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Abstract  

This paper considers steep wave impact on seawalls of various geometries. A simple 

analytical model for the pressure impulse due to a wave of idealized geometry and 

dynamics is developed and applied to the following geometries: 

a)  a vertical seawall with a berm, 

b) a vertical seawall with a ditch at its base and 

c)  a vertical seawall with a block missing (damaged condition). 

The method uses eigenfunction expansions in each of the rectangular regions that satisfy 

some of the rigid surface conditions and a simplified free-surface condition. Their 

unknown coefficients are determined from the impact boundary condition, rigid wall 

conditions and by matching the values and the horizontal derivatives of the solutions in 

each rectangular region at their mutual boundary. The method yields the pressure impulse 

throughout the entire region. The overall impulse and moment impulse on the seawall and 

a simple model for the uprush of the spray jet after the impact are also presented. The 

effects of different impact regions and different geometries can therefore be quickly 

estimated and used to show trends in the results. It is shown that berms generally have a 

beneficial effect on reducing the impulse, moment impulse and uprush, but not the 

maximum pressure impulse on the seawall, whereas ditches are generally and sometimes 

strongly detrimental for all effects except uprush. A missing block in the seawall gives an 

almost constant or linearly-decreasing value inside the gap (depending on the boundary 

condition applied at the rear of the gap being hard or soft respectively); the soft case can 

affect the pressure impulse on the front face of the seawall, thereby affecting the impulse 

and moment impulse.  

 

Keywords: wave impact, pressure impulse, total impulse, impulse moment, seawalls, 

slamming, spray jet. 

 

1. Introduction 

 

The engineering importance and intrinsic interest of wave impact on coastal structures has 

attracted researchers and experimenters for many years. Among the earliest is Bagnold 

(1939) who discovered that the shock pressure exerted on the vertical seawall when a steep 

wave strikes it can have its maximum value some distance above the seabed. This research 
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then evolved theoretically and experimentally, both at model and full scale and generally 

confirmed Bagnold’s observations. The results of  laboratory (e.g. Bagnold, 1939; Chan 

and Melville, 1988; Kirkgöz, 1991; Chan, 1994; Hattori et al., 1994) and full-scale 

experiments (e.g. Blackmore and Hewson, 1984; Bullock et al., 2001, 2007; Hofland et al., 

2010) have made further contributions to the knowledge of pressures occurring during 

wave impact and its effects on coastal structures. This is important for improving the 

design of coastal structures. 

 

This paper considers violent wave impact characterized by a substantial portion of the front 

of a steep wave interacting with a vertical portion of a seawall and throwing up a jet of 

fluid, or spray, which can reach a height of several times the water depth. The impact 

model considered here does not need to specify the precise nature of this interaction which 

could be direct wave impact or comprise a fast-closing air pocket closing from below (i.e.  

without air entrapment), known as ‘flip through’. Both mechanisms are modelled in the 

same way by considering the horizontal water velocity in the impact region to be reduced 

to zero during the duration of the impact and both can cause large pressure impacts. These 

phenomena, reviewed by Peregrine, 2003, contrast with uprush of low-freeboard seawalls 

and explains why uprush at lower tides can exceed that at higher tides, see HR 

Wallingford, 2005. Whilst both types of wave-structure interaction are important, violent 

impact is generally assumed to be crucial for the structural integrity of the seawall (crack 

initiation and propagation, and possible displacement of the wall). For such waves, impact 

velocities will approximately equal the phase velocity of the wave, as given by shallow 

water theory. The impact is generally of short duration (typically 10-2s or less) and high 

peak pressure (typically 4x105 Nm-2).   

 

In reality there are considerable uncertainties in all of the above; in particular, peak 

pressure is highly variable and difficult to measure. It is also affected by water aeration 

which also dramatically affects the sound speed and hence the maximum acoustic pressure. 

In addition, the wave input parameters for any sophisticated and fully-nonlinear numerical 

model, such as that of Cooker and Peregrine, 1990, are not well known, still less the 

statistical distribution, such as the joint probability distribution of wave steepness and 

wave height.  However, as a simplifying feature, it is assumed that the most violent 

impacts occur when the wave fronts are closely aligned with the seawall, so that the fluid 

motion predominantly occurs in the two-dimensional vertical plane. Given this, it seems 

sensible to utilise the simple pressure-impulse model of Lamb, 1932, as used by Cooker 

and Peregrine, 1990, especially to understand the possible effects of different seawall 

geometries and wave parameters.  It is hoped that such an investigation will stimulate 

related experimental studies. However, it should be stressed that we are here comparing the 

effect of geometry with the same impact; the geometry, most noticeably for the berm, will 

affect the impacting wave. An experimenter would therefore need to adjust the wave in 

order to achieve the same impact as that without a berm, so that a valid comparison can be 

made with our results. 

