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This paper presents a robust finite-element procedure for simulating the localised fracture of reinforced concrete

members. In this new model, the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar

and bond-link elements. The four-node quadrilateral elements are used for two-dimensional modelling of plain

concrete elements, in which the extended finite-element method is adopted to simulate the formation and growth

of individual cracks. The reinforcing steel bars are modelled using a three-node beam–column element. The two-node

bond-link elements are used for modelling the interaction between plain concrete and reinforcing steel bar elements.

It is evident that the non-linear procedure proposed in this paper can properly model the formation and propagation

of individual localised cracks within the reinforced concrete structures. The model presented in this paper enables the

researchers and designers to access the integrity of reinforced concrete members under extreme loading conditions

using mesh-independent extended finite-element method.

Notation
Benr
a enhanced strain–displacement transformation matrix

Bsta
u regular strain–displacement transformation matrix

D material constitutive matrix of plain concrete
f int element internal force vector
f a
int enhanced element internal force vector

f u
int regular element internal force vector

fΓ
int element internal force vector corresponding to

traction
Gf fracture energy of concrete
Kaa enhanced element stiffness matrix
Kuu regular element stiffness matrix
KΓ element stiffness matrix corresponding to traction
sign (x) sign function
Ta tangent stiffness of traction–separation relation
ta traction within the cracks
ucont vector of continuous displacement field
udis vector of discontinuous displacement field
Ψi (x) enhancement function

1. Introduction
Recently, localised fracture of reinforced concrete members
has been of interest to many researchers and engineers. In the
case of utilisation of reinforced concrete structures in offshore
structures, it is very important to evaluate the effect of individ-
ual crack opening on the corrosion of reinforced steel bars,
which could cause a significant strength loss of the structural

members. When structures are subjected to extreme loading
conditions such as fire, the reinforced concrete beams or slabs
are forced into high deformation, and large individual cracks
can be formed within the structural members. This phenom-
enon was observed in some previous experimental tests (Bailey
and Toh, 2007; Foster, 2006; Foster et al., 2004). Those large
individual cracks influence the exposure condition of reinfor-
cing steel bars to fire and in some cases the steel reinforce-
ments are directly exposed to fire which significantly reduces
the fire resistance of the structures. In the case of the fibre-
reinforced plastic (FRP) strength reinforced concrete beam, the
localised concrete cracking could cause possible debonding
failure of externally strengthening FRP layer (Chen et al.,
2011). In addition to the global responses like ultimate
strength and deflection the propagation of localised cracks in
the concrete surrounding the reinforcing steel also affects the
bond–slip behaviour between the steel bar and concrete
(Cervenka et al., 2003; Gao et al., 2013; Rots, 1985). In the
past, plenty of researches have been devoted to develop the
numerical models for modelling of the reinforced concrete
structure based on a continuum approach in which smeared
cracking was adopted to simulate cracks (Huang et al., 2003;
Suidan and Schnobrich, 1973; Vecchio and DeRoo, 1995).
However, the smeared cracking model is not capable of captur-
ing the formations and propagations of individual cracks
within a reinforced concrete member. At present, very little
research has been done on the modelling of localised fractures
for reinforced concrete structural members.
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In the past, a discrete-cracking model has been used success-
fully for modelling cracks in structural members when the
crack path was known in advance. In these cases, the finite-
element (FE) mesh was constructed in such a way that the
crack path coincided with the element boundaries. However,
this approach has to limit cracks to interelement boundaries,
or requires performing remeshing during the analysis process
in order to capture crack propagation. To overcome this
problem, extended FE method (XFEM) was developed and
introduced (Belytschko and Black, 1999; Möes et al., 1999)
based on the partition of unity theory (Mellenk and Babuŝka,
1996). Recently, a number of XFEM approaches in conjunc-
tion with cohesive-zone models have been developed to analyse
localisation and fracture in engineering materials (Möes
and Belytschko, 2002; Verhoose et al., 2009; Wells and Sluys,
2001; Zi and Belytschko, 2003). In the last decade, XFEM
approach has been successfully extended to many applications
in modelling two-dimensional (2D) and three-dimensional
(3D) problems (Duan et al., 2009; Gravouil et al., 2002;
Hansbo and Hansbo, 2004; Möes et al., 2002; Sukumar et al.,
2000). However, so far the application of XFEM for modelling
of reinforced concrete members is still very limited.

The main objective of this paper is to present a robust FE pro-
cedure for modelling the localised fracture of reinforced con-
crete members. The four-node quadrilateral elements are used
for modelling of plain concrete part of reinforced concrete
members, in which the XFEM is adopted to simulate the for-
mation and growth of cracks. The reinforcing steel bars are
modelled by using the three-node beam–column elements and
two-node bond-link elements are employed for modelling the
interaction between plain concrete and reinforcing steel bar
elements. If XFEM is applied to the plain concrete element its
nodal displacement will be divided into two parts, continuous
part and discontinuous part, both of them cannot be coinci-
dent with the nodal displacement of steel bars. To resolve this
problem, a shifted enhancement function proposed by Zi and
Belytschko (2003) is adopted so that the total nodal displace-
ment of the plain concrete element can be obtained in the pro-
cedure rather than only the continuous part. In this way, the
nodal displacement of concrete and reinforcing steel bar can
coincide with each other in the proposed model. In this paper,
the influence of bond characteristics between the concrete
and reinforcing steel bar on the localised crack initiation and
propagation within a reinforced concrete member is also
examined.

2. Non-linear procedure

2.1 Reinforcing steel bar and bond-link elements
As shown in Figure 1, a reinforced concrete beam is modelled
as an assembly of finite plain concrete, reinforcing steel bar
and bond-link elements. In the present model, a general 3D

isoparametric three-node beam–column element developed by
Huang et al. (2009) is adopted to represent the main reinfor-
cing steel bars of reinforced concrete members. The material
non-linearities of concrete and steel follows the models speci-
fied in Eurocode 2 (BSI, 2004).

