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Abstract 

Many authors in the literature agreed that the flow theory of plasticity either fails to 

predict buckling or overestimates plastic buckling stresses and strains of plates and shells 

while the deformation theory succeeds in forecasting buckling and provides estimates that 

are more in line with the experimental results. Following a previous study by the same 

authors focused on compressed cylinders, the present work aims to investigate the reasons 

for the discrepancy between the flow and deformation theory predictions in the case of 

cylinders subjected to combined axial tensile load and increasing external lateral pressure. 

To this end, geometrically nonlinear finite-element calculations of selected cylindrical shells 

using both the flow theory and the deformation theory of plasticity have been conducted, and 

the results are compared with some accurate physical test results and with numerical results 

obtained by other authors using the code BOSOR5. It is found, contrary to common belief, 

that very good agreement between numerical and test results can be obtained in the case of 

the flow theory of plasticity. The reasons underlying the apparent plastic buckling paradox 

are discussed in detail.  
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1. Introduction  

Plastic buckling of circular cylindrical shells has been the subject of intense research 

for many decades due to its importance in many engineering applications. In particular, 

many experimental, analytical and numerical studies have been conducted to 

investigate buckling of cylinders subject to axial compression, external pressure, torsion 

or combination of such load cases. 

In general, accurate numerical or analytical estimation of the critical load of plastic 

buckling of real cylinders requires accounting for moderate large deflection and, 

nonlinear, irreversible (i.e. path-dependent) material behaviour (Bushnell, 1986).  

As for the material constitutive law to be used, the plasticity models that have been 

proposed for metals fall within one of two different theories: the ‘deformation theory’ of 

plasticity and the ‘flow theory’ of plasticity. In both of these theories the plastic-strain 

increments are isochoric, i.e. characterised by zero volume change, and their evolution 

is governed by the second invariant J2 of the deviatoric part of the stress. The flow 

theory of plasticity defines a path-dependent law, in which the current stress depends 

not only on the value of the current total strain but also on how the actual strain value 

has been reached. On the other hand, the deformation theory of plasticity is based on 

the assumption that for continued loading the state of stress is uniquely determined by 

the current state of strain and, therefore, it is a special class of path-independent non-

linear elastic constitutive laws. 

 Experimental investigations show that plastic strains depend both on the the stress 

value and the loading history. Thus, there is general agreement among engineers and 

researchers that the deformation theory of plasticity lacks of physical rigour with 

respect to the flow theory. However many authors, such as Onat and Drucker (1953), 

Mao and Lu (1999), Durban and Ore (1992) and Bardi and Kyriakides (2006), among 

the others, pointed out that the deformation theory tends to predict buckling loads that 

are smaller than those obtained by the flow theory and much closer to the experimental 

results. In fact, the flow theory seems to over-estimate buckling loads, often quite 

significantly.  

There have been many attempts to explain this so called ‘’plastic buckling paradox’’ 

and formulate accurate methods based on the flow theory of plasticity, that typically 

differ from each other on account of the choice and formulation of the constitutive 



 

3 
 

equations and of the associated factors. For instance, Batdorf and Budiansky (1949) 

suggested to use the slip theory in plastic buckling analysis. Sewell (1973) proposed the 

use of Tresca yield surface in the flow theory of plasticity and Lay (1965) proposed that 

the effective shear modulus should be employed when using the flow theory, whereas 

Ambartsumjan (1963) recommended considering the transverse shear deformation. 

Attention was also paid to the consideration of initial imperfections, as proposed by 

Onat and Drucker (1953). 

More recently, Shamass et al. (2014) numerically investigated buckling of axially 

compressed cylindrical shells in the plastic range. They showed that non-linear finite-

element buckling analyses based on the flow theory provide buckling stresses in better 

agreement with the experimental results than those based on the deformation theory, a 

fact that is in contrast with the conclusions by Mao and Lu (1999), Durban and Ore 

(1992) and Bardi and Kyriakides (2006). Shamass et al. (2014) concluded that the main 

root of the discrepancy between the two plasticity theories can be found in the 

assumptions made in many analytical treatments with regard to the shape of the 

buckling modes, a simplification which gives origin to an excessively constrained 

kinematics, in turn counterbalanced by the material description of the deformation 

theory of plasticity. This fact has also been confirmed to a certain extent by analytical 

investigations (Shamass et al., 2015). 

In the case of axially loaded cylinders, at least during the elastic phase, the walls are 

subjected to proportional loading, and in many points during plastic yielding the 

deviation from the loading path is relatively limited. Nevertheless, the flow and 

deformation theory seem to provide quite different results. 

It is therefore not surprising that similar or even more significant discrepancies have 

been reported between the results from the flow and deformation theory in the case of 

non-proportional loading even in the elastic phase.  

Blachut et al. (1996) conducted experimental and numerical analyses on 30 mild-

steel machined cylinders of different dimensions, subject to axial tension and increasing 

external pressure. Using the code BOSOR5 (Bushnell, 1986) for their numerical analyses 

they showed that the agreement between the two plasticity theories was strongly 

dependent on the length of the cylindrical shell. For short cylinders (𝐷/𝐿 = 1), the 

plastic buckling results predicted by the flow and deformation theory coincided only 

when the tensile axial load vanished. By increasing the axial tensile load, the buckling 
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pressures predicted by the flow theory started to diverge quickly from those predicted 

by the deformation theory. Additionally, the flow theory failed to predict buckling for 

high axial tensile load while tests confirmed the buckling occurrence. For specimens 

with length-to-diameter ratio 𝐿/𝐷 ranging from 1.5 to 2.0 the results predicted by both 

theories were identical for a certain range of combined loading. However, for high 

values of the applied tensile load, the predictions of the flow theory began to deviate 

from those of the deformation theory and became unrealistic in correspondence to large 

plastic strains. 

