in this Section comprises the calculation of 

total capital and running cost of candidate DG to the network. The cost is 

used as an objective function in 2-dimensional optimisation space in case 

studies presented in Chapter 5. Section 5.2 incorporates this objective into 

the proposed optimisation engine.  
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6.1.4 Conclusion from the Design Variables  
 

The variables in the proposed methods are represented in a discrete space 

in Chapter 4 as the locations of candidate DGs are not continuous. The 

variables which are of interest are named design variables. Design variables 

used in this work are capacities and location of DGs. Various optimisation 

objectives are optimised in Section 4.3.2. The variables and value of 

functions (objectives) are known in this Section to verify the competence of 

the method. The efficiency of the proposed platform is tested by applying the 

benchmark functions. 

6.1.5 Conclusion from the Pareto-based Optimisation in 

NSGA-II 
 

The results generated in Chapter 5 are represented in a Pareto based. 

Pareto based platform is used for the representation of results. The value of 

each parameter is also generated in all Sections of Chapter 5 which are in 

fact the optimum point values. The cost discussed in Section 7.5 is optimised 

against the total real values which are generated in both GUI Pareto and 

population .txt file. The study of Pareto-based results is used to check the 

magnitude of power flow in Section 5.4. In this Section a penalty cost 

function is proposed to restrain the power flow passing the substation. 

6.2 Contribution to Knowledge 
 

The proposed optimisation for power system platform provides a novel and 

efficient MATPOWER – based optimisation engine which is capable of 

addressing issues discussed in Section 2.2 and 2.3 in terms of finding the 

optimum point for location and capacities of DGs in a power system network. 

In this thesis DGs are modelled as absorbent / producer of reactive power or 

negative load models which unlike the literature, doesn‟t restrict the planner 

into any specific type of DG resources. The economic and technical aspect 

of the integration is both considered in order to minimise the total loss of 

system through analysis of obtained Pareto. The novelty of the thesis lies 
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within the analysis of Pareto curve. For example for the case study in Section 

5.7, the proportionate DG capacity is adjusted to obtain the acceptable 

outcome. Another novelty in this thesis is the frequency of obtained locations 

which specifies the preference one location over another. If the frequency of 

two defined locations does not outnumber other possible locations, the 

constraints should be eased off. Jacobian matrix is prevented from 

singularity so non-convergence does not occur in the optimisation process 

which is another feature of the contribution.  As cited in Section 2.2, in DG 

integration, connection of two separate DG operated networks is not a viable 

solution is most cases, hence if the planner considers the minimisation of 

power flow from a specific busbar, i.e. slack bus; this could contribute to 

autonomy of distribution network. The proposed penalty function in Section 

5.4 directs the optimisation to less dependency of network from imported 

power flow with respect to the pre-defined objectives and constraints. The 

analysis of Pareto-curve and number of location frequency is again useful for 

the analysis of applicability from the obtained results, suitable to planner 

point of view. 

 

6.3 Further Work 
 

The range of issues addressed within this thesis offer several opportunities 

to further the work presented by extension, or development of the proposed 

method. 

6.3.1 Design and DG variables  
 

The work presented in Chapter 4 and 5 adopts DGs as generation of real 

power to maintain the generality. As the developers might consider a certain 

type of DG development of design variables can be altered with respect to 

the DG type. 
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6.3.2 Planning Cost 
 

Planning cost in this work is restricted to the DG. As reinforcing of a power 

network might not be solely addressed by DG addition, developing more 

complicated cost models could be adapted to consider costs such as feeder 

or transformer upgrade. 

6.3.3 Correction/Penalty Objectives and Functions 
 

Defining DG objectives is not limited to loss or cost. Environmental or other 

technical issues could be addressed; however as the main focus of the 

thesis is to present a novel approach, contradictory objectives such as cost 

and loss are adopted. Those present two of most popular realistic objective 

of any developer which could be developed or altered. Furthermore tighter 

restriction on any other variable or objective is achievable but the 

mathematical model should be designed for that respect.   