To model the interaction between the reinforcing steel and
concrete within the reinforced concrete structural members, a
two-node bond-link element with zero length developed pre-
viously by Huang (2010) was used. As shown in Figure 1(b),
the bond-link elements are used to link four-node quadrilateral
plain concrete elements with three-node reinforcing steel bar
elements. The bond-link element is a specialised two-node
element of zero length, which has three translational degrees
of freedom u, v, w and three rotational degrees of freedom θx,
θy, θz at each node, where x, y, z are local coordinates of the
reinforcing steel element in which x is the direction of the
longitudinal axis of the reinforcing steel bar (Figure 1(c)). It is
assumed that the slip between the reinforcing steel and con-
crete is only related to the longitudinal axis direction
(x-direction).

For reinforcing steel bars, apart from the relative slip along the
longitudinal axis direction (x-direction) between the concrete
and steel bars the concrete prevents relative movement of rein-
forcing bars in other directions. It is, therefore, reasonable to
assume that common nodes of the concrete and reinforcing
bar elements have identical rotations and movements in y and
z directions. Hence, in this bond-link element the stiffness coef-
ficients of the element stiffness matrix k2, k3, k4, k5, k6, which
are related to the degrees of freedom for v, w and θx, θy, θz,
respectively, are assumed to have infinite magnitude (1015).
The stiffness coefficient k1, which is related to the degree of
freedom for u, can be calculated using an empirical bond
stress–slip relationship given in the CEB-FIP Model Code
(CEB-FIP, 1993).

The bond-link element is capable of modelling perfect, partial
and zero bond between the concrete and reinforcing steel bar
within the reinforced concrete structures. For partial bond con-
dition (ribbed steel bar and smooth steel bar), the average
bond stress (τb) and stiffness coefficient k1 of the bond element
are calculated using the bond stress–slip curves proposed in
the CEB-FIP Model Code (CEB-FIP, 1993). For perfect
bond condition k1=1015(N/mm) and no failure of the bond
are assumed. For the zero bond condition, it is assumed that
there is no interaction between the concrete and reinforcing
steel bars (k1=0, τb=0). The details of the bond-link element
can be found in Huang (2010).

As shown in Figure 1(b), the quadrilateral plain concrete
elements and the steel bar elements are connected to each
other using two-node bond-link elements. The displacement
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interpolation in a four-node quadrilateral element is linear
(see the following sections) while the displacement interp-
olation in the three-node beam element, which represents rein-
forcing steel bar, is quadratic. Therefore, there would be a
displacement incompatibility between the plain concrete and
reinforcing bar elements. However, in the current model,
the two different elements are not sharing the same nodes
(Figure 1(b)); this will reduce the impacts of displacement
incompatibility on the model. Moreover, it can be seen from
Figure 1(b) that two plain concrete elements are connected to

one steel bar element by three bond-link elements. Hence, the
mesh of the quadrilateral concrete element has been doubly
refined compared with the steel bar element, which may help
to reduce the effect of displacement incompatibility between
the plain concrete and the reinforcing bar elements on the
modelling results. Generally, for FE modelling, if different
elements with displacement incompatibility are used the fine
mesh is needed to improve the accuracy of the results. It will
be demonstrated in the validation section that the current
model is not very mesh sensitive. Hence, the influence of the

(a)

(b)

(c)

x

y

L t

h

Plain concrete quadrilateral element 

Steel bar beam element 
Reference plane

Represented steel 
bar element

Node of concrete

0

Node of steel barBond-link element

Four-noded quadrilateral element

Three-noded beam element

Node 1 (plain concrete
element)

Node 2 (steel bar
element)

x

y

z

u1

v1

w1

θy1
θz1 θz2

θy2θx2
u2

v2

w2

Bond-link element (link node 1
and node 2

θx1

Figure 1. Two-dimensional FE model of a reinforced concrete
beam: (a) 2D reinforced concrete beam; (b) concrete, steel bar and
bond-link element; and (c) bond-link element
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displacement incompatibility of two different elements on the
current model is limited.

To transform the 3D problem into a 2D model, all reinforcing
steel bars at the same height within the cross-section of the
beam are represented by an equivalent steel bar element at the
reference plane, as shown in Figure 1(a). The cross-sectional
area of the equivalent steel bar element equals the total cross-
sectional area of all real steel bars represented. Besides, the
contact area of the equivalent steel bar element with concrete
is the summation of the total contact areas of all the real steel
bars represented.

2.2 Plain concrete element

2.2.1 FE shape functions as partitions of unity
A general isoparametric four-node quadrilateral element, each
node of which contains two translational degrees of freedom,
is used herein for representing the plain 2D concrete element
(Bathe, 1996). For modelling the concrete cracking, the
XFEM is incorporated into the plain concrete element. The
key idea of the XFEM is to use the partition of unity to
describe the discontinuous displacement and the displacement
field is approximated by the sum of the regular displacement
field and the enhancement displacement field (Möes et al.,
1999). Considering a four-node quadrilateral element which is
crossed by a crack (Γd), as shown in Figure 2, the domain is
divided into two distinct domains represented as Ω+ and Ω−.
Then, the total displacement field u consists of a continuous
regular displacement field ucont and a discontinuous displace-
ment field udis (Wells and Sluys, 2001)

1: u ¼ ucont þ udis ¼
X4
1

Niuiþ
X4
1

NiΨ iðxÞai

where Ni is the shape function, u i the regular node displace-
ment, a i the additional node displacement to describe the dis-
continuity and Ψi (x) the enrichment function to realise the
displacement jump over discontinuity and is expressed as

