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Abstract

In this paper, the finite-horizon H∞ fault estimation problem is investigated for a class of uncertain nonlinear

time-varying systems subject to multiple stochastic delays. The randomly occurring uncertainties (ROUs) enter into

the system due to the random fluctuations of network conditions. The measured output is quantized by a logarithmic

quantizer before being transmitted to the fault estimator. Also, successive packet dropouts (SPDs) happen when the

quantized signals are transmitted through an unreliable network medium. Three mutually independent sets of Bernoulli-

distributed white sequences are introduced to govern the multiple stochastic delays, ROUs and SPDs. By employing

the stochastic analysis approach, some sufficient conditions are established for the desired finite-horizon fault estimator

to achieve the specified H∞ performance. The time-varying parameters of the fault estimator are obtained by solving a

set of recursive linear matrix inequalities (RLMIs). Finally, an illustrative numerical example is provided to show the

effectiveness of the proposed fault estimation approach.
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I. Introduction

The past few years have witnessed fruitful research results on the fault detection and fault-tolerant control

problems owing to their crucial importance with respect to safety and reliability in engineering practice such

as aerospace, automotive and chemical industries [1,4,13,14,21,37]. Generally speaking, the purpose of fault

detection is to identify when a fault has occurred, and the fault estimation stage aims to estimate the type and

size of the faults by using available measurement information. In recent years, the fault estimation problem

has gained constant research attention and a number of results have been reported in the literature [18,24,36].

For instance, in [36], the fault estimate has been added into the controller to compensate for the unknown

real fault. In [18], several multi-objective (e.g. H2/H∞ and H−/H∞ indices) fault estimation issues have

been tackled for time-varying systems in time domain. Very recently, in [24], by recurring to the Krein-space

theory, the H∞ fault estimation issue has been studied and a fault estimator has been designed to achieve the

specified performance criterion in terms of the solution to a set of Riccati difference equations.
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Networked control systems (NCSs) have recently gaining much research momentum owing to their appealing

advantages as well as wide applications in today’s modern industry, and a rich body of literature has appeared

with a major focus on those particular phenomena resulting from the limited bandwidth of the communication

channels. These network-induced phenomena, if not adequately dealt with, could seriously degrade the system

performances. Among others, two frequently investigated network-induced phenomena are packet dropouts

[9,23,26,28] and communication delays [2,8,10,17,19,25,30,33–35]. In a networked system, the communication

delays are typically random and the delay characteristic varies from sensor to sensor. In other words, it

is quite common that a networked system suffers from multiple random delays with different occurrence

probabilities [8]. In [23], the successive packet dropouts (SPDs) have been modeled and their impact on the

filter performance has been analyzed. Obviously, it is of practical importance to examine how multiple random

delays influence the dynamical behavior of the discrete-time networked systems.

Traditionally, in communication community, signals are quantized due to rounding or truncation where the

quantizer is essentially a piecewise constant function. The study on quantization problem dates back to early

90s [6] and has received renewed research interest in response to the rapid development of NCSs. Nowadays,

the signal quantization is considered as another source for performance degradation of networked systems

and a great number of results have been available in the literature, see e.g. [7, 12, 29, 31]. In particular, the

quantization has been described by logarithmic types in [11] which can then be converted into the norm-

bounded uncertainty. Parameter uncertainties, on the other hand, have long been an important factor that

contributes to the complexities of dynamical systems, and the corresponding robust filtering/control problems

have attracted considerable research attention in the past few decades [1,5,8,9,15,20,22,32,36]. Nevertheless,

in a networked environment, it is a bit too conservative to assume that the uncertainties always occur in a

deterministic way. In fact, due to unpredictable changes of the network conditions, the uncertainties may

occur randomly with probability laws of certain types and intensity. To account for such a random fashion

of parameter uncertainties, the concept of randomly occurring uncertainties (ROUs) has been introduced

in [15] and the impact of ROUs on the system behaviors has then been thoroughly examined. Although

ROUs have received some initial research attention, it is desirable to consider the simultaneous appearance of

ROUs, quantization, successive dropouts and multiple stochastic delays in order to reflect the network-induced

phenomena in a more realistic way and this constitutes one of the motivations for the present research.

In reality, it is very often the case that the system dynamics experience constant changes in their structure

and parameters caused by a variety of factors such as temperature, changes of the operating point, aging

of components, etc. Therefore, time-varying models are of vital importance in engineering practice and,

naturally, it is practically significant to design fault estimation schemes directly for time-varying systems.

In this case, because of the time-varying nature, one would be more interested in the system’s transient

performances over a finite period than the traditional steady-state behaviors over the infinite-horizon. It

should be pointed out that, in comparison with the numerous literature concerning fault estimation problems

over the infinite horizon for time-invariant systems [9, 16, 22, 27, 32], only scattered results have emerged on

the finite-horizon fault estimation problems for time-varying systems. This is not surprising because of the

following three identified difficulties for finite-horizon fault estimation problems: 1) how to define a reasonable

performance criteria such as H∞ index to evaluate the reliability of a fault estimator; 2) how to analyze the

system performance over a finite horizon; and 3) how to design the fault estimator parameters such that the

obtained estimator satisfies the defined estimation performance index.