 

 

1.1 Impact on a seawall 



Lamb, 1932, considers the pressure impulse, defined as the integral of the pressure at any 

point from just before impact (at t = tb) to just after (at t = ta). 

 𝑃(x, y) = ∫ 𝑝(𝑥, 𝑦, 𝑡)𝑑𝑡 ≈
Δ𝑡 𝑝𝑝𝑒𝑎𝑘

2
 .

𝑡𝑎

𝑡𝑏
  [1] 

The approximate equality in Eq. [1] assumes a triangular rise to and fall from the pressure 

peak during the short impact time, ∆𝑡 = 𝑡𝑎 − 𝑡𝑏. Cooker and Peregrine, 1990, show that 

for short duration impacts, P satisfies Laplace’s equation and that its gradient is simply 

related to the difference of the fluid velocity before and after impact. The resulting 

boundary-value problem is summarized in Fig. 1 and can be solved using eigenfunction 

expansions; for the problems considered here, and in part II where we consider wave 

impact on structures with baffles, we use the form given by Cox and Cooker, 1999. The 

geometry of the wave is also idealized, the fluid filling a rectangular region. 

 

 

Fig. 1. Dimensional boundary-value problem for the pressure impulse for impact 

over the upper part of a seawall. The impact region is denoted schematically by the 

sloping line but applies at x = 0. All quantities are dimensional, but we have dropped 

primes for clarity. 

For the problem given in Fig. 1, is we assume the impact velocity profile U(y) over the 

impact region (parameterized by µ) is assumed constant (=U0), we have the 

nondimensional pressure as: 

 

 𝑃(𝑥, 𝑦, 𝜇) = ∑ {
−2

𝜆𝑛
2 [1 − cos(𝜆𝑛𝜇)]}∞

𝑛=1 sin (𝜆𝑛𝑦)
sinh [𝜆𝑛(𝑥−𝐵)]

cosh (𝜆𝑛𝐵)
   [2] 

 

where 𝜆𝑛 = (𝑛 − 1/2)𝜋. In Eq. [2] all spatial dimensions are nondimensionalised by the 

depth H (so in Fig. 1, H = 1) and the pressure impulse by division by 𝜌𝑈0𝐻 so that 
𝜕𝑃

𝜕𝑥
=

 −1 𝑓𝑜𝑟 0 > 𝑦 >  −𝜇𝐻. The terms in braces here are Fourier coefficients, an , obtained 

using orthogonality of the sine terms in y (in contrast to the problems considered later 

where one has to solve a matrix equation). It should be noted that each term in the 

summation of Eq. [2] satisfies all boundary conditions for the problem shown in Fig. 1 

apart from the seawall; satisfaction of this condition gives the coefficients in braces. The 
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series converges rapidly since an ~ O(n-2). Tests varying B in Eq. 2 showed that a value of 

2 is sufficient for this boundary to be ‘distant’, having no discernable effect on the 

pressures near the seawall and so this value (denoted B2 later) is used throughout. 

 

Fig. 2 shows the dimensionless pressure impulse for a vertical seawall for comparison with 

the cases presented later for different geometries. The (actual) maximum pressure impulse 

shown in the left-hand figure is approximately 𝑃′ = 𝑃 𝜌𝑈0𝐻 ≈ 0.2𝜌𝑈0𝐻. Assuming that 

the breaking wave front is moving with the phase speed of the wave and assuming shallow 

water theory, 𝑈0 ≈ √𝑔𝐻, we have a scaling law for peak pressure as  

 𝑃𝑝𝑒𝑎𝑘
′ ≈ 1.2𝜌

𝐻3/2

Δ𝑡
   [3] 

As mentioned in the Introduction, the impacting waves are stochastic and so ranges of 

values of the impact duration and wave impact region (i.e. value of µ) would need to be 

considered in practical calculations. These would also need to cap any pressures beyond 

the acoustic pressure of the aerated, and hence compressible, wave front region. 

 
 

Fig. 2. Non-dimensional pressure impulse (plotted vertically) for impact over the 

upper part of a seawall, µ = 0.4 (left) and µ = 0.8 (right). This viewpoint shows 

pressure impulse on the seawall on the left and the seabed towards the reader; the 

free surface is a line of zero pressure (and hence zero pressure impulse) whilst the 

distant boundary (B = 2) on the right also has zero pressure impulse. 

Naturally the pressure impulse on the seawall will be of engineering interest; less 

obviously, that on the seabed will also be pertinent since it may cause erosion when a large 

pressure instantaneously liquefies any sand by forcing water into it. This may then 

destabilize the seawall. Cox and Cooker, 1999, also use the gradient of the pressure 

impulse along the seabed to evaluate the impulse on stones resting on the seabed, which 

may then move, potentially causing another type of damage to the seabed foundations.  