2: Ψ iðxÞ ¼ sign ðxÞ � sign ðxiÞ ði ¼ 1; . . . ; 4Þ

in which sign is the sign function and is defined as

3: sign ðxÞ ¼ þ1 if x [ Ωþ

�1 if x [ Ω�

�

Note that the sign function enrichment is equivalent to the
Heaviside function enrichment which has been used in many
previous works of XFEM, but the sign function appears to
be more symmetrical than the Heaviside function H (H=1 if
x[Ω+, H=0 if x[Ω−) (Zi and Belytschko, 2003). sign (xi) is
the sign function of the ith node in a quadrilateral element.
Taking the quadrilateral element in Figure 2 as an example:
sign (x2)=sign (x3)=−1 for nodes 2 and 3 and sign (x1)=
sign (x4)=+1 for nodes 1 and 4, respectively. Compared with
the conventional XFEM models, the sign function given in
Equation 2 is shifted by sign (xi). According to Zi and
Belytschko (2003), using the shifted sign function can make
the enrichment displacement field vanish outside the enhanced
element but not alter the approximating basis. In this way, only
the element cut by the crack needs to be enhanced rather than
its adjacent elements which also contain the enhancement
nodes. This method could greatly simplify the implementation
of extended FE model in modelling the multiple cracks in a
reinforced concrete structure. This is because the interaction
between the steel bar and the concrete by way of bond action
tends to make cracks to distribute more evenly within the struc-
tural members, unlike most of previous XFEM simulations for
modelling single crack propagation within brittle materials,
such as plain concrete. In addition, a more crucial advantage
of using shifted enhancement function is capable of obtaining
the total nodal displacement directly in the procedure rather
than only in the regular part of XFEM displacement (Ahmed,
2009). This makes the compatibility of total nodal displace-
ments of the plain concrete element and the steel bar element
feasible. Hence, the bond-link element can be used to link
plain concrete element and steel bar element in a conventional
way, such as continuous approach, for modelling of localised
cracking within a reinforced concrete member.

In many applications of the XFEM, crack tip enrichment
functions such as branch functions were used to enrich the
element that contains the crack tip (Xiao et al., 2007). In this
paper, for simplicity, it is assumed that the crack tip is always
located at the edge of an element; thus, the cracked element
can be successfully enriched by the sign function only without

Ω –

Ω +

Discontinuity, Γd

x

y

Cartesian coordinates

r

s
Node 1 (r = 1, s = 1)

Node 4 (r = 1, s = –1)

Node 2 (r = –1, s = 1)

Node 3 (r = –1, s = –1)

Figure 2. A four-noded quadrilateral element crossed by a
discontinuity Γd
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other enrichment functions. Thus, the crack branching is not
included in the proposed model. It is assumed that a particular
element contains only one crack. The main purpose of the
model developed in this paper is to capture the major localised
cracks within the concrete beam. Therefore, in order to
enhance the computational efficiency of the proposed model,
precise modelling of the crack tip and crack branching is not
considered in this paper. It will be demonstrated in the vali-
dation section that the current model is not very mesh
sensitive.

2.2.2 Element stiffness matrix, K
In the case of 2D four-node quadrilateral element as shown in
Figure 2, the element nodal displacement vector û can be rep-
resented as

4: û ¼ ui
ai

� �
¼ u1 v1 u2 v2 u3 v3 u4 v4 a1 b1 a2 b2 a3 b3 a4 b4½ �T

where ui and νi are the regular nodal displacements related to
x and y coordinates, respectively, and ai and bi are enhance-
ment nodal displacements related to x and y coordinates,
respectively.

The total strain within the element in which the enhancement
degrees of freedom are included can be expressed as

5: ε ¼ εcont þ εdis ¼
εx
εy
γxy

8<
:

9=
; ¼ Bû ¼ Bu

sta B
a
enr

�� ui
ai

� �

in which εcont is the continuous strain and εdis the discontinu-
ous strain; B sta

u the standard strain–displacement transform-
ation matrix corresponding to the regular degrees of freedom
ui and B enr

a the enrichment strain–displacement transformation

matrix corresponding to the additional enhancement degrees
of freedom ai.

The shape functions of a general quadrilateral element are cal-
culated as (Bathe, 1996)

6:

N1 ¼ 1
4
ð1þ rÞð1þ sÞ

N2 ¼ 1
4
ð1� rÞð1þ sÞ

N3 ¼ 1
4
ð1� rÞð1� sÞ

N4 ¼ 1
4
ð1þ rÞð1� sÞ

Hence, the strain–displacement transformation matrix B
including the regular part and the enhancement part can be
obtained as B=[B sta

u B enr
a ], in which

where Ψi(x) (i=1−4) is the enrichment function given in
Equation 2, and the matrix L contains the differential oper-
ators. If strains are reasonably small the stresses σ can be
written as

9: σ ¼
σx

σy

τxy

8><
>:

9>=
>; ¼ Dε ¼ DðεcontþεdisÞ

¼ D Bu
staui þ Ψ iðxÞBu

staai
� �

in which D is the constitutive matrix of concrete.

In a FE model, the equilibrium conditions between the
internal and the external ‘force’ has to be satisfied. To form
the element stiffness matrix and internal force vector, the

7:

Bu
sta ¼ LN

¼ L
N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

" #

¼
Bsta1x 0 Bsta2x 0 Bsta3x 0 Bsta4x 0

0 Bsta1y 0 Bsta2y 0 Bsta3y 0 Bsta4y

Bsta1y Bsta1x Bsta2y Bsta2x Bsta3y Bsta3x Bsta4y Bsta4x

2
664

3
775

8:

Ba
enr ¼ Ψ iðxÞLN

¼ L ¼ L
Ψ 1ðxÞN1 0 Ψ 2ðxÞN2 0 Ψ 3ðxÞN3 0 Ψ 4ðxÞN4 0

0 Ψ 1ðxÞN1 0 Ψ 2ðxÞN2 0 Ψ 3ðxÞN3 0 Ψ 4ðxÞN4

� �

¼
Benr1x 0 Benr2x 0 Benr3x 0 Benr4x 0

0 Benr1y 0 Benr2y 0 Benr3y 0 Benr4y

Benr1y Benr1x Benr2y Benr2x Benr3y Benr3x Benr4y Benr4x

2
64

3
75
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virtual work equation without body forces reads

10: f int ¼
ð
Ω
BTσ dΩ ¼ f ext

where f int is the internal force vector and f ext is the external
force vector. As shown in Figure 2, for the element with crack
Equation 10 can be written as

11: f int ¼
ð
Ω
BuT
staσ dΩþ

ð
Ωþ;Ω�

BaT
enrσ dΩþ

ð
Γd

N
T
tadΓd ¼f ext

The internal force f int contains the regular part f u
int, enhance-

ment part f a
int and the traction part fΓ

int in which the regular

internal force f u
int balances the external force f ext and the

enhancement part f a
int is related to traction of crack fΓ

int only,
that is

12: f intu ¼
ð
Ω
BuT
staσ dΩ ¼ f ext

13: f inta þ f intΓ ¼
ð
Ωþ;Ω�

BaT
enrσ dΩþ

ð
Γd

N
T
ta dΓd ¼ 0

where ta is the traction acting on the discontinuity Γd
(Figure 3) and can be written as

