
Hierarchical Incremental Class Learning with

Reduced Pattern Training

1
Sheng-Uei Guan,

2
Chunyu Bao

2
and Ru-Tian Sun

1
School of Engineering and Design

Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

2
Department of Electrical and Computer Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

 Abstract—Hierarchical Incremental Class Learning (HICL) is a new task decomposition

method that addresses the pattern classification problem. HICL is proven to be a good

classifier but closer examination reveals areas for potential improvement. This paper proposes

a theoretical model to evaluate the performance of HICL and presents an approach to improve

the classification accuracy of HICL by applying the concept of Reduced Pattern Training

(RPT). The theoretical analysis shows that HICL can achieve better classification accuracy

than Output Parallelism [1]. The procedure for RPT is described and compared with the

original training procedure. RPT reduces systematically the size of the training data set based

on the order of sub-networks built. The results from four benchmark classification problems

show much promise for the improved model.

Index Terms—classifier systems, Output Parallelism, instance selection, reduced pattern

training, hierarchical learning

1 Introduction

Neural network (NN) is a computational module, which simulates the human brain behavior

in a fundamental manner. NN classifiers have some merits over traditional pattern recognition

systems with respect to the capability of adaptive learning, generalization ability with noisy or

sparse learning data, and feasibility for hardware implementation [2]. Current NN classifiers

suffer from major drawback of high internal interference because of the strong coupling

among their hidden-layer weights [3]. Usually there are regions in the class feature space,

which show high overlapping due to the resemblance of two or more classes. Meanwhile,

there are other regions, which show little or even no overlapping, according to the

“uniqueness” of the classes therein. High coupling among hidden nodes will then result in

partial over- and under-learning in the different regions [4]. Enlarging the network, increasing

the number and quality of training samples, and techniques for avoiding local minima will not

“stretch” the learning capacities of the NN classifier beyond a certain limit as long as hidden

nodes are tightly coupled, and hence, “cross-talking” during learning [5] and causing

“catastrophic interferences” [6].

A modular neural network attempts to solve these problems via task decomposition. It

generally decomposes large-sized tasks into several sub-tasks; each one is handled by a

simple, fast and efficient module. Then, sub-solutions are integrated via a multi-module

decision making strategy [2]. Many task decomposition methods have been proposed in the

literature ([5,7-19]). These decomposition methods can be classified into two major categories:

domain decomposition and class decomposition.

Domain Decomposition is a category of decomposition methods based on the characteristics

of input data space. Sharkey found that it is effective to partition the input data space into

several subspaces and train each module to fit the local data in each subspace [8]. Jacobs et al.

proposed that with the mixture of expert architecture, expert networks could be used to learn

subspaces and then integrated via a gating network [3]. In the multi-sieving neural network,

patterns are classified by a rough sieve at the beginning and they are reclassified further by

finer ones in the subsequent stages [11].

Another category of decomposition methods based on the characteristics of output space is Class

Decomposition. A common class decomposition approach is to split a K-class problem into K

two-class sub-problems and each module is trained to learn a “yes or no” problem for one

class. Each two-class sub-problem is learnt independently [12]. Hence, each sub-problem

forms a module that is independent from the others. The final overall solution is obtained by

integrating all the trained modules’ solutions together. A powerful extension to the above class

decomposition method, output parallelism, is proposed in [1][19]. Using output parallelism, a

complex problem can be divided into several sub-problems, each of which is composed of the

whole input vector and a fraction of the output vector. Each module is responsible for

producing a fraction of the output vector of the original problem. These modules can be

grown and trained in parallel.

Task decomposition methods reduce the internal interference among hidden layers,

consequently, improve performance and accuracy. However, the above task decomposition

methods do not accommodate sharing of information between modules. The correlation

between classes or sub-networks is ignored. A sub-network can only use the local information

restricted to the classes involved in it. Sub-networks cannot exchange information already

learnt by them with each other. The global information between classes that can be positive to

the learning of sub-networks is missing as well as internal interference between them.