To the best of our knowledge, very little research effort has been made on the fault estimation problems
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for time-varying networked systems, not to mention the case when the randomly occurring phenomena are

also involved in the target plant. With hope to shorten such a gap, in this paper, we are motivated to

study the finite-horizon H∞ fault estimation issue for a class of discrete time-varying stochastic systems

with network-induced phenomena. The main novelty lies in three aspects: 1) the plant under consideration is

quite comprehensive that covers ROUs, quantization effects, successive packet dropouts, and multiple stochastic

delays, hence reflecting the reality more closely; 2) a new finite-horizon H∞ performance constraint is proposed

so as to adequately reflect the effect from the disturbance inputs on the resulting fault estimation systems; 3)

a novel fault estimation technique is developed which relies on the forward solution to a set of recursive

linear matrix inequalities (RLMIs); and 4) intensive stochastic analysis is conducted to enforce the H-infinity

performance for the addressed comprehensive systems in addition to the stochastic stability constraint.

The rest of this paper is outlined as follows. In Section II, the model addressed in this paper is presented,

and some definitions and lemmas are introduced. In Section III, the fault estimation issue is resolved and some

sufficient conditions in the form of RLMIs are developed. In Section IV, an illustrative example is provided

to demonstrate the effectiveness of the proposed criteria and, finally, conclusions are drawn in Section V.

Notation The notation used here is fairly standard except where otherwise stated. Rn and R
n×m denote,

respectively, the n-dimensional Euclidean space and the set of all n ×m real matrices. l2([0, N ],Rn) is the

n-dimensional vector function’s space over [0, N ]. [0, N ] denotes a set of integers ranging from 0 to N. I

denotes the identity matrix of compatible dimension. The notation X ≥ Y (respectively, X > Y ), where X

and Y are symmetric matrices, means that X − Y is positive semi-definite (respectively, positive definite).

AT represents the transpose of the matrix A. ‖x‖ describes the Euclidean norm of a vector x. E{x} stands

for the expectation of the stochastic variable x. diag{. . .} stands for a block-diagonal matrix. In symmetric

block matrices, the symbol ∗ is used as an ellipsis for terms induced by symmetry. Matrices, if not explicitly

specified, are assumed to have compatible dimensions.

II. Problem Formulation and Preliminaries

For presentation clarity, let us start with the following notation:

ϕx,k =

s
∑

i=1

αi,kxk−τi (1)

where τi (i = 1, 2, · · · , s) denote the discrete delays that satisfy 0 < τ1 < τ2 < · · · < τs and occur according

to the stochastic variable αi,k. Here, s is the number of channels which is fixed. αi,k ∈ R (i = 1, 2, · · · , s) are

mutually uncorrelated Bernoulli-distributed white sequences with

Prob{αi,k = 1} = ᾱi, Prob{αi,k = 0} = 1− ᾱi

where ᾱi ∈ [0, 1].

Consider the following class of discrete time-varying stochastic systems defined on k ∈ [0, N ]:















xk+1 =
(

Ak + βk∆Ak

)

xk + hk
(

ϕx,k

)

+D1,kwk + F1,kfk,

ỹk = Ckxk +D2,kwk + F2,kfk,

xk = ψk, −τs ≤ k ≤ 0,

(2)

where xk ∈ R
nx , ỹk ∈ R

ny and fk ∈ l2([0, N ],Rnf ) are the state vector, the ideal measurement output and

the fault to be estimated. wk is the exogenous disturbance signal belonging to l2([0, N ],Rq). βk ∈ R is a
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Bernoulli-distributed white sequence taking on values of either 0 or 1 with

Prob{βk = 1} = β̄, Prob{βk = 0} = 1− β̄

where β̄ ∈ [0, 1] is a known constant. Ak, Ck, D1,k, D2,k, F1,k, F2,k are known, real, time-varying matrices

with appropriate dimensions. The parameter uncertainty matrix ∆Ak is a real-valued matrix of the form:

∆Ak =MkR1,kNk (3)

whereMk and Nk are known real matrices with appropriate dimensions, andR1,k is the unknown time-varying

matrix function satisfying

RT
1,kR1,k ≤ I.

Moreover, the nonlinear vector-valued function hk: R
nx → R

nx with hk(0) = 0 is assumed to be continuous

and satisfies the following condition

‖hk(x)‖ ≤ λk‖x‖ (4)

for all k ∈ [0, N ] and x ∈ R
nx , where λk > 0 is a known positive scalar.