14: ta ¼
tan
tas

� �
¼ Taw ¼ Tan 0

0 0

� �
wn

ws

� �

where tan and tas are the traction normal and tangential to a
crack, respectively; wn (¼ n � ðuþ � u�Þ ¼ n � 2P4

1 Niai) is the
crack opening of the normal direction n of the discontinuity
(Γd), and ws is the slide of two crack faces tangential to the dis-
continuity (Γd), respectively and Tan is the tangent stiffness of
the traction-separation law. Using the principle of virtual work
on Equations 12 and 13, the element stiffness matrix in terms
of incremental displacements can be obtained

Equation 15 can be rewritten as

16: Kdû¼ Kuu Kua

Kau ðKaa þ KΓ Þ

� �
du

da

� �
¼ f ext

0

( )
� f intu

f inta þ f intΓ

( )

where Kuu is the element stiffness matrix with reference to the
regular degrees of freedom; Kaa is the element stiffness matrix
with reference to the enhancement degrees of freedom; Kua=
Kau
T is related to both; and KΓ is the element stiffness matrix of

traction

17:
Kuu ¼

ð
Ω
BuT
staDBu

sta dΩ

¼t
ðð

A
BuT
staDBu

stadxdy

18:

Kua ¼
ð
Ωþ;Ω�

BuT
staDBa

enr dΩ

¼t
ðð

Aþ;A�
BuT
staDBa

enrdxdy

19:

Kau ¼
ð
Ωþ;Ω�

BaT
enrDBu

sta dΩ

¼t
ðð

Aþ;A�
BaT
enrDBu

stadxdy

n

Integration point over the discontinuity

s

x

y

w (Crack opening)

ta (Traction)

Figure 3. Traction of a crack

15:

Ð
Ω BuT

staDBu
sta dΩ

Ð
Ωþ;Ω� BuT

staDBa
enr dΩÐ

Ωþ;Ω� BaT
enrDBu

sta dΩ
Ð
Ωþ;Ω� BaT

enrDBa
enr d Ωþ Ð

Γd
N

T
TaN dΓd

	 

2
64

3
75 du

da

� �
¼ f ext

0

( )
�

f intu

f inta þ f intΓ

( )
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20:

Kaa ¼
ð
Ωþ;Ω�

BaT
enrDBa

enr dΩ

¼t
ðð

Aþ;A�
BaT
enrDBa

enrdxdy

21:

KΓ ¼
ð
Γd

N
T
TaNdΓd

¼t
ð
Γd

N
T
OTTdON dΓd

where t is the thickness of the element, N ¼ Nþ �N� ¼ 2ðNÞ
and N is the shape function matrix which is defined in
Equations 6 and 7. The orthogonal transformation matrix O
performs the transformation of the local orientation of the
discontinuity to the global coordinate system, as shown in
Figure 3

22: O ¼
cosðx; nÞ cosðx; sÞ
cosðy; nÞ cosðy; sÞ

" #

where cos(x, n) is the cosine of the angle between the x-axis
and the normal orientation of discontinuity, cos(x, s) is the
cosine of the angle between the x-axis and the tangential orien-
tation of discontinuity.

2.2.3 Element internal force vector, f int

Using the principle of virtual work, the internal force vectors
in Equation 16 can be written as

23:

f intu ¼
ð
Ω
BuT
staσ dΩ

¼t
ðð

A
BuT
sta σ dxdy

¼t
ðð

A
BuT
sta σ det J drds

24:

f inta ¼
ð
Ωþ;Ω�

BaT
enrσ dΩ

¼t
ðð

Aþ;A�
BaT
enr σ dxdy

¼t
ðð

Aþ;A�
BaT
enr σ det J drds

25:

f intΓ ¼t
ð
Γd

N
T
tadΓd

¼t
ð
Γd

N
T
OTtddΓd

¼2t
ð
Γd

NTOTtddΓd

2.2.4 Constitutive modelling
Before cracking or crushing occurs, the integral concrete
is assumed to be isotropic, homogeneous and linearly elastic.
A biaxial concrete failure envelope proposed by Barzegar-
Jamshidi (1987), which was based on a slight modification of
the Küpfer and Gerstle (1973) expressions, was adopted to
determine the cracking and crushing of concrete. This is illus-
trated in Figure 4. Within this model, the initiation of cracking
or crushing at any location occurs when the concrete principal
stresses reach one of the failure surfaces. Before cracking or
crushing, a linear elastic constitutive model is adopted to
describe the material property of concrete. The constitutive
matrix D in Equation 9 is the usual set of elastic constant.
After crushing, concrete is assumed to lose all stiffness. After
cracking, the constitutive model of cracked concrete in this
research is based on the cohesive crack concept. The linear
elastic material properties are still assumed in the continuous
solid, but the enhancement internal force which is related to
the traction over the crack would decrease with the increase of
the crack opening. A concrete bilinear softening curve is used
in the current model, as shown in Figure 5, where ft is the
tensile strength of concrete, tdn the traction normal to crack
and w the crack opening. When the crack opening exceeds the
traction-free open width (0·68wch) the tangent stiffness is set to
be zero. In the cohesive interface, the softening curve is

–0·75

Crushing

Cracking

Cracking

Crushing

A

B

C

D

E

O

–1·0

α = 1

fc1 ≥ fc2

α = fc1/fc2

fc1 / |fc
' |

fc2 / |fc
' |

+

+–

–

Figure 4. Concrete biaxial failure envelope
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governed by the fracture energy, and the fracture energy for-
mulation proposed by Bazant and Becq-Giraudon (2002) is
adopted in this research.

2.2.5 Selection of enhancement nodes and elements
In the current model, after a certain concrete element is
cracked, there are two kinds of element nodes: regular nodes
and enhancement nodes. The regular node contains only
regular degrees of freedom, but the enhancement function
should be added to the enhanced nodes that support the
element crossed by a crack. This is illustrated in Figure 6,
where enhanced nodes are indicated by solid circles and
regular nodes by hollow circles.