Giezen et al. (1991) conducted experiments and numerical analyses on two sets of 

tubes made of aluminium alloy 6061-T4 and subjected to combined axial tension and 

external pressure, once again making resort to the code BOSOR5 (Bushnell, 1986). The 

tubes were characterised by a L/D ratio equal to one and two loading paths were 

considered. In the first one the axial tensile load was held constant and the external 

pressure was increased. In the second one, the external pressure was held constant and 

the axial tensile load was increased. The numerical studies showed that the buckling 

pressure predicted by the flow theory increases with increasing applied tensile load 

while the experimental tests showed on the contrary a reduction in buckling resistance 

with increasing axial tension. Thus, the discrepancy between the test results and the 

numerical results predicted by the flow theory increased significantly with the 

intensification of the axial tension. On the other hand, the results by the deformation 

theory displayed the same trend of the test results. However, the deformation theory 

significantly under-predicted the buckling pressure observed experimentally for some 

load-paths. Therefore, Giezen (1988) concluded that both plasticity theories were 

unsuccessful in predicting buckling load. Interestingly enough, Giezen showed in his 

thesis (1988) that, when reversing the load path, the deformation theory was able to 

predict buckling while the flow theory failed to do so. 

Tuğcu (1991) investigated analytically the buckling of cylinders under combined 

axial load and torque and combined external pressure and torque. He found that the 

predictions of the flow theory were more sensitive to the non-proportionality of loading 

than those of the deformation theory although the predictions of both theories were 

similar in some region of a particular interaction.  
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Overall, the above mentioned literature indicates that the flow theory has been 

generally found to be more sensitive with respect to non-proportional loading than the 

deformation theory. 

In the case of cylinders subjected to axial tensile load and external pressure, Blachut 

et al. (1996) and Giezen et al. (1991) concluded that the flow theory tends to over 

predict quite significantly the plastic strains and the buckling loads in the case of  high 

values of the axial tensile loads, while the deformation theory leads to results that seem 

more in line with the experimental observations.  

Recently, attempts have been made to develop a revised deformation theory by 

including unloading (Peek, 2000) or to propose a total deformation theory applicable to 

non-proportional loading, defined as a sequence of linear loadings (Jahed et al., 1998). 

The present work aims to shed further light on the plastic buckling paradox by 

means of carefully conducted finite-element (FE) analyses of cylindrical shells using 

both the flow theory and the deformation theory of plasticity. Results are compared 

with the experimental and the numerical results obtained by Blachut et al. (1996) and 

Giezen et al. (1991 using the code BOSOR5. The study also aims to examine the 

sensitivity of the predicted critical strains and buckling pressures with respect to the 

applied tensile load. 

The analysis is focused on machined short cylindrical shells subjected to axial 

tension and increasing external pressure, with length-to-outer diameter ratio 𝐿 𝐷⁄  

ranging between 1 and 2.  

The paper is organised as follows. Section 2 presents in details the finite-element 

(FE) modelling of selected cylindrical shells tested by the above mentioned authors by 

means of the code ABAQUS, version 6.11-1 (Simulia, 2011).  Comparison of the FE 

results with the experimental and numerical results by Blachut et al. (1996) and Giezen 

et al. (1991) is presented in depth in Sections 3 and 4, respectively. Section 5 contains 

an comprehensive discussion of the results in order to provide an insight into the 

underpinning causes of the discrepancy between the present results and those by 

Blachut et al. (1996) and Giezen et al. (1991). Some conclusions are finally drawn in 

Section 6. 
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2. Test samples and finite-element modelling 

2.1 Geometry and elements 

The plastic buckling of selected imperfect cylinders tested by Blachut et al. (1996) 

and Giezen et al. (1991), subjected to uniform external pressure and axial tensile load, 

has been numerically simulated using non-linear FE analyses using both the flow theory 

and the deformation theory of plasticity, by means of the FE code ABAQUS, version 

6.11-1 (Simulia, 2011). 

 

2.1.1 Modelling of tests made by Blachut et al. (1996) 

Blachut et al. (1996) conducted tests on 30 machined cylinders made of mild steel 

with outer diameter 34 mm and length to diameter ratio (L D⁄ ) of 1.0, 1.5 and 2.0. In the 

experimental setting, one flange of the specimen was rigidly attached to the end flange 

of the pressure chamber and the other flange was bolted to a coupling device which in 

turn was bolted to the load cell, see Figure 2.1. The load cell was centred with respect to 

the test chamber in order to prevent any eccentricity of the axial load exerted on the 

specimen. The authors reported that the maximum initial radial imperfection measured 

at the mid-length of the specimens was about 1% of the wall thickness.  

In the present investigation, in order to keep the numerical analyses at a reasonable 

number, twelve cylinders were chosen, as illustrated in Table 2.1, in such a way that (a) 

a significant range of L/D is covered in the study and (b) for all the selected cases, 

except S2 and L4, the flow theory of plasticity failed to predict buckling numerically 

according to Blachut et al. (1996). 

