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Class Decomposition for GA-Based Classifier
Agents—A Pitt Approach

Sheng-Uei Guan and Fangming Zhu

Abstract—This paper proposes a class decomposition approach
to improve the performance of GA-based classifier agents. This
approach partitions a classification problem into several class
modules in the output domain, and each module is responsible
for solving a fraction of the original problem. These modules
are trained in parallel and independently, and results obtained
from them are integrated to form the final solution by resolving
conflicts. Benchmark classification data sets are used to evaluate
the proposed approaches. The experiment results show that class
decomposition can help achieve higher classification rate with
training time reduced.

Index Terms—Class decomposition, classifier agents, genetic al-
gorithm, incremental genetic algorithm.

I. INTRODUCTION

CLASSIFICATION problems play a major role in various
fields of computer science and engineering, such as image

processing and data mining. A number of soft computing ap-
proaches, such as neural networks [1], [11], [15], evolutionary
algorithms [7], and fuzzy logic [13], [21], have been widely
used to adaptively evolve solutions for classification problems.
Among them, GA-based solutions have attracted much attention
and become one of the popular techniques for classification [7],
[18].

However, when GA is applied to larger-scale real-world clas-
sification problems, it still suffers from some drawbacks, such
as the inefficiency in searching a large space, the difficulty in
breaking the internal interference of training data, and the pos-
sibility of getting trapped in local optima. A natural approach
to overcome these drawbacks is to decompose the original task
into several subtasks based on certain techniques. Normally, a
decomposition approach divides a task into smaller and simpler
subtasks, supervises the learning of each subtask, and finally re-
combines individual solutions into a final solution.

Various task decomposition methods have been proposed.
These methods can be roughly classified into the following
categories: functional modularity, domain modularity, class
decomposition, and state decomposition, according to different
partition strategies [1], [12], [14], [15]. However, most of
them are used in Artificial Neural Networks (ANN), and
very few find their applications in GA, especially GA-based
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classification. In this paper, we aim to explore the use of
class decomposition in GA and evaluate its performance on
classification problems.

Our approach partitions a classification problem into several
class modules in the output domain. Each module is responsible
for solving a fraction of the original problem. These modules
are trained in parallel and independently. Results obtained from
them are integrated to obtain the final solution by resolving con-
flicts. The rule set obtained in each module not only delineates
the class assigned, but also separates the assigned class from
the other classes. Therefore, the integration module can com-
bine the solution from each module into the final solution with
some heuristics. The final solution is a global solution for all
classes.

Our approach also incorporates the use of software agents [4].
Software agents are software entities that carry out some set of
operations on behalf of a user or another program with some
degree of independence or autonomy. Agents can be personal-
ized to the end-users’ preferences, and they are adaptive and can
learn from past experiences. In this paper, we integrate the agent
properties into traditional classifier systems, and call them clas-
sifier agents.

There are two general approaches for GA-based rule opti-
mization and learning [8], [9], [22]. The Michigan approach
uses GA to evolve individual rules, a collection of which com-
prises the solution for the classification system. Another ap-
proach is called the Pitt approach, where the solutions are repre-
sented by rule sets that compete against each other with respect
to performance on the domain task. Those weaker ones will die,
while those stronger ones survive. Little is known currently con-
cerning the relative merits of these two approaches. In this paper,
the Pitt approach is chosen, as we feel that the encoding mech-
anism for this approach is more straightforward.

For rule-based GA solution, most work in the literature con-
centrates on batch-mode, static domain, where the attributes,
classes, and training data are all determined a priori and the
task of GA is to find out the best rule sets which classify the
available instances with the lowest error rate [7], [13]. However,
the real-world situation is more complicated and continuously
changing, a classifier agent is actually exposed to the changing
environment, and it needs to evolve its solutions by adapting to
various changes. Therefore, in this paper, classifier agents are
designed to tackle two situations. One is that they will learn the
solution from scratch, i.e., from nil initial knowledge. The other
situation is that they have already possessed some available so-
lutions, but they still need to evolve their solutions, as they need
to incorporate new knowledge and adapt to the changing envi-
ronment.
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Fig. 1. Illustration of GA with class decomposition.

