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Abstract

This paper is concerned with the robust reliable H∞ output-feedback control problem for a class of uncertain spatial-

temporal systems. The system under consideration resides in a given discrete rectangular region and its states evolve

not only over time but also over space. A set of sensors located at the specified points is used to measure the system

outputs. Based on the available measurement outputs, the static output feedback control strategy is adopted where

both the parameter uncertainties and the actuator failures are taken into account. By reorganizing the state variables,

we first transform the closed-loop spatial-temporal system into an ordinary differential dynamic system. Then, by dint

of the Lyapunov stability theory, a sufficient condition is given that ensures the globally asymptotical stability as well as

the H∞ performance requirement for all the possible uncertainties and actuator failures. According to the performance

analysis, the desired robust reliable H∞ controller is designed in terms of a matrix inequality which can be solved by

available software. Finally, a numerical example is employed to demonstrate the effectiveness of the control scheme

proposed.
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I. Introduction

The past few decades have witnessed constant research interests on spatial-temporal systems because of their

enormous potential to represent the real physical systems in various areas such as the chemical engineering

[23], molecular biology [8] and population dynamic systems [11]. So far, there has been a rich body of

research results available in the literature with respect to various aspects of spatial-temporal systems. It is

well known that, comparing with the systems dependent on time only, the spatial-temporal systems exhibit

more complexities which bring significant difficulty in the analysis and synthesis of the system dynamics. A

conventional approach is to transform the spatial-temporal systems into an equivalent ordinary differential

system. For example, in [20], a linear parabolic stochastic spatial-temporal system has been converted into an

equivalent infinite-dimensional ordinary differential system. Then, in terms of the separation of eigenvalues,
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the infinite-dimensional ordinary differential system has been further separated into a finite-dimensional slow

mode and an infinite-dimensional fast mode. Finally, the desired stabilization controller has been derived via

designing a finite-dimensional controller for the finite-dimensional slow mode system. Based on the similar

idea, the robust H∞ filter has been designed for linear stochastic partial differential systems in [6] and the

robust H∞ observer-based stabilization problem has been studied in [7] for the same systems. Moreover, in

[34], the synchronization problem has been investigated for a class of coupled partial differential systems and

the synchronization criteria have been established.

Note that the system parameters in all the literature mentioned above have been assumed to be known

exactly. However, such an assumption is not always true in practical engineering and parameter uncertainties

are usually inevitable due to the effects from the modeling error and external disturbance. Such uncertainties,

if not taken into account appropriately, may deteriorate the prespecified control/estimation performance.

Therefore, in the past decade, uncertain systems have received considerable attention and a number of papers

have attempted to develop robust technologies to handle these uncertainties. For example, in [5,18,22,26,29,

32,35,37,38], a variety of robust controllers have been designed for uncertain systems where the uncertainties

are supposed be norm-bounded. In [13, 16, 19], the polytopic-type uncertainties have been considered and

the controllers/filters have been designed when the uncertain parameters reside in a polytope. In [15], the

robust technology has been developed to design the quadratic mini-max regulator for uncertain polynomial

systems. It should be pointed out that, despite the numerous robust control/filtering technologies developed

in the existing literature, the robust control problems for uncertain spatial-temporal systems have not been

fully investigated. Therefore, the first motivation of this paper is to shorten such a gap by developing a robust

H∞ control scheme for the uncertain spatial-temporal systems.

On the other hand, in practical control systems, the actuator failures often occur due to the component

aging and, in such a case, the performance of controlled systems can no longer be guaranteed by the control

scheme designed under the failure-free conditions. Therefore, it is of great necessity to redesign a controller

which can achieve the specified system performance in a reliable way. This is referred to as the reliable control

problem that has received increasing research attention, see e.g. [10,12,17,21,25,27,30,33,36]. Among others,

in [10,30,36], the reliable controller has been designed based on the state feedback control strategy. In many

cases, however, the system states are not directly accessible and we can only obtain the system information

from the measurable system output. In such a situation, in [12, 17], the output feedback reliable control

schemes have been proposed. It is worth mentioning that, to date, almost all the results on the reliable

control have been reported only for the systems dependent on time, and the corresponding results for the

spatial-temporal systems have been very few, not to mention the case where the parameter uncertainties are

also taken into account. Indeed, for spatial-temporal systems, due to the spatial-temporal nature, the design

problem of reliable controllers would be more challenging and some fundamental difficulties can be identified.

For example, does there exist a valid reliable controller for the spatial-temporal systems in the presence of

actuator faults and how to design such a reliable controller based on the measurement outputs to achieve

the prespecified system performance index? Therefore, the second motivation for our investigation is to offer

satisfactory answers to these two questions.

