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Abstract 

One of the potential applications for agent-based systems is m-commerce. A lot of 

research has been done on making such systems intelligent to personalize their 

services for users. In most systems, user-supplied keywords are generally used to help 

generate profiles for users. In this paper, an evolutionary ontology-based product-

brokering agent has been designed for m-commerce applications. It uses an evaluation 

function to represent a user’s preference instead of the usual keyword-based profile. 

By using genetic algorithms, the agent tracks the user’s preferences for a particular 

product by tuning some parameters inside its evaluation function. A prototype called 

“Handy Broker” has been implemented in Java and the results obtained from our 

experiments looks promising for m-commerce use. 
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1. INTRODUCTION 

In this IT age, there is an increasing demand for more and more sophisticated 

software, which are capable of integrating and processing information from diverse 

sources. Traditional software technologies have failed to keep pace with such a 

demand and alternative solutions are being considered. Agent-based systems [1,2] 

have been proposed as a potential solution and much research has been done on this 

relatively new technology. 

 

One of the potential applications for agent technology is in m-commerce. According 

to a study done by Frost and Sullivan1, it has been projected that electronic commerce 

conducted via mobile devices such as cellular phones and PDAs (Personal Digital 

Assistants) will become a whopping $25 billion market worldwide by 2006. Some of 

the driving factors behind the m-commerce “revolution” have been attributed to the 

compactness and high penetration rate of these mobile devices. This along with the 

relatively low cost of entry for most service providers has made m-commerce the 

buzzword of the next century. 

 

However, despite all the hype and promises about m-commerce, several main issues 

[3,4] will have to be resolved before agent technology can be fully adopted into any 

m-commerce system. Clumsy user interfaces, cumbersome applications, low speeds, 

flaky connections and expensive services have soured many who have tried m-

                                                 
1 http://www.infoworld.com/articles/hn/xml/02/03/22/020322hnmcommerce.xml 
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commerce. In fact, a usability study done in London by the Nielsen Norman Group2 

has found that about 70% of the participants said that they will not use a WAP 

(Wireless Application Protocol) enabled phone again within a year, after they have 

tried it for a week. Security and privacy concerns have also dampened enthusiasms for 

m-commerce. One of the concerns has been the fact that mobile devices such as PDAs 

are very easy to lose. They are also an easy prey for thieves and unauthorized 

personnel can have easy access to valid user IDs and passwords stored in these 

devices to make fraudulent transactions. 

 

Taking all these concerns into account, it seems like good old e-commerce will remain 

as the preferred choice for online transactions for many years to come. Customers will 

only use wireless mobile devices to access the Internet if they have a good reason to 

do so. Therefore, in order to entice customers to participate in m-commerce, the 

developers will have to offer something that is unique and no consumers can live 

without. One of the potential “killer” applications for m-commerce could be an 

intelligent program that is able to search and retrieve a personalized set of products 

from the Internet for its user. 

 

Currently, when a user wants to search for a particular product on the Internet, what 

he will normally do is to use popular search engines such as Altavista3 or Yahoo!4, 

and enter keywords that describe the product. These search engines will process these 

                                                 
2 http://www.nngroup.com/reports/wap/ 
3 http://www.altavista.com 
4 http://www.yahoo.com 



4 

keywords and churn out a large number of links for the user to visit. On the other 

hand, if the user already knows of some URLs that might have the product 

information, he will visit these websites and hopefully get the information that he is 

looking for. 

 

Although these are the more common methods of searching for information on the 

Internet, it may not be the best nor the most efficient ones. Neither search engines nor 

websites know the preference of the user and hence might provide information that are 

totally irrelevant to the user. For example, if the user wants to search for information 

about “software agents”, the search engine could return links to “insurance agents” 

instead. A significant amount of time could be wasted on such irrelevant information, 

which could have been better spent on other important tasks.   