We design GA and incremental genetic algorithm (IGA) with
class decomposition as the basic algorithms to cope with these
two situations. Four benchmark data sets are used to evaluate
the performance of class decomposition. The experiment results
show that class decomposition can help achieve higher classifi-
cation rate and save training time.

We first elaborate class decomposition in Section II. Then,
our genetic approaches for classifier agents are presented in Sec-
tion III. The experiment results on five benchmark data sets and
their analysis are reported in Section IV. Section V places our
work in the context by presenting a brief survey on related work.
Section VI concludes the paper and presents future work.

II. CLASS DECOMPOSITION IN GA-BASED CLASSIFICATION

Let us assume a classification problem has classes
in the -dimensional pattern space, and vectors

, , are
given as training patterns. The task of classification is to
assign instances to one out of a set of pre-defined classes, by
discovering certain relationship among attributes. Then, the
discovered rules can be evaluated by classification accuracy or
error rate either on the training data or test data.

Traditional GA maps attributes to classes directly in a batch
manner, which means all the attributes, classes, and training data
are used together to train a group of GA chromosomes. Our ap-
proach—GA with class decomposition is significantly different.
As shown in Fig. 1, it generally consists of three steps. Firstly,
an original problem is divided into subproblems in terms of
classes. Then, GA modules are constructed for these subprob-
lems, and GA in each module will be responsible for evolving a
subsolution. Finally, these subsolutions are integrated to further
obtain the final solution for the original problem. We present the
details for each step in the following subsections.

A. Class Decomposition

First, a classification problem with a high-dimensional class
space is decomposed into a set of subproblems with low-dimen-
sional class spaces, in terms of class categories.

Following the notations presented above, the original classi-
fication problem can be denoted as

(1)

where is the set of instances with attributes, and
is the set of classes. The objective of GA is to find

a certain with a satisfactory classification rate on the whole
training set , which can be represented as

(2)

Assume the -class problem is divided into subproblems, each
has classes. Denoting the class set for each
subproblem as , we have

(3)

where , and , and each subproblem can be
formulated as finding a certain with a satisfactory classifica-
tion rate on

(4)

Note that it is not necessary to divide the whole class set into
equal partitions. Agents can have various class partitions, which
leaves them more freedom and flexibility in pursuit of suitable
class decomposition.

B. Parallel Training

With the division of subproblems, agents can construct
GA modules and run them in parallel, as shown in Fig. 1. Each
module is provided with the whole training set with the com-
plete attribute set and a fraction of the class categories to pro-
duce a corresponding fraction of the original problem.

We feed all the training data to each module, but the class
categories for each module are different. We denote

(5)

which means is the complemented set of . Then, the
training set for each module can be represented as

(6)

where we assume there are instances in the training set whose
classes belong to , and the rest belong to .

Therefore, for each module, the class categories in interest
are only those classes targeted by that module. When training
each module, GA in module has two objectives. It needs to
not only classify the data with the classes in correctly, but
also ensure that training data for the classes in will not be
wrongly classified into the classes in . In other words, for
those classes in , GA will just distinguish them from the
classes in , not necessary to differentiate them in between.
As a result, GA in each module will converge more quickly.

The GA modules are mutually independent, because the
classes have been fully partitioned into several modules without
overlapping. After each module gets a copy of the training pat-
terns, they can run in parallel. Moreover, there is no communi-
cation among these modules. Therefore, the training process can
be implemented with a couple of agents running on concurrent
process elements. The training time for this stage is determined
by the longest training time spent among the modules.
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Fig. 2. Pseudocode of GA.

Fig. 3. Encoding mechanism for classification rules.

C. Integration

Although each GA module has evolved a portion of the solu-
tion, we cannot just simply aggregate their subsolutions as the
final one. As discussed earlier, each GA module only classifies
the classes in , but not the classes in . Therefore, when
the subsolutions are combined together, there may still exist
some conflicts among the subsolutions. For example, rules from
different modules may classify an instance into several classes.
In order to resolve these conflicts and further improve the classi-
fication rate, the agent employs some intelligent decision rules.
The detailed integration process is explained as follows.

• The agent constructs an overall rule set by aggregating all
rules from modules.