As mentioned in the previous sections, since the enhancement
function (sign function) referenced to enhancement nodes is
shifted by sign (xi) the enhanced shape function of the
enhancement nodes only influence the displacement field
inside the element crossed by the crack. Therefore, only the
element enclosing the crack needs to be enhanced rather than
all the elements that contain enhanced nodes. The enhanced
elements shown in Figure 6 are filled in grey colour, and for
other regular elements the element stiffness matrix K contains
the regular part Kuu (Equation 17) only.

In the past, for the majority of the extended FE simulations
for modelling structural members of the brittle material only
one main crack was allowed to form and propagate. This is
reasonable to model plain concrete. However, as far as the
reinforced concrete is concerned, the reinforcing steel bar can
undertake the tensile force transferred from the cracked con-
crete to other parts of uncracked concrete within the member
through bond interaction between the steel bar and concrete.
Therefore, several cracks may exist within the structure
member. The model developed in this paper allows two or
more cracks initiating and propagating within a reinforced con-
crete member with the following assumptions: only one crack
may exist within a particular element and the nodes related to
the cracked element are enhanced once only.

2.2.6 Crack initiation and growth
In this research, the crack initiation and growth depend on the
principal tensile stresses of the concrete element. At each load
increment every concrete element is examined one by one and
the average principal tensile stress of all Gauss points in an
element is checked to determine whether the concrete is crack-
ing. Once the average concrete principal tensile stress reaches
one of the failure surfaces, either in the biaxial tension region
(segment AB) or in the combined tension–compression region
(segment BC), as shown in Figure 4, a straight crack is
inserted through the entire element and the orientation of
crack is normal to the maximum tensile principal stress. The
initial crack is set to go through the centroid point of a quadri-
lateral element, and then when the average principal stress of
the next element reaches one of the tension failure surfaces, the
crack will propagate from the tip of the existing crack into the
next element by the orientation normal to the corresponding
maximum tensile principal stress. Figure 7 illustrates how a
crack initiates and propagates. As can be seen, there are two
different possible ways that an initial crack cut a quadrilateral
element, initial crack 1 in Figure 7(a) and initial crack 2 in
Figure 7(b), each of which has possibly three crack propa-
gation paths within the next element when the initial crack
extends from element 1 to element 2. The different possibilities
of crack propagation in Figure 7 are all included in the current
FE model so that various crack patterns can be simulated in a

w

6·8wch0·8wch0
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Figure 5. Bilinear softening curve of concrete
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Regular element

Crack

Figure 6. FE mesh for a plain concrete structure with a crossed
crack
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reinforced concrete member (like bending cracks and
shear cracks). A crack propagating depends on the location of
the existing crack tip and the orientation of the propagated
crack.

2.2.7 Integration scheme
In this study, Gauss quadrature is employed to calculate the
stiffness matrix and the internal force vector of the concrete
element. All stresses, strains and the constitutive matrix of the
material discussed are related to Gauss integration points. For
the regular four-node element, four Gauss integration points
are used as recommended by Bathe (1996). For those enhanced
elements containing a crack, integration should be performed
separately on both sides (Ω+ and Ω−) of the crack, respectively,
that means sign function sign (x) needs to be applied for each
Gauss point within the element.

To properly integrate the field (Ω+ and Ω−) on both sides
of the crack, the enhanced elements are partitioned into
sub-triangles where usual Gauss quadrature could be used.
Figure 8 shows two possible integration schemes. It can be
seen that within each sub-triangle, three Gauss integration
points are used, and correspondingly each enhanced element
employs 24 Gauss integration points to perform integration
over the whole element. As shown in Figure 8(a), a quadrilat-
eral element is cut by a crack into two sub-quadrilaterals; four
sub-triangles with 12 Gauss points are applied within each
sub-quadrilateral. Figure 8(b) shows that a quadrilateral
element is cut by a crack into a pentagon and a triangle. In
this case, 15 Gauss points distributed over five sub-triangles
are applied within the pentagon and 9 Gauss points distributed
over three sub-triangles are applied within the triangle.

After the element is partitioned, the integration of the
enhanced element is performed at 24 Gauss points distributed
over eight sub-triangles, each of which 3 Gauss integration

points are applied, that is

26:
ð
FðxÞ dx ¼

ð
Ωþ

FðxÞ dxþ
ð
Ω�

FðxÞ dx

¼ 1
2

X8
j¼1

X3
i¼1

Fðrji ; sjiÞwj

where (ri
j, si

j) are the integration point coordinates of the ith
Gauss point within jth sub-triangle, and wj is the correspond-
ing weighting factor. Bathe (1996) provided the integration
point coordinates (r′i, s′i)i=1,2,3 and weight factor w′ of a three-
point integration over a triangular domain, where r′1= r′3=1/6,
r′2=2/3, s′1= s′2=1/6, s′3=2/3 and w′=1/3. However, because
the matrices Bsta

u and Benr
a are represented by natural coordi-

nates (r, s) of the quadrilateral element, the integration of the
stiffness matrix and the internal force has to be performed
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Element 2
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Crack tip
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Element 2

2–1

2–2

2–3

Centroid
point Initial crack 2
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(a)
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Figure 7. Crack initiation and propagation. (a) Initial crack 1;
(b) Initial crack 2
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Figure 8. Integration scheme for an enhanced four-noded
quadrilateral element crossed by a crack: (a) a crack cutting a
concrete element into two quadrilaterals and (b) a crack cutting a
concrete element into a pentagon and a triangle
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with reference to the natural coordinate system of the quadri-
lateral element. Therefore, a coordinate transformation should
be conducted for changing (r′i, s′i ) to (ri

j, s i
j )

27: rji ¼ N tri-1
i rsub;j1 þN tri-2

i rsub;j2 þN tri-3
i rsub;j3

28: sji ¼ N tri-1
i ssub;j1 þN tri-2

i ssub;j2 þN tri-3
i ssub;j3

where (r1
sub, j, s1

sub, j), (r2
sub, j, s2

sub, j) and (r3
sub, j, s3

sub, j) are the
coordinates of three vertices of the jth sub-triangle in
the natural coordinate system of the quadrilateral element;
Ni

tri-1(=1− r′i− s′i ), Ni
tri-2(=r′i ) and Ni

tri-2(=s′i ) are the shape
functions of the three-node triangular element recommended
by Bathe (1996), which are represented by (r′i, s′i ). The weight
factor w′ should also be transformed to wj with reference to
the nature coordinate system of the quadrilateral element as
wj=2w′asub, j, in which asub, j is the area of the jth sub-triangle
and can be expressed as

29: asub;j ¼ 1
2

ðrsub;j1 ssub;j2 þ rsub;j3 ssub;j1 þ rsub;j2 ssub;j3 Þ
�ðrsub;j3 ssub;j2 þ rsub;j2 ssub;j1 þ rsub;j1 ssub;j3 Þ

2
4

3
5

In the current FE model, a crack is represented by a straight line
within the enhancement element, thus two Gauss points are
employed to integrate the discontinuity terms (KΓ and fΓ

int )
using a one-dimensional integration scheme, shown in Figure 3.