 

 

Figure2.1: Experimental setting. 
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Spec. 
Geometry of the cylinders 

𝑫 (𝒎𝒎) 𝒕 (𝒎𝒎) 𝑳/𝑫 

S1 34.01 0.685 0.982 

S2 33.98 0.688 0.983 

S3 34.05 0.667 0.982 

S4 34.07 0.667 0.982 

S5 33.98 0.679 0.981 

S6 34.06 0.704 0.979 

S7 33.97 0.675 0.982 

M2 34 0.616 1.47 

M12 33.59 0.669 1.474 

M7 33.97 0.63 1.473 

L4 34 0.669 1.961 

L8 33.96 0.693 1.964 

Table 2.1: Geometry of tested cylinders. 

 

In the FE modelling one reference point has been located at the centre of the top end 

of the cylinder and the axial displacements of all the nodes at the top edge of the 

cylinder have been constrained to the axial displacement of this reference point.  The 

axial tensile load has been applied directly to the reference point. All the other degrees 

of freedom of the nodes at the top edge have been restrained. The bottom edge of the 

shell has been considered fully fixed, i.e. with no allowed translation or rotations at any 

node. 

 

 

 

Figure 2.2: Boundary conditions. 
 

In order to simulate the experimental settings, two types of loading have been 

considered:  axial tensile load in the longitudinal direction and external pressure 

Kinematic coupling constraint 

Clamped boundary 

conditions 
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applied normally to the surface of the shell elements (Table 2.2).  First the tensile load 

has been applied and held constant. Successively, an increasing lateral pressure has 

been applied.  

 

Specimen S1 S2 S3 S4 S5 S6 S7 

Axial tension 
(N) 

17960 0 18000 3990 12010 15030 7970 

 

Specimen M2 M12 M7 L4 L8 

Axial tension 
(N) 

10670 18530 15060 8210 16490 

Table2.2: Axial tension values for the selected cylinders. 
 

The cylinders have been modelled by means of a general-purpose 4-noded fully-

integrated shell element, “S4” (Simulia, 2011), which accounts for large deformations.  

Each node has six degrees of freedom and the element is based on a thick shell theory. It 

is widely used for industrial applications because it is suitable for both thin and thick 

shells. The strain approach is such as to prevent shear and membrane locking. 

A structured mesh was used, made from a number of divisions along the 

circumference and longitudinal direction, as reported in Table 2.3 for each specimen. 

 

 Specimens 

Number of elements S1 S2 S3 S4 S5 S6 S7 

- around the circumference 200 200 200 200 200 200 200 

- along the length 63 63 63 63 63 63 63 

 

 Specimens 

Number of elements M2 M12 M7 L4 L8 

- around the circumference 200 200 200 200 200 

- along the length 94 94 94 125 125 

Table 2.3: FE mesh discretisation adopted for the analyses of the cylinders tested by 
Blachut et al. (1996). 
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2.1.2 Modelling of tests made by Giezen et al. (1991) 

 In the test carried out by Giezen et al. (1991), the cylindrical specimens were made 

of aluminium alloy 6061-T4.  Two sets of specimens were tested, namely Set A and Set 

B.  The average wall-thickness values of the first and second set were 0.76 and 0.71 mm, 

respectively, and the length-to-diameter ratio (L D⁄ ) was equal to one.  The maximum 

initial imperfections were found to be about 0.076mm (10% of the thickness) (Giezen et 

al., 1991). 

For the present numerical analysis only the specimens subjected to constant axial 

tensile load and increasing external pressure have been taken into consideration, as 

shown in Tables 2.4 and2.5.  

 

Specimen SP.1 SP.2 SP.3 SP.4 SP.5 SP.6 SP.7 

Axial tension (N) 0 1254.41 2508.81 4076.82 5205.8 6021.15 6522.9 

N. of buckling 
waves 

5 5 5 5 4 4 4 

 

Specimen SP.8 SP.9 SP.10 SP.11 SP.12 SP.13 

Axial tension (N) 6899.24 7902.77 9408.05 11666 12920.4 14613.84 

N. of buckling 
waves 

4 4 4 4 4 4 

Table 2.4: Axial tensile load and observed number of buckling waves (in the 
circumferential direction) for Set A specimens 

Specimen SP.1 SP.2 SP.3 SP.4 SP.5 SP.6 SP.7 

Axial tension (N) 0 2343.76 4793 7089.9 9375 11777.4 14062.6 

N. of buckling 
waves 

4 4 4 4 4 4 4 

Table2.5: Axial tensile load and observed number of buckling waves (in the 
circumferential direction) for Set B specimens. 

 

Again, a 4-noded shell elements (S4) has been used with a structured mesh and a 

division of 210 and 67 elements along the circumference and the length, respectively. 

The same boundary conditions used to simulate Blachut’s experiments were adopted. 
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2.2 Material parameters 

The uniaxial stress-strain relationship of the material under monotonic loading has 

been characterised by means of the Ramberg-Osgood law, i.e. 

𝐸휀 = 𝜎 + 𝛼 (
𝜎

𝜎𝑦
)

𝑛−1

𝜎 (2.1) 

where 𝜎 and 휀 denote uniaxial stress and strain, 𝐸 and 𝜈 are theYoung’s modulus and 

Poisson’s ratio, 𝜎𝑦 is the nominal yield strength, 𝛼 is the ‘yield offset’ and 𝑛 is the 

hardening parameter. 

The Ramberg-Osgood input parameters used in the numerical simulations are 

reported in Table 2.6. 

 𝐸 [MPa] 𝜎𝑦[MPa] 𝜈 𝑛 𝛼 

Blachut’s test 212000 328 or290 0.31 300 0.428 

Giezen’s test-Set A 65129.73 177.75 0.3 16 0.733 

Giezen’s test-Set B 60986.34 165.37 0.3 11.76 0.738 

Table 2.6: Ramberg-Osgood constants used in the numerical analyses. 
 