In this paper, the robust reliable H∞ output feedback control problem is addressed for a class of uncertain

spatial-temporal systems. The system of interest is subject to parameter uncertainties and evolves over both

time and space in a given discrete rectangular region. The measurements are received by a set of sensors

located in the specified rectangular region. The static output feedback control strategy is adopted and the
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actuator failure is taken into account. By reorganizing the state variables, the spatial-temporal systems is first

transformed into an ordinary differential dynamic system. Then, by using the Lyapunov stability theory, a

sufficient condition is obtained under which the dynamics of the closed-loop system is globally asymptotically

stable in probability and the controlled output satisfies the desired H∞ performance index. Based on the

established existence condition, the robust reliable H∞ controller is designed that can effectively handle both

the possible uncertainties and the actuator failures. Finally, a numerical simulation example is provided to

show the effectiveness of the control scheme proposed.

Notation The notation used here is fairly standard except where otherwise stated. Rn and R
n×m denote,

respectively, the n dimensional Euclidean space and the set of all n×m real matrices. ‖A‖ refers to the norm

of a matrix A defined by ‖A‖ =
√

trace(ATA). The notation X ≥ Y (respectively, X > Y ), where X and Y

are real symmetric matrices, means that X − Y is positive semi-definite (respectively, positive definite). MT

represents the transpose of the matrix M . I denotes the identity matrix of compatible dimension. diag{· · · }

stands for a block-diagonal matrix. E{x} stands for the expectation of the stochastic variable x. P{·} means

the occurrence probability of the event “·”. L2([0,∞);Rn) is the space of square integrable vector-valued

functions. “⊗” and “◦” represent the Kronecker and Hadamard products, respectively. In symmetric block

matrices, “∗” is used to denote a term induced by symmetry. Matrices, if they are not explicitly specified, are

assumed to have compatible dimensions.

II. Problem Formulation

Given a rectangular region [0, N1]×[0, N2], consider the following class of uncertain spatial-temporal systems

at location (k, l) (k ∈ [0, N1], l ∈ [0, N2])





dxk,l(t) =
{
(κ+∆κ)(xk+1,l(t) + xk−1,l(t) + xk,l+1(t) + xk,l−1(t)− 4xk,l(t))

+ (A+∆A)(xk+1,l(t) + xk,l+1(t)− 2xk,l(t)) + (B +∆B)xk,l(t)

+Dufk,l(t) +Gvk,l(t)
}
dt+Hxk,l(t)dWk,l(t),

yki,li(t) =T̄ki,lixki,li(t), i = 1, 2, · · · , ny

zk,l(t) =Mxk,l(t) + Ñufk,l(t),

(1)

where xk,l(t) ∈ R
n is the state vector, yki,li(t) ∈ R

m is the measurement output received by the sensor at

the location (ki, li), zk,l(t) ∈ R
nz is the controlled output, ufk,l(t) ∈ R

nu is the control input with actuator

failure, vk,l(t) ∈ R
nv is the external disturbance input belonging to L2([0,∞];Rn), and Wk,l(t) ∈ R is a

zero-mean Brownian motion with unit covariance. The initial values of states at the inner points are given

by xk,l(0) = x0k,l. κ ∈ R
n×n, A ∈ R

n×n, B ∈ R
n×n, D ∈ R

n×nu , G ∈ R
n×nv , H ∈ R

n×n, T̄ki,li ∈ R
m×n,

M ∈ R
nz×n and Ñ ∈ R

nz×nu are known real constant matrices, while ∆κ, ∆A and ∆B are uncertain matrices

representing parameter uncertainties which are assumed to be of the following form

[
∆κ ∆A ∆B

]
= ΓE(t)

[
Q1 Q2 Q3

]
(2)

where Γ, Q1, Q2 and Q3 are known real constant matrices with appropriate dimensions, and E(t) is an

unknown matrix satisfying E(t)E(t)T ≤ I.

Assumption 1: The values of states on the boundary satisfy the Dirichlet boundary condition, i.e., xk,l(t) = 0

for k = 0, N1 or l = 0, N2.

Assumption 2: The matrices T̄ki,li (i = 1, 2, · · · , ny) are of full row rank.
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Remark 1: Recently, continuous-spatial temporal systems (or partial differential systems) have received

much research attention, see. e.g. [6,7]. Model (1) can be viewed as the discrete-space version of continuous-

spatial temporal systems. Specifically, the first and second terms in model (1) are originally from the dis-

cretization of the second and first orders continuous partial derivatives, respectively.

The ny sensors under consideration are fitted at the positions of interest in the rectangular region. The

measurements are collected from all sensors and then sent to the controller at every position in the rectangular

region. That is, each controller in the rectangular region can access all the measurements from sensors. Define

y(t) = [yTk1,l1(t), . . . , y
T
kny ,lny

(t)]T . In this paper, the static output feedback control strategy is designed with

possible actuator failures. Specifically, the controller is given by

ufk,l(t) = FKk,ly(t) (3)

where F ∈ R
nu×nu is the actuator fault matrix and Kk,l ∈ R

nu×mny denotes the control gain to be determined.

The actuator fault matrix F is defined as

F = diag{f1, . . . , fnu} (4)

where fi (i = 1, . . . , nu) describes the failures of actuators satisfying f
i
≤ fi ≤ f i.

Set

F0 = diag

{
f
1
+ f1

2
, . . . ,

f
nu

+ fnu

2

}
,

F̃ = diag

{
f1 − f

1

2
, . . . ,

fnu
− f

nu

2

}
.