We adopt a task decomposition approach named hierarchical incremental class learning

(HICL) proposed initially in 2002 [13]. In this approach, a K-class problem is divided into K

sub-problems. The sub-problem is learnt sequentially in a hierarchical structure with K

sub-networks. Each sub-network takes the output from the sub-network immediately below it.

And this output is fed into the sub-network above it as shown in Figure 1.

In this paper, we present a theoretical model to evaluate the performance of the HICL network.

Output Parallelism [1] can be regarded as a typical task decomposition approach. Through the

analysis, we can see HICL performs better than Output Parallelism. Moreover, we propose a

new method to improve the performance of HICL network by applying the concept of

Reduced Pattern Training (RPT). We notice that later sub-networks in HICL do not need to

recognize classes already classified by earlier sub-networks. With RPT, systematic instance

selection is used to diminish subsets of the original training data set for each sub-network. For

the purpose of comparison with HICL, we call the improved HICL version as RPT-HICL in

the following.

Figure 1: Overview of HICL

In this paper, we introduce the structure of HICL in section 2. In section 3, the theoretical

model of HICL is introduced and comparison between HICL and Output Parallelism is

presented. The motivation for RPT is given is section 4. In section 5, we explain why

RPT-HICL could achieve better classification accuracy than the original HICL. In section 6,

the experimental results of HICL with RPT are presented and discussed. Finally, the

conclusion is drawn.

2 HICL in its Original Form

1
st
 sub-network

with 1 output node

2
nd

 sub-network

with 2 output nodes

Original Input Space

Output from the

1st sub-network

Output from the

2nd sub-network

K
th

 sub-network with K

output nodes

Output from the (K-1)th

sub-network with K-1output nodes

Final Output

In the original HICL method [13], the original K-class problem is solved using a hierarchical

modular neural network (HMNN) consisting of K sub-networks. After a sub-network is added

and trained, a new sub-network is constructed on top of it. The new sub-network accepts the

output from the old sub-network, together with the original input as its input. The output

space of the new sub-network is one dimension larger than that of the old sub-network. For

classification problems, this means the output space of the new sub-network includes one

more class than the old sub-network. It should be mentioned that in the RPT-HICL method,

the new sub-network will not accept the output from the old sub-network and it will just

accept some subset of patterns form the old one as will be described later.

In HICL, the functionality of the first sub-network is to classify the training samples

belonging to the first output class. This is a localized computation associated with the output

attribute representing the specified class only, which is the same as one single module in class

decomposition. Because internal interference is removed, the output from this sub-network

tends to be more accurate. The functionalities of sub-networks other than the first one are

more complex. Because each sub-network needs to deal with more than one class

simultaneously, the correlation between different classes is taken into consideration

automatically. There are two functions for each sub-network.

• The minor function is to perform reclassification to the classes learnt previously. If the

lower sub-networks produce no error, they provide the present sub-network with

linear-separable inputs. Due to the strong bias of these inputs, the reclassification process

is most likely to follow the decision boundaries built by lower sub-networks and simply

repeats the results from them.

• The major function is to classify samples belonging to the newly added class from all the

other classes. This function is a local computation relative to the new class in the

sub-network, which is the same as a sub-network in class decomposition. However, it

should be noted that some of the classes are already classified in the lower sub-networks.

Again, if this pre-classified information contains no error, it is not necessary to classify

the patterns belonging to the new class from those belonging to the classes learnt in the

lower sub-networks.

3 Theoretical Analysis for HICL and Output Parallelism

Here we present a model to compare the performance of the HICL network and the Output

Parallelism network [1]. We mentioned that the major function of a sub-network is to classify

the samples belonging to the newly added class from all the other classes. The reclassification

to the classes learnt previously has minor contribution to the final classification accuracy. So

we ignore the minor function of the sub-networks. We consider that a sub-network just

accepts the outputs from the earlier one and simply passes them to the next sub-network

without any change.