 

In an agent-based m-commerce, agents act on behalf of their users by carrying out 

delegated tasks automatically. Currently, there is no single agent that can perform all 

the tasks meted out by the user effectively. Like humans, specialized agents are 

required, which are able to work in a specific type of environment. A product-

brokering agent seems to be a potential solution for this scenario. Such an agent will 

search for products in the background with minimal user intervention, thereby 

allowing the user to concentrate on other tasks. It could be programmed with the 

user’s preferences in mind and filter out irrelevant products automatically. The agent 

could also detect shifts in user’s interest and through some evolution mechanism, 

adjust itself accordingly to suit the user’s need.   
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This paper describes the design of “Handy Broker” - an intelligent agent-based 

system, which is capable of providing a personalized service for its user. It 

accomplishes this through user profiling [5]. The system consists of several intelligent 

ontology-based product-brokering agents, which are able to learn the preferences of 

the user over time and recommend products, which might interest the user. Handy 

Broker achieves this either by user’s feedback or through its own observation. This 

technique has been used successfully for specific types of agent tasks, typically those 

information-intensive tasks involving the World Wide Web (WWW).   

 

Section 2 of this paper will highlight some of the related work that has been done by 

other researchers and a proposed design for Handy Broker will be presented in Section 

3. A prototype has been implemented using Java and the system has passed through a 

series of tests. Results obtained from these tests will be discussed in Section 4. 

Although the results are encouraging, some limitations of the system will also be 

highlighted in this section. Potential applications for Handy Broker in m-commerce 

will be discussed in Section 5. Finally, the last section presents some concluding 

remarks along with some discussion on the possible extensions for future work. 

2.  RELATED WORK 

Personalized product-brokering agents require a profile of the user in order to function 

effectively. The agent would also have to be responsive to changes in the user’s 

interests and be able to search and extract relevant information from outside sources. 
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The rest of this section will highlight some of the work done by other researchers, 

which is closely related to our Handy Broker. 

 

At MIT Media Labs, B. Sheth and P. Maes [6,7] have come up with a system that is 

able to filter and retrieve a personalized set of USENET articles for a particular user. 

This is done by creating and evolving a population of information filtering agents 

using genetic algorithms [8].  

 

Some keywords will be provided by the user and they represent the user’s interests. 

Weights are also assigned to each keyword and the agents will use them to search and 

retrieve articles from the relevant newsgroups. After reading the articles, the user can 

either give a positive or negative feedback to the agents via a simple GUI. Positive 

feedback increases the fitness of the appropriate agent(s) and also the weights of the 

relevant keywords (vice versa for negative feedback). In the background, the system 

periodically creates new generations of agents from the fitter species while 

eliminating the weaker ones. Initial results obtained from their experiments have been 

encouraging and showed that the agents are capable of tracking its user’s interests and 

recommend mostly relevant articles. 

 

While the research work at MIT requires the user to input his preferences into the 

system before a profile can be created, B. Crabtree and S. Soltysiak from BT 

Laboratories [9,10] believed that the user’s profile can be generated automatically by 
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monitoring the user’s web and email habits, thereby reducing the need for user-

supplied keywords. 

 

Their approach is to extract high information-bearing words, which occurs frequently 

in the documents that are opened by the user. This is achieved by using ProSum5, 

which is a text summarizer that can generate a set of keywords to describe the 

document and also determines the information value of each keyword. A clustering 

algorithm is then employed to help identify the user’s interests and some heuristics are 

used to ensure that the program could perform as much for the classification of 

interest clusters as possible, thereby minimizing the amount of user input required in 

the profile generating process.  

 

However, they have not been completely successful in their experiments. The 

researchers admitted that it would be very difficult for the system to classify all the 

user’s interests without the user’s help. Nevertheless, they believed that their program 

has taken a step in the right direction by learning a user’s interest with minimal human 

intervention. 

 

A new product-brokering agent usually does not have sufficient information to 

recommend any products to the user. Hence, it has to get product information from 

somewhere else. A good source of information will be the Internet. In order to do that, 

a method suggested by G. Pant and F. Menczer [11] is to implement a population of 

                                                 
5 Profile-based text summarization 
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web crawlers called InfoSpiders that searches the WWW on behalf of the user. It will 

gather information on the Internet based on the user’s query and indexes them 

accordingly. It behaves much like a personalized search engine but is designed to 

evolve and retrieve only relevant web pages for its user. 

 

These agents initially rely on traditional search engines to obtain a starting set of 

URLs, which are relevant to the user’s query. The agents will then visit these websites 

and decode their contents before deciding where to go next. The decoding process 

includes parsing each web page visited and by looking at a small set of words around 

each hyperlink, a score is given based on their relevance to the user. The link with the 

highest score is then selected and the agent will then visit the linked website.   