The actuator fault matrix F can be written as F = F0 +∆F where ∆F ≤ F̃ .

Remark 2: Different from traditional Itô stochastic systems, in the stochastic spatial-temporal systems

under consideration, the evolution of the system states is dependent on not only time but also the space. In

this paper, we make the first attempt to develop a robust reliable H∞ output-feedback control approach for

the uncertain spatial-temporal systems to cope with the difficulties resulting from such dual natures of time

and space.

In what follows, we transform the spatial-temporal system (1) into an ordinary differential dynamic system.

Collect all the state variable xk,l(t) (k = 0, 1, · · · , N1, l = 0, 1, · · · , N2) and reorganize them into a new vector

as follows:

x(t) =
[
xT0,0(t) . . . x

T
k,0(t) . . . x

T
N1,0

(t) . . . xTk,l(t) . . . x
T
0,N2

(t) . . . xTk,N2
(t) . . . xTN1,N2

(t)
]T

. (5)

For the purpose of notation simplicity, we denote xk,l(t) in the above vector by xj(t) where j = l(N1+1)+k+1.

Obviously, j can take the values from 1 to N = (N1+1)(N2+1) and the set of boundary points can be denoted

by J := {j = l(N1+1)+ k+1|k = 0 or k = N1 or l = 0 or l = N2}. Similarly, we can define uf (t), v(t), W (t),

z(t), ufj (t), vj(t), Wj(t) and zj(t).
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By using the above notations, the spatial-temporal system (1) can be represented by a stochastic differential

equation as follows:





dxj(t) =[(κ+∆κ)T1jx(t) + (A+∆A)T2jx(t) + (B +∆B)xj(t) +Dufj (t) +Gvj(t)]dt

+Hxj(t)dWj(t),

y(t) =C̄x(t),

zj(t) =Mxj(t) + Ñufj (t),

(6)

where

T1j =





[

j−N1−2︷ ︸︸ ︷
0 . . . 0 In

N1−1︷ ︸︸ ︷
0 . . . 0 In − 4In In

N1−1︷ ︸︸ ︷
0 . . . 0 In

N−j−N1−1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

N

], j /∈ J,

0, j ∈ J,

T2j =





[

j−1︷ ︸︸ ︷
0 . . . 0 −2In In

N1−1︷ ︸︸ ︷
0 . . . 0 In

N−j−N1−1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸

N

], j /∈ J,

0, j ∈ J,

C̄ = [CT
1 CT

2 . . . CT
ny
]T

with

Ci = [

ji−1︷ ︸︸ ︷
0 . . . 0 T̄ki,li 0 . . . 0︸ ︷︷ ︸

N

], ji = li(N1 + 1) + ki + 1.

The controller can be described as

ufj (t) = FKjy(t)

where Kj is a matrix obtained from all Kk,l (k = 0, 1, · · · , N1, l = 0, 1, · · · , N2) by using the constructing

method similar to that of xj(t).

By setting

T1 =
[
T T
11 T T

12 . . . T T
1N

]T
, T2 =

[
T T
21 T T

22 . . . T T
2N

]T
,

K̄ =
[
KT

1 KT
2 . . . KT

N

]T
, B̄ = IN ⊗D, Ḡ = IN ⊗G,

Ā = (IN ⊗ κ)T1 + (IN ⊗A)T2 + IN ⊗B, H̄ = IN ⊗H,

∆Ā = (IN ⊗ Γ)(IN ⊗ E(t))[(IN ⊗Q1)T1 + (IN ⊗Q2)T2 + IN ⊗Q3],

F̆ = IN ⊗ F, W̄ (t) =
[
W1(t)J

T W2(t)J
T . . . WN (t)JT

]T
,

J =
[
1 1 . . . 1

]T
, M̄ = IN ⊗M, N̄ = IN ⊗ Ñ ,

F̄0 = IN ⊗ F0, F̂ = IN ⊗ F̃ , Γ̄ = IN ⊗ Γ, Ē(t) = IN ⊗E(t),

Q̄ = (IN ⊗Q1)T1 + (IN ⊗Q2)T2 + IN ⊗Q3,

we arrive at the following augmented system

{
dx(t) =[(Ă+∆Ā)x(t) + Ḡv(t)]dt+ H̄x(t) ◦ dW̄ (t),

z(t) =M̆x(t)
(7)
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where

Ă = Ā+ B̄F̆ K̄C̄, M̆ = M̄ + N̄ F̆ K̄C̄. (8)

Note that the augmented system (7) is inherently a stochastic system due to the existence of stochastic

process W̄ (t). Therefore, we need to introduce the following stochastic stability concept.

Definition 1: [28] The zero solution of the system (7) with v(t) = 0 is said to be globally asymptotically

stable in probability if, (i) for any ε > 0, limx0→0 P{supt≥0 ‖x(t)‖ > ε} = 0 and (ii) for any initial condition

x(0), P{limt→0 ‖x(t)‖ = 0} = 1.

We are now ready to state the robust reliable H∞ output feedback control problem as follows. For the

spatial-temporal system (1), we are interested in finding the control gain K̄ such that, for all the possible

uncertainties and actuator failures, the following two requirements are simultaneously satisfied.