Due to the high non-linearity of the current model, a full
Newton–Raphon solution procedure is adopted. In the current
model, a reinforced concrete member is modelled as an assem-
bly of finite plain concrete, reinforcing steel bar and bond-link
elements (Figure 1). Hence, after multiple cracks formed
within the plain concrete elements the forces originally resisted
by the plain concrete elements can be transferred into the rein-
forcing steel bar element through bond-link elements. Hence,
the modelling behaviour of the reinforced concrete member
is much smooth compared with modelling of plain concrete
elements only. The full Newton–Raphon solution procedure
used in the current model is robust enough to deal with these
convergence problems. The analysis can be performed until the
fracture of the reinforcing steel bars or the failure of bond-link
elements.

3. Numerical example and validations

3.1 Simply supported reinforced concrete beam
subjected to point load at centre

To demonstrate the capability of the model described above for
modelling the individual crack within a reinforced concrete

beam, a simply supported reinforced concrete beam subjected
to transverse point load at the centre was modelled. Figure 9
shows the details of the modelled beam. The compressive
strength of concrete is 40MPa and the yield strength of
longitudinal reinforcing steel bar is 460MPa. To simplify the
analysis, the stirrups were ignored in this numerical example.
Four real reinforcing steel bars were represented by two equiv-
alent steel bar elements at the reference plane. In this example,
the compressive failure of concrete was not taken into account
in order to generate a large deformation, so that the localised
cracking within the beam can be demonstrated more obviously.
In this case, a perfect bond between steel bars and concrete
was assumed. The analysis was performed using full Newton–
Raphon solution procedure under load control. The total
point load was 150 kN and was applied at the mid-span of the
beam. The analysis was completed by 94 load steps.

Figure 10 demonstrates the process of crack propagations
within the beam. It can be seen that the predicted flexural
cracks distributed near the mid-span and the cracks were
inclined near the supports. Generally, the predicted cracking
pattern is reasonable, and it is evident that the model is capable
of modelling the different kinds of cracks within a reinforced
concrete beam. The cracks were able to propagate freely within
the beam depending on the states of principal stresses within
the element. As shown in Figures 10(b) and 10(c), after steel
bar yielding the crack opening of the element at mid-span is
significantly larger than the others. As the deformed mesh
shown in Figure 11, the mid-span element is significantly dis-
torted due to a big crack within the mid-span zone. It is
evident that the numerical model developed in this paper is
capable of modelling the big individual cracks and capture

50

50

250

Reference planeRepresented steel
bar element

Represented steel
bar element

2 φ 12

120

2 φ 30

P

L = 4000

Figure 9. Simply supported reinforced concrete beam subject to
transverse point load at the centre (all dimensions in mm)
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the localised cracking within a reinforced concrete beam.
Figure 12 illustrates the predicted history of opening of mid-
span crack in which the crack opening increased significantly
after the steel bar was yielded at the same location.

3.2 A reinforced concrete beam tested with
four-point loading

To validate the model proposed in this paper, a reinforced con-
crete beam tested by Esfahania et al. (2007) was modelled
herein. The reinforced concrete beam named B5-16D-0L,
2000 mm long, was tested under four-point loads. The beam
having a cross-sectional dimension of 150mm width and
200 mm height was reinforced by two ribbed 16mm dia.
tensile steel bars and two ribbed 10mm dia. compressive steel
bars. The compressive strength of concrete at testing is
23·8MPa. The yield strengths of 16 and 10mm dia. bars are

406 and 365MPa, respectively. The details of the tested
reinforced concrete beam are given in Figure 13. Again in this
case, the stirrups have not been included in the modelling in
order to simplify the analysis. To examine the effects of differ-
ent bond actions on the cracking pattern and crack opening of
the beam, four cases were modelled under perfect bond, partial
bond (ribbed steel bar and smooth steel bar) and zero bond
conditions, respectively. Same as in the previous examples, the
analyses were performed using full Newton–Raphon solution
procedure under load control. A total load of P=100 kN was
applied with the load increment of 1 kN for each loading step.
The analyses were completed with 91 load steps for perfect
bond case; 86 load steps for the partial bond-ribbed bar case;
58 load steps for partial bond-smooth bar case; 10 load steps
for zero bond case; and 80 load steps for the partial bond-
ribbed bar case considering the compressive failure.

(a)

(b)

(c)

Crack opening = 6·76 mmCrack opening = 0·08 mm

Crack opening = 1·03 mmCrack opening = 0·06 mm

Crack opening = 0·024 mm

Figure 10. Predicted crack propagations in the reinforced
concrete beam: (a) initial cracking; (b) as reinforcing bar yielding;
and (c) final cracking pattern

Crack opening = 6·76 mm

Figure 11. Predicted results of a deformed reinforced concrete
beam (x-axis displacement amplified 50 times)
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To investigate mesh sensitivity of the current model, the beam
was modelled using different meshes – that is 200 concrete
elements plus 40 steel bar elements and 400 concrete elements
plus 80 steel bar elements. The comparison of predicted loads
against mid-span deflection using different FE meshes is given
in Figure 14. It can be seen that the results are almost identical

to each other. Hence, the current model is not very mesh
sensitive.