 

No further details have been provided on how they extract or analyze the contents of 

the web pages but it has been mentioned that they use neural networks, HTML and 

XML parsing tools that are commonly used by other web crawlers. The agent stops 

after they have visited a pre-determined number of web pages or when it could no 

longer find any relevant web pages. The user can also terminate the search any time he 

wishes. 

 

3. DESIGN OF HANDY BROKER 

Handy Broker can be used to search for all kinds of products. In our application, the 

system will be used to search for some computer products, namely CPU, Mainboard 
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and Memory. It is possible to extend the application to search for other products. All 

the codes are written in Java as it is object-oriented in nature and is compatible across 

multiple operating systems. 

 

Similar to the information filtering agents done by B. Sheth and P. Maes, an initial 

population of product-brokering agents will be created and evolved using some form 

of genetic algorithms. However, in this design, the profile of the user is not based on 

any keywords supplied by the user. In fact, no keywords are required to be entered by 

the user. Instead, each agent will have an evaluation function that will be used to 

calculate the value of each product. Products that have a higher value will have a 

higher chance of being recommended by the agent. This evaluation function has some 

tunable parameters, which characterizes the user’s preferences for a particular 

category of products. Initially, these tunable parameters will be randomly generated 

based on some heuristics but it will evolve over time to match with the user’s 

preferences.  

 

In our design, some assumptions have been made about the system. One of the most 

important assumptions is that the user of the system is a rational person and will select 

a product rationally. Another important assumption is that the value, which a user 

places on a product, can be calculated mathematically. The product values that we are 

focusing on will be those that can be calculated by using some tangible attributes (e.g. 

price) of the product. The agent will not be able to calculate the intangible value (e.g. 
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brand) that is imposed on the product. If these assumptions are not met, the agent will 

not be able to track the user’s preferences successfully.  

 

3.1 Ontology 

Before Handy Broker is able to explore the Internet and retrieve product information 

for the user, agents need to have some prior knowledge such as the URLs of some 

relevant websites, keywords or some quantifiable attributes that can be used to 

describe the product. It could be tedious if the user has to enter such information into 

the agents when he wants to search for a particular product. Imagine the amount of 

data he will have to enter if he wants to search for several different products. 

 

An alternative to this is to create product ontology as shown in Figure 1 that already 

contains some prior information in it (e.g. URLs of relevant websites). Creating 

product ontology involves defining the meaning of each term that is used to describe 

the product, their valid range of values and their relationship with one another.  This is 

necessary as the same term might have different meaning on different products. 

 

Figure 1: Screenshot of product ontology 
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Product ontology can be implemented in a tree-like structure, with the leaf nodes 

representing products and the parent nodes representing product categories. Each leaf 

node actually contains a Java class called productInfo, which has some prior 

information about the product. Different products will have different productInfo 

classes. A new product can be added as a leaf node to its parent node easily. When a 

leaf node is selected, relevant product information can be passed to the product-

brokering agents. Currently, selection of a leaf node will pass the URL of the 

product’s website and its attributes to the agents automatically.   

 

3.2 Product-Brokering Agent 

After describing how our agent obtains its product knowledge, the next stage is to 

define the agent itself. An agent will basically be a Java programming thread that will 

be running continuously in a while-loop until some terminating conditions have been 

met. A unique agent name will be given to each agent so that we can identify and 

differentiate one agent from another. 

 

3.2.1 Agent’s Fitness function 

To calculate the fitness of an agent, a fitness function has been defined by using the 

following equation: 

n

sgeneration n recent the in earned points

Fitness
ze window_si n

∑
=

=  (1) 

This fitness function is basically an un-weighted (or simple) moving average of the 

agent’s fitness, where n is the window size of the moving average. Using equation (1), 
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the agent’s fitness is obtained by averaging the number of points earned by the agent 

in the current and the previous n-1 generations. By varying the value of n, we can 

effectively control the number of generations under consideration and the points 

earned outside this “window” will not be considered. The rationale for this is that 

more emphasis should be placed on the agent’s current performance instead of its past 

performances. As the fitness of an agent would be used to determine which agent to 

evolve, we do not want its past performances, which might be irrelevant now, to 

influence the evolution process. 

 

An agent’s fitness will always be a positive value and a new agent would start off with 

some default fitness. The fitness of an agent can also be a good indicator about the 

agent’s performance. Therefore, in order to keep track of an agent’s performance, 

each agent will have a list called fitness_history and this is used to store the fitness of 

an agent for each generation. Hence, after an agent has been awarded some points, it 

will calculate its new fitness using equation (1) and inserts the value into its 

fitness_history. Details on how an agent earns its points will be discussed in the next 

few sections. 