In a network system, before entering into the fault estimator through a communication channel of limited

bandwidth, the signal ỹk is first quantized by quantizer q(·) defined by

ȳk := q(ỹk) = [q1(ỹ1,k) q2(ỹ2,k) · · · qny(ỹny,k)]
T . (5)

In this paper, the quantizer q(·) is assumed to be of the logarithmic type, that is, the set of quantization levels

for each qj(·)(1 ≤ j ≤ ny) is described by

Θj =
{

±χ
(j)
i |χ

(j)
i = ̺ijχ

(j)
0 , i = 0, ±1, ±2, · · ·

}

∪ {0}, 0 < ̺j < 1, χ
(j)
0 > 0.

Each of the quantization level corresponds to a segment such that the quantizer maps the whole segment to

this quantization level. The logarithmic quantizer qj(·) is defined as

qj(ỹj,k) =















χ
(j)
i , 1

1+κj
χ
(j)
i < ỹj,k ≤ 1

1−κj
χ
(j)
i ,

0, ỹj,k = 0,

−χ
(j)
i , − 1

1−κj
χ
(j)
i ≤ ỹj,k < − 1

1+κj
χ
(j)
i ,

(6)

with κj = (1− ̺j)/(1 + ̺j). By employing the results derived in [11], it follows that qj(ỹj,k) = (1 + ∆
(j)
k )ỹj,k

with |∆
(j)
k | ≤ κj . Defining ∆k = diag{∆

(1)
k , ∆

(2)
k , · · · , ∆

(ny)
k }, the measurements after quantization can be

expressed as

ȳk = (I +∆k)ỹk. (7)

Therefore, the quantizing effects have been transformed into sector-bounded uncertainties. In fact, defining

Γ = diag{κ1, κ2, · · · , κny} and R2,k = ∆kΓ
−1, we can obtain an unknown real-valued time-varying matrix

R2,k satisfying R2,kR
T
2,k = RT

2,kR2,k ≤ I.

Remark 1: It is worth mentioning that there are generally two types of quantized communication models,

namely, logarithmic quantization [29] and uniform quantization [5]. The differences between these two al-

gorithms are twofold: 1) the logarithmic one provides a non-uniform partition of the state space while the

uniform one is concerned with the uniform partition; and 2) the quantization levels of the logarithmic one

become finer in the region that is closer to the origin in a logarithmic way and, for the uniform one, the lengths
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of each two quantization regions are equal. It has been recognized that a logarithmic quantizer is more prefer-

able and practical to be implemented because fewer bits need to be communicated and the quantization error

will tend to zero when the signal tends to zero.

In what follows, we assume that an unreliable network medium is present between the physical plant and

the fault estimator, and the successive packet dropout phenomenon constitutes another focus of our present

research. The measurement received by the fault estimator can be described by

yf,k = δkȳk + (1− δk)yf,k−1 (8)

where yf,k ∈ R
ny with yf,s = 0 (s < 0) is the actual signal received by the estimator. δk ∈ R is a binary

distributed random variable with the following probability:

Prob{δk = 1} = δ̄, Prob{δk = 0} = 1− δ̄

where δ̄ ∈ [0, 1] is a known constant.

Setting α̃i,k := αi,k − ᾱi, β̃k := βk − β̄ and δ̃k := δk − δ̄, we have

E{α̃i,k} = 0, α̃i := E{α̃2
i,k} = ᾱi(1− ᾱi),

E{β̃k} = 0, β̃ := E{β̃2k} = β̄(1− β̄),

E{δ̃k} = 0, δ̃ := E{δ̃2k} = δ̄(1− δ̄).

Remark 2: In model (2), the uncertainty ∆Ak term behaves probabilistically owing to the introduction

of the random variable βk, which captures the characteristic of the ROUs. On the other hand, the model

presented in (8) has been introduced in [23] to describe the phenomenon of successive packet dropouts (SPDs).

For example, if δk = 1, one has yf,k = ȳk, which means that the packet dropout phenomenon does not occur;

if δk = 0, we have yf,k = yf,k−1, which means that the measured output at time point k is missing and the

received signal at last time is employed to compensate the effect from packet dropouts.

We construct the fault estimator in the following form:

{

x̂k+1 = Af,kx̂k +Bf,kyf,k

rk = Lf,k(yf,k − δ̄Ckx̂k)
(9)

where x̂k ∈ R
nx represents the state estimate, rk ∈ l([0, N ],Rnf ) is the fault estimate. Af,k, Bf,k and Lf,k are

the estimator gain matrices to be designed.

Our aim in this paper is to find an estimate rk of the fault fk, in terms of the actually received signal

{yf,k, 0 ≤ k ≤ N}, such that the following finite-horizon H∞ performance constraint is satisfied:

E{
∑N

k=0 ||rk − fk||
2}

E{||x0 − x̂0||2Θ0
+ sτs max

−τs≤i<0
||xi − x̂i||2Θ1

}+
∑N

k=0 ||wk||
2
Θ2

≤ γ2 (10)

where wk := [vTk fTk ]
T , γ is a given positive scalar, Θ0, Θ1 and Θ2 are known positive definite weighting

matrices. Without loss of generality, the initial state estimates x̂k (−τs ≤ k ≤ 0) are assumed to be zero.