Assume our classification problem has r output classes. Using HICL, it is divided into r

sub-networks and each sub-network classifies a new class from the rest. Before RPT is

applied, each sub-network is learned using all the training patterns. After the whole network is

learned, we use a data set to evaluate the classification accuracy of the HICL network which

is called test set. Assume there are N instances in the test data set and Nj represents the pattern

number in class j (here j=1, 2, … , r). Thus, define pj to represent the probability of error

when sub-network j processes the test data set. For the first sub-network, it processes all the

instances and chooses instances belonging to the first class. After that it passes the results to

the second sub-network. Now it is the second sub-network’s turn to classify these instances. It

accepts the results from the first sub-network. For those instances that have been classified

into the first class, it simply passes them through. The second sub-network tries to choose the

instances belonging to the second class from the remaining data set. After that it passes the

results to the third sub-network. This process is continued until all the instances are classified.

Define Ej as the number of the instances which are wrongly classified by the sub-network j.

We note that if an instance is misclassified in a lower sub-network, the upper sub-networks

are not likely to correct this error. We have:

11 pNE ⋅= (1)

[] 21121112)1)(()(ppNNppNNNNE −−=⋅⋅−−−= (2)

In most situations, pj is a small number compared with 1. Thus, we ignore the terms 11 p−

and we get

212)(pNNE −≈ (3)

Similarly, In sub-network j

jjj pNNNNE)(121 −−−−−≈ � (4)

By integrating the results from all the sub-networks, we have

j

r

j

j

k

k

r

j

j

HICL
pNNEE ⋅








−== ∑ ∑∑

=

−

== 1

1

11

 (5)

Next we compare the classification error of the HICL network with that of the Output

Parallelism network. Assume we also divide the output space into r sub-networks using

Output Parallelism. Each sub-network in Output Parallelism tries to classify the instances of

some specific class from all the instances. Thus, the sub-networks in Output Parallelism have

similar roles compared to the sub-networks in HICL. We note that each sub-network in HICL

has the same task as the corresponding sub-network in Output Parallelism and they are learnt

using the same training data set. So the probability of error of sub-network j processing the

test set in Output Parallelism is equal to or at least is close to that in HICL. For simplicity, we

consider they are equal. Thus, pj also represents the probability of error for sub-network j in

Output Parallelism processing the test set.

In Output Parallelism, define Fj as the number of the test instances which are

wrongly-classified by sub-network j.

jj pNF ⋅= (6)

Then we integrate the results from all the sub-networks. We can not simply add all the Fj,

because some instances may be classified wrongly in two or more sub-networks. So the final

results will be as follows:

[
])()1()(

)(

21

1

)1()2(321

)1(312121

r

r

rrr

rrr

OP

ppppppppp

pppppppppNE

���

��

−

−−

−

−+−+++

+++−+++=
 (7)

We mentioned earlier that pj is a small number in most situations. While the term

)(21 rpppN +++⋅ � palys a major role in E
OP

. So we ignore the influence from the other

terms. We have

)(21 r

OP pppNE +++⋅≈ � (8)

It is obvious that E
OP

 is larger than E
HICL

. Intuitively, most sub-networks in HICL need not

process as many test instances as those in Output Parallelism. Thus, the number of instances

classified wrongly is reduced using HICL.

4 Applying Reduced Pattern Training in HICL

HICL facilitates information transfer regarding classes between sub-networks during training.

The later sub-networks can obtain learnt information from the earlier sub-networks. This aids

learning in the upper sub-networks. However, there are areas in which the model can be

improved based on two observations.

Observation 1: Learning in HICL involves every sub-network being trained with the full

training data; this can be changed to leverage on the advantages of reduced training data.