 

3.2.2 Agent’s Life Cycle 

When an agent is created, it can be in any of the four different states (i.e. Dormant, 

Active, Evolve or Death). During agent creation, it will register itself to a database and 

its default state will be the Dormant state. This is to allow the user to keep track of all 
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the agents running in the system. This database also allows agents to store any product 

information that they have found on the Internet. 

 

While an agent is still “alive”, it will toggle between the Dormant, Evolve and Active 

states, depending on certain circumstances. If the agent is killed by the user, it will 

switch to the Death stage and de-register itself before it is removed from the system. 

Figure 2 shows how the four different states are related: 

 

 

 

 

 

 

 

i. Dormant 

The agent is not doing any task at this moment. It is waiting for the user to give it 

instructions. Note that this will be the default state of the agent once it has been 

created. In this state, the user can modify the agent’s parameters before starting the 

agent. 

 

Agent  

Creation 

Active 

Evolve 

Dormant Death Removed 

Figure 2: Agent’s life cycle 
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ii. Active 

The agent has received some instructions and is currently performing some tasks for 

the user. The types of tasks performed by the agents will be discussed further in 

Section 3.2.3. 

 

iii. Evolve 

The agent has received some user feedback regarding its performance. It is now 

analyzing this feedback and making the appropriate adjustments. The evolution 

process will be discussed in greater detail in Section 3.5. 

 

iv. Death 

The agent has been killed and it can no longer perform any task for its user. Note that 

it is still present in the system and will only be removed when instructed by the user. 

This allows the user to recycle any information that he might find suitable. 

 

3.2.3 Agent’s Task 

Once the user has passed some instructions to an agent, it will switch to the Active 

state and activates the appropriate tasks. As the agent might need to perform different 

types of tasks simultaneously, these tasks are implemented as independent and self-

contained programs, which are separated from the agent. Therefore, instead of 

implementing several agents from scratch to perform different tasks, we only need to 

implement a basic agent and a few task programs. What the basic agent needs to do is 
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to call the appropriate task program, pass some information to it and the task programs 

will handle the rest.  

 

For our application, the agent’s task has been designed specially to parse information 

from a website called Hardwarezone.com
6. It is a website hosted in Singapore and it 

displays up-to-date information of various computer products in a tabular form. The 

task program allows the agent to establish a connection to the website and download 

the HTML document onto a local computer. The program then parses the document 

and extracts relevant information for the agent by looking for specific tags within the 

HTML document. In our application, the program will be able to extract information 

such as the product description, price, performance and also the name of the shop that 

is selling this product. 

 

3.2.4 Agent’s Knowledge 

After the agent has obtained relevant product information from the website, it will 

need a place to store this piece of information. As mentioned in Section 3.2.2, when 

an agent is created, it will register itself to a database. A Microsoft Access database 

(Figure 3) is used in our application. Within the database, a table will be created for 

each agent to store the information (i.e. product description, price, performance, and 

shop name) that it has retrieved from the website. There is also a column called 

prod_value, which contains the value that the agent has placed on that particular 

                                                 
6 http://www.hardwarezone.com 
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product. Details on how the agent derives this value will be discussed in the next 

section.   

 

Figure 3: Screenshot of an agent’s database 

 

In addition to this, each agent will also store its data in a global database. The global 

database is similar to the database as shown in Figure 3 but it will contain all the 

products that have been retrieved by the agents in the system.  

 

3.2.5 Product Recommendation 

Before recommending a product to the user, the agent should be able to evaluate 

which product would fit the user’s requirements best. A proposed method is to use 

some quantifiable attributes such as cost and performance, to evaluate products. An 

example of an evaluation function could be based on the following equation: 
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 product_value = perf_weight*performance – cost_weight*cost (2) 

Equation (2) tries to model the two types of factors that can influence a user’s choice. 

The first attribute (performance) represents the performance of a product while the 

second attribute (cost) represents the cost of a product. It has been assumed that the 

better the product, the higher will be its performance and a better product usually 

results in a higher cost. From equation (2), it can be seen that a product with a higher 

performance and/or a lower cost will result in a higher product_value. 