Blachut et al. (1996) conducted longitudinal tensile tests on a number of coupons to 

determine the mechanical properties of the cylindrical specimens. They reported that 

the yield plateau in the stress-strain relationship of the material appears to be extended 

to a strain value of almost 3%, see Figure 2.3. Moreover, they observed that the upper 

yield stress of the tested coupons, cut along the longitudinal direction of the cylinders, 

varied from 280 to 360 MPa, with an average value of 328 MPa, and the lower yield 

stress from 275 to 305 MPa, with an average value of 290 MPa (Blachut et al., 1996). In 

the present numerical analysis both the average upper yield stress, 𝜎𝑦
𝑢 = 328Mpa, and 

the average lower yield stress, 𝜎𝑦
𝑙 = 290 MPa, were employed in order to perform 

meaningful comparisons. 
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Figure 2.3: Typical stress-strain curve of the mild steel. 
 

With respect to Blachut’s examples, two approaches have been used in the present 

numerical analyses. In the first approach use has been made of an elastic-perfectly 

plastic flow theory (EPP flow theory). In the second approach recourse has been made 

to an isotropic non-linear hardening material model with an initial yield stress close to 

zero and a hardening curve based on the Ramberg-Osgood law (NLH flow theory).  A 

detailed description of this implementation in the case of the flow theory of plasticity is 

given in Shamass et. al (2014). 

It is worth noticing that, despite the very high value of the hardening parameter, the 

NLH flow theory cannot reproduce the elastic-perfectly plastic behaviour of the material 

undergoing monotonic loading, see Figure 2.4.  

In order to compare the results from the flow theory with those from the 

deformation theory, the input parameters of the flow theory in the numerical analyses 

have been tuned so that the same stress-strain curve of the material as in the case of the 

deformation theory is obtained for the case of uniaxial stress and monotonic loading, to 

within a negligible numerical tolerance. 
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Figure 2.4: Comparison between the approximated and the exact elastic-perfect plastic 
material behaviour. 

 

Giezen et al. (1991) reported stress-strain data from material tests on a number of 

strips machined from the original tubes of the sets A and.  

With respect to  Giezen ‘s examples,  in the present study the material behaviour has  

been modelled by fitting the Ramberg-Osgood relation to the available data set, as 

shown in Figures 2.5-2.6. 

 

 

Figure 2.5: Ramberg-Osgood fit (Set A). 
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Figure 2.6: Ramberg-Osgood fit (Set B). 
 

2.2.1 Adopted formulation of the deformation theory of plasticity 

The formulation of the deformation theory of plasticity used in the numerical 

simulations has been obtained by extending the uniaxial Ramberg-Osgood law to the 

case of a multi-axial stress state using the von Mises formulation (𝐽2 theory). It results in 

the following path-independent relationship (Simulia, 2011): 

𝐸𝜺 = (1 + 𝜈) dev 𝝈 − (1 − 2𝜈) sph 𝝈 +
3

2
𝛼

(

 
√
3

2
‖dev 𝝈‖

𝜎𝑦
)

 

𝑛−1

dev 𝝈 (2.2) 

where 𝜺 and 𝝈 denote the strain and stress tensors, while dev 𝝈 and sph 𝝈 denote the 

deviatoric and spherical parts of the stress tensor, respectively. 

Since the deformation theory of plasticity requires the same input values as the 

Ramberg-Osgood formula with the sole specification of the Poisson’s ratio, the material 

constants of Table 2.6 have been used. 
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2.2.2 Adopted formulation of the flow theory of plasticity 

The classical 𝐽2 flow theory of plasticity with nonlinear isotropic hardening and in 

the small-strain regime (Simo and Hughes, 1998; Simulia, 2011) has been adopted in 

the numerical simulations. The theory is based on the additive decomposition of the 

spatial rate of the deformation tensor �̇� into its elastic and plastic parts �̇�𝒆 and �̇�𝒑, 

respectively, 

�̇� = �̇�𝒆 + �̇�𝒑 (2.3) 

The rate of the Cauchy stress tensor �̇� is obtained from the elastic part of the strain 

tensor through the isotropic linear elastic relation 

�̇� = 2𝐺�̇�𝒆 + 𝜇 tr �̇�𝒆𝐈 (2.4) 

where 𝐺 and 𝜇 are Lamé’s elastic constants and 𝐈 is the rank-2 identity tensor. 

The von Misses yield function 𝑓 is introduced in the form 

𝑓(𝝈, 휀𝑝
𝑒𝑞
) = ‖dev𝝈‖ − √

2

3
�̅�(휀𝑝

𝑒𝑞
) (2.5) 

where 𝜎 ̅represents the uniaxial yield strength that, in order to model nonlinear 

isotropic hardening, is assumed to be an increasing function of the equivalent plastic 

strain 휀𝑝
𝑒𝑞

, defined at time 𝑡 as follows 

휀𝑝
𝑒𝑞(𝑡) = ∫ ‖�̇�𝑝(𝜏)‖ 𝑑𝜏

𝑡

−∞

 (2.6) 

The evolution of the plastic strain is given by the associate flow rule, 

�̇�𝑝 = �̇� (
𝜕𝑓

𝜕𝒔
)
𝒔=dev𝝈

 (2.7) 

where �̇� is a plastic multiplier which must satisfy the complementarity conditions: 