6.3.4 Deterministic Power Flow 
 

Based on the time planning, or whether the network planner is trying to 

respond to the peak time demand of a network, uncertainties in load variation 

is addressed by deterministic or probabilistic power flow. The heavy 

stochastic mathematical calculation in probabilistic load flow could be 

developed for the program.  
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Appendix A 
IEEE 14 Bus Data 

Sbase=100 MVA 

1- Demand (Load) Data in MW and MVAr 

bus 
number 

type Pd Qd Gs Bs 

      

1 3 0 0 0 0 

2 2 21.7 12.7 0 0 

3 2 94.2 19 0 0 

4 1 47.8 -3.9 0 0 

5 1 7.6 1.6 0 0 

6 2 11.2 7.5 0 0 

7 1 0 0 0 0 

8 2 0 0 0 0 

9 1 29.5 16.6 0 19 

10 1 9 5.8 0 0 

11 1 3.5 1.8 0 0 

12 1 6.1 1.6 0 0 

13 1 13.5 5.8 0 0 

14 1 14.9 5 0 0 

 

2- Generation Data in MW and MVAr 

Bus Pg Qg 

1 232.4 -16.9 

2 40 42.4 

3 0 23.4 

6 0 12.2 

8 0 17.4 

 

3- Branch Data (R and X in Per Unit) 

from bus to bus R X 

1 2 0.01938 0.05917 

1 5 0.05403 0.22304 

2 3 0.04699 0.19797 

2 4 0.05811 0.17632 

2 5 0.05695 0.17388 

3 4 0.06701 0.17103 
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4 5 0.01335 0.04211 

4 7 0 0.20912 

4 9 0 0.55618 

5 6 0 0.25202 

6 11 0.09498 0.1989 

6 12 0.12291 0.25581 

6 13 0.06615 0.13027 

7 8 0 0.17615 

7 9 0 0.11001 

9 10 0.03181 0.0845 

9 14 0.12711 0.27038 

10 11 0.08205 0.19207 

12 13 0.22092 0.19988 

13 14 0.17093 0.34802 
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Appendix B 
IEEE 30 Bus Data 

Sbase=100 MVA 

1- Demand (Load) Data in MW and MVAr 

Bus 
number 

Type Pd Qd Gs Bs 

1 3 0 0 0 0 

2 2 21.7 12.7 0 0 

3 1 2.4 1.2 0 0 

4 1 7.6 1.6 0 0 

5 1 0 0 0 0.19 

6 1 0 0 0 0 

7 1 22.8 10.9 0 0 

8 1 30 30 0 0 

9 1 0 0 0 0 

10 1 5.8 2 0 0 

11 1 0 0 0 0 

12 1 11.2 7.5 0 0 

13 2 0 0 0 0 

14 1 6.2 1.6 0 0 

15 1 8.2 2.5 0 0 

16 1 3.5 1.8 0 0 

17 1 9 5.8 0 0 

18 1 3.2 0.9 0 0 

19 1 9.5 3.4 0 0 

20 1 2.2 0.7 0 0 

21 1 17.5 11.2 0 0 

22 2 0 0 0 0 

23 2 3.2 1.6 0 0 

24 1 8.7 6.7 0 0.04 

25 1 0 0 0 0 

26 1 3.5 2.3 0 0 

27 2 0 0 0 0 

28 1 0 0 0 0 

29 1 2.4 0.9 0 0 

30 1 10.6 1.9 0 0 
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2- Generation Data 

Bus Pg Qg 

1 23.54 0 

2 60.97 0 

22 21.59 0 

27 26.91 0 

23 19.2 0 

13 37 0 

 

 

3- Branch Data (R and X in Per Unit) 

From bus To bus R X 

1 2 0.02 0.06 

1 3 0.05 0.19 

2 4 0.06 0.17 

3 4 0.01 0.04 

2 5 0.05 0.2 

2 6 0.06 0.18 

4 6 0.01 0.04 

5 7 0.05 0.12 

6 7 0.03 0.08 

6 8 0.01 0.04 

6 9 0 0.21 

6 10 0 0.56 

9 11 0 0.21 

9 10 0 0.11 

4 12 0 0.26 

12 13 0 0.14 

12 14 0.12 0.26 

12 15 0.07 0.13 

12 16 0.09 0.2 

14 15 0.22 0.2 

16 17 0.08 0.19 

15 18 0.11 0.22 

18 19 0.06 0.13 

19 20 0.03 0.07 

10 20 0.09 0.21 

10 17 0.03 0.08 

10 21 0.03 0.07 

10 22 0.07 0.15 

21 22 0.01 0.02 

15 23 0.1 0.2 



151 
 
 