• Some decision rules are added to help resolve the above-
mentioned conflicts. We believe that the ending classi-
fication rates obtained from all modules are helpful for
this purpose. The following decision rules have been em-
ployed.

i) If an instance is classified to more than one class
categories by the rule set, it will be classified to
the class whose corresponding module achieves
the higher classification rate in the parallel training
phase, if available.

ii) If an instance is not classified to any class category
by the rule set, it will be classified to the class whose
corresponding module achieves the lowest classifi-
cation rate in the parallel training phase, if available.

III. GENETIC APPROACHES IN RULE-BASED CLASSIFICATION

In rule-based classification, there are various representation
methods in terms of the rule properties (fuzzy or nonfuzzy) and
the attribute properties (nominal or continuous). In this paper,
we use the nonfuzzy IF-THEN rules with continuous attributes.
A rule set consisting of a certain number of rules is a solution
candidate for a classification problem.

As discussed earlier, we have GA and IGA for two different
situations. The pseudocode for GA is shown in Fig. 2. The pro-
cedure of IGA is quite similar to that of GA. The main differ-
ence lies in the formation of initial population. Their common
genetic settings are presented in the following subsections, to-
gether with their difference.

A. Encoding Mechanism

In our approach, an IF-THEN rule is represented as follows:

(7)

where is a rule label, is the number of attributes,
is the input attribute set, and is the output

class category assigned with a value of . and
are the minimum and maximum bounds of the th attribute
respectively. We encode the rule according to the diagram
shown in Fig. 3.

Each antecedent gene represents an attribute, and the conse-
quence gene stands for a class. As we use the Pitt approach,
each chromosome consists of a set of classification rules

by concatenation

(8)

where is the maximum number of rules allowed for each chro-
mosome (ruleNumber), is the size of the population (popSize).
Therefore, one chromosome will represent one rule set. Since
we know the discrete value range for each attribute and class a
priori, , , and can be encoded each as a character
by finding their positions in the ranges. Thus, the final chromo-
some can be encoded as a string.

B. Genetic Operators

We use one-point crossover in this paper. Referring to the en-
coding mechanism, we note that crossover will not cause incon-
sistency and thus can take place in any point of chromosome.
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Fig. 4. Crossover and mutation.

On the contrary, the mutation operator has some constraints.
The mutation point is randomly selected with a certain prob-
ability. According to the position of a selected point, we can
determine whether it is an activeness, minimum or maximum
element. Different mutation is available for each. For example,
if an activeness element is selected for mutation, it will just be
toggled. Otherwise, when a boundary-value element is selected,
the algorithm will randomly select a substitute in the range of
that attribute. Fig. 4 shows the operations of crossover and muta-
tion. Each chromosome shown in the figure represents a rule set,
and the characters inside represents different genes using the en-
coding mechanism presented in Fig. 3. The rates for mutation
and crossover are selected as 0.01 and 1.0 (

and ). For reproduction, we set the
survival rate as 50% , which means
half of the parent chromosomes with higher fitness will survive
into the new generation, while the other half will be replaced by
the newly created children resulting from crossover and/or mu-
tation.

Selection mechanism deals with the selection of a population
that will undergo genetic operations. We use roulette wheel se-
lection in this paper [19]. In this investigation, the probability
that a chromosome will be selected for mating is given by the
chromosome’s fitness divided by the total fitness of all the chro-
mosomes. By this means, chromosomes with higher fitness have
a higher probability of producing offspring during selection for
the next generation than those with lower fitness.

C. Fitness Function

The fitness of a chromosome reflects the success rate (i.e.,
classification accuracy) achieved while the corresponding rule
set is used for classification. The genetic operators use this infor-
mation to evolve better chromosomes over generations. As each
chromosome in our approach comprises an entire rule set, the
fitness function actually measures the collective behavior of the
rule set. The fitness function simply measures the percentage of
instances that can be correctly classified by the chromosome’s
rule set, which can be represented as

number of instances correctly classified
total number of instances

(9)

Since there is more than one rule in a chromosome, it is pos-
sible that multiple rules matching the conditions for all attributes
but predicting different classes. We use a voting mechanism to
help resolve any conflict. That is, each rule casts a vote for the
class predicted by itself, and finally the class with the highest
votes is regarded as the conclusive result. If any classes tie on

one instance, it is then concluded that this instance cannot be
classified correctly by this rule set.