Remark 3: The finite-horizon H∞ performance index is employed to reflect the effects from the disturbance

inputs and the initial states on the dynamics of the fault error rk − fk. It should be pointed out that, the

choices of weight matrixes Θ0, Θ1 and Θ2 are important to adjust the effects from the exogenous disturbances

and the initial states on the fault estimator.
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For the purpose of simplicity, denote

ηk := [xTk x̂Tk yTf,k−1]
T , ~k := hk(ϕx,k), e

f
k := rk − fk.

From (2), (7), (8), and (9), we obtain the following augmented system

{

ηk+1 = Ā1,kηk + β̃k∆A1,kηk + δ̃kĀ2,kηk + S~k + B̄1,kωk + δ̃kB̄2,kωk,

efk = C̄1,kηk + δ̃kC̄2,kηk + D̄1,kωk + δ̃kD̄2,kωk

(11)

where

Ā1,k = A1,k + β̄∆A1,k + δ̄∆A2,k, Ā2,k = A2,k +∆A2,k, S = [I 0....0]T ,

A1,k =







Ak 0 0

δ̄Bf,kCk Af,k (1− δ̄)Bf,k

δ̄Ck 0 (1− δ̄)I






, ∆A1,k =







∆Ak 0 0

0 0 0

0 0 0






,

A2,k =







0 0 0

Bf,kCk 0 −Bf,k

Ck 0 −I






, ∆A2,k =







0 0 0

Bf,k∆kCk 0 0

∆kCk 0 0






,

B̄1,k = δ̄Bk + E1,k + δ̄∆Bk, B̄2,k = Bk +∆Bk,

Bk =







0 0

Bf,kD2,k Bf,kF2,k

D2,k F2,k






, ∆Bk =







0 0

Bf,k∆kD2,k Bf,k∆kF2,k

∆kD2,k ∆kF2,k






,

E1,k =
[

DF (k) 0 0
]T
, DF (k) =

[

D1,k F1,k

]T
,

C̄1,k = C1,k + δ̄∆Ck, C̄2,k = C2,k +∆Ck, ∆Ck = [ Lf,k∆kCk 0 0],

C1,k = [δ̄Lf,kCk − δ̄Lf,kCk (1− δ̄)Lf,k], C2,k = [ Lf,kCk 0 − Lf,k],

D̄1,k = E2 + δ̄Dk + δ̄∆Dk, D̄2,k = ∆Dk +Dk E2 = [0 − I],

Dk = [Lf,kD2,k Lf,kF2,k], ∆Dk = [Lf,k∆kD2,k Lf,k∆kF2,k].

III. Main Results

In this section, by resorting to the stochastic analysis technique, some sufficient conditions are derived such

that the disturbance rejection attenuation is constrained to a given level by means of the H∞ performance

index.

Denote η∗k = [ηTk−τ1
ηTk−τ2

· · · ηTk−τs
]T and η̃k = [ηTk ~

T
k ωT

k η∗Tk ]T . Before proceeding further, we introduce

the following lemmas which will be needed for the derivation of our main results.

Lemma 1: (Boyd et al. [3]) Let M =MT and W and V be real matrices of appropriate dimensions with V

satisfying V TV ≤ I. Then, M + UVW +W TV TUT ≤ 0, if and only if there exists a positive scalar ̺ > 0

such that M + ̺−1UUT + ̺W TW < 0 or equivalently







M U ̺W T

∗ −̺I 0

∗ ∗ −̺I






< 0.
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Lemma 2: For the given symmetric positive definite matrices Pk and Qk, the following cost function

Vk = ηTk Pkηk +
s

∑

i=1

k−1
∑

j=k−τi

ηTj Qjηj (12)

satisfies

E{∆Vk} := E{Vk+1 − Vk} = E{η̃Tk Π
k
1 η̃k} (13)

where

Πk
1 =













Πk
11 Πk

12 Πk
13 0

∗ Πk
22 Πk

23 0

∗ ∗ Πk
33 0

∗ ∗ ∗ Πk
44













,

Πk
11 = ĀT

1kPk+1Ā1k + β̃∆AT
1kPk+1∆A1k + δ̃ĀT

2kPk+1Ā2k − Pk + sQk,

Πk
12 = ĀT

1kPk+1S, Πk
13 = ĀT

1kPk+1B̄1k + δ̃ĀT
2kPk+1B̄2k,

Πk
22 = STPk+1S, Πk

23 = STPk+1B̄1k, Πk
33 = B̄T

1kPk+1B̄1k + δ̃B̄T
2kPk+1B̄2k,

Πk
44 = −diag

{

Qk−τ1 ,Qk−τ2 , · · · ,Qk−τs

}

.