22 24 0.12 0.18 

23 24 0.13 0.27 

24 25 0.19 0.33 

25 26 0.25 0.38 

25 27 0.11 0.21 

28 27 0 0.4 

27 29 0.22 0.42 

27 30 0.32 0.6 

29 30 0.24 0.45 

8 28 0.06 0.2 

6 28 0.02 0.06 
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Appendix C 
IEEE 118 Bus Data 

Sbase=100 MVA 

1- Demand (Load) Data in MW and MVAr 

Bus 
number 

Type Pd Qd Gs Bs 

1 2 51 27 0 0 

2 1 20 9 0 0 

3 1 39 10 0 0 

4 2 39 12 0 0 

5 1 0 0 0 -40 

6 2 52 22 0 0 

7 1 19 2 0 0 

8 2 28 0 0 0 

9 1 0 0 0 0 

10 2 0 0 0 0 

11 1 70 23 0 0 

12 2 47 10 0 0 

13 1 34 16 0 0 

14 1 14 1 0 0 

15 2 90 30 0 0 

16 1 25 10 0 0 

17 1 11 3 0 0 

18 2 60 34 0 0 

19 2 45 25 0 0 

20 1 18 3 0 0 

21 1 14 8 0 0 

22 1 10 5 0 0 

23 1 7 3 0 0 

24 2 13 0 0 0 

25 2 0 0 0 0 

26 2 0 0 0 0 

27 2 71 13 0 0 

28 1 17 7 0 0 

29 1 24 4 0 0 

30 1 0 0 0 0 

31 2 43 27 0 0 

32 2 59 23 0 0 

33 1 23 9 0 0 

34 2 59 26 0 14 

35 1 33 9 0 0 



153 
 
 

36 2 31 17 0 0 

37 1 0 0 0 -25 

38 1 0 0 0 0 

39 1 27 11 0 0 

40 2 66 23 0 0 

41 1 37 10 0 0 

42 2 96 23 0 0 

43 1 18 7 0 0 

44 1 16 8 0 10 

45 1 53 22 0 10 

46 2 28 10 0 10 

47 1 34 0 0 0 

48 1 20 11 0 15 

49 2 87 30 0 0 

50 1 17 4 0 0 

51 1 17 8 0 0 

52 1 18 5 0 0 

53 1 23 11 0 0 

54 2 113 32 0 0 

55 2 63 22 0 0 

56 2 84 18 0 0 

57 1 12 3 0 0 

58 1 12 3 0 0 

59 2 277 113 0 0 

60 1 78 3 0 0 

61 2 0 0 0 0 

62 2 77 14 0 0 

63 1 0 0 0 0 

64 1 0 0 0 0 

65 2 0 0 0 0 

66 2 39 18 0 0 

67 1 28 7 0 0 

68 1 0 0 0 0 

69 3 0 0 0 0 

70 2 66 20 0 0 

71 1 0 0 0 0 

72 2 12 0 0 0 

73 2 6 0 0 0 

74 2 68 27 0 12 

75 1 47 11 0 0 

76 2 68 36 0 0 

77 2 61 28 0 0 

78 1 71 26 0 0 

79 1 39 32 0 20 

80 2 130 26 0 0 

81 1 0 0 0 0 
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82 1 54 27 0 20 

83 1 20 10 0 10 

84 1 11 7 0 0 

85 2 24 15 0 0 

86 1 21 10 0 0 

87 2 0 0 0 0 

88 1 48 10 0 0 

89 2 0 0 0 0 

90 2 163 42 0 0 

91 2 10 0 0 0 

92 2 65 10 0 0 

93 1 12 7 0 0 

94 1 30 16 0 0 

95 1 42 31 0 0 

96 1 38 15 0 0 

97 1 15 9 0 0 

98 1 34 8 0 0 

99 2 42 0 0 0 

100 2 37 18 0 0 

101 1 22 15 0 0 

102 1 5 3 0 0 

103 2 23 16 0 0 

104 2 38 25 0 0 

105 2 31 26 0 20 

106 1 43 16 0 0 

107 2 50 12 0 6 

108 1 2 1 0 0 

109 1 8 3 0 0 

110 2 39 30 0 6 

111 2 0 0 0 0 

112 2 68 13 0 0 

113 2 6 0 0 0 

114 1 8 3 0 0 

115 1 22 7 0 0 

116 2 184 0 0 0 

117 1 20 8 0 0 

118 1 33 15 0 0 
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2- Generation Data in MW and MVAr 