Observation 2: Inherited partitions are unlikely to change thus the resources used for

reclassification in subsequent sub-networks could possibly be put to better use. Moreover,

inherited partitions have more inputs than the original problems. These extra inputs may

introduce internal interference to the following sub-networks.

Using these two observations, the improved training procedure – RPT-HICL is proposed. In

RPT-HICL, systematic instance selection is used to produce a training subset from the

original training data set for each sub-network. The higher in the hierarchy the sub-network is,

the smaller the training set. Later sub-networks do not need to recognize classes already

classified by earlier sub-networks. That is to say, the minor function of sub-networks in HICL

is done away with.

Hence in the modified training procedure, RPT-HICL, only the first sub-network is trained

with all patterns. For later sub-networks, they are trained with a subset of the previous

sub-network’s training set. Patterns that belong to classes already classified in previous

sub-networks are excluded. As a result of using reduced training sets, training will be

increasingly efficient as the network is built.

Figure 2: A three-class HICL training example (RPT: reduced training set)

 Class A NOT Class A

Class B NOT Class B

Class C

Class C Class C

Class B Class B

Class A Class A 1

Class C Class C

Class B Class B -
Class A 2

Class C Class C -
Class B -
Class A 3

Training Patterns

Original RPT

Sub-

network HICL Training Procedure

Minor function Major function

Minor function Major function

A three-class example (Figure 2) is given to illustrate the difference in the training procedure.

Given Class A, B and C, there will be three sub-networks built altogether. For the original

HICL method all three sub-networks are trained with all training patterns. The first

sub-network will separate Class A from the rest. The second sub-network will separate Class

A and Class B from the rest. The third sub-network will separate all three classes. The results

are collated from the output nodes of the last sub-network.

For the RPT-HICL method, the first sub-network is trained with all patterns. The second

sub-network is trained with fewer patterns – those belonging to Class A are excluded

(sub-network 1 has already learnt to identify Class A and a repetition of the job is not desired).

The third sub-network is trained with even fewer patterns – those belonging to Class A and

Class B are excluded. A slight modification is made to the collation of results. For RPT-HICL,

the value from the last output node from each sub-network is saved. The results from these

nodes are merged to form the output space (Figure 3).

The reason for this is because later sub-networks are not trained to recognize classes

identified by earlier sub-networks. Hence the identification of any one test pattern must be

checked against each sub-network in order. Once an output is generated by any sub-network

in the hierarchy, the test pattern will be deemed as belonging to that sub-network and will not

be presented to the rest of the network.

From Figure 3, we can see that only the last output node from each sub-network will

contribute to the new output space in RPT-HICL. This last output node indicates whether the

pattern belongs to this sub-network (class) or not.

Figure 3: Modification to the collation of results

When a test pattern is presented to the network, it first enters sub-network 1. Sub-network 1

will have an output, x1, of value between omax and omin. With a simple threshold function, we

can decide whether the pattern belongs to Class 1 or NOT Class 1. Mathematically described,

 (9)

If the pattern does not belong to Class 1, it will be presented to sub-network 2. y2 can be

evaluated in the same way. And so on.

5 Explaining Why RPT-HICL is Better than Original HICL

Now we explain why RPT-HICL could lead to better classification accuracy compared with

y1 =
1, x1 ≥ 0.5

0, x1 < 0.5

1

2

3

4

Original output space

O
u
tp

u
t

sp
ac

e
w

it
h

 R
T

S

y1

y2

y3

y4

x1

x2

x3

x4

the original HICL. In the HICL methods, each sub-network tries to solve a two-class problem.

Sub-network j tries to decide if a pattern belongs to class j or not. Normally, the number of the

patterns belonging to class j is far smaller than that not belonging to class j. In other words,

sub-network j tries to solve a two-class problem in which patterns have imbalanced

distribution. Now we show that imbalanced pattern distribution may bring adverse effect for

the training and removing some patterns from the crowded side can improve the classification

accuracy of neural networks if useful information is not removed.