The comparisons of the load against mid-span deflection
relations predicted by the current model for different con-
ditions together with the tested results are shown in Figure 15.
Apart from ‘prediction-compressive failure (partial bond-
ribbed bar)’ case, all the predicted curves were modelled
without considering the compressive failure of concrete. It was
found that the predicted ultimate strength with consideration
of compressive failure of concrete is around 6% lower than
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Figure 12. Relation of predicted load plotted against maximum
crack opening
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Figure 13. Details of tested beam under four-point loading used
for comparison (Esfahania et al., 2007)
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that without consideration of compressive failure, due to the
fact that the extreme compressive elements of concrete were
crushed after the tensile reinforcing steel bar yielded. The
curves of the perfect bond case and partial bond-ribbed bar
case are generally smooth before the yield of reinforcing bars.
This is due to the fact that the reinforcing bars could pick up
the released tensile stresses of the cracked concrete. In the case
of zero bonded condition, the load against mid-span deflection
relation shows significantly discontinuous characteristic after
the concrete elements cracked. Generally, the predicted ulti-
mate strengths of the beam with consideration of compressive
failure and partial bond (ribbed steel bar) agree well with the
tested results. As can be seen in Figure 15, if the concrete is
assumed to be not cracking, the predicted result greatly overes-
timates the ultimate load and rigidity of the beam. It is
obvious that the effects of bond characteristics on the struc-
tural behaviour of the beam are significant.

Other than the global response of the beam, it is also interest-
ing to see how the bond–slip characteristics influence the
cracking pattern and crack opening of the reinforced concrete
beam. Figure 16 illustrates the crack pattern and crack opening

of the predicted beam with different bond–slip characteristics.
The stronger the applied bond strength between the steel bar
and concrete, the wider the range of cracks distributed along
the length of the beam. In contrast, with the decrease of bond
strength the number of cracks within the beam becomes fewer
and correspondingly the crack opening becomes bigger. For
the zero bond case, there are only four parallel flexural cracks
within the beam and only the two middle cracks showed
remarkable openings. It is worth to note that the reinforcing
steel bar is more possible to fracture locally when a stronger
bond action is provided, and on the contrary, if little bond
force is applied between the steel bar and concrete the stresses
of the steel bar tends to be uniformly distributed along the
length of the bar, so that the steel bar can bear a very large
deformation before fracture. The comparison of the predicted
opening history is demonstrated in Figure 17. The load against
maximum crack opening curves of the perfect bond case and
the partial bond-ribbed bar case are generally close to each
other. As shown in Figure 18, the partial bond (ribbed bar)
case generally shows flexural deformation along the longitudi-
nal direction of the beam, but apparent localised fracture at
mid-span can be observed in the zero bond case.

3.3 Reinforced concrete shear panel under shear
and axial stresses

To validate the model in terms of modelling the propagation
of shear cracks, another case presented herein is the shear
panel tests conducted at the University of Toronto (Xie, 2009).
Xie (2009) performed six shear panel tests under different com-
binations of axial stress and shear stress. The dimensions of
the test panels were 890mm�890 mm�70mm. The panel
specimens were reinforced by ten D8 cold-drawn deformed

(a)

(b)

(c)

(d)

Crack opening = 3·73 mmCrack opening = 0·07 mm

Crack opening = 4·65 mmCrack opening = 0·38 mm

Crack opening = 7·35 mmCrack opening = 0·96 mm

Crack opening≈100 mm
Crack opening = 0·9 mmCrack opening = 0·9 mm

Figure 16. Predicted cracking pattern of the reinforced concrete
beam with different bond–slip characteristics: (a) perfect bond; (b)
partial bond (ribbed steel bar); (c) partial bond (smooth steel bar);
and (d) zero bond
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Figure 17. Comparison of predicted load plotted against
maximum crack opening relations with different bond–slip
characteristics
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wires in the X-direction and by five D4 cold-drawn deformed
wires in the Y-direction. The real-sectional areas of D8 wire
and D4 wire are 51·6 and 24·2 mm2, respectively, and their
yield strengths are 641 and 581MPa, respectively. The arrange-
ments of reinforcing bars are shown in Figure 19(a). The panel
specimens were tested under a combination of shear stress and
different levels of axial stresses, where fx/v varied from −2·8 to
3·0, in which fx is the axial stress in the X-direction (Figure 19)
and v is the shear stress, and a negative value means compres-
sive axial stress and a positive value means tensile axial stress.
Two specimens – that is the panel PL4 with fx/v=−2·8 and the
panel PL6 with fx/v=3·0 were modelled in this paper. The
compressive strengths of concrete at testing are 43·1MPa for
PL4 and 43·5MPa for PL6, respectively. The loads were
applied through 20 shear keys along the perimeter of the
panels, as shown in Figure 19(b), each of which was connected
to two hydraulic jacks. Either tensile force or compressive force
could be applied by the hydraulic jacks, so that different com-
binations of shear force and normal force were provided by
varying the relative magnitude of the applied forces. In the
modelling, two D8 bars at the same height were represented by
a steel bar element at the reference plane. The model contained
256 quadrilateral concrete elements, 120 steel bar elements and
255 bond-link elements.

Figures 20 and 21 give comparisons of predicted cracking
pattern with tested result for the panel specimens PL4 and
PL6, respectively. It can be seen that the model can reasonably
predict the formations and propagations of shear cracks within
the panels. Figure 22 shows the comparison of the predicted

shear stress against shear strain relations together with the
tested results. It is evident that reasonable agreements were
achieved between the tested results and predictions for such
complex shear tests. It seems that the predicted results underes-
timate the shear stress while overestimate the shear strain.

4. Conclusion
In this paper, a robust FE procedure for modelling the loca-
lised fracture of reinforced concrete members has been devel-
oped. In this new model, the reinforced concrete member is
modelled as an assembly of plain concrete, reinforcing steel
bar and bond-link elements. The XFEM is incorporated into

99·8 mm 103·2 mm

(a)

(b)

Figure 18. Predicted deformed mesh of the reinforced concrete
beam: (a) partial bond-ribbed steel bar (x-axis displacement has
been amplified ten times) and (b) localised fracture of the beam
with zero bond (x-axis displacement has been amplified five times)
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Figure 19. Details of tested shear panel used for validation (all
dimensions in mm) (Xie, 2009): (a) arrangement of reinforcing
bars and (b) loading method
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the plain concrete elements for modelling the formation and
growth of individual cracks. The displacement jump over a
crack is represented by multiplying the enhancement function
by additional nodal displacement. The crack initiation
and growth depend on the maximum principal tensile stress of
concrete element. Different possibilities of crack propagation
are considered in the model in order to simulate various crack
patterns in a reinforced concrete member. A special integration
scheme is applied to the enhanced elements so that the inte-
gration can be properly performed on both sides of the crack.