 

Cooker and Peregrine, 1990, give the landward impulse on the entire wall and the 

anticlockwise moment impulse about the foot of the seawall as:  

 

𝐼𝑤 = ∫ 𝑃(0, 𝑦)𝑑𝑦 = 𝜌𝑈0𝐻20

−𝐻
∑ 2{1 − cos (𝜇𝜆𝑛)∞

𝑛=1 }/𝜆𝑛
3
  [4] 

 



𝑀𝑤 = − ∫ (𝑦 + 𝐻)𝑃(0, 𝑦)𝑑𝑦 = 𝜌𝑈0𝐻3
0

−𝐻

∑ 2{1 − cos (𝜇𝜆𝑛

∞

𝑛=1

)}{1 − (−1)𝑛/𝜆𝑛}/𝜆𝑛
3
 

[5] 

The terms under the summations give the dimensionless forms of the impulse and 

moment impulse and are plotted in Fig. 3. 

 
 
 

 
 

Fig. 3. Dimensionless impulse (solid) and moment impulse (dashed) on a seawall versus 

µ. 

 

1.2 Uprush model 

None of the above results are new but are included for later comparisons. However, we 

can use this model to give a simplified model of wave uprush in front of a vertical 

seawall arising from wave impact. Here freeboard refers to the vertical distance between 

still water level and top of the seawall. The wave uprush discharge is defined as the 

uprush volume [ 3m ] per time [s] and structure width [m]. The model gives an estimate of 

the maximum quantity of water that reaches a height greater than the freeboard and hence 

could possibly move over the seawall, perhaps under the action of onshore wind. The 

frequency and severity of impact and the action of wind are exogenous to the present 

model. These would have to be measured or estimated (see below) before our model 

could be used to estimate seawall overtopping and possibly replace existing empirical 

formula with more rationally-based formulae. However, the uprush itself could be of 

interest in internal sloshing where it might slam onto the roof of a tank. 
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Fig. 4. Definition sketch for uprush model. 

 

Near to the seawall the jet of fluid is thin and the pressure gradients are low in this jet, so 

we assume the jet particles move as free projectiles. Hence the maximum height achieved 

by any free-surface particle is given by its vertical projection velocity after the impact. 

(Note: since this height is attained at different times for different values of horizontal 

coordinate x, this is not the free-surface profile but rather that vertical region which gets 

wet at some time.) Before impact the vertical velocity is zero so the projection velocity is 

simply the y derivative of P giving: 
𝑦𝑚𝑎𝑥

𝐻
=

1

2
𝐹𝑟 (∑ 𝑎𝑛

∞
𝑛=1 𝜆𝑛

sinh {𝜆𝑛(𝑥−𝐵)}

cosh {(𝜆𝑛𝐵}
)

2

          [6] 

where 𝐹𝑟 =
𝑈0

2

𝑔𝐻
 is the Froude number and the Fourier coefficients are those of Eq. [1]. 

Since we are interested in when this value exceeds the freeboard height Fb, we find Fb in 

terms of a parameter xb, the distance at which Fb is achieved. For large n, terms in Eq. [6] 

are of the form 
𝑒−𝜆𝑛𝑥

𝜆𝑛
  so the series for diverges at x = 0 but converges for x > 0. Within 

the rather sweeping assumptions of the model (which are valid only close to the wall i.e. 

for large Fb and hence small xb), we can then estimate the uprush discharge, V , as 

 

                                               𝑉 ≈ ∫ (𝑦𝑚𝑎𝑥 − 𝐹𝑏)𝑑𝑥
𝑥𝑏

0
    [7] 

 

 

 



 

Fig. 5. Dimensionless uprush versus dimensionless freeboard Fb/H for µ = 0.1, 0.2, … 1.0 

(bottom to top curves respectively). V is volume of uprush per unit length of seawall 

divided by .2H   

 

 

Fig. 5 shows that the volume of uprush decreases as the freeboard increases, but note that 

the free-projectile model used here is only valid for large freeboard. The free-projectile 

model used above will not be valid for small values of Fb. 