Consider a two-class classification problem and one class has much more patterns than the

other one. Assume the two classes could be divided by a curve or a curved surface in the input

space.

Figure 4: The real border in a two-class problem with imbalanced pattern distribution

Figure 4 shows the pattern distribution of the training set and the real boundary between two

classes. In back-propagation NNs, the training objective is to minimize the error E (Of course,

early stopping criteria [1][23-24] is used to prevent from overtraining), instead of finding (or

approaching) the real border between two classes. Here

∑∑
= =

−
⋅

−
⋅=

P

p

K

k

pkpk to
PK

oo
E

1 1

2minmax)(100 (10)

where maxo and mino are the maximum and minimum values of output coefficients in the

problem representation. Logistic function (Equation 11) is used as the activation function. P is

the pattern number and K is the output number in NN. In a two-class NN, we can choose

K=1.

)exp(1

1
)(

v
v

−+
=ϕ (11)

For an unseen pattern,)(vϕ is computed. If 5.0)(≥vϕ , it would be considered belonging to

class 1, otherwise class 2. In other words, 5.0)(=vϕ is the computed border.

Equation (10) can be rewritten as:

∑∑
==

−
−

⋅+−
−

⋅=
2

2

22

1

1

11

1

2minmax

1

2minmax)(100)(100
P

p

pp

P

p

pp to
P

oo
to

P

oo
E (12)

where P1 is the number of patterns in class 1 and P2 is the number of patterns in class 2.

Assume that the left side in Figure 4 consists of patterns in class 1. In order to minimize the

first term in Equation 12, the patterns in class 1 would like the computed border to be far

away from them, in other words, they try to push the border to the right. Similarly, the

patterns in class 2 try to push the border away to the left, to minimize the second term in

Equation 12. According to our assumption, there are much more patterns in class 1 than those

in class 2. The patterns in class 1 will have dominated influence in the error function E.

Therefore, the computed border would shift to the right side of the actual border.

Figure 5: The computed border is on the right side of the real border.

In Figure 5, the light-colored line represents the computed border. The training error E with

respect to the computed border is smaller than the one with respect to the actual border,

because there are much more patterns sitting in the left side of the border. Obviously, the

light-colored line is biased. When unseen testing patterns are presented to the trained NN, the

NN may classify wrongly patterns in class 2 into class 1 and increase the classification error

of the test set. If we remove some patterns from class 1, the computed border would be closer

to the real one.

We examine the training patterns in those HICL sub-networks. Later sub-networks need not

be trained to recognize classes identified by earlier sub-networks, so the patterns belonging to

the classes identified by earlier sub-networks are useless. Removing these patterns will not

lose useful information. Moreover, it can improve the classification accuracy. Thus,

RPT-HICL networks could achieve better classification accuracy than the original HICL

networks.

6 Experiments and Analysis

6.1 Experimental Scheme

Constructive Backpropagation (CBP) algorithm was used to train the network in the

experiments [20]. CBP can reduce the excessive computational cost significantly and it does

not require any prior knowledge concerning decomposition. In this paper, RPROP is used

with the following parameters: η+
 = 1.2, η-

 =0.5, ∆0 = 0.1, ∆max = 50, ∆min = 1.0e-6, with

initial weights selected from –0.25…0.25 randomly [21]. In order to avoid large

computational cost and overfitting, a method called early stopping based on validation set is

used to set the stopping criteria [1][23-24] .

The set of available patterns is divided into three sets: a training set is used to train the

network, a validation set is used to evaluate the quality of the network during training and to

measure overfitting, and a test set is used at the end of training to evaluate the resultant

network. The size of the training, validation, and test set is 50%, 25% and 25% of the

problem’s total available patterns.