Proof: By calculating the difference of the first term in Vk along the trajectory of the system (11) and

taking the mathematical expectation, we have

E{ηTk+1Pk+1ηk+1 − ηTk Pkηk}

= E

{

(

Ā1kηk + β̃k∆A1kηk + δ̃kĀ2kηk + S~k + B̄1kωk + δ̃kB̄2kωk

)T
Pk+1

×
(

Ā1kηk + β̃k∆A1kηk + δ̃kĀ2kηk + S~k + B̄1kωk + δ̃kB̄2kωk

)

− ηTk Pkηk

}

= E

{

ηTk Ā
T
1kPk+1Ā1kηk + 2ηTk Ā

T
1kPk+1S~k + 2ηTk Ā

T
1kPk+1B̄1kωk

+ β̃ηTk ∆AT
1kPk+1∆A1kηk + δ̃ηTk Ā

T
2kPk+1Ā2kηk + 2δ̃ηTk Ā

T
2kPk+1B̄2kωk

+ ~
T
k S

TPk+1S~k + 2~Tk S
TPk+1B̄1kωk + ωT

k B̄
T
1kPk+1B̄1kωk

+ δ̃ωT
k B̄

T
2kPk+1B̄2kωk − ηTk Pkηk

}

.

(14)

On the other hand, it is not difficult to show that

E

{

s
∑

i=1

k
∑

j=k+1−τi

ηTj Qjηj −
s

∑

i=1

k−1
∑

j=k−τi

ηTj Qjηj

}

= E

{

s
∑

i=1

(

k
∑

j=k+1−τi

ηTj Qjηj −
k−1
∑

j=k−τi

ηTj Qjηj

)}

=

s
∑

i=1

E

{

ηTk Qkηk − ηTk−τi
Qk−τiηk−τi

}

= E

{

sηTk Qkηk − η∗Tk diag
{

Qk−τ1 ,Qk−τ2 , · · · ,Qk−τs

}

η∗k

}

.

(15)

Obviously, it follows from (14) and (15) that the equality (13) holds, which completes the proof.

Next, let us proceed with the H∞ performance of the augmented system (11), i.e., presenting sufficient

conditions under which the performance index is achieved for a given estimator.



FINAL VERSION 8

Theorem 1: Consider the nonlinear system (2) in the presence of ROUs, quantization effects, successive

packet dropouts as well as multiple stochastic delays. For the given positive scalar γ > 0, positive definite

matrices Θi > 0 (i = 0, 1, 2) and fault estimator parameters Af (k), Bf (k) and Lf (k) in (9), the augmented

system (11) satisfies the desired H∞ performance requirement defined in (10) if there exist a family of positive

scalars {εk}k∈[0,N ] and two sequences of positive definite matrices {Pk}k∈[0,N+1], {Qk}k∈[−τs,N ] satisfying the

initial conditions

P0 ≤ γ2Θ0, Qk ≤ γ2Θ1, k = −τs,−τs + 1, · · · ,−1 (16)

and the following recursive matrix inequality

Πk
2 =













Π̄k
11 Πk

12 Π̄k
13 0

∗ Π̄k
22 Πk

23 0

∗ ∗ Π̄k
33 0

∗ ∗ ∗ Π̄k
44













< 0, (17)

for all 0 ≤ k ≤ N , where

Π̄k
11 = Πk

11 + C̄T
1kC̄1k + δ̃C̄T

2kC̄2k, Π̄k
13 = Πk

13 + C̄T
1kD̄1k + δ̃C̄T

2kD̄2k,

Π̄k
22 = Πk

22 − εkI, Π̄k
33 = Πk

33 + D̄T
1kD̄1k + δ̃D̄T

2kD̄2k − γ2Θ2,

Π̄k
44 = Πk

44 + εkλ
2
kΛ, Λ =

[

ᾱiᾱjI
]

s×s
− diag{α̃1I, α̃2I, · · · , α̃sI}.

Proof: In order to analyze the H∞ performance of the system (11), define the following cost function

J (k) = ηTk+1Pk+1ηk+1 − ηTk Pkηk +
s

∑

i=1

(

k
∑

j=k+1−τi

ηTj Qjηj −
k−1
∑

j=k−τi

ηTj Qjηj

)

. (18)

Denoting Λk = [ α1(k)I, α2(k)I, · · · , αs(k)I ], it can be readily verified from (4) that the nonlinear

function ~k satisfies

~
T
k ~k − λ2kη

∗T
k (ΛT

k Λk)η
∗
k ≤ 0. (19)

Substituting the above inequality into (18) results in

E{J (k)} ≤ E

{

η̃Tk Π
k
1η̃k − εk

{

~
T
k ~k − λ2kη

∗T
k (ΛT

kΛk)η
∗
k

}

}

. (20)

On the other hand, it follows from (11) that

E{||efk ||
2} = E

{

(

C̄1kηk + δ̃kC2kηk + D̄1kωk + δ̃kD̄2kωk

)T

×
(

C̄1kηk + δ̃kC2kηk + D̄1kωk + δ̃kD̄2kωk

)

}

= E

{

ηTk C̄
T
1kC̄1kηk + 2ηTk C̄1kD̄1kωk + δ̃ηTk C̄

T
2kC̄2kηk

+ 2δ̃ηTk C̄
T
2kD̄2kωk + ωT

k D̄
T
1kD̄1kωk + δ̃ωT

k D̄
T
2kD̄2kωk

}

.