 

The two weights – perf_weight and cost_weight, represents the weights that the user 

could give to each attributes. These two parameters are actually used to represent the 

user’s preferences and are incorporated inside the agent. If perf_weight has a higher 

value, it means that the user place more emphasis on the performance of the product. 

Likewise, if the user has a higher value for cost_weight, it means that the user is more 

concerned about the cost of the product. Note that, for different products, a different 

set of attributes and weights could be defined under equation (2) and all these could be 

defined inside the product ontology. 

 

When an agent is created, these two weights will be initialized based on some 

heuristics and would be used to calculate the value of each product found in the 

agent’s database. The agent will then rank the products according to their values and 

selects the top three products to be presented to the user. The value of perf_weight and 

cost_weight will be allowed to change when the agent undergoes evolution. 
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3.2.6 Agent’s GUI 

It will be useful if the user is able to observe what is happening inside an agent when 

required. To facilitate this, Handy Broker provides a simple GUI (Figure 4) that shows 

information such as the name of the agent, its current status, and products 

recommended. It would also allow the user to change some of the parameters inside 

an agent. 

 

Figure 4: Agent’s GUI 

 

3.3 Monitoring Tools 

Handy Broker also provides a monitoring tool for the user, which allows him to 

observe and control the behavior of his agents as a group. This tool will be the main 

interface between the user and his agents. From this interface, the user has full control 

on the lifecycle of his agents. The user can choose from a list of products provided in 

the product ontology and enter some parameters (e.g. number of agents) before 

starting a search. 

 

Once all the parameters have been entered into the system, an appropriate number of 

agents will be created to search for the product on the Internet. While the program is 

Updateable 
parameters 

Top product 
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running, the user can start or stop the agents any time by using this tool. A text 

message will also be provided to allow the user to track the progress of his agents in 

the system. To provide feedback on the agent’s performance, the user can do so by 

clicking on the Result button. A screen shot of the implemented system is shown in 

Figure 5. 

 

 

Figure 5: Monitoring tool in action 

 

3.4 User Feedback 

During user feedback, each agent in the system will select the top three products in its 

database and adds them into a recommended list. A sorting function will be 

implemented to allow the user to sort the list according to his preferences. If the user 

cannot find any product that he fancies in this list, he can look at the global list, which 

contains all the products that have been retrieved by the agents in the system. When 
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the user sees a product that he likes, he can select the product by clicking on it and all 

the agents in the system will be informed about the user’s selection. 

 

The agents will take note of the product that the user has selected and searches for that 

product inside its own database. At this stage, each agent would have already assigned 

a product value to each product in its database. To determine the number of points to 

be awarded to an agent, the products will be ranked in an ascending order according to 

this value. Hence, products with a higher value will be located at the bottom of the 

table. The agent will then determine the position of the user-selected product and take 

note of its row number. The formula to calculate the exact number of points to be 

given to an agent is as follows: 

 

points maximum
products of number total

product  selecteduser of number row
awarded points ×=  (3) 

 

As an example, Figure 6 shows an agent’s product list after it has been sorted in 

ascending order. 

 

Figure 6: Screenshot of an agent’s database after sorting 

Agent’s 

selection 

User’s 

selection 
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In this example, there are a total of 13 products found inside the agent’s database and 

the product with the highest product value is located in row 13. This will be the top 

product inside the agent’s database. However during feedback, the user might have 

actually chosen the product in row number 7 instead. Therefore, assuming that the 

maximum amount of points awardable is 5, the number of points that the agent has 

earned in this case will be: 

69225
13

7
awarded points .=×=  

 

Using this example, it can be seen that if the ranking of the agent- and user-selected 

products are far apart, the agent will actually receive less points. Besides, if the user-

selected product is not inside the agent’s database, the agent will not receive any point 

at all! 

 

3.5 Evolution Process 

The fitness of an agent will be used to decide which agent will undergo the evolution 

process. In conventional genetic algorithms, the agent with a higher fitness will have a 

higher chance of survival as compared to an agent with a lower fitness. However, in 

this application, there will be a slight variation in the algorithm. Instead of killing the 

weaker agents, we allow weaker agents to continue and refine by copying over the 

database of the fittest agent and merging it into its original database to form a larger 

database. Let Agent 1 be the fittest agent and Agent 2 be the weaker one.  Figure 7 

shows what happens between the agents during this evolution process. 
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Figure 7: Evolution process 

 

However, the parameters acquired by the weaker agent in this evolution process might 

not necessarily be the optimal. Therefore, the weaker agent will try to adjust its newly 

acquired perf_weight and cost_weight to better reflect the user’s requirements. First, it 

will use the newly acquired parameters to re-evaluate all the products found inside its 

new database. Then the agent will select the best product based on these new 

parameters. If it is the same as the user selected product, no further changes will be 

required but some small and random mutations in the parameters will be allowed. 