Four benchmark classification problems, namely Glass, Segmentation, Vowel and Pen-Based

Recognition were used to evaluate the performance of the network. These classification

problems were taken from the PROBEN1 benchmark collection [22] and University of

California at Irvine (UCI) repository of machine learning database. In the set of experiments

undertaken, the classification problems were conducted 20 times. All the hidden units and

output units use the sigmoid activation function and Eth is set to 0.1. When a hidden unit

addition was required, 8 candidates were trained and the best one selected. All the

experiments were simulated on a Pentium IV – 2.4GHZ PC. The sub-problems were solved

sequentially and the CPU time expended was recorded respectively.

In the set of experiments undertaken, simulations were run for three different orders of classes

for each of the four problems. Although there are many permutations for each problem set, we

limited our experiments to just three different ordering configurations due to time and

resource constraints.

6.2 Experimental Results

A. Glass

This data set is used to classify glass types. The data set consists of 9 inputs, 6 outputs, and

214 patterns (divided into 107 training patterns, 54 validation patterns, and 53 test patterns).

The patterns were normalized and scaled so that each component lies within [0, 1].

Ordering of

classes

Training

Procedure

Training

Time (s)

Classification

Error (%)

none Output Parallelism 25.1 36.1321

Original HICL 62.4 35.6604 5,4,3,6,1,2

 RPT-HICL 24.9 22.4528

Original HICL 91.4 34.3396 6,1,4,5,2,3

 RPT-HICL 13.3 25.0943

Original HICL 102.5 34.5283 1,2,3,4,5,6

 RPT-HICL 16.1 27.7358

Table 1: Experimental results for Glass problem

From Table 1, we can see that the HICL networks in different ordering achieved better

classification accuracy compared to the Output Parallelism network. It matches with our

analysis in Sec. 2. We also find that RPT-HICL has significant improvement on classification

accuracy for the orders tested in this problem. Also training time is decreased. This problem

shows an average increase in classification accuracy of 27% using RPT-HICL compared to

that using the original HICL.

B. Segmentation

This data set consists of 18 inputs, 7 outputs, and a total of 2310 patterns (1155 training

patterns, 578 validation patterns, and 577 test patterns). The patterns were normalized and

scaled so that each component lies within [0, 1].

Ordering of

classes

Training

Procedure

Training

Time (s)

Classification

Error (%)

none Output

Parallelism

1719.6 5.18198

Original HICL 5660.8 3.37955 7,2,6,1,3,4,5

 RPT-HICL 1513.3 2.27036

Original HICL 5433.1 3.39688 7,2,6,1,3,5,4

 RPT-HICL 1459.6 2.54766

Original HICL 2975.3 4.26343 1,2,3,4,5,6,7

 RPT-HICL 1585.5 2.68631

Table 2: Experimental results for Segmentation problem

From Table 2, we can see that the HICL networks achieved better classification accuracy

compared to the Output Parallelism network. It matches with our analysis in Sec. 2. We also

find that RPT-HICL has improvement on classification accuracy for all the orders tested in

this problem. Also training time is decreased. This problem shows an average increase in

classification accuracy of 42% using RPT-HICL compared to that using the original HICL.

C. Vowel

The input patterns of this data set are 10 element real vectors representing vowel sounds that

belong to one of 11 classes. It has 990 patterns in total (they were divided into 495 training

patterns, 248 validation patterns, and 247 test patterns). The patterns were normalized and

scaled so that each component lies within [0, 1].

Ordering of

classes

Training

Procedure

Training

Time (s)

Classification

Error (%)

none Output

Parallelism

513.9 25.5466

Original HICL 5831 15.3846 1,3,10,2,4,8,

7,5,11,9,6

RPT-HICL 462.4 8.78543

Original HICL 4395.3 17.8138 1,10,8,4,3,2,

5,9,6,7,11

RPT-HICL 473.6 12.7935

Original HICL 5833.6 20.2024 1,2,3,4,5,6,

7,8,9,10,11

RPT-HICL 439.6 10.2834

Table 3: Experimental results for Vowel problem

From Table 3, we can see that the HICL networks achieved better classification accuracy

compared to the Output Parallelism network. It matches with our analysis in Sec. 2. We also

find that RPT-HICL has improvement on classification accuracy for all the orders tested in

this problem. Also training time is decreased. This problem shows an average increase in

classification accuracy of 40% using RPT-HICL compared to that using the original HICL.