1) The zero solution of the system (7) with v(t) = 0 is globally asymptotically stable in probability;

2) Under the zero initial condition, the controlled output z(t) satisfies

E

∫ ∞

0

‖z(t)‖2dt < γ2E

∫ ∞

0

‖v(t)‖2dt (9)

for all nonzero v(t), where γ > 0 is a given disturbance attenuation level.

III. Main Results

In this section, the H∞ performance analysis is first conducted and a sufficient condition is given which

guarantees the H∞ performance as well as the stability of the augmented system (7). Then, according to the

analysis results derived, the desired robust reliable H∞ output feedback controller is designed.

The following lemmas are needed in deriving our main results.

Lemma 1: [4] Given constant matrices S1, S2 and S3, where S1 = ST
1 and S2 = ST

2 > 0, then S1 +

ST
3 S

−1
2

S3 < 0 if and only if
[
S1 ST

3

S3 −S2

]
< 0 or

[
−S2 S3

ST
3 S1

]
< 0. (10)

Lemma 2: [4] Let J = JT , M and N be real matrices of appropriate dimensions with F satisfying FF T ≤ I.

Then J+MFN+NTF TMT < 0 if and only if there exists a positive scalar σ such that J+σMMT+σ−1NTN <

0 or, equivalently,




J σM NT

σMT −σI 0

N 0 −σI


 < 0. (11)

In the following theorem, a sufficient condition is derived under which the requirements 1) and 2) given in

Section II are simultaneously met.

Theorem 1: Let the controller parameter K̄ and the disturbance attenuation level γ > 0 be given. Then,

the zero solution of the system (7) with v(t) = 0 is globally asymptotically stable in probability and the

controlled output z(t) satisfies the H∞ performance constraint (9) for all nonzero exogenous disturbances

under the zero initial condition if there exists a positive definite matrix P > 0 such that the following matrix

inequality holds:

Ξ :=

[
Ξ11 PḠ

ḠTP −γ2I

]
< 0 (12)
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where Ξ11 = P (Ă+∆Ā) + (Ă+∆Ā)TP + M̌T M̌ + H̄TPH̄.

Proof: Let the Lyapunov function be V (x(t)) = xT (t)Px(t) and its infinitesimal operator LV (x(t)) be

given by

LV (x(t)) :=
∂V T (x(t))

∂x
[(Ă+∆Ā)x(t)] +

1

2
[H̄x(t)]T

∂2V (x(t))

∂x2
[H̄x(t)].

Noting that
∂V (x(t))

∂x
= 2Px(t),

∂2V (x(t))

∂x2
= 2P,

we have

LV (x(t)) = xT (t)[P (Ă+∆Ā) + (Ă+∆Ā)TP + H̄TPH̄]x(t).

On the other hand, it is easily known from inequality (12) that

P (Ă+∆Ā) + (Ă+∆Ā)TP + H̄TPH̄ < 0,

which implies

LV (x(t)) < 0.

From the stochastic Lyapunov stability theory [14], it can be shown that the system (7) with v(t) = 0 is

globally asymptotically stable in probability.

Next, we shall show that, under zero initial conditions, the controlled output z(t) satisfies the H∞ perfor-

mance constraint (9) for all nonzero v(t). By employing the Itô formula, it can be obtained that

E

∫ tf

0

‖z(t)‖2dt− γ2E

∫ tf

0

‖v(t)‖2dt

=E

∫ tf

0

(zT (t)z(t) − γ2vT (t)v(t))dt

=E

∫ tf

0

[(xT (t)M̆T M̆x(t)− γ2vT (t)v(t))dt+ d(xT (t)Px(t))] − E(xT (tf )Px(tf ))

≤E

∫ tf

0

xT (t)(P (Ă +∆Ā) + (Ă+∆Ā)TP + M̌T M̌ + H̄TPH̄)x(t) + vT (t)ḠTPx(t)

+ xT (t)PḠv(t)− γ2vT (t)v(t)]dt

=E

∫ tf

0

[
x(t)

v(t)

]T

Ξ

[
x(t)

v(t)

]
dt.

By considering condition (12), we have E
∫ tf
0

‖z(t)‖2dt < γ2E
∫ tf
0

‖v(t)‖2dt, from which theH∞ performance

index can be ensured by letting tf → ∞. The proof of Theorem 1 is accomplished.

Having conducted the performance analysis in Theorem 1, we are now in a position to deal with the problem

of designing the robust reliable H∞ controller for the spatial-temporal system (1). The following theorem

shows that the addressed controller design problem is solvable if a matrix inequality is feasible.