(21)
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Furthermore, adding the zero term E{||efk ||
2 − γ2||wk||

2
Θ2

−
(

||efk ||
2 − γ2||wk||

2
Θ2

)

} to E{J (k)} yields

E{J (k)} ≤ E

{

η̃Tk Π
k
1η̃k − εk~

T
k ~k + λ2kεkη

∗T
k Λη∗k + ηTk C̄

T
1kC̄1kηk

+ 2ηTk C̄1kD̄1kωk + δ̃ηTk C̄
T
2kC̄2kηk + 2δ̃ηTk C̄

T
2kD̄2kωk + ωT

k D̄
T
1kD̄1kωk

+ δ̃ωT
k D̄

T
2kD̄2kωk − γ2||wk||

2
Θ2

}

− E

{

||efk ||
2 − γ2||wk||

2
Θ2

}

= E

{

η̃Tk Π
k
2η̃k

}

− E

{

||efk ||
2 − γ2||wk||

2
Θ2

}

.

(22)

Summing up (22) on both sides from 0 to N with respect to k, we obtain

N
∑

k=0

E{J (k)} = E{VN+1} − E{V0}

≤ E

{

N
∑

k=0

η̃Tk Π
k
2 η̃k

}

− E

{

N
∑

k=0

(

||efk ||
2 − γ2||wk||

2
Θ2

)

}

(23)

which implies that

E{VN+1} ≤ − E

{

N
∑

k=0

(

||efk ||
2 − γ2||wk||

2
Θ2

)

}

+ E{V0}

= − E

{

N
∑

k=0

(

||efk ||
2 − γ2||wk||

2
Θ2

)

}

+ E

{

ηT0 P0η0 +

s
∑

i=1

−1
∑

j=−τi

ηTj Qjηj

}

= − E

{

N
∑

k=0

(

||efk ||
2 − γ2||wk||

2
Θ2

)

− γ2
(

ηT0 Θ0η0 + sτs max
−τs≤i<0

ηTi Θ1ηi

)}

+ E

{

ηT0 P0η0 +
s

∑

i=1

−1
∑

j=−τi

ηTj Qjηj − γ2
(

ηT0 Θ0η0 + sτs max
−τs≤i<0

ηTi Θ1ηi

)}

.

(24)

According to the above inequality and the condition (16), it is easy to find that the H∞ performance index

(10) holds, which completes the proof.

Based on the analysis results with a given fault estimator, we are now ready to handle the fault estimator

design issue. In the following theorem, sufficient conditions are provided for the existence of the desired fault

estimators.

Theorem 2: Consider the nonlinear system (2) in the presence of ROUs, quantization effects, successive

packet dropouts as well as multiple stochastic delays. For the given positive scalar γ > 0 and positive definite

matrices Θi > 0 (i = 0, 1, 2), the augmented system (11) satisfies the desired H∞ performance requirement in

(10) if there exist families of positive scalars {εk, ̺1k, ̺2k}k∈[0,N ], positive definite matrices {Pk, P̄k}k∈[0,N+1]

and {Qk, Q̄k}k∈[−τs,N ], and real-valued matrices {Y1,k, Y2,k, Lf,k}k∈[0,N ] satisfying the initial conditions

P0 ≤ γ2Θ0, Qj ≤ γ2Θ1, j = −τs,−τs + 1, · · · ,−1 (25)
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and the following recursive matrix inequality























Ξk
11 Ξk

12 0 0 ̺1,kÑ
1T
k ̺2,kÑ

2T
k

∗ Ξk
22 Ῡk

17 Ῡk
18 0 0

∗ ∗ −̺1,kI 0 0 0

∗ ∗ ∗ −̺2,kI 0 0

∗ ∗ ∗ ∗ −̺1,kI 0

∗ ∗ ∗ ∗ ∗ −̺2,kI























< 0 (26)

where

Ξk
11 = diag

{

− Pk + sQk, −εkI, −γ
2Θ2, Π̄

k
44

}

, Pk = diag{Pk, Pk, P̄k},

Ξk
12 =

[

(Ῡk
12)

T (Ῡk
13)

T 0 (Ῡk
15)

T (Ῡk
16)

T
]

, Sk = [ Pk 0 · · · 0 ]T ,

Ξk
22 = diag{−Pk+1, −Pk+1, −Pk+1, −I, −I}, Qk = diag{Qk, Qk, Q̄k}

Ῡk
12 =

[

A1,k Sk δ̄Bk + Dk 0
]

, Ῡk
13 =

[

√

δ̃A2,k 0
√

δ̃Bk 0
]

,

Ῡk
15 =

[

C1k 0 E2 + δ̄Dk 0
]

, Ῡk
16 =

[

√

δ̃C2,k 0
√

δ̃Dk 0
]

,

Ῡk
17 = [β̄Ῡk

19 0

√

β̃Ῡk
19 0 0]T , Yk = [ 0 Y T

2,k Pk+1 ]
T

Ῡk
18 = [δ̄YT

k

√

δ̃YT
k 0 δ̄LT

f,k

√

δ̃LT
f,k]