 

It is instructive to translate this result for engineering purposes. Firstly we need to convert 

the freeboard and volume of uprush per unit seawall length to dimensional quantities by 

multiplying by the length scale H and 2H  respectively. With µ = 0.1, H = 2m and Fb= 

2m, we have volume of uprush of about 0.01H2 = 0.04m2. As stated above, to convert this 

into an estimate of seawall overtopping requires further assumptions that are not part of 

this model. However, to underline what further assumptions would be needed in more 

realistic (stochastic) models, we arbitrarily assume that one 10s wave in every 10 waves 

impacts onto the wall, giving V = 4×10-4 m3 s-1 = 0.4 l s-1 per metre frontage. Depending 

on the wind direction and strength, not all of this water will overtop, but this figure is 

compatible with the value of 0.3 l s-1 for impacting waves with crest-to-trough height of 

0.5m given by the deterministic choice on the online calculator http://www.overtopping-

manual.com/EmpVertWall_Simple.aspx, see HR Wallingford (2005) Eq. 7.6, itself based 

on Besley’s (1999) empirical formulae for this type of overtopping caused by wave 

impact. 

 

 

2. Seawall with a berm 

 

The wave impact on a wall with a porous (rubble-mound) berm has been studied by 

Wood (1997) and Wood and Peregrine (2000) who found that having a porous berm can 

reduce the pressure impulse by up to 20%. However, it should be noted that these authors 

only considered the equivalent of region 1 in Fig. 6 with P = 0 at x=B1 so their 

impermeable case is not the same as that considered here. 

This paper considers a non-porous berm of finite length extending seawards from the foot 

of the breakwater, extending the work of Greenhow (2006), see Fig. 6. 
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Fig. 6. Non-dimensional boundary conditions for the pressure impulse for wave impact 

on vertical wall with a berm. 

 

 

2.1 Solution method 

The eigenfunctions needed in each region are directly analogous to that given in the 

Introduction, but the addition of a berm at the foot of the seawall requires the fluid region 

to be split by a vertical line at x = B1 from the berm edge to the free surface; thus region 1 

has, effectively, a smaller depth, Hb  <  1, and does not need to satisfy a far-field condition 

at x = B2. Using the dimensionless parameters of Fig. 6, this gives the following 

expansion: 

 

   

𝑃(𝑥, 𝑦, 𝜇) = ∑
sin [𝜆𝑛𝑦/𝐻𝑏]

cosh (𝜆𝑛𝐵1/𝐻𝑏)
{𝛼𝑛sinh (

𝜆𝑛(𝑥−𝐵1)

𝐻𝑏
) + 𝛽𝑛cosh (

𝜆𝑛(𝑥−𝐵1)

𝐻𝑏
)}∞

𝑛=1   [8] 

 

 

whilst beyond the berm (region 2), the expansion is similar to that of Eq. [2]: 

 

  

 𝑃(𝑥, 𝑦, 𝜇) = ∑ 𝑐𝑛 sin (𝜆𝑛𝑦)
sinh [𝜆𝑛(𝑥−𝐵2)]

cosh (𝜆𝑛𝐵2)
∞
𝑛=1    [9] 

 

The system of equations for the unknowns is closed by applying the seawall condition at 

x = 0, where we have 
𝜕𝑃

𝜕𝑥
= −1 for 0 > y > -µ and 

𝜕𝑃

𝜕𝑥
= 0 -µ > y > -1 and by matching the 

pressure impulse and its horizontal derivative of P across the line at x = B1 , 0 > y > - Hb. 

For the front face of the berm, x = B1 ,-Hb > y > -1, the horizontal derivative is zero. The 

summations in the resulting system of equations are truncated at n = N where N is 

typically 30-50. 

 

On the seawall x = 0, we again apply a Fourier method by multiplying the equation for 

the horizontal derivative condition shown in Fig. 6 by sin (
𝜆𝑙𝑦

𝐻𝑏
) ; 𝑙 = 1 … 𝑁 and 

integrating from bHy   to 0 giving: 

𝛼𝑙 − 𝛽𝑙 tanh (
𝜆𝑙𝐵1

𝐻𝑏
) =

2𝐻𝑏

𝜆𝑙
2 [1 − cos (

𝜆𝑙𝜇

𝐻𝑏
)] ;     𝑙 = 1 … 𝑁   [10] 

 

At x = B1 , 0 > y > -Hb matching the pressure impulse gives:  

∑ 𝛽𝑛
𝑁
𝑛=1

sin (
𝜆𝑛𝑦

𝐻𝑏
)

cosh (
𝜆𝑛𝐵1

𝐻𝑏
)

− ∑ 𝑐𝑛
𝑁
𝑛=1

sin(𝜆𝑛𝑦)

cosh(𝜆𝑛𝐵2)
sinh(𝜆𝑛(𝐵1 − 𝐵2)) = 0  [11] 



At x = B1 , 0 > y > -Hb matching the horizontal derivative of the pressure impulse gives:  

∑ 𝛼𝑛
𝑁
𝑛=1

𝜆𝑛

𝐻𝑏

sin (
𝜆𝑛𝑦

𝐻𝑏
)

cosh (
𝜆𝑛𝐵1

𝐻𝑏
)