�̇� ≥ 0 𝑓(𝝈, 휀𝑝
𝑒𝑞) ≤ 0  �̇� 𝑓(𝝈, 휀𝑝

𝑒𝑞) = 0 (2.8) 

2.3 Large displacement formulation 

The numerical analyses have been performed in the realm of large-strains by using 

spatial co-rotational stress and strain measures and a hypo-elastic relation between the 

rates of stress and elastic strain (Simulia, 2011). It is worth noticing that in the past this 



 

15 
 

approach has been the subject of a debate because hypo-elastic laws may occasionally 

tend to lead to fictitious numerical dissipation (Simo and Hughes, 1998). However, the 

adopted large-strain formulation is widely implemented in many commercial codes, 

including ABAQUS, and it is generally accepted that the hypo-elasticity of the 

formulation has limited influence on the results because, even when strains are large, 

the elastic part of the strain is typically still very small and close enough to the limit 

where hypo-elastic and hyper-elastic formulations coincide (Simo and Hughes, 1998).  

In order to follow the structural response beyond the buckling load, that is a limit 

point when load control is applied, the Riks arc-length method (Riks, 1979) has been 

used in the version implemented in ABAQUS (Simulia, 2011).  In this method both the 

nodal displacement increments, ∆u , and the increment, ∆λ, of the load multiplier are 

assumed unknown in each increment. The Riks’ formulation iterates along a hyperplane 

orthogonal to the tangent of the arc-length from a previously converged point on the 

equilibrium path (Falzon, 2006). 

In the present study, the external pressure is set as λ p0, where p0 denotes a 

reference inward external pressure and λ is a scalar multiplier. The critical load is 

determined by the point at which the load-arc length curve reaches a maximum. 

The bifurcation point is the intersection of secondary and primary paths, which are 

the pre-buckling and post buckling paths, respectively. To avoid such discontinuous 

response at bifurcation, it is common to introduce geometric imperfections in order to 

remove bifurcation points (Falzon, 2006; Simulia, 2011). In this way, the post-buckling 

problem analysed using Riks method will turn into a problem with a continuous 

response. The critical point determined on the equilibrium path is the limit point and 

there is no bifurcation prior to collapse. The choice of the size of the imperfection and 

its shape is discussed in later sections. Furthermore, if analyses are conducted with 

progressively reduced size of the imperfection, the limit point found in those with the 

smallest amount of imperfections; say 0.05% or 0.1% of the thickness turns out to be a 

good approximation of the bifurcation load (Bushnell, private communication). This 

method is used later in Section 5.3. 
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2.4 Description of imperfections 

Accounting for imperfections has been achieved by scaling and adding buckling 

eigenmodes to a perfect geometry in order to create a perturbed initial geometry. The 

scaling factor has been set as a percentage of the shell thickness, t. The analyses have 

been conducted for an imperfection amplitude equal to 1% of the thickness, as 

experimentally measured by Blachut et al. (1996).  

The choice of linear elastic eigenmodes used to generate the imperfect models was 

made with the aim of choosing those with the same number of circumferential waves 

that were found experimentally in the post-buckling path. Except for specimen M2, for 

which a buckling mode with 3 waves was reported, Blachut et al. (1996) did not report 

the observed failure modes of the other cylinders. However, they did report that the 

number of circumferential waves observed from the test varied from 3 waves for high 

values of axial tensile load to 6 waves for pure applied external pressure. Therefore, for 

very small values of the axial load such as in specimen S2, the fifth eigenmode with 6 

waves was used; for specimen M2 and for the others which were tested with very high 

tensile loads, the eigenmode corresponding to 3 waves was used; for the other 

specimens subject to intermediate smaller or larger tensile loads, the eigenmodes with 

5 or 4 waves were used, respectively. This is summarised in Table 2.7, which shows the 

eigenmode number used to generate the shape of imperfection in the FE models for 

each specimen together with the associated number of circumferential waves (see 

Figure 2.7). 

On the other hand, Giezen et al. (1991) reported the buckling failure modes found 

experimentally, as illustrated in Tables 2.4-2.5. Hence, for these cases the eigenmodes 

used to generate the imperfections are those with the same number of waves found 

experimentally, with a single wave in the longitudinal direction. Accordingly, the 

eigenmodes with five circumferential waves have been chosen to generate initial 

imperfection’s shape for specimens SP.1 to SP.4 in Set A and those with four waves have 

been chosen for the rest of the specimens (see Figure 2.8). The analyses have been 

conducted for an imperfection amplitude equal to 10% of the thickness for both Set A 

and B, as experimentally measured by Giezen et al. (1991).  
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In all the cases the linear buckling analysis has been conducted assuming linear 

elastic material behaviour and small displacements, under constant axial tensile 

loading. 

It is worth pointing out that existing results show that it is not universally true for 

geometrically imperfect structures to fail by collapse at a reduced magnitude of load. In 

fact, Blachut and Galletly (1993) observed that the elastic buckling load of externally 

pressurized torispheres was not affected by local flattening with small amplitudes and 

this fact was verified experimentally.  Actually, the limit carrying load of shells of 

revolution is known to exhibit complex phenomena including mode switching and 

interaction and many analyses of the non-axisymmetric buckling deformation of 

spherical domes suggest that the observed deformation at collapse is mostly 

determined by the form of the imperfections, rather than by their magnitude. 