T , Ῡk
19 = [MT

k Pk+1 0 0 ]T ,

Ñ 1
k =

[

[Nk 0 0 ] 0 0 0], Ñ 2
k =

[

Γ[Ck 0 0 ] 0 Γ[D2,k F2,k] 0
]

,

A1,k =







Pk+1Ak 0 0

δ̄Y2,kCk Y1,k (1− δ̄)Y2,k

δ̄Pk+1Ck 0 (1− δ̄)Pk+1






, Bk =







0 0

Y2,kD2,k Y2,kF2,k

Pk+1D2,k Pk+1F2,k






,

A2,k =







0 0 0

Y2,kCk 0 −Y2,k

Pk+1Ck 0 −Pk+1






, Dk =







Pk+1D1,k Pk+1F1,k

0 0

0 0






.

Furthermore, if (26) holds, then the other two parameters of the fault estimator in the form of (9) are given

by Af,k = P−1
k+1Y1,k and Bf,k = P−1

k+1Y2,k.

Proof: First, (17) can be rewritten as

Πk
2 = Ξk

11 + (Υk
12)

TPk+1Υ
k
12 + (Υk

13)
TPk+1Υ

k
13

+ (Υk
14)

TPk+1Υ
k
14 + (Υk

15)
TΥk

15 + (Υk
16)

TΥk
16 < 0

(27)

where

Υk
12 =

[

Ā1,k S B̄1,k 0
]

, Υk
13 =

[

√

δ̃Ā2,k 0
√

δ̃B̄2,k 0
]

,

Υk
14 =

[

√

β̃∆A1,k 0 0 0
]

, Υk
15 =

[

C̄1,k 0 D̄1,k 0
]

,

Υk
16 =

[

√

δ̃C̄2,k 0
√

δ̃D̄2,k 0
]

.
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Then, by exploiting the Schur Complement Lemma, the above inequality is equivalent to

Πk
3 :=























Ξk
11 (Υ̃k

12 +∆Υk
12)

TPk+1 (Υ̃k
13 +∆Υk

13)
TPk+1

∗ −Pk+1 0

∗ ∗ −Pk+1

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

ΥkT
14 Pk+1 (Ῡk

15 +∆Υk
15)

T (Ῡk
16 +∆Υk

16)
T

0 0 0

0 0 0

−Pk+1 0 0

∗ −I 0

∗ ∗ −I























< 0

where

Υ̃k
12 =

[

A1,k S δ̄Bk + E1 0
]

, Υ̃k
13 =

[

√

δ̃A2,k 0
√

δ̃Bk 0
]

,

∆Υk
12 =

[

β̄∆A1,k + δ̄∆A2,k 0 δ̄∆Bk 0
]

, ∆Υk
13 =

[

√

δ̃∆A2,k 0
√

δ̃∆Bk 0
]

,

∆Υk
15 =

[

δ̄∆Ck 0 δ̄∆Dk 0
]

, ∆Υk
16 =

[

√

δ̃∆Ck 0
√

δ̃∆Dk 0
]

.

Note that Πk
3 can be decomposed as follows:

Πk
3 := Π̆k

3 +∆Πk
3 =























Ξk
11 Υ̃kT

12 Pk+1 Υ̃kT
13 Pk+1 0 ῩkT

15 ῩkT
16

∗ −Pk+1 0 0 0 0

∗ ∗ −Pk+1 0 0 0

∗ ∗ ∗ −Pk+1 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −I























+























0 ∆ΥkT
12 Pk+1 ∆ΥkT

13 Pk+1 ΥkT
14 Pk+1 ∆ΥkT

15 ∆ΥkT
16

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0























.

Furthermore, one has

∆Πk
3 =

[

0

M̃1
k

]

R1,k

[

Ñ 1
k 0

]

+
[

Ñ 1
k 0

]T

RT
1,k

[

0

M̃1
k

]T

+

[

0

M̃2
k

]

R2,k

[

Ñ 2
k 0

]

+
[

Ñ 2
k 0

]T

RT
2,k

[

0

M̃2
k

]T
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where

M̃1
k = [β̄(Pk+1Mk)

T 0

√

β̃(Pk+1Mk)
T 0 0]T ,

M̃2
k = [δ̄(Pk+1B̃k)

T
√

δ̃(Pk+1B̃k)
T 0 δ̄LT

f,k

√

δ̃LT
f,k]

T ,

Mk = [MT
k 0 0 ]T , B̃k = [ 0 BT

f,k I ]T .