− ∑ 𝑐𝑛
𝑁
𝑛=1 𝜆𝑛

sin(𝜆𝑛𝑦)

cosh(𝜆𝑛𝐵2)
cosh(𝜆𝑛(𝐵1 − 𝐵2)) = 0 [12] 

and for x = B1 , -Hb > y > -1 applying the fixed wall condition gives: 

∑ 𝑐𝑛
𝑁
𝑛=1 𝜆𝑛

sin(𝜆𝑛𝑦)

cosh(𝜆𝑛𝐵2)
cosh[𝜆𝑛(𝐵1 − 𝐵2)] = 0    [13] 

 

Greenhow (2006) used a basis function method (similar to Cooker and Peregrine’s 

Fourier method but without orthogonality) but this fails to produce realistic results for 

longer berms (B1 > 0.4) or for larger impact regions (µ > 0.5). This is due to the 

exponential increase with x of the eigenfunctions in region 1, especially for larger values 

of n in the summation, which results in a poorly-conditioned matrix. To avoid this 

problem but still take enough terms in the summation to satisfy the seawall condition, Eq. 

[11-13] are applied pointwise at M collocation points equally spaced in 0 > y > -1. To get 

a square system M = N and the resulting 3N×3N system is solved by Matlab. Results 

show that N = 30 is adequate for the peak pressure to converge to within 1%. 

 

2.3 Results 

 

 

 

 
 



Fig. 7. Non-dimensional pressure impulses (plotted vertically) for impact over the upper 

part of a seawall with a berm Hb = 0.8, B1 = 0.2 (top) and 0.4 (bottom), µ = 0.4 (left) and 

µ = 0.8 (right). 

 

Fig. 7 shows the effect of a berm with Hb = 0.8 and different values of B1 and µ. 

Comparison with Fig. 2 shows that the berm has only a small effect on the pressure 

impulse on the seawall, especially for smaller values of µ, with an increase of about 10-

15% for µ = 0.8. On the other hand, the impulse and moment impulse on the seawall with 

berm is significantly reduced due to the pressure impulse on the front of the berm being 

reduced from that of the bermless seawall in the region -µ > y > -1, see Figs 8 and 9. 

Both Figs have two lines close together (top curves): these are the total impulse or 

anticlockwise moment impulse due to the wall and the front of the berm, and due to the 

wall only, showing that the front of the berm contributes little. There is also a downwards 

impulse and clockwise moment acting on the top of the berm, which may be of 

significance to the integrity of the berm foundations. For the wider berms, the clockwise 

moment impulse reduces the overall anticlockwise moment impulse on the entire 

structure (wall plus berm). These quantities are calculated in a similar way to Eq. [4] and 

[5], the moment impulse being taken about the point (0,-1) for comparison with the 

seawall only case shown in Fig. 3. Explicit formula are given in Md Noar, 2012. 

 

 
Fig. 8. Impulse on seawall and berm (solid), on wall only (dotted) and downwards on top 

of berm (dashed) versus µ. Left Fig. Hb = 0.8, B1 = 0.2; right Fig. Hb = 0.8, B1 = 0.4. 

 

 



Fig. 9. Moment impulse on wall only (chain), on the wall and front of berm (dotted), 

seawall and berm (solid), and on top of berm (dashed) versus µ. Left Fig. Hb = 0.8, B1 = 

0.2; right Fig. Hb = 0.8, B1 = 0.4. 

 

 
 

Fig. 10. Dimensionless uprush volume V versus dimensionless freeboard Fb/H for µ = 

0.1, 0.4 and 0.8. for a seawall (solid) and seawall with berm (chain) Hb = 0.8, B1 = 0.2 

(left) and B1 = 0.4 (right).  V is volume of uprush per unit length of seawall divided by 

.2H  

 

The wave uprush is dependent on the y-derivative of P at the free surface, making the 

effect of the berm difficult to anticipate. Fig. 10 shows that this effect is rather small, 

with a reduction in uprush for higher freeboards in general. This is perhaps counter-

intuitive given that close to the wall, the high pressure impulses have ‘less room to 

expand into’, especially for the longer berm (B1 = 0.4), and one might therefore have 

expected more uprush on the seawall. However, the berm also has an effect on the 

pressure impulse near the wall. The effect is usually not great and these results will 

probably need experimental or theoretical verification before engineers can use them with 

confidence. 

 

3. Seawall with a ditch 

 

The motivation for this section is to study the effect of a ditch at the base of the seawall. 

The boundary-value problem is given in Fig. 11. 
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Fig. 11. Non-dimensional boundary conditions for the pressure impulse for wave impact 

on vertical wall with a ditch. 