 

However, that will not be the case usually. In this case, the agent will compare the 

performance and cost attributes of the products that are selected by the user and the 

agent. Let p1 and p2 denotes the performance of the products selected by the user and 

agent respectively. Also let c1 and c2 denotes the cost of the products selected by the 

user and agent. Four possible scenarios will have to be considered and they are: 

 

i. p1 > p2 and c1 > c2 

Agent 1 

 
Agent 2 

perf_weight = 1.432 

cost_weight = 0.568 

database 1 

perf_weight = 0.98      1.432 

cost_weight = 1.02      0.568 

 

database1 + database2 
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The user has selected a product that has a much better performance but more 

expensive than what the agent has suggested. The agent can deduce that the user 

places more emphasis on the performance rather than the cost of the product. 

Therefore, it will increase its perf_weight and reduce its cost_weight. 

 

ii. p1 < p2 and c1 < c2 

The user has selected a product that is of a lower performance but cheaper than what 

the agent has suggested. The agent can deduce that the user places more emphasis on 

the cost rather than the performance of the product. Therefore, it will reduce its 

perf_weight and increase its cost_weight. 

 

iii. p1 < p2 and c1 > c2 

The user has selected a product that is of a lower performance and more expensive 

than what the agent has suggested. The agent will be confused over such a selection 

and will prompt the user if it should carry on the evaluation. If the user still wants the 

agent to carry on, it will either reduce its perf_weight or cost_weight. This might 

happen when the user has placed some form of intangible attributes/values on the 

product, which are not present inside the agent’s evaluation function. 

 

iv. p1 > p2 and c1 < c2 

The user has selected a product that has a higher performance and cheaper than what 

the agent has suggested. This scenario will not arise during evolution. Looking back at 

equation (2), a product with a higher performance and/or a cheaper product will result 
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in a higher value being assigned to that product. Since using p1 and c1 will definitely 

result in a higher product value as compared to p2 and c2, this scenario will not 

happen. 

 

The evolution process as described in this section is actually quite similar to the use of 

the reproduction and crossover operator to clone the fitter agents and then use the 

mutation operator to mutate some of the parameters within the agents. 

 

4. SYSTEM EVALUATION 

To evaluate the performance of the implemented system, some experiments have been 

conducted to see if the agents are able to track the user’s preference. All the agents in 

these experiments are running inside a single PC. The PC used in this experiment is a 

Pentium 4 with 384MB of memory and operating under the Windows ME 

environment with JDK1.3.0. The system connects to the Internet via a 56.6kbps 

modem. 

 

4.1 Product Recommendation 

In this experiment, a group of twenty randomly generated product-brokering agents 

are instructed to search for one of the products on the Internet. The product chosen for 

this experiment is CPU. For this part of the experiment, the user wants to get the best 

CPU possible and he does not care about the price. After instructing the agents to 

search for the product, the system is allowed to run on its own for about ten minutes 

so that the agents can retrieve sufficient products before the user gives feedback. After 
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ten minutes, the user clicks on the result button and the recommended list is as shown 

in Figure 8. 

 

Figure 8: Recommended list of products 

 

From the recommended list, the user selects the current best product in row 13, which 

happens to be Pentium 4 1.8GHz as shown in Figure 9.  

 

 

Figure 9: User selection 
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While the feedback is been made, the system continues to search for products in the 

background. After making a few similar selections, the agents evolved and re-

evaluated their lists. The new recommended list is now as shown in Figure 10. The list 

now only shows the best CPUs retrieved by all the agents. 

 

Figure 10: Recommended list after feedback 

 

When the user is satisfied with what the system has learned, he allows the system to 

carry on searching the Internet for new products on its own. After some time has 

passed, the agents have found an even better performing CPU and it is reflected in the 

agent’s recommended list, as shown in Figure 11. 

 

 

Figure 11: New products recommended by the agents 

 

New product 
recommended 
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Two other scenarios have also been tested on the system. One of them is to search for 

the cheapest CPU available while the other is to find a right mix of performance and 

cost for the user. The steps used in these scenarios are similar to those used in the first 

part of the experiment and the results obtained are valid. 