Bus Pg Qg 

1 0 0 

4 0 0 

6 0 0 

8 0 0 

10 450 0 

12 85 0 

15 0 0 

18 0 0 

19 0 0 

24 0 0 

25 220 0 

26 314 0 

27 0 0 

31 7 0 

32 0 0 

34 0 0 

36 0 0 

40 0 0 

42 0 0 

46 19 0 

49 204 0 

54 48 0 

55 0 0 

56 0 0 

59 155 0 

61 160 0 

62 0 0 

65 391 0 

66 392 0 

69 516.4 0 

70 0 0 

72 0 0 

73 0 0 

74 0 0 

76 0 0 

77 0 0 

80 477 0 

85 0 0 

87 4 0 

89 607 0 

90 0 0 

91 0 0 
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92 0 0 

99 0 0 

100 252 0 

103 40 0 

104 0 0 

105 0 0 

107 0 0 

110 0 0 

111 36 0 

112 0 0 

113 0 0 

116 0 0 

 

3- Branch Data (R and X in Per Unit) 

From bus To bus R X 

1 2 0.0303 0.0999 

1 3 0.0129 0.0424 

4 5 0.00176 0.00798 

3 5 0.0241 0.108 

5 6 0.0119 0.054 

6 7 0.00459 0.0208 

8 9 0.00244 0.0305 

8 5 0 0.0267 

9 10 0.00258 0.0322 

4 11 0.0209 0.0688 

5 11 0.0203 0.0682 

11 12 0.00595 0.0196 

2 12 0.0187 0.0616 

3 12 0.0484 0.16 

7 12 0.00862 0.034 

11 13 0.02225 0.0731 

12 14 0.0215 0.0707 

13 15 0.0744 0.2444 

14 15 0.0595 0.195 

12 16 0.0212 0.0834 

15 17 0.0132 0.0437 

16 17 0.0454 0.1801 

17 18 0.0123 0.0505 

18 19 0.01119 0.0493 

19 20 0.0252 0.117 

15 19 0.012 0.0394 

20 21 0.0183 0.0849 

21 22 0.0209 0.097 
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22 23 0.0342 0.159 

23 24 0.0135 0.0492 

23 25 0.0156 0.08 

26 25 0 0.0382 

25 27 0.0318 0.163 

27 28 0.01913 0.0855 

28 29 0.0237 0.0943 

30 17 0 0.0388 

8 30 0.00431 0.0504 

26 30 0.00799 0.086 

17 31 0.0474 0.1563 

29 31 0.0108 0.0331 

23 32 0.0317 0.1153 

31 32 0.0298 0.0985 

27 32 0.0229 0.0755 

15 33 0.038 0.1244 

19 34 0.0752 0.247 

35 36 0.00224 0.0102 

35 37 0.011 0.0497 

33 37 0.0415 0.142 

34 36 0.00871 0.0268 

34 37 0.00256 0.0094 

38 37 0 0.0375 

37 39 0.0321 0.106 

37 40 0.0593 0.168 

30 38 0.00464 0.054 

39 40 0.0184 0.0605 

40 41 0.0145 0.0487 

40 42 0.0555 0.183 

41 42 0.041 0.135 

43 44 0.0608 0.2454 

34 43 0.0413 0.1681 

44 45 0.0224 0.0901 

45 46 0.04 0.1356 

46 47 0.038 0.127 

46 48 0.0601 0.189 

47 49 0.0191 0.0625 

42 49 0.0715 0.323 

42 49 0.0715 0.323 

45 49 0.0684 0.186 

48 49 0.0179 0.0505 

49 50 0.0267 0.0752 

49 51 0.0486 0.137 

51 52 0.0203 0.0588 

52 53 0.0405 0.1635 

53 54 0.0263 0.122 
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49 54 0.073 0.289 