Theorem 2: Let the disturbance attenuation level γ > 0 be given. The robust reliable H∞ control problem

is solvable for the system (1) if there exist a positive definite matrix P̂ , real matrices Y and Z, positive scalars

ε1 and ε2 such that

Ψ̆ =

[
Ψ̂0 Π̂12

∗ Π̂22

]
< 0, (13)
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ZC̄ = C̄P̂ (14)

where

Ψ̂0 =




Ψ̂11
0 Ḡ P̂ M̄T + C̄TY T F̄0

T
N̄T P̂ H̄T ε1Γ̄ P̂ Q̄T

∗ −γ2I 0 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −P̂ 0 0

∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ −ε1I




,

Ψ̂11
0 =ĀP̂ + P̂ ĀT + B̄F̄0Y C̄ + C̄TY T F̄0

T
B̄T , Π̂22 = diag{−ε2I,−ε2I},

Π̂12 =

[
ε2F̂

T B̄T 0 ε2F̂
T N̄T 0 0 0

Y C̄ 0 0 0 0 0

]T

.

(15)

Moreover, if inequality (13) with (14) is feasible, the desired parameter of the desired controller K̄ is given as

follows:

K̄ = Y Z−1. (16)

Proof: Pre and post-multiplying (12) in Theorem 1 by diag{P̂ , I} where P̂ = P−1, we can obtain that
[
(Ă+∆Ā)P̂ + P̂ (Ă+∆Ā)T + P̂ M̌T M̌P̂ + P̂ H̄TPH̄P̂ Ḡ

∗ −γ2I

]
< 0. (17)

By using Lemma 1, it can be seen that (17) is equivalent to

Π :=

[
(Ă+∆Ā)P̂ + P̂ (Ă+∆Ā)

T
Π12

∗ Π22

]
< 0 (18)

where

Π22 =



−γ2I 0 0

∗ −I 0

∗ ∗ −P̂


 , Π12 =

[
Ḡ P̂ M̌T P̂ H̄T

]
.

Next, we rewrite Π as follows:

Π =

[
ĂP̂ + P̂ ĂT Π12

∗ Π22

]
+

[
∆ĀP̂ + P̂∆Ā

T
0

∗ 0

]

=

[
ĂP̂ + P̂ ĂT Π12

∗ Π22

]
+

[
Γ̄

0

]
Ē(t)

[
Q̄P̂ 0

]
+

[
P̂ Q̄T

0

]
ĒT (t)

[
Γ̄T 0

]
.

(19)

From Lemma 2, it can be easily seen that Π < 0 if and only if there exists a positive scalar ε1 such that

Ψ :=

[
ĂP̂ + P̂ ĂT Π12

∗ Π22

]
+ ε1

[
Γ̄

0

][
Γ̄T 0

]
+ ε1

−1

[
P̂ Q̄T

0

][
Q̄P̂ 0

]
< 0 (20)

or, equivalently,

Ψ̂ :=




ĂP̂ + P̂ ĂT Π12 ε1Γ̄ P̂ Q̄T

∗ Π22 0 0

∗ ∗ −ε1I 0

∗ ∗ ∗ −ε1I



< 0. (21)
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Noting (8), we can rewrite (21) as

Ψ̂ =




Ψ̂11 Ḡ P̂ M̄T + P̂ (N̄ F̆ K̄C̄)
T

P̂ H̄T ε1Γ̄ P̂ Q̄T

∗ −γ2I 0 0 0 0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −P̂ 0 0

∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ −ε1I




< 0,

Ψ̂11 =ĀP̂ + P̂ ĀT + (B̄F̆ K̄C̄)P̂ + P̂ (B̄F̆ K̄C̄)
T
.

(22)

Now, rewrite F as the following form

F = F0 + F̃χ

with χ = F̃−1∆F satisfying χχT ≤ I. Letting χ̄ = IN ⊗ χ, we can obtain that

F̆ = F̄0 + F̂ χ̄. (23)

By considering the fact that equations (14) and (16) mean Y C̄ = K̄C̄P̂ , it follows from (23) that

ĀP̂ + P̂ ĀT + B̄F̆Y C̄ + C̄TY T F̆ T B̄T =ĀP̂ + P̂ ĀT + B̄F̄0Y C̄ + C̄TY T F̄0
T
B̄T + B̄F̂ χ̄Y C̄ + C̄TY T χ̄T F̂ T B̄T ,

P̂ M̄T + C̄TY T F̆ T N̄T =P̂ M̄T + C̄TY T F̄0
T
N̄T + C̄TY T χ̄T F̂ T N̄T .

Then, the matrix Ψ̂ in (22) can be rewritten as

Ψ̂ =Ψ̂0 +Θχ̄Ỹ + Ỹ T χ̄TΘT (24)

where

Θ =
[
F̂ T B̄T 0 F̂ T N̄T 0 0 0

]T
,

Ỹ =
[
Y C̄ 0 0 0 0 0

]
.

By using Lemma 2 again, it can be obtained that Ψ̂ < 0 if and only if there exists a positive scalar ε2 such

that

Ψ̂0 + ε2ΘΘT + ε2
−1Ỹ T Ỹ < 0

which is equivalent to Ψ̆ < 0. The rest of proof follows directly from Theorem 1 and hence the proof of

Theorem 2 is complete.

To this end, we have derived a sufficient condition under which 1) the system (7) with v(t) = 0 is globally

asymptotically stable in probability, and 2) the H∞ performance constraint is satisfied in the presence of

all possible uncertainties and actuator failure. Based on the condition obtained, the desired robust reliable

H∞ output feedback controller has been designed. In the next section, a simulation example is provided to

illustrate the effectiveness of the proposed control scheme.