 This seems to be hardly the case with the circular cylindrical shells object of the 

present study, especially in the case of non-proportional loading. In fact, apart from the 

observation that the behaviour described by Blachut and Galletly tends to depend on 

the rise of the torispheres, a geometric characteristic which does not pertain to 

cylinders, in the performed numerical analyses, the R/t  ratio of the cylinders was about 

25, placing the buckling in a substantially pure plastic range, where imperfect shells are 

prone to show a reduced collapse load with respect to perfect ones. As an additional 

point, Figures 5.2 and 5.4 show that the plastic buckling resistances of the cylinders 

under analysis are actually sensitive to imperfection amplitudes. 

 

Specimens S1 S2 S3 S4 S5 S6 S7 

Eigenmode number 3 5 3 1 3 3 1 

Number of 
circumferential waves 

4 6 4 5 4 3 5 

 

 

Specimens M2 M12 M7 L4 L8 

Eigenmode number 7 7 7 1 3 

Number of 
circumferential waves 

3 3 3 4 3 

Table2.7: Number of circumferential waves used to generate imperfections in the FE 
modelling for the specimens tested by Blachut et al. (1996). 
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First eigenmode for S4 cylinder                                                             Seventh eigenmode for M2 cylinder 

Figure 2.7: Buckling eigenmodes used in the simulation of Blachut’s tests to account for 
initial imperfections. 

                                       

First eigenmode for SP.1 (Set A) cylinder                          Fifth eigenmode for SP.1 (Set B) cylinder 

Figure 2.8: Buckling eigenmodes used in the simulation of Giezen’s tests to account for 
initial imperfections. 

 

3. Finite-element results for the experiments in Blachut et al. (1996) 

3.1 Comparison of the numerical results with experimental results 

The buckling pressures, based on the deformation theory, the EPP flow theory and 

the NLH flow theory of plasticity, have been calculated for different specimen 

geometries, axial tensions and both values of the average yield stress. The results are 

illustrated in Figures 3.1 and show that the buckling pressures predicted by the NLH 
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flow theory and by the deformation theory of plasticity are extremely close to each 

other. 

The calculated buckling pressures based on the flow theory and the deformation 

theory in conjunction with the upper value of the yield stress are in better agreement 

with experimental results for the specimens S2, S3, S5, S7, M2, M12 ,M7, and L4. The 

calculated buckling pressures based on the flow theory and the deformation theory in 

conjunction with the lower value of the yield stress are in better agreement with 

experimental results for the specimens S1, S4, S6, and L8. 

 

 

 

Figure3.1: Comparison between experimental and numerical results for both the 
deformation theory and the NLH flow theory of plasticity. 

 

Figure 3.2 shows the plots of the external pressure vs the radial displacement of a 

point at the middle section of the cylinders resulting from both the flow and the 

deformation theory of plasticity for different specimens. It can be noticed that the 

curves predicted by the flow theory lay above the curves predicted by the deformation 

theory in most cases.  
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Figures 3.3-3.4 show the predicted circumferential and meridian plastic strains at 

the onset of buckling according to the flow and deformation theory of plasticity. It can 

be observed that the differences in the predictions increase with the intensification of 

the applied tensile load. 

Figures 3.3-3.4 show that, according to the proposed modelling,  both plasticity 

theories succeed in predicting buckling with physically acceptable plastic strains for all 

specimens. In fact, although the maximum plastic strains calculated at the buckling 

pressure in meridian and circumferential directions and predicted by the NLH flow 

theory of plasticity are larger than those predicted by the deformation theory, they 

result still acceptable for all specimens with 𝐿 𝐷⁄ ≈ 1. Additionally, Tables 3.1-3.3 show 

that meridian and circumferential plastic strains predicted using the flow theory of 

plasticity are physically realistic, being smaller than 1.5%, with the exception of 

specimens S1, S3 and S6 in Table 3.3, with still display values largely below 5%.  From 

this standpoint all the plastic buckling pressures shown in Figure 3.1 and calculated 

using the flow theory can be thus considered physically acceptable.  

  

(a) External pressure versus radial displacement for specimen S1  
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(b) External pressure versus radial displacement for specimen S2 

 

  

(c) External pressure versus radial displacement for specimen S3 
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(d) External pressure versus radial displacement for specimen S7 

 

  

(e) External pressure versus radial displacement for specimen M2 
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(f) External pressure versus radial displacement for specimen L4 

Figure 3.2: External pressure vs. radial displacement curves for specimens (a) S1, (b) S2, 
(c) S3, (d) S7, (e) M2 and (f) L4 (upper value of the yield stress) showing the buckling 
response, ultimate external pressure and deformation modes before, after and at the 

limit pressure load (colours indicating the total deformation). 

 

 

Figure 3.3: Maximum circumferential plastic strains at the mid-section of the cylinders 
under combined loading (𝑳 𝑫⁄ ≅ 𝟏), calculated using the upper value of the yield stress. 
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Figure 3.4: Maximum meridian plastic strains at the mid-section of the cylinders under 
combine loading (𝑳 𝑫⁄ ≅ 𝟏), calculated using the upper value of the yield stress. 