 

The eigenfunctions for regions 1 and 2 are as before (Eq. [8] and [9]), whilst the 

matching of P and its horizontal derivative takes place on the dotted line between the two 

regions in Fig. 11. For x = B1 and -1 < y < -Hb the horizontal derivative is zero. These 

conditions are solved by collocation with points equally spaced in 0 > y > -Hb, whilst the 

seawall condition is again implemented using a Fourier method. 

 

 
 

Fig. 12. Non-dimensional pressure impulses (plotted vertically) for impact over the upper 

part of a seawall with a ditch, Hb = 1.2, B1 = 0.2, µ = 0.4 (left) and µ = 0.8 (right). 

 

Results are given in Fig. 12 for the pressure impulse. We see that these are comparable 

with the previous cases, but note the almost constant and high value of pressure impulse 

throughout the ditch. This means within the ditch, repeated pressure impulses may 

liquefy the seabed there and this may destabilise the entire wall. An extreme case would 

be where the entire seawall is impacted, see Fig. 13, where the pressure impulses have 

more than doubled.  

 



 
 

Fig. 13. Non-dimensional pressure impulse (plotted vertically) for impact over the entire 

seawall with a ditch, µ = 1.2. Hb = 1.2, B1 = 0.2. In contrast to earlier figures, the free 

surface y = 0 and far-field x = B2 are towards the reader. 

 

The fact that the ditch can have an extremely detrimental effect on the integrity of the 

seawall is further underlined by the increase in impulse and moment impulse, see Fig. 14. 

The moment impulse is taken about the base of the seawall i.e. at x = 0, y = -Hb. Given 

that the seawall depth is now 1.2, these parameters might be expected to increase by that 

factor over the values given in Fig. 3. In fact, for µ = 1, the values exceed this estimate, 

especially for the moment impulse. The width of the ditch (0 < B1 < 0.6) has very little 

influence on the values given in Fig. 14, whereas the depth of the ditch has a strong 

influence. For example with Hb = 1.4, B1 = 0.2  and µ = 1.4, the impulse is about 1.4 and 

the moment impulse about 0.65; this might be possible if the front face of the wave falls 

into the ditch causing a vertical wall of water to strike the whole of the seawall surface, 

although experiments or a fully non-linear wave model would be needed to explore this 

possibility. 

 

 
 



Fig. 14. Dimensionless impulse (solid) and moment impulse (dashed) on a seawall with 

ditch. Hb = 1.2, B1 = 0.2 

 

 
 

Fig. 15. Dimensionless uprush discharge versus dimensionless freeboard Fb/H for µ = 

0.1, 0.4 and 0.8 for a seawall (solid) and seawall with ditch (chain) Hb = 1.2, B1 = 0.2 

(left) and B1 = 0.4 (right).  V is volume of uprush per unit length of seawall divided by 

.2H  

 

As for the berm, the ditch’s effect on uprush is not easy to anticipate. Again experimental 

and/or numerical confirmation of these results is needed before their engineering use. 

 

4. Seawall with a missing block 

 

In her thesis, Md Noar (2012) also considered the case of a rectangular gap in the seawall 

between –H1 and –H2 (H2  >  H1 > µH) and of horizontal extent from x  =  0 to x  =  B1 

where the vertical seawall is located. The gap is therefore always filled with water in this 

model (although an air-filled gap would also be an interesting case for future analysis). 

This can be taken as a model of a crack (if H2 only slightly exceeds H1) or missing block 

if their values are significantly different. In this gap region, the eigenfunctions satisfy the 

solid wall conditions on the top, bottom and rear of the gap: 

 

𝑃(𝑥, 𝑦)  =  ∑ 𝛼𝑛

cos[
𝛾𝑛(2𝑦+𝐻1+𝐻2)

𝐻2−𝐻1
]

cosh (𝛾𝑛𝐵1)/(𝐻2−𝐻1))
cosh (

2𝛾𝑛𝑥

𝐻2−𝐻1
) +∞

𝑛 = 1

𝛽𝑛

sin[
𝜆𝑛(2𝑦+𝐻1+𝐻2)

𝐻2−𝐻1
]

cosh (𝜆𝑛𝐵1)/(𝐻2−𝐻1))
cosh (

2𝜆𝑛𝑥

𝐻2−𝐻1
) + 𝐴    

[14] 

 

where 𝛾𝑛  =  𝑛𝜋.  The cosine (sine) terms are symmetric (antisymmetric) about the 

centerline of the gap. Note the presence of the constant (‘secular’) term A; in earlier cases 

this was precluded because of the free surface condition P  =  0. These eigenfunctions are 

matched to those of the outer region (given in Eq. [9]) across the mouth of the gap. This 

outer region satisfies the wall condition above and below the gap region, including the 

impact condition above the gap (i.e. µ < H1). Cox and Cooker, 2001, treat the more 



general case of a crack of varying width, but assume that since the crack width is small 

compared to the water depth, the pressure at the crack mouth is given from the impact on 

a crackless seawall, Eq. [2], or equivalent. For larger crack widths, this is questionable 

and the present model makes no such assumption: the pressure at the crack mouth is 

calculated from our model, and this makes a significant difference for the pressure-

relieving gap discussed below. 