IV. Illustrative Examples

In this section, a numerical simulation example is presented to demonstrate the effectiveness of the methods

proposed in this paper.
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Consider a second-order uncertain spatial-temporal system described by (1) with the following parameters

κ =

[
6 −10

5 8

]
, A =

[
−30 −37

1 5

]
,

B =

[
−40 −10

−15 −20

]
, H =

[
0.8 0

0.5 0.9

]
,

D =

[
4

5

]
, G =

[
2

1

]
, Γ =

[
2

2

]
,

Q1 =
[
0.3 0.3

]
, Q2 =

[
0.2 0.2

]
,

Q3 =
[
0.1 0.1

]
, M =

[
1 1

]
, Ñ = 3.

The rectangular region is given by [0, 3] × [0, 3]. The initial conditions at the inner points are chosen as

x0k,l =
[
100 × e−10×|0.06−0.03k| × e−30×|0.06−0.03l| 50× e−10×|0.06−0.03k| × e−30×|0.06−0.03l|

]T
where k = 1, 2 and

l = 1, 2. The boundary condition is assumed to be xk,l(t) = 0 for k = 0, 3 or l = 0, 3. We consider ny = 4

sensors which are located at points (1, 1), (1, 2), (2, 1) and (2, 2). The parameters of the sensors are given by

T̄k1,l1 = T̄1,1 =
[
0.9 0.8

]
, T̄k2,l2 = T̄2,1 =

[
0.7 1

]
,

T̄k3,l3 = T̄1,2 =
[
0.6 0.9

]
, T̄k4,l4 = T̄2,2 =

[
1.2 0.9

]
.

The failures of actuators f1 satisfy f
1
≤ f1 ≤ f1 with f

1
= 0.1 and f1 = 0.9. Therefore, it is easy to obtain

that F0 = 0.5 and F̃ = 0.4. Moreover, the disturbance attenuation level is selected as γ = 0.2.

With the above parameters, we solve (13) and (14) by using LMI toolbox in Matlab and obtain the following
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parameters

Z =




17.9674 0.7383 0.8162 0.2194

0.7587 12.2720 0.3375 1.1050

0.6586 0.2650 11.9191 1.0282

0.3404 1.6687 1.9773 19.4544



,

Y =




0 0 0 0

−0.8483 −0.1008 −0.1136 −0.0132

−0.0563 −0.8169 −0.0153 −0.0781

0 0 0 0

−0.8483 −0.1008 −0.1136 −0.0132

−4.7222 −0.1848 −0.2081 0.0766

−0.3650 −4.0532 0.0168 −0.1131

0.0561 0.1638 −0.0377 −0.0413

−0.0565 −0.0133 −0.9230 −0.0779

−0.3608 0.0162 −4.5330 −0.1107

−0.1701 −0.4387 −0.5048 −3.6865

0.0356 0.0132 0.0127 0.2603

0 0 0 0

0.0561 −0.0328 0.1731 −0.0415

0.0356 0.0132 0.0127 0.2603

0 0 0 0




.

From (16), the desired controller parameters can then be obtained as follows:

K̄ = Y Z−1 =




0 0 0 0

−0.0468 −0.0053 −0.0063 0.0005

−0.0003 −0.0665 0.0007 −0.0003

0 0 0 0

−0.0468 −0.0053 −0.0063 0.0005

−0.2629 −0.0002 −0.0006 0.0069

−0.0069 −0.3318 0.0092 0.0126

0.0027 0.0136 −0.0033 −0.0028

−0.0003 0.0006 −0.0774 0.0001

−0.0067 0.0081 −0.3824 0.0141

−0.0051 −0.0096 −0.0105 −0.1883

0.0018 −0.0008 −0.0013 0.0135

0 0 0 0

0.0027 −0.0028 0.0149 −0.0028

0.0018 −0.0008 −0.0013 0.0135

0 0 0 0




.

In the simulation, the external disturbance is taken as vk,l(t) = sin(0.2t) × e−0.2t−0.1×0.03k. The parameter

uncertainty is set as E(t) = 0.5 sin(t). The actuator fault matrix is chosen as F = 0.75. The simulation results
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are shown in Figs. 1-6. Figs. 1 and 2 depict the state trajectories at all inner points without the control inputs.

Figs. 3 and 4 show state trajectories at all inner points with the designed control inputs. Figs. 5 and 6 present

state plans when time instant t = 0 and t = 30, respectively. It can be observed from Figs. 5 and 6 that

all the state trajectories of controlled system converge to an equilibrium point. The simulation results have

confirmed that the designed controller performs very well.