49 54 0.0869 0.291 

54 55 0.0169 0.0707 

54 56 0.00275 0.00955 

55 56 0.00488 0.0151 

56 57 0.0343 0.0966 

50 57 0.0474 0.134 

56 58 0.0343 0.0966 

51 58 0.0255 0.0719 

54 59 0.0503 0.2293 

56 59 0.0825 0.251 

56 59 0.0803 0.239 

55 59 0.04739 0.2158 

59 60 0.0317 0.145 

59 61 0.0328 0.15 

60 61 0.00264 0.0135 

60 62 0.0123 0.0561 

61 62 0.00824 0.0376 

63 59 0 0.0386 

63 64 0.00172 0.02 

64 61 0 0.0268 

38 65 0.00901 0.0986 

64 65 0.00269 0.0302 

49 66 0.018 0.0919 

49 66 0.018 0.0919 

62 66 0.0482 0.218 

62 67 0.0258 0.117 

65 66 0 0.037 

66 67 0.0224 0.1015 

65 68 0.00138 0.016 

47 69 0.0844 0.2778 

49 69 0.0985 0.324 

68 69 0 0.037 

69 70 0.03 0.127 

24 70 0.00221 0.4115 

70 71 0.00882 0.0355 

24 72 0.0488 0.196 

71 72 0.0446 0.18 

71 73 0.00866 0.0454 

70 74 0.0401 0.1323 

70 75 0.0428 0.141 

69 75 0.0405 0.122 

74 75 0.0123 0.0406 

76 77 0.0444 0.148 

69 77 0.0309 0.101 

75 77 0.0601 0.1999 
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77 78 0.00376 0.0124 

78 79 0.00546 0.0244 

77 80 0.017 0.0485 

77 80 0.0294 0.105 

79 80 0.0156 0.0704 

68 81 0.00175 0.0202 

81 80 0 0.037 

77 82 0.0298 0.0853 

82 83 0.0112 0.03665 

83 84 0.0625 0.132 

83 85 0.043 0.148 

84 85 0.0302 0.0641 

85 86 0.035 0.123 

86 87 0.02828 0.2074 

85 88 0.02 0.102 

85 89 0.0239 0.173 

88 89 0.0139 0.0712 

89 90 0.0518 0.188 

89 90 0.0238 0.0997 

90 91 0.0254 0.0836 

89 92 0.0099 0.0505 

89 92 0.0393 0.1581 

91 92 0.0387 0.1272 

92 93 0.0258 0.0848 

92 94 0.0481 0.158 

93 94 0.0223 0.0732 

94 95 0.0132 0.0434 

80 96 0.0356 0.182 

82 96 0.0162 0.053 

94 96 0.0269 0.0869 

80 97 0.0183 0.0934 

80 98 0.0238 0.108 

80 99 0.0454 0.206 

92 100 0.0648 0.295 

94 100 0.0178 0.058 

95 96 0.0171 0.0547 

96 97 0.0173 0.0885 

98 100 0.0397 0.179 

99 100 0.018 0.0813 

100 101 0.0277 0.1262 

92 102 0.0123 0.0559 

101 102 0.0246 0.112 

100 103 0.016 0.0525 

100 104 0.0451 0.204 

103 104 0.0466 0.1584 

103 105 0.0535 0.1625 
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100 106 0.0605 0.229 

104 105 0.00994 0.0378 

105 106 0.014 0.0547 

105 107 0.053 0.183 

105 108 0.0261 0.0703 

106 107 0.053 0.183 

108 109 0.0105 0.0288 

103 110 0.03906 0.1813 

109 110 0.0278 0.0762 

110 111 0.022 0.0755 

110 112 0.0247 0.064 

17 113 0.00913 0.0301 

32 113 0.0615 0.203 

32 114 0.0135 0.0612 

27 115 0.0164 0.0741 

114 115 0.0023 0.0104 

68 116 0.00034 0.00405 

12 117 0.0329 0.14 

75 118 0.0145 0.0481 

76 118 0.0164 0.0544 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