Given the additional geometric parameters involved, it is fortuitous for designers of 

seawalls that the pressure impulse values on the seawall, and hence the (rather 

complicated) impulse and moment impulse, are not significantly affected by a gap with a 

closed end for the parameters given in Fig. 16 (when comparing with Fig. 2, note the 

perspective effect). The impulse arises only from the three vertical surfaces and is almost 

identical to that of the seawall, see Fig. 18, whilst the moment impulse has contributions 

also from top and bottom of the gap which exactly cancel for terms symmetric about the 

gap centerline and give a small contribution for the antisymmetric terms. Overall the 

moment impulse is reduced by some 5-10% when the entire upper part of the seawall 

above the gap is impacted, but the correction is otherwise very much smaller. Thus no 

special considerations need to be made of these values in ‘failure mode’ when the seawall 

loses an amour block. Of more engineering interest is the pressure impulse in the gap, 

where Fig. 16 confirms Müller’s (1997) general conclusion that high pressures can 

propagate via gaps in the seawall into the central, but still impervious, part of a 

breakwater. 

 

 
 

Fig. 16. Non-dimensional pressure impulses (plotted vertically) for impact over the upper 

part of a seawall, µ  = 0.4 with gap B1 = 0.2, H1  = 0.45 and H2  = 0.55 (left) and µ  = 0.8 

with gap B1 = 0.2, H1  = 0.85 and H2  = 0.95 (right). 

 

The eigenfunctions of Eq. [14] satisfy 𝜕𝑃/𝜕𝑥 =  0 on the rear of the gap (a Neumann or 

‘hard’ condition). Another case can be considered relatively easily, namely having P  =  0 

on the vertical back wall of the gap (a Dirichlet or ‘soft’ condition). This might then be 

considered as a limiting case for an amour block missing from a breakwater with a 

porous rubble interior where the pressure (and hence pressure impulse) is completely 

relieved. The outer eigenfunctions are unaffected but in Eq. [14], we replace the cosh 

terms with x dependence by sinh terms with the same x dependence and the secular term 

by Ax. This introduces minor changes to the matching of pressure impulses and their x 



derivatives. The results are again rather uninteresting for a gap of limited vertical extent: 

in the gap region there is an almost linear dependence in the x direction and almost no y 

dependence, whilst the outer region 2 is largely unaffected except at the mouth of the 

gap, see Fig. 17 (left). On the other hand, if the gap is very large, the high pressure 

impulse region is unsupported from below where its value is very low, and this reduces 

the peak value on the seawall from about 0.22 to about  0.18, see Fig. 17 (right). For the 

same case as shown in Fig. 16 (right) with µ  = 0.8 with gap B1 = 0.2, H1  = 0.85 and H2  

= 0.95, the peak pressure impulse is also reduced quite dramatically, from 0.51 to 0.33. 

Even disregarding this reduction in pressure impulse on the seawall, the impulse and 

moment impulse will also be reduced since the rear surface of the gap, where a non-zero 

pressure impulse acts in Fig. 16, is now zero. For example, for the cases shown in Fig. 

16, the impulse (moment impulse) is reduced by about 25%  (35%) for all values of µ < 

H1, see also Fig. 18. 

 

 
 

Fig. 17. Non-dimensional pressure impulses (plotted vertically) for impact over the upper 

part of a seawall with µ  = 0.4 and a pressure-relieving gap: B1 = 0.2, H1  = 0.45 and H2  

= 0.55 (left) and B1 = 0.2, H1  = 0.45 and H2  = 0.65 (right). 

 

 
 



Fig. 18. Dimensionless impulse (solid) and moment impulse (dashed) versus µ on a 

seawall (upper curves) and seawall with a pressure-relieving gap (lower curves ending at 

µ  =  0.85 when the entire seawall above the gap is impacted) with B1 = 0.2, H1  = 0.85 

and H2  = 0.95. Results for the same gap but with a closed end are indistinguishable from 

the seawall results for this choice of geometric parameters and hence are not shown here. 