 

4.2 Tracking user’s preference 

In this experiment, the objective is to test if the system is able to detect a change in the 

user’s preference. If it is able to do so, we need to determine how fast the system will 

be able to respond to these changes. This could be observed by looking at the average 

fitness of all the agents in the system. The average fitness of all the agents should 

remain high if the system is able to track and respond to the changes effectively. 

 

An initial population of twenty randomly generated agents is created and the response 

of the system is observed by changing the number of agents to evolve in the 

population. For each test case, the same set of test data are used and will be described 

in the next few sections. 

 

4.2.1 Gradual changes in user’s preference  

In this part of the experiment, the user starts by selecting the best CPU available. 

After a few selections, the user will gradually choose cheaper and cheaper CPUs. The 

experiment stops after all agents begin to recommend the cheapest CPU available. 

Figure 12 shows the average fitness of the agents, when the user gradually changes his 
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preferences. The percentage values in the figure indicate the percentage of population 

allowed to evolve during each generation. 

 

Figure 12: Tracking gradual changes in user’s preferences 

 

The results obtained from this experiment have shown that the system is capable of 

tracking gradual changes in the user’s preferences. Although some “dips” are 

observed during the experiment, the average fitness of the agents in the system 

remains high while the user changes his selection. These dips could happen because 

some of the agents might not have in their database the products selected by the user. 

Therefore, these agents do not receive any points and could “pull down” the average 

fitness quite significantly. 
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4.2.2 Abrupt changes in user’s preference 

In this part of the experiment, the user makes two abrupt changes in his preferences. 

Initially, the user starts by selecting the best CPU available. After a while, he abruptly 

changes his preferences by selecting the cheapest CPU and then reverts back to his 

original selection. Figure 13 shows the average fitness of the agents when the user 

changes his preferences abruptly. 

 

Figure 13: Tracking abrupt changes in user’s preference 

 

Interestingly, the results obtained suggested that as we increase the proportion of 

agents to evolve, the response of the system would be much better. The best result is 

obtained when 100% of the population is allowed to evolve. It can be seen that the 

User changes 
preference abruptly 

User changes 
preference abruptly 

Max fitness 
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system in this scenario attains the maximum average fitness in a shorter time as 

compared to others. Also, when the user makes an abrupt change in his selection, the 

average fitness of the system does not drop as much compared to the rest and it 

recovers much faster. The system could not track the user’s preference when less than 

10% of the population is allowed to evolve. 

 

Although allowing a larger proportion of agents to evolve will result in a faster 

response. It might cause the system to converge to a solution pre-maturely. This has 

been observed when 100% of the population is allowed to evolve. The type of 

products recommended by the agents is not as diverse as compared to when only 50% 

of the population is allowed to evolve.  

 

Hence, there is a tradeoff between them. From the experiments, it has been observed 

that allowing 50% of the population to evolve will be a reasonable compromise 

between the response time and the diversity of products recommended. 

 

4.3 Limitations of the System 

Although preliminary test results have shown that Handy Broker is quite successful in 

tracking the user’s preferences after a few evolutions, it has been noticed that 

sometimes, it does not follow the user’s selection. A possible explanation for this 

could be due to the mismatch of the evaluation function that is used by the agent to 

calculate the perceived value of a particular product. Currently, the function only takes 

into account the performance and cost of a given product. However in reality, there 
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might be other product attributes, which could also affect the user’s decision. Some of 

them could also be intangibles, which might be difficult to represent in the function. 

 

5. M-commerce Applications 

The proposed design of a product-brokering agent has been implemented using Java in 

a desktop computer. However, mobile devices such as phones and PDAs tend to have 

a smaller screen, slower processors as well as limited memory. Hence, this will pose 

some serious constraints when we transfer the software into these mobile devices. 

There is also a serious lack of standardization as these mobile devices use different OS 

platforms, which makes it difficult for the developers to create a single program that 

can run on all devices. 

 

After taking all these into consideration, a possible solution is to use a software that is 

compatible across multiple operating platforms. A good candidate is Java, which has 

been used to implement the system as mentioned in this paper. Java is a platform-

independent software technology, allowing the same code to be run on any system. 