 

Spec 
M2 M12 M7 L4 L8 

C M C M C M C M C M 

S=0 -0.028 0.320 -0.030 0.320 -0.027 0.242 -0.021 0.176 -0.0245 0.205 

S=0.25 -0.453 0.403 -0.580 0.750 -0.380 0.404 -0.065 0.044 -0.210 0.231 

S=0.5 -0.679 0.603 -0.960 1.250 -0.638 0.660 -0.151 0.087 -0.309 0.318 

S=0.75 -0.453 0.403 -0.640 0.866 -0.380 0.404 -0.065 0.037 -0.210 0.223 

S=1 -0.028 0.320 -0.030 0.320 -0.027 0.242 -0.021 0.176 -0.0245 0.205 

Table 3.1: Maximum plastic strains (%) at the buckling at different sections of the 
cylinders (S=x/L), according to the NLH flow theory of plasticity and using the upper 

value of the yield stress (C-circumferential direction; M-meridian direction). 
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Spec 

M2 M12 M7 L4 L8 

C M C M C M C M C M 

S=0 -0.023 0.266 -0.026 0.454 -0.207 0.220 0.018 0.160 -0.020 0.190 

S=0.25 -0.330 0.298 -0.734 0.961 -0.261 0.273 -0.047 0.032 -0.138 0.150 

S=0.5 -0.480 0.420 -1.268 1.656 -0.417 0.421 -0.127 0.071 -0.179 0.182 

S=0.75 -0.330 0.298 -0.734 0.961 -0.261 0.273 -0.047 0.032 -0.138 0.150 

S=1 -0.023 0.266 -0.026 0.454 -0.207 0.220 0.018 0.160 -0.020 0.190 

Table 3.2: Maximum plastic strains (%) at the buckling at different sections of the 
cylinders (S=x/L), according to the deformation theory of plasticity and using the upper 

value of the yield stress. 

 

Spec. 
NLH flow theory Deformation plasticity 

Circumferential Meridian Circumferential Meridian 

S1 -2.66 4.00 -2.96 4.52 

S2 -0.36 0.13 -0.28 0.09 

S3 -2.63 4.14 -2.06 3.30 

S4 -1.25 0.88 -0.49 0.34 

S5 -1.80 1.54 -0.91 0.88 

S6 -2.60 2.93 -1.66 1.77 

S7 -1.00 0.77 -0.67 0.51 

M2 -0.94 0.89 -0.56 0.53 

M12 -0.52 0.84 -0.62 1.00 

M7 -0.83 1.02 -0.83 0.94 

L4 -0.13 0.08 -0.86 0.14 

L8 -0.57 0.69 -0.37 0.44 

Table 3.3: Maximum plastic strains (%) at the buckling pressure based on the flow 
theory and the deformation theory of plasticity, calculated using lower value of yield 

stress. 
 

3.2 Comparison of the FE results with the numerical results by Blachut 

et al. (1996)  

Blachut et al. (1996) conducted numerical analyses of  their experimental tests using 

the code BOSOR5. In their investigation they looked for the plastic buckling pressure 

and scrutinized which plasticity theory used in BOSOR5 seemed to better agree with the 
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test results. The most significant finding was that the maximum plastic strains for most 

of numerically tested cylinders as predicted by the flow theory were an order of 

magnitude greater than those predicted by the deformation theory of plasticity. As a 

consequence, they concluded that the flow theory predictions (including buckling 

pressures) were physically unrealistic and incorrect, particularly when D/L ≈ 1.  

This finding is in contrast with the numerical results from the present  study, as 

shown in Tables 3.1-3.3 and Figures 3.3-3.4. In fact, the presented numerical findings 

show that the flow theory can predict buckling within physically acceptable plastic 

strains.   

Figure 3.5 shows that although the flow theory used by Blachut et al. (1996) using 

BOSOR5 and the upper yield material stress failed to predict buckling for all selected 

specimens except for S2 and L4, the present numerical investigation based on the flow 

theory succeeded in predicting buckling for all specimens with physically acceptable 

plastic strains. Therefore, according to the presented results both plasticity theories can 

reasonably predict plastic buckling pressure values. Moreover, the plastic buckling 

pressures yielded by the FE analyses using the deformation theory are extremely close 

to those calculated by Blachut et al. (1996). 

 

Figure 3.5: Comparison of Blachut et al. (1996) with present numerical predictions for 
both the flow and deformation theories of plasticity, using the upper yield stress. 
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Blachut et al. (1996) also reported the plastic strains obtained by means of the flow 

and deformation theory of plasticity for an axial tensile load of 10 kN on the basis of the 

upper yield stress (𝜎𝑦𝑝
𝑢 = 328 MPa), for specimens with average geometry 𝐷/𝐿 =

0.98  and 𝐷/𝐿 = 1.47.  The comparison with the present numerical analyses, presented 

in Table 3.4(a), shows that plastic buckling pressure predicted by Blachut et al. (1996) 

and based on the flow theory is larger than the one predicted by the deformation theory 

by about 34%. Moreover, the maximum predicted plastic strains seemed unacceptable 

and this fact led Blachut et al. (1996) to agree only with the predictions from the 

deformation theory. However, the present numerical investigations show that the 

plastic buckling pressures predicted by the flow theory are close to those by the 

deformation plasticity, see Tables 3.4(a)-3.4(b).  Moreover, the maximum plastic strains 

resulting from the FE analyses using the flow theory and the deformation theory result 

different from those reported in Blachut et al. (1996) and physically acceptable. For 

instance, the maximum plastic strains in meridian and circumferential directions, 

shown in Table 3.4(a) calculated by Blachut et al. (1996) according to the flow theory 

are 63% and -19.42%, respectively, while the maximum plastic strains given by the 

present study are 0.7% and -0.85%.   