D. Stopping Criteria

There are three factors in the stopping criteria. The evolution
process stops after a preset generation limit (generationLimit),
or when the best chromosome’s fitness has no improvement
over a specified number of generations—stagnation limit (stag-
nationLimit), or when the best chromosome’s fitness reaches a
preset threshold. In this paper, this threshold is set as 1.0 for all
experiments, which means 100% correct classification has been
reached. Generally, the evolution process stops because either
of the first two criteria satisfied, seldom the last one.

E. Initial Population for GA and IGA

Initially, a classifier agent has no prior knowledge at all.
When it is presented with attributes, classes, and training data,
it has to start from scratch. Therefore, the initial population of
GA is randomly created. Later on, when agents have already
possessed current solution and need to acquire new classes,
IGA can be used to evolve the old solution into a new solution.

There are several ways to construct the new chromosomes
for IGA, in terms of the selection of old chromosome. We can
either use the best rule set (chromosome) as a seed for all the
initial population of IGA, or the whole population in the last
generation of the old GA can be used. We denote them as IGA1
and IGA2 respectively. When IGA1 is used, the genes in the
best chromosome from the old population are preserved and the
randomly created genes for the new class are appended. The
difference of IGA2 from IGA1 is that the whole old population
is used as “seeds” instead of the best one.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Scheme

We have implemented several classifier agents running on
five benchmark data sets to evaluate our approaches. The data
sets chosen are the wine data, iris data, glass data, cancer data,
and diabetes data. The first four are available in the UCI ma-
chine learning repository [3], and the last one is taken from the
PROBEN1 collection [20]. They all are real-world problems.

All experiments are done on Pentium III 650 MHz PCs. The
results reported are all averaged over ten independent runs. We
record the evolution of each module and the integration process,
but we are only interested in some indicative results, which in-
clude initial classification rate (CR), generation cost, training
time, and ending CR. The CR in each generation is the best
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Fig. 5. Evolution process in three class modules on the wine data.

rate achieved by the whole population. The experiments in Sec-
tions IV-B and IV-C use the whole data set as the training data,
while the experiments in Section IV-C use tenfold cross valida-
tion and the detailed partitioning on data sets are elaborated in
that section.

B. Results and Analysis—GA Based Class Decomposition

1) Wine Data: The wine data contains the chemical analysis
of 178 wines from three different cultivars in the same region in
Italy. The analysis determines the quantities of 13 constituents
found in each of the three types of wines. In other words, it
has 13 continuous attributes, 3 classes, 178 instances, and no
missing values.

Fig. 5 shows an example of the evolution process in three
class modules on the wine data. Each curve shows that the best
CR achieved in each generation rises steadily in each module.
The evolution in module 1 and 3 stops when it reaches the max-
imum CR, while the evolution in module 2 stops when it reaches
stagnationLimit.

Table I shows the results of GA with class decomposition on
the wine data. The upper part of the table shows the approach
of class decomposition and integration. We partition the wine
problem into 3 modules, each for one class. The bottom part of
the table provides a summary of the upper part and a comparison
with normal GA approach which does not use class decompo-
sition.

We can find from the table that each module uses GA to
evolve a partial rule set, achieving a comparatively higher
ending CR of about 1.0. After these rule sets are integrated and
the decision rules presented in Section II-C are employed, an
ending CR of 0.9978 is achieved. We record the whole process
including the parallel module training and the integration
process with a summary on generation, training time, and
ending CR, as shown in the column of GA with class decom-
position in the bottom of the table. Note that when computing
the whole generation and training time, we provide two values
as explained in Note 5 under Table I, considering that two
different implementation methods are possible. The first value
is for parallel implementation, and the other one is for serial
implementation. For the initial CR, because each decomposed

module has its own initial CR, we don’t list any value in the
summary.

Comparing the performance of GA with class decomposition
to the normal GA, we find the former performs better in terms of
training time and ending CR. For example, we find the approach
of class decomposition improves the ending CR from 0.9534
to 0.9978 (improved by 4.7%), using much less training time
(decreased from 635.3 s to 169.5 s for parallel implementation,
to 368.0 s for serial implementation).