 

 

5 Conclusions 

 

A simplified, but rational, model of vertical wave impact on seawalls of various 

geometries has been presented and compared with earlier results of Cooker and Peregrine 

(1990). Since the theory relies on simply-defined eigenfunctions, Matlab code allows 

very rapid solution and hence exploration of the effect on the local pressure impulse and 

global impulse and moment impulse of the geometry of berms, ditches and missing 

blocks. The berm is generally found to be beneficial in all three above-mentioned aspects, 

whereas the ditch is nearly always detrimental, sometimes significantly so. For the berm, 

these global loads are presented for the combined structure and for its components (wall 

and berm) separately; the downwards impulse and clockwise moment impulse may be of 

significance to the structural integrity of the structure and its foundations. A rational 

model of uprush is presented and extended to the berm and ditch situations. The berm can 

preserve, or even slightly increase, the uprush whilst the ditch generally decreases it. Two 

models of a wall in failure mode with a missing block are given to examine how the 

pressure impulse might propagate into the gap. The pressure in front of the seawall is 

largely unaffected for the cases studied with a solid rear wall to the gap, but this is not 

true for the pressure-relieving gap, where the impulse and moment impulse on the wall 

are also significantly reduced.  

 

References 

 

Bagnold, R.A. (1939). Interim report on wave-pressure research. Journal of the Institute 

of Civil Engineers. 12: 202-226. 

 

Besley, P. (1999). Overtopping of seawalls - design and assessment manual. R&D 

Technical Report W 178. Environment Agency, Bristol. 

 

Blackmore, P.A and Hewson, P.J. (1984). Experiments on full-scale wave impact 

pressures. Coastal Eng. 8:331-346. 

 

Bullock, G.N., Crawford, A.R., Hewson, P.J., Walkden, M.J.A. and Bird, P.A.D. (2001). 

The influence of air and scale on wave impact pressures. Coastal Eng. 42: 291-312. 

 

Bullock, G.N., Obhrai, C., Peregrine, D.H. and Bredmose, H. (2007). Violent breaking 

wave impacts. Part 1: Results from large-scale regular wave test on vertical and sloping 

walls. Coastal Eng. 54: 602-617. 

 



Chan, E.S. (1994). Mechanics of deep water plunging-wave impacts on vertical 

structures. Coastal Eng. 22: 115-133. 

 

Chan, E.S. and Melville, W.K. (1988). Deep-water plunging wave pressures on a vertical 

plane wall. Proc. R. Soc. Lon. A. 417: 95-131. 

 

Cooker, M.J. (1990). The interaction between steep water waves and coastal structures. 

Ph.D Thesis University of Bristol. 

 

Cooker, M.J. and Peregrine, D.H. (1990). A model for breaking wave impact pressures. 

Proc. 22nd Intl. Conf. Coastal Eng. : 1473-1486. 

 

Cox, S.J and Cooker, M.J. (1999). The motion of a rigid body impelled by sea-wave 

impact. Applied Ocean Research. 21:113-125. 

 

Cox, S.J and Cooker, M.J. (2001). The pressure impulse in a fluid saturated crack in a sea 

wall. Coastal Engng. 42 : 241-256. 

 

Greenhow, M. (2006). Wave impact on seawalls of various geometries. CoastalLab06 

Proceedings. 517-524. 

 

Hattori, M., Arami, A. and Yui, T.(1994). Wave impact pressure on vertical walls under 

breaking waves of various types. Coastal Eng. 22: 79-114. 

 

HR Wallingford (2005) Wave Overtopping, website http://www.overtopping-

manual.com/ (accessed Aug 2014) 

 

Hofland, B., Kaminski, M.L., and Wolters, G. (2010). Large scale wave impacts on a 

vertical wall. Proceedings of the 32th International Conference on Coastal Engng . 

: 1-15. 

 

Kirkgöz, M. S. (1991). Impact pressure of breaking waves on vertical and sloping walls. 

Ocean Engineering. 18: 45-59. 

 

Lamb H. (1932) “Hydrodynamics” 6th ed. CUP. 

 

Md Noar N. A. Z. (2012) Wave impacts on rectangular structures. PhD thesis, Brunel 

University. 

 

Müller, G. (1997). Wave impact pressure propagation into cracks. Proc. Inst. Civil Eng. 

Water Marit.& Energy. 124:79-85 

 

Peregrine, D.H. (2003). Water-wave impact on walls. Annual Review Fluid Mech.35:23-

43. 

 

http://www.overtopping-manual.com/
http://www.overtopping-manual.com/


Wood, D.J. (1997). Pressure-impulse impact problems and plunging wave jet impact. 

PhD Thesis University of Bristol. 

 

Wood, D.J. and Peregrine, D.H. (2000). Wave impact on a wall using pressure-impulse 

theory. II: Porous berm. Journal of Waterway, Port, Coastal, and Ocean 

Engineering.191-195. 