This greatly reduces the time and cost of software development and is particularly 

attractive for Internet or local network applications. However, the disadvantage of 

Java as compared to other programming languages, such as C, is its less efficient and 

slower program execution. Faster processors and more memory are needed to 

compensate for this. This results in higher cost, and, for wireless applications, shorter 

battery life. However, this disadvantage has been slowly reduced by the introduction 

of more efficient JIT (just-in-time) compilers. Currently, the developers of Java have 
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also introduced some highly optimized and micro version of the Java software to cater 

for small devices such as cellular phones and PDAs. 

 

As for hardware, Philips Research7 has developed a co-processor that improves the 

execution of Java embedded software by a factor up to 10. This obviates the need for 

powerful processors and/or more memory that this programming language often 

requires, while maintaining the advantage of enabling fast and economic product 

development and easy integration with the Internet. The type of invention supports the 

use of Java and related languages in applications ranging from smart cards to mobile 

phones and set-top boxes. 

 

A PDA is an ideal device for m-commerce applications. It tends to have a larger 

screen and a more powerful processor as compared to a cellular phone but is less 

bulky than a laptop. Making an existing application viewable in any wireless device, a 

process know as transcoding, is among one of the biggest challenges of m-commerce. 

In order to fit into the screen of a PDA, the GUI implemented in this paper will have 

to be scaled down to the appropriate size. A possible solution is to use scrollbars that 

allows the user to scroll the GUI. A possible screenshot of a PDA with the GUI is 

shown in Figure 14. 

                                                 
7 http://www.philips.com.sg/news.shtml#5January 
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Figure 14: Screenshot of a PDA with the implemented GUI 

 

The PDA selected for our application is the Compaq iPAQ Pocket PC H38708. It has 

one of the largest viewable screens in the market and also an integrated Bluetooth for 

wireless links to Bluetooth-enabled cellular phones. This device also supports the Java 

Virtual Machine, which will allow our software to be integrated into the PDA easily.  

 

6. CONCLUSIONS AND DISCUSSIONS 

This paper has demonstrated that by using genetic algorithms and an evaluation 

function, it is possible to design and implement an intelligent product-brokering agent 

for m-commerce applications. 

 

                                                 
8 ® iPAQ Pocket PC H3870 is a registered product of Compaq. 
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A prototype Handy Broker has been implemented using Java and the preliminary 

results obtained from the experiments have been encouraging. However, there are 

some limitations in the current prototype that might hamper the system’s performance. 

More research will have to be done before a truly robust system can be made ready for 

m-commerce. 

 

One possible improvement to the current work will be to allow the agents to be 

distributed in a network instead of being hosted entirely by the same computer. As the 

host computer might not have sufficient resources (processing power, bandwidth, etc.) 

to support all the agents in the system, it will be advantageous if some of the agents 

can be hosted by another computer. For m-commerce applications, this would mean 

the agents could now be hosted by a commercial Internet Service Provider (ISP). 

 

An m-commerce user would not want to spend large amount of money on maintaining 

a wireless connection to an ISP or a phone company. Likewise, it is unrealistic for 

mobile devices such as cellular phones and PDAs to be always “online”. Currently, 

some ISPs do provide some form of storage spaces for their subscribers to store files 

inside their servers. In extension to this, an ISP could now also offer to host agents 

that have been created by/for their subscribers with a reasonable fee. These agents 

could perform their tasks inside these servers and report to its user when he re-

establishes another connection with the ISP. 
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However, allowing agents to be distributed over the network will raise some issues, 

which the developer should look into before the system could be implemented. Since 

the agents are distributed, some form of communication protocol and ACL (Agent 

Communication Language) will have to be designed and incorporated into the system. 

One way is to upgrade the monitoring tool that has been implemented in this paper so 

that it can communicate with remote agents using some ACL via a socket connection. 

Currently, there exist some high-level agent languages such as KQML (Knowledge 

Query and Manipulation Language) [12] and FIPA ACL [13], which has been 

developed for inter-agent communication. 

 

Security issues also arise when agents are hosted by other computers. There is now a 

need for us to distinguish between agents that are sent by different users. In m-

commerce, security is of paramount importance. Sensitive and private information of 

the user will have to be safeguarded from other hostile entities. This is especially 

important in the case of mobile agents. As they travel from host to host, we have to 

prevent them from been intercepted and its contents “core-dumped” by hostile hosts. 

Malicious agents could also masquerade as the original agent and trick an 

unsuspecting user into giving up his personal information. 
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