D. Pen-Based Recognition

This data set consists of 16 inputs and 10 outputs. It has 7494 patterns in total (they were

divided into 3747 training patterns, 1873 validation patterns, and 1874 test patterns). The

patterns were normalized and scaled so that each component lies within [0, 1].

Ordering of

classes

Training

Procedure

Training

Time (s)

Classification

Error (%)

none Output

Parallelism

4382.0 4.45571

Original HICL 32658.5 1.85433 5,7,1,4,8,9,3,2,10,6

 RPT-HICL 1450.8 1.41409

Original HICL 42274.5 1.78762 7,3,1,5,4,9,6,2,10,8

RPT-HICL 1726.3 1.32871

Original HICL 23090.5 1.79427 10,9,8,7,6,5,4,3,2,1

 RPT-HICL 2425.4 1.49413

Table 4: Experimental results for Pen-Based Recognition problem

From Table 4, we can see that the HICL networks achieved better classification accuracy

compared to the Output Parallelism network. It matches with our analysis in Sec. 2. We also

find that RPT-HICL has improvement on classification accuracy for all the orders tested in

this problem. Also training time is decreased. This problem shows an average increase in

classification accuracy of 26% using RPT-HICL compared to that using the original HICL.

6.3 Discussions

From the experimental results, we could see that different ordering leads to different

classification accuracy. Two ordering methods, MSEF-CDE and MSEF-FLD, were developed

in the earlier paper (Guan & Li, 2002). Based on these two methods they evaluated the

classification error in each sub-network and ordered these sub-networks in HICL based on

those errors, from the smallest to the greatest. Using them, the original HICL tends to get

better classification accuracy than the other ordering. However, we should note that

MSEF-CDE and MSEF-FLD are based on the whole training set. While in RPT-HICL, most

sub-networks are learned just using portions of the training set. So, MSEF-CDE and

MSEF-FLD are not applicable to RPT-HICL. Our experiment results confirmed this

observation. How to get the best order for RPT-HICL? It is one of the challenging tasks for

our future research.

7 Conclusions

In this paper, a task decomposition method called HICL was introduced. A theoretical model

was presented to compare the performance of HICL with a typical task decomposition

approach - Output Parallelism. Our analysis showed that HICL can get better classification

accuracy than Output Parallelism and the experimental results confirmed this. Also, an

improved training method for the HICL network, RPT-HICL, was proposed and experiments

were conducted to test its viability. The results from four benchmark problems showed that

network performance in terms of classification accuracy and training time is enhanced with

hierarchical learning.

More work has to be done to investigate the minimum output dimensionality of the problem

for the benefits of RPT-HICL to be reaped. Alternatively the extent of training set size

reduction can be explored to check the existence of optimal training set. The next phase of the

research would be to investigate exactly how much reduction of patterns will give arise to an

optimal solution.

Due to resource constraints, we have only been able to conduct experiments on four

benchmark problems. It would be interesting to conduct some real world applications of

RPT-HICL, to investigate issues like scalability and robustness of the method proposed.

References

[1] Guan, S.-U. and Li, S.: Parallel growing and training of neural networks using output parallelism,

IEEE Transaction on Neural Networks, 13 (2002), 542 –550.

[2] Auda, G., Kamel, M. and Raafat, H.: Modular neural network architectures for classification, IEEE

International Conference on Neural Networks, 2 (1996), 1279–1284.

[3] Jacobs, R.A., Jordan, M.I., Nowlan, M.I. and Hinton, G.E.: Adaptive mixtures of local experts,

Neural Computation, 3 (1991), 79–87.