The numerical example and the validations show that the
model can reasonably predict the localised flexural cracks and
shear cracks within the reinforced concrete structures. The
model is robust to identify individual crack initiation and
propagation within the structural member. Hence, the current
model provides an excellent numerical approach for assessing
both structural stability (global behaviour) and integrity (loca-
lised fracture) of reinforced concrete members under extreme
loading conditions. The predicted results show that the bond
characteristic between concrete and reinforcing bars has a

significant influence on the crack pattern of reinforced concrete
members. The crack opening of the beam increases signifi-
cantly with the decrease in bond strength.

Acknowledgement
The authors acknowledge the support of the Engineering and
Physical Sciences Research Council of Great Britain under
grant no. EP/I031553/1.

REFERENCES

Ahmed A (2009) Extended Finite Element Method (XFEM)-
Modeling Arbitrary Discontinuities and Failure Analysis.
Master thesis, University of Pavia, Pavia, Lombardy, Italy.

Bailey CG and Toh WS (2007) Small-scale concrete slab tests at
ambient and elevated temperatures. Engineering Structures
29(10): 2775–2791.

v

v

fx = 3·0v

fx = 3·0v

v

v

(a) (b)

Figure 21. Comparison of predicted cracking pattern with tested
result for panel PL6 (fx=3·0v): (a) tested and (b) predicted

vv

v

fx = –2·8v

fx = –2·8v

v

(a) (b)

Figure 20. Comparison of predicted cracking pattern with tested
result for panel PL4 (fx=−2·8v): (a) tested and (b) predicted

0 5 10 15 20

0 5 10 15 20

Shear strain: mε

6

5

4

3

2

1

0

Sh
ea

r 
st

re
ss

: M
Pa

Shear strain: mε

6

5

4

3

2

1

0

Sh
ea

r 
st

re
ss

: M
Pa

Tested
Predicted

Tested
Predicted

(a)

(b)

Figure 22. Comparison of predicted shear stress plotted against
shear strain relations with tested results: (a) PL4 (fx=−2·8v) and
(b) PL6 (fx=3·0v)

67

Engineering and Computational Mechanics
Volume 169 Issue EM2

Modelling localised fracture of reinforced
concrete structures
Liao and Huang

Downloaded by [ Brunel University] on [30/06/16]. Copyright © ICE Publishing, all rights reserved.



Barzegar-Jamshidi F (1987) Non-linear Finite Element Analysis
of Reinforced Concrete Under Short Term Monotonic
Loading. PhD thesis, University of Illinois at Urbana-
Champaign, Champaign, IL, USA.

Bathe KJ (1996) Finite Element Procedures. Prentice-Hall Inc.,
Upper Saddle River, NJ, USA.

Bazant ZP and Becq-Giraudon E (2002) Statistical prediction of
fracture parameters of concrete and implications for choice
of testing standard. Cement and Concrete Research 32(4):
529–556.

Belytschko T and Black T (1999) Elastic crack growth in finite
elements with minimal remeshing. International Journal for
Numerical Methods in Engineering 45(5): 601–620.

BSI (2004) BS EN 1992-1-1: Eurocode 2: Design of concrete
structures. Part 1.1: general rules and rules for buildings.
BSI, London, UK.

CEB-FIP (Comité Euro-International du Béton) (1993) CEB-FIP
Model Code 1990. Redwood Books, Trowbridge,
Wiltshire, UK.

Cervenka V, Cervenka J and Jendele L (2003) Bond in
finite element modelling of reinforced concrete.
In Proceedings of the EURO-C Conference on
the Computational Modelling of Concrete Structures
(Bicanic N, Borst RD, Mang H and Meschke G (eds)).
A.A. Balkema Publishers, Lisse, the Netherlands,
pp. 189–194.

Chen GM, Teng JG and Chen JF (2011) Finite-element modeling
of intermediate crack debonding in FRP-plated RC beams.
Journal of Composites for Construction ASCE 15(3):
339–353.

Duan Q, Song JH, Menouillard T and Belytschko T (2009)
Element-local level set method for three-dimensional
dynamic crack growth. International Journal for
Numerical Methods in Engineering 80(12): 1520–1543.

Esfahania MR, Kianoushb MR and Tajaria AR (2007)
Flexural behaviour of reinforced concrete beams
strengthened by CFRP sheets. Engineering Structures
29(10): 2428–2444.

Foster SJ (2006) Tensile Membrane Action of Reinforced
Concrete Slabs at Ambient and Elevated Temperatures.
PhD thesis, Department of Civil and Structural
Engineering, University of Sheffield, Sheffield, UK.

Foster SJ, Bailey CG, Burgess IW and Plank RJ (2004)
Experimental behaviour of concrete floor slabs at
large displacement. Engineering Structures 26(9):
1231–1247.

Gao WY, Dai JG, Teng JG and Chen GM (2013) Finite element
modeling of reinforced concrete beams exposed to fire.
Engineering Structures 52(7): 488–501.

Gravouil A, Möes N and Belytschko T (2002) Non-planar 3D
crack growth by the extended finite element and level
sets – part II: level set update. International Journal for
Numerical Methods in Engineering 53(11): 2569–2586.

Hansbo A and Hansbo P (2004) A finite element method for the
simulation of strong and weak discontinuities in solid
mechanics. Computer Methods in Applied Mechanics and
Engineering 193(33–35): 3523–3540.

Huang Z (2010) Modelling the bond between concrete and
reinforcing steel in a fire. Engineering Structures 32(11):
3660–3669.

Huang Z, Burgess IW and Plank RJ (2003) Modelling membrane
action of concrete slabs in composite buildings in fire.
Part I: theoretical development. Journal of Structural
Engineering ASCE 129(8): 1093–1102.

Huang Z, Burgess IW and Plank RJ (2009) Three-dimensional
analysis of reinforced concrete beam–column structures in
fire. Journal of Structural Engineering ASCE 135(10):
1201–1212.

Küpfer HB and Gerstle KH (1973) Behavior of concrete under
biaxial stresses. Journal of the Engineering Mechanics
Division ASCE 99(EM4): 853–866.
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