2) Iris Data: The iris data is a common benchmark in
classification and pattern recognition studies. It contains 150
instances for 3 classes of iris species, i.e., iris setosa, iris
versicolor, and iris virginica. Four numeric attributes are used
for classification, and they are sepal length, sepal width, petal
length, and petal width.

Table II shows the results on the iris data, with the same table
structure as Table I. An evolved rule set is shown in Appendix A.
We still divide the iris problem into 3 modules, each with one
class. From the summary part of Table II, we can see that GA
with class decomposition spends less training time than normal
GA. The former obtains higher ending CR as well (improved by
2%). It is noted that the number of generations for the former is
larger than that of latter in the case of serial implementation.
However, the total training time in both parallel and serial im-
plementation is still reduced, which is more important.

3) Diabetes Data: The diabetes data diagnose diabetes of
Pima Indians. It has 8 attributes, 2 classes, and 768 instances.
All attributes are continuous, and they are number of times preg-
nant, plasma glucose concentration, diastolic blood pressure, tri-
ceps skin fold thickness, 2-h serum insulin, body mass index,
diabetes pedigree function, and age.

The diabetes problem is divided into two modules each of
which deals with one class. From Table III, we can find that
CR is improved from 0.7633 to 0.7897 (improved by 3.5%) as
a result of using class decomposition in GA.

4) Glass Data: The glass data set contains data of different
glass types. The results of a chemical analysis of glass splinters
plus the refractive index are used to classify a sample to be either
float processed or nonfloat processed building windows, vehicle
windows, containers, tableware, or head lamps. This data set
consists of 214 instances with 9 continuous attributes from 6
classes.

As the glass data have more classes, we have tried different
approaches in terms of different class partitions. Table IV
shows the result of an experiment where we partition the
whole problem into 3 modules, each with 2 classes. We also
tried another two approaches, i.e., 2-module and 6-module
partitioning, which decompose the original problem into 2
and 6 modules respectively. Table V shows their comparison.
An evolved rule set for 6-module partitioning is shown in
Appendix B.

We find that the class decomposition approaches in all experi-
ments improve the CR as compared to the normal GA approach.
If we further compare the three class decomposition approaches
with each other, we find that with the increase in the number
of modules used, CR scores higher from 0.6276 to 0.7033 (im-
proved by 12.1%), then to 0.8037 (improved by 28.1%). This
tells us that a more fine-grained class decomposition approach
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TABLE I
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE WINE DATA

TABLE II
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE IRIS DATA

will achieve a higher CR, which may be explained as a finer
partition can reduce the internal interference among the training
data and resolve better the conflicts in each module.

In [12], a modular neural network approach is used to clas-
sify the glass data, and the final error rate achieved is 34.9%,
which is equivalent of 0.651 for the classification rate. We can
find that the result of our 2-module approach is comparable to
their approach, while our 3-module and 6-module approaches
perform even better.

C. Results and Analysis—IGA Based Class Decomposition

In this section, we step further to explore the application of
class decomposition in IGA. The main feature of IGA is that it

assumes an agent already has a solution and needs to evolve a
new solution to accommodate new classes.

Assuming a target problem has 3 classes, we explain the de-
tailed experiment steps as follows. (It is easy to derive similar
experiment settings for other problems with different number of
classes.)

• We assume that an agent only knows classes 1 and 2 at
first. It uses normal GA to evolve an optimal rule set on
the currently known attributes and classes.

• When the agent knows another class—class 3, it will use
IGA to evolve a new rule set. We experiment on two dif-
ferent approaches for IGA, namely, IGA1 and IGA2, and
compare the effect of class decomposition on these two
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TABLE III
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE DIABETES DATA

TABLE IV
PERFORMANCE OF GA WITH 3-MODULE CLASS DECOMPOSITION ON THE GLASS DATA

TABLE V
COMPARISON OF DIFFERENT APPROACHES OF GA WITH CLASS DECOMPOSITION ON THE GLASS DATA

approaches. (The difference between IGA1 and IGA2 has
been discussed in Section III-E.)