V. Conclusions

In this paper, we have studied the robust reliable H∞ output-feedback control problem for a class of

stochastic spatial-temporal systems in a given discrete rectangular region. Both actuator failures and param-

eter uncertainties have been taken into consideration. Sensors have been fitted at the positions of interest

in the rectangular region and each sensor can receive the measurements from the node in which the sensor

has been located. Based on these measurements, the static output-feedback reliable control scheme has been

employed. With the help of the Lyapunov stability theory, a sufficient condition has been obtained under

which the closed-loop spatial-temporal system is globally asymptotically stable in probability and the H∞

performance requirements are met. Then, if the existence condition is satisfied, we have designed the desired

robust reliable H∞ controller by solving a matrix inequality. Finally, we have discussed the effectiveness

of the proposed control scheme by a numerical simulation example. Our future research topic would be to

study more phenomena of incomplete information (see, e.g., polynomial stochastic systems [1–3] and missing

measurements in [9] with probability-dependent descriptions [24,31,33]) in the spatial-temporal systems and

give the corresponding the control schemes.

References

[1] M. V. Basin, P. Soto and D. Calderon-Alvareza, Central suboptimal H∞ controller design for linear time-varying systems

with unknown parameters, International Journal of Systems Science, Vol. 42, No. 5, pp. 709-716, 2011.

[2] M. V. Basin, P. Shi and D. Calderon-Alvareza, Central suboptimal H∞ control design for nonlinear polynomial systems,

International Journal of Systems Science, Vol. 42, No. 5, pp. 801-808, 2011.

[3] M. V. Basin, S. Elvira-Ceja and E. N. Sanchez, Central suboptimal mean-square H∞ controller design for linear stochastic

time-varying systems, International Journal of Systems Science, Vol. 42, No. 5, pp. 821-827, 2011.

[4] S. Boyd, L. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM:

philadelphia, 1994.

[5] Y. Cao, Y. X. Sun and C. W. Cheng, Delay-dependent robust stabilization of uncertain systems with multiple state delays,

IEEE Transactions Automatic Control, Vol. 43, No. 11, pp. 1608-1612, Nov. 1998.

[6] W. H. Chen and B. S. Chen, Robust filter for linear stochastic partial differential systems via a set of sensor measurements,

IEEE Transactions Circuits and Systems -I: Regular Papers, Vol. 59, No. 6, pp. 1251-1264, Jun. 2012.

[7] W. H. Chen and B. S. Chen, Robust stabilization design for stochastic partial differential systems under spatio-temporal

disturbances and sensor measurement noises, IEEE Transactions on Industrial Electronics, Vol. 60, No. 4, pp. 1013-1026,

Apr. 2013.

[8] D. Dawson, Stochastic evolution equation, Math. Biosci., Vol. 15, Nos. 3-4, pp. 287-316, Dec. 1972.

[9] H. Dong, Z. Wang and H. Gao, Distributed H∞ filtering for a class of Markovian jump nonlinear time-delay systems over

lossy sensor networks, IEEE Transactions on Industrial Electronics, Vol. 60, No. 10, pp. 4665-4672, Oct. 2013.

[10] Z. G. Feng and J. Lam, Reliable dissipative control for singular Markovian systems, Asian Journal of Control, Vol. 15, No. 3,

pp. 901-910, May. 2013.

[11] W. Fleming, Distributed parameter stochastic systems in population biology, Berlin Germany: Springer, Lecture Notes in

Economics and Mathematical Systems, Vol. 107, pp. 179-191, 1975.

[12] Z. Gao, T. Breikin and H. Wang, Reliable observer-based control against sensor failures for systems with time delays in

both state and input, IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans, Vol. 38, No. 5,

pp. 1018-1029, Sep. 2008.



REVISED 13

[13] H. J. Gao and C. H. Wang, A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed

systems, IEEE Transactions Automatic Control, Vol. 52, No. 6, pp. 1631-1640, Jun. 2004.

[14] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Alphen, The Netherlands: Sijtjoff and Noordhoff, 1980.

[15] M. Jimenez-Lizarraga, M. Basin and P. Rodriguez-Ramirez, Robust mini-max regulator for uncertain non-linear polynomial

systems, IET Control Theory and Applications, Vol. 6, No. 7, pp. 963-970, May. 2012.

[16] V. Leite and P. Peres, An improved LMI condition for robust D-stability of uncertain polytopic systems, IEEE Transactions

Automatic Control, Vol. 48, No. 3, pp. 500-504, Mar. 2003.

[17] Z. Li, H. Shu and X. Kan, L2-L∞ reliable control for discrete time-delay systems with fractional uncertainties and saturated

package losses, IET Control Theory and Applications, Vol. 8, No. 11, pp. 891-900, Jul. 2014.

[18] H. Li, Q. Zhou and B. Chen, Parameter-dependent robust stability for uncertain Markovian jump systems with time delay,

Journal of the Franklin Institute, Vol. 348, No. 4, pp. 738-748, May. 2011.

[19] C. Lin, Q. G. Wang and T. H. Lee, A less conservative robust stability test for linear uncertain time-delay systems, IEEE

Transactions Automatic Control, Vol. 51, No. 1, pp. 87-91, Jan. 2006.

[20] K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Boca Raton, FL: Chapman and

Hall/CRC, 2006.

[21] M. Liu and P. Shi, Sensor fault estimation and tolerant control for Ito stochastic systems with a descriptor sliding mode

approach, Automatica, Vol. 49, No. 5, pp. 1242-1250, May. 2013.