[4] Auda, G., Kamel, M. and Raafat, H.: A new neural network structure with cooperative modules,

World Congress on Computational Intelligence, 3 (1994), 1301-1306.

[5] Jacobs, R., Jordan, M., and Barto, A.: Task decomposition through competition in a modular

connectionist architecture: The what and where vision tasks, Cognitive Science, 15 (1991),

219–250.

[6] Murre, J.: Learning and categorization in modular neural networks, Harvester-Wheatcheaf. (1992).

[7] Romaniuk, S.G. and Hall, L.O.: Divide and conquer neural networks, Neural Networks, 6 (1993),

1105-1116.

[8] Sharkey, A.J.C.: Modularity, combining and artificial neural nets, Connection Science, 9 (1997),

3–10.

[9] Feldman, J.: Neural representation of conceptual knowledge, edited by Nadel et al., Neural

connections, mental computation, Cambridge, Massachusetts, USA: MIT Press (1989).

[10] Anand, R., Mehrotra, K., Mohan, C.K., and Ranka, S.: Efficient classification for multiclass

problems using modular neural networks, IEEE Transaction on Neural Networks, 6 (1995),

117-124.

[11] Lu, B.L., Kita, H.,and Nishikawa, Y.: A multisieving neural network architecture that decomposes

learning tasks automatically, Proceedings of IEEE Conference on Neural Networks, Orlando, FL,

(1994), 1319-1324.

[12] Lu, B.L., and Ito, M.: Task decomposition and module combination based on class relations: A

modular neural network for pattern classification, IEEE Transaction on Neural Networks, 10

(1999), 1244-1256.

[13] Guan, S.-U. and Li, P.: A Hierarchical Incremental Learning Approach to Task Decomposition,

Journal of Intelligent Systems, 12 (2002), 194-205.

[14] Guan, S.-U. and Zhu, F.: Class Decomposition for GA-based Classifier Agents – A Pitt Approach,

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34 (2004), 381-392.

[15] Guan, S.-U., Neo, T.N. and Bao, C: Task Decomposition Using Pattern Distributor, Journal of

Intelligent Systems, 13 (2004), 123-150.

[16] Guan, S.-U., Li, S.C. and Tan, S.K.: Neural Network Task Decomposition Based on Output

Partitioning, Journal of the Institution of Engineers Singapore, 44 (2004), 78-89.

[17] Guan, S.-U., and Li, P.: Incremental Learning in Terms of Output Attributes, Journal of Intelligent

Systems, 13 (2004), 95-122.

[18] Guan, S.-U. and Zhu, F.: A Class Decomposition Approach for GA-based Classifier Agents,

Engineering Applications of Artificial Intelligence, 18 (2005), 271-278.

[19] Guan, S.-U. and Li, S.C.: An approach to parallel growing and training of neural networks,

Proceedings of 2000 IEEE International Symposium on Intelligent Signal Processing and

Communication Systems, Honolulu, Hawaii, USA (2000).

[20] Lehtokangas, M.: Modeling with constructive backpropagation, Neural Networks, 12, (1999),

707-716.

[21] Riedmiller, M. and Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learning:

the PRPOP Algorithm, Proceedings of the IEEE International Conference on Neural Networks,

(1993), 586-591.

[22] Prechelt, L.: PROBEN1: A set of neural network benchmark problems and benchmarking rules,

Technical Report 21/94, Department of Informatics, University of Karlsruhe, Germany (1994).

[23] C. S. Squires and J. W. Shavlik, “Experimental analysis of aspects of the cascade-correlation

learning architecture,” Machine Learning Research Group Working Paper 91-1, Computer Science

Department, University of Wisconsin-Madison, 1991.

[24] G. Auda, M. Kamel and H. Raafat, “Modular neural network architectures for classification,” in

IEEE International Conference on Neural Networks, Vol. 2, 1996, pp.1279-1284.