Table s VI–VIII summarize the results of experiments on the
wine, iris, and glass data respectively. For each data set, normal
GA runs with an incomplete set of classes first. Upon getting the
results from GA, IGA will then work with different approaches
on a complete set of classes. Therefore, these approaches have
the same starting point that is fair for comparison.

It is found from these tables that the approaches with class
decomposition perform better than those without class decom-
position, for both IGA1 and IGA2. The former always achieves
higher CR and spends less training time in both serial and par-
allel implementation. For IGA1 in Table VII, the class decompo-

sition approach improves the ending CR from 0.9610 to 0.9807
with an increase of 2% in accuracy, and a decrease of training
time from 35.9 s to 31.3 s in the case of serial implementa-
tion, with a saving of about 12.8%. For the glass data, the im-
provement on the ending CR becomes more significant. It is
noted from Table VIII that the ending CR of IGA1 improves
by 0.04 (i.e., 6.9%), and CR of IGA2 improves by 0.05 (i.e.,
7.9%). As described earlier in Section III-E, IGA1 uses the best
chromosome from the old, evolved population, while IGA2 uses
the whole evolved population. Results show that IGA2 outper-
forms IGA1 on the iris and wine data, but is inferior on the glass
data. This means group population may be better for incremental
learning on some data sets than the best chromosome alone, as it
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TABLE VI
COMPARISON OF PERFORMANCE OF IGA WITH/WITHOUT CLASS DECOMPOSITION ON THE WINE DATA

TABLE VII
COMPARISON OF PERFORMANCE OF IGA WITH/WITHOUT CLASS DECOMPOSITION ON THE IRIS DATA

TABLE VIII
COMPARISON OF PERFORMANCE OF IGA WITH/WITHOUT CLASS DECOMPOSITION ON THE GLASS DATA

carries more information. However, group population demands
extra resource, for example storage, which may not be available
in some circumstances.

D. Generalization Performance and Comparison to
Related Work

The generalization performance of the evolved rule set is
evaluated with tenfold cross validation. In this scheme, the com-

plete data set is divided into ten subsets in the same size. Then,
nine subsets are used as training data and the other subset is
used as test data. Ten iterations are performed so that each of the
ten subsets is used as test data just once. The results are aver-
aged over ten iterations. Experiments on three data sets—wine,
iris, and cancer data—are conducted and their results are shown
in Table s IX–XI, respectively. The cancer problem diagnoses
whether a breast cancer is benign or malignant. It has 9 at-
tributes, 2 classes, and 699 instances.
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TABLE IX
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE WINE DATA

‘

TABLE X
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE IRIS DATA

TABLE XI
PERFORMANCE OF GA WITH CLASS DECOMPOSITION ON THE CANCER DATA

We can find from these tables that GA with class decompo-
sition always performs better than normal GA, in terms of both
ending CR and test CR. Using the wine data as an example,
the classification rate is improved from 0.9817 to 0.9978 on the
training data (i.e., 1.6%), and improved from 0.8450 to 0.9167
on the test data (i.e., 8.5%). The results show that the general-
ization power of the rule set is also enhanced by the use of class
decomposition.

We compare the performance of our approach with
other conventional methods. Table XII shows the classi-
fication error rates for different methods on the iris data

. The error rates for
the first six methods were reported in [25], and the last two
items are the results from our approach. We find that the
error rate with our normal GA approach is comparable to the
other methods. The training error rate of our GA with class
decomposition approach, which is 0.018, is better than most
of the other methods listed. In terms of the test error rate, our

GA with class decomposition approach achieves a comparable
error rate.

For the wine data, Corcoran and Sen [7] used a real-coded
genetic-based machine learning approach to evolve nonfuzzy
IF-THEN rules, and achieved an average training rate of 99.5%.
Ishibuchi et al. [13] designed a fuzzy classifier by means of an
integer-coded GA and grid partitioning, and they got an average
training rate of 98.5%. Setnes and Roubos [21] used GA-fuzzy
classifiers which achieve three misclassifications out of 178 in-
stances (i.e., a classification rate of 98.3%). Comparing to these
results in the literature, our approach achieves the highest rate
as 99.78%.