[22] M. Liu, L. Zhang, P. Shi and H. R. Karimi, Robust control of stochastic systems against bounded disturbances with application

to flight control, IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, pp. 1504-1515, Mar. 2014.

[23] Y. Lou, G. Hu, and P. D. Christofids, Model predictive control of nonlinear stochastic partial differential equations with

application to a sputtering process, Aiche J., Vol. 54, No. 8, pp. 2065-2081, Aug. 2008.

[24] Y. Luo, G. Wei, X. Ding and Y. Liu, Controller design for 2-D stochastic nonlinear Roesser model: a probability-dependent

gain-scheduling approach, Journal of the Franklin Institute, Vol. 351, No. 11, pp. 5182-5203, Nov. 2014.

[25] L. F. Ma, Y. M. Bo, X. H. Liu and Z. Guo, Reliable H∞ control for a class of nonlinear time-varying stochastic systems with

randomly occurring sensor failures, International Journal of Systems Science, Vol. 45, No. 7, pp. 1383-1392, 2014.

[26] I. R. Petersen and D. C. Mcfarlane, Optimal guaranteed cost control and filtering for uncertain linear-systems, IEEE Trans-

actions Automatic Control, Vol. 39, No. 9, pp. 1971-1977, Sep. 1994.

[27] H. Qiao and S. K. Tso, Three-step precise robotic peghole insertion with symmetric regular polyhedral objects, International

Journal of Production Research Operation, Vol. 37, No. 15, pp. 3541-3563, Oct. 1999.

[28] B. Shen, Z. Wang, Y. S. Hung and G. Chesi, Distributed H∞ filtering for polynomial nonlinear stochastic systems in sensor

networks, IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, pp. 1971-1979, May. 2011.

[29] E. G. Tian, D. Yue and G. L. Wei, Robust control for Markovian jump systems with partially known transition probabilities

and nonlinearities, Journal of the Franklin Institute, Vol. 350, No. 8, pp. 2069-2083, Oct. 2013.

[30] H. B. Wang, J. Lam, S. Y. Xu and S. D. Huang, Robust H∞ reliable control for a class of uncertain neutral delay systems,

International Journal of Systems Science, Vol. 33, No. 7, pp. 611-622, Jun. 2002.

[31] L. Wang, G. Wei and W. Li, Probability-dependent H∞ synchronization control for dynamical networks with randomly

varying nonlinearities, Neurocomputing, vol. 133, pp. 369-376, Jun. 2014.

[32] X. Wang, E. E. Yaz and J. Long, Robust and resilient state-dependent control of discrete-time nonlinear systems with general

performance criteria, Systems Science and Control Engineering: An Open Access Journal, Vol. 2, No. 1, pp. 48-54, Jul. 2014.

[33] G. L. Wei, L. C. Wang and F. Han, A gain-scheduled approach to fault-tolerant control for discrete-time stochastic delayed

systems with randomly occurring actuator faults, Systems Science and Control Engineering: An Open Access Journal, Vol. 1,

No. 1, pp. 82-90, Sep. 2013.

[34] K. N. Wu and B. S. Chen, Synchronization of partial differential systems via diffusion coupling, IEEE Transactions Circuits

and Systems -I: Regular Papers, Vol. 59, No. 11, pp. 2655-2668, Nov. 2012.

[35] L. Wu, P. Shi and H. Gao, A new approach to robust H∞ filtering for uncertain systems with both discrete and distributed

delays, Circuits Systems and Signal Processing, Vol. 26, No. 2, pp. 229-247, Mar-Apr. 2007.

[36] D. Yue, Q. L. Han and J. Lam, Network-based robust H∞ control of systems with uncertainty, Automatica, Vol. 41, No. 6,

pp. 999-1007, Jun. 2005.

[37] L. Zhang, P. Shi and M. Basin, Robust stability and stabilisation of uncertain switched linear discrete time-delay systems,

IET Control Theory and Applications, Vol. 2, No. 7, pp. 606-614, Jul. 2008.

[38] Y. Q. Xia, Z. Zhu and C. M. Li, Robust adaptive sliding mode control for uncertain discrete-time systems with time delay,

Journal of the Franklin Institute, Vol. 347, No. 1, pp. 339-357, Feb. 2010.



REVISED 14

0 5 10 15 20 25 30
−1

0
1

x 10
7

t

x1 11
(t

)

0 5 10 15 20 25 30
−1

0
1

x 10
7

t

x1 12
(t

)

0 5 10 15 20 25 30
−1

0
1

x 10
7

t

x1 21
(t

)

0 5 10 15 20 25 30
−5

0
5

x 10
6

t

x1 22
(t

)

Values of x1
k,l

(t) at inner points without controller

Fig. 1. Values of x1

k,l(t) at inner points without controller.
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Fig. 2. Values of x2

k,l(t) at inner points without controller.
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Fig. 3. Values of x1

k,l(t) at inner points with controller.
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Fig. 4. Values of x2

k,l(t) at inner points with controller.
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