In terms of the above equality and Lemma 1, it is easy to find that (27) holds if the following inequality























Ξk
11 Ξk

12 0 0 ̺1,k
˜N1T
k ̺2,k

˜N2T
k

∗ Ξk
22 M̃1

k M̃2
k 0 0

∗ ∗ −̺1,kI 0 0 0

∗ ∗ ∗ −̺2,kI 0 0

∗ ∗ ∗ ∗ −̺1,kI 0

∗ ∗ ∗ ∗ ∗ −̺2,kI























< 0 (28)

is true. Defining Y1,k := Pk+1Af,k and Y2,k := Pk+1Bf,k, it is not difficult to see that (28) is equivalent to

(26). Finally, based on Theorem 1, the desired H∞ performance requirement of the augmented system (11)

is guaranteed, which completes the proof.

Remark 4: For the stochastic time-varying model (2) under consideration in this paper, there are five main

aspects which complicate the design of the fault estimator, i.e. ROUs, quantization effects, successive packet

dropouts, multiple stochastic delays and nonlinearities. In Theorem 2, sufficient conditions, which include

all of the information on these five aspects, are established for a finite-horizon fault estimator to satisfy

the prescribed H∞ performance requirement. The corresponding solvability conditions for the desired fault

estimator gains are expressed in terms of the feasibility of a series of recursive linear matrix inequalities

(RLMIs). Note that the RLMIs provided in Theorem 2 are time-varying and non-strict, which depend on

both the variable matrices at the current time Pk and Qk and the variable matrices at the next time Pk+1 and

Qk+1. In addition, the solution of the RLMI is also dependent on the choices of initial conditions. Compared

to the traditional static (non-recursive) LMIs, our developed algorithm would enjoy the advantage of less

conservatism since more information about the system state is employed.

IV. A Numerical Example

In this section, a numerical example is presented to illustrate the effectiveness of the proposed design scheme

of finite-horizon H∞ fault estimator for discrete time-varying nonlinear systems (2) with ROUs, quantization

effects, successive packet dropouts as well as multiple stochastic delays. The corresponding parameters are

given as follows

Ak =

[

0.24 −0.18

0.36 0.20 + 0.07 sin(k)

]

, Ck =

[

0.13

−0.13

]T

, D1,k =

[

0.08

−0.05

]T

,

D2,k = 0.12, F1,k =

[

−0.28

−0.40

]T

, F2,k = −0.12, Mk =

[

0.05

−0.10

]

, Nk =

[

0.05

0

]T

.

Let the nonlinear vector-valued function hk(x) be

hk(x) =
[

0.75 sin(x1) 0.75 sin(x2)
]T
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where xi (i = 1, 2) denotes the i-th element of the vector x. The probabilities of delays, ROUs and packet

dropouts are, respectively, taken as α1 = 0.15, α2 = 0.05, β = 0.85 and δ = 0.85. The time-delays τ1 and τ2

are 1 and 3. The parameters of the logarithmic quantizer are χ
(i)
0 = 0.005 and ̺i = 0.9 (i = 1, 2, · · · , ny). In

addition, in this example, the H∞ performance level γ, the time-horizon N and three positive definite matrices

Θ0, Θ1 and Θ2 in (10) are, respectively, 0.98, 25, 10I, 20I and 10I. By using the Matlab software, a set of

solutions to RLMIs in Theorem 2 is obtained and the fault estimator gain matrices are shown in TABLE I.

TABLE I

Estimator parameters

k Af (k) Bf (k) Lf (k)

0

[

0.0139 0

0 0

] [

0

0

]

-2.7273

1

[

0.4120 0.0078

0 0

] [

0.0281

0

]

-3.0422

2

[

0.4478 0.0205

−0.0241 −0.4507

] [

0.0646

0.0997

]

-3.3395

3

[

0.4534 0.0181

−0.0222 −0.4295

] [

0.0691

0.1085

]

-3.4315

4

[

0.4865 0.0020

−0.0025 −0.4625

] [

0.0742

0.1104

]

-3.0205

...
...

...
...

24

[

0.4604 −0.0181

0.0220 −0.4392

] [

0.1218

0.1932

]

-3.2930

25

[

0.4598 −0.0103

0.0125 −0.4488

] [

0.1180

0.1922

]

-3.2920

In the simulation, the exogenous disturbance inputs are selected as

wk = 5 sin(k), vk = 0.8 cos(0.7k), ξk = 0.48 cos(0.2k).

The simulation results are shown in Fig. 1 and Fig. 2, where Fig. 1 plots the measurement outputs and the

actual signals received by the estimator, and Fig. 2 depicts the fault fk and its estimate rk. The simulation

results have confirmed that the designed estimator performs very well over a finite time horizon.

V. Conclusions

In this paper, the H∞ finite-horizon fault estimation issue has been investigated for discrete time-varying

stochastic systems with nonlinearities, quantization effects, ROUs, successive dropouts as well as multiple

stochastic delays. The last three phenomena have been governed by some Bernoulli-distributed white se-

quences with known conditional probabilities. By recurring to the intensive stochastic analysis techniques,

some sufficient conditions have been established for the existence of the desired H∞ fault estimator. Then,

all the estimator parameters have been designed simultaneously by solving a set of RLMIs. Finally, a numer-

ical simulation example has been exploited to demonstrate the effectiveness of the fault estimation scheme

presented in this paper.
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