Regarding the cancer data, [26] reported a test rate of 95.9%
with the use of hyperplanes, and [27] reported 93.7% with the
use of 1-nearest neighbor. Our approach achieves 95.3%, which
is better than the latter approach, while very close to the former.

V. RELATED WORK

Pattern classification problems have been widely researched
with different approaches including statistical methods [25],
neural networks [15], [23], fuzzy sets [21], and evolutionary
algorithms [18]. GA-based solutions have become one of the
popular techniques for classification. De Jong et al. considered
the application of GA to a symbolic learning task—supervised
concept learning from a set of examples [10]. Corcoran et al.
used GA to evolve a set of classification rules with real-valued
attributes [7]. Ishibuchi et al. examined the performance of a
fuzzy genetic-based machine learning methods for pattern clas-
sification problems with continuous attributes [13]. However,
their work only covers batch-mode algorithms, while our work
here presents a new approach based on class decomposition.

Compared to the other methods, GA-based approaches have
many advantages. For example, neural networks have no ex-
planatory power by default to describe why results are as they
are. This means that the knowledge (models) extracted by neural
networks is still hidden and distributed over the network. GA has
comparatively more explanatory power, as it explicitly shows
the evolutionary process of solutions and the solution format is
completely decodable.

There is a stream of research called parallel genetic algo-
rithms (PGAs) [5], [17], which are parallel implementation of
GAs. [5] proposed a Markov Chain model to predict the effect
of parameters, such as number of population, size, topology, mi-
gration rate, on the performance of PGAs. [17] explored the ap-
plication of PGAs in rule mining for large databases. There are
two main models for PGA—Island model and Neighborhood
model [5], [6]. Our class decomposition is similar to the method
of PGAs, since they all run several populations in parallel. The
distinct feature of class decomposition is that subpopulations in
our approach are all independent, so that there is no need for
migration among them.

Decomposition methods have been used in various fields,
such as classification, data mining, clustering, etc. [24] explored
the application of domain decomposition genetic algorithms to
the design of frequency selective surfaces. [16] presented a new
machine learning model for classification problems. It decom-
poses multi-class classification problems into sets of two-class
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TABLE XII
COMPARISON OF ERROR RATES OF VARIOUS CLASSIFICATION METHODS ON THE IRIS DATA

subproblems which are assigned to nonlinear dichotomizers. [2]
presented a new measure to determine the degree of dissimi-
larity between two given problems, and suggests a way to search
for a strategic splitting of the feature space that identifies dif-
ferent characteristics.

VI. CONCLUSIONS AND DISCUSSIONS

This paper proposes a new approach named class decompo-
sition for GA-based classifier agents. A classification problem
is decomposed into several modules in terms of class decompo-
sition, and each module is responsible for solving a fraction of
the original problem. These modules are trained in parallel, and
the subsolutions obtained from them are integrated to obtain the
final solution by resolving conflicts. Five benchmark data sets
are used for evaluation. The results show that class decomposi-
tion can help achieve a higher classification rate with training
time reduced.

Classifier agents may require some intelligence on deter-
mining a suitable decomposition which includes the size of
each module, the selection of classes into modules. Agents can
try on different combinations to find the most suitable partition.
For example, in this paper, agents partition the output classes
in a nonoverlapping manner, which means rules for each class
are only trained in one single module. Alternatively, agents can
have some overlapping in class decomposition, which will be
more robust in the presence of faults and may lead to further
improvement on classification accuracy. In a more challenging
environment where the number of classes is unknown in
advance, the classifier agents may incrementally introduce new
modules, starting from a small number of modules. The new
modules can be introduced via class decomposition to attain
higher accuracy. The agents should have the ability to observe
the trend of achieved classification rate, and stop at a desirable
stage.

Classifier agents can also be implemented in a multi-agent en-
vironment, where agents can exchange information on new at-
tributes and classes. If available, they can also exchange evolved
rule sets. They can help provide new training/test data, or even
challenge each other with unsolved instances.

APPENDIX A
EXAMPLE OF RULE SET FOR THE IRIS DATA
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APPENDIX B
EXAMPLE OF RULE SET FOR THE GLASS DATA
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