 

(a) 𝐿/𝐷 = 0.98 

  
Flow theory 

(Blachut et al.,1996) 
Deformation theory 
(Blachut et al., 1996) 

Buckling pressure 12.7 9.52 

Maximum plastic 
strains (%) 

Meridian Circumferential Meridian Circumferential 

S=0 63.08 -0.049 1.273 -0.034 

S=0.25 13.11 -13.652 0.193 -0.213 

S=0.5 18.57 -19.42 0.390 -0.439 

S=0.75 13.11 -13.652 0.193 -0.213 

S=1 63.08 -0.049 1.273 -0.034 

Plastic strains results obtained by Blachut et al. (1996) using the flow theory and the deformation theory 

of plasticity, L/D=0.98 
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EPP flow theory 

Our numerical analysis 
Deformation theory 

Our numerical analysis 

Buckling pressure 9.53 9.38 

Maximum plastic 
strains (%) 

Meridian Circumferential Meridian Circumferential 

S=0 0.330 -0.029 0.30 -0.0233 

S=0.25 0.327 -0.423 0.249 -0.34 

S=0.5 0.700 -0.85 0.54 -0.675 

S=0.75 0.327 -0.423 0.249 -0.34 

S=1 0.330 -0.029 0.30 -0.0233 

Plastic strains results obtained by present numerical analysis using the flow theory and the deformation 

theory of plasticity, L/D=0.98 

(b) 𝐿/𝐷 = 1.47 

  
Flow theory 

 (Blachutetal.,1996) 
Deformation theory 
(Blachutetal.,1996) 

Buckling pressure 8.92 8.8 

Maximum plastic 
strains (%) 

Meridian Circumferential Meridian Circumferential 

S=0 1.667 -0.034 0.406 -0.032 

S=0.25 0.462 -0.523 0.047 -0.054 

S=0.5 0.785 -0.888 0.005 -0.005 

S=0.75 0.462 -0.523 0.047 -0.054 

S=1 1.677 -0.034 0.406 -0.032 

Plastic strains results obtained by Blachut et al. (1996) using the flow theory and the deformation theory 

of plasticity, L/D=1.47 

  
EPP flow theory 

Our numerical analysis  
Deformation theory 

Our numerical analysis  

Buckling pressure 8.077 8.079 

Maximum plastic 
strains (%) 

Meridian Circumferential Meridian Circumferential 

S=0 0.1700 -0.0212 0.1750 -0.0188 

S=0.25 0.0900 -0.1160 0.0880 -0.1150 

S=0.5 0.1130 -0.1550 0.1100 -0.1500 

S=0.75 0.0900 -0.1160 0.0880 -0.1150 

S=1 0.1700 -0.0212 0.1750 -0.0188 

Plastic strains obtained by present numerical analysis using the flow theory and the deformation theory 

of plasticity, L/D=1.47 

Table 3.4: Comparison between plastic strains obtained by Blachut et al. (1996) and 

those by the present numerical analysis using the flow theory and the deformation 

theory of plasticity. 
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4. Comparison of the FE results with the results by Giezen et al. (1991) 

Giezen et al. (1991) conducted numerical analyses on the set of cylindrical 

specimens tested by means of the code BOSOR5 and an axisymmetric shell formulation. 

They too observed that the results from the deformation theory results were in better 

agreement with the experimental ones than those predicted by the flow theory. 

Moreover, the flow theory seemed to display a stiffening character,  in the sense that the 

buckling load increased with the axial tensile load. This was in contrast with their 

experimental findings.  

The present numerical analyses show that both the flow and the deformation theory 

display a softening character with the increase in the axial tensile load (Figures 4.1-4.2). 

Furthermore, Figures 4.1-4.2 show that the difference between the flow and the 

deformation theory predictions increases with the intensification of the non-

proportionality of the load while become almost negligible when the loading tends to be 

proportional (i.e. when the tensile load tend to become negligible). 

 

 

Figure 4.1: External pressure vs axial load – present numerical results (Set A) 
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Figure 4.2: External pressure vs axial load – present numerical results (Set B). 

Figures 4.3-4.4 show that the results calculated using the flow theory are in better 

agreement with the test results than those using the deformation theory for all 

specimens except SP.7 in set B, for which the flow theory and the deformation theory 

over-predict the buckling pressure by 37% and 18%, respectively. Figure 4.3 shows that 

the buckling pressures calculated using both the flow and deformation theories tend to 

fall short of the experimental values. In the case of the flow theory, the discrepancy 

between the numerical and experimental values ranges between 4% and 20% while in 

the case of the deformation theory the discrepancy ranges between 6% and 30%. On the 

other hand, Figure 4.4 shows that the differences with the experiment in the case of the 

flow theory range between 0.2% and 7.5%, with the exception of SP.7, while in the case 

of the deformation theory the differences range between 1.2% and 7.2%. Overall, it can 

be concluded that, according to the present analyses, the flow theory succeeds in 

predicting buckling pressure in all cases except one, with a deviation from the test 

results which is generally below 20% and in many cases below 10%. 
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Figure 4.3: Comparison between numerical and test results (Set A). 

 

Figure 4.4: Comparison between numerical and test results (Set B). 
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shown in Figures 4.5-4.8. The plastic strains calculated using the flow and deformation 

theory are very close for low values of the tensile load but the discrepancies increase 

with the biaxial loading. 

 

Figure 4.5: Maximum circumferential plastic strains (Set A). 

 

Figure 4.6: Maximum meridian plastic strains (Set A). 
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Figure 4.7: Maximum circumferential plastic strains (Set B). 
 

 

Figure 4.8: Maximum meridian plastic strains (Set B). 
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5. Imperfection sensitivity analysis 

All the presented plastic buckling pressures have been obtained by assuming 

imperfections based on the experimentally observed buckling modes. Since this might 

appear a key point in obtaining a very good agreement with experimental results, in this 

Section the influence of the choice of the eigenmode used to generate the imperfect 

initial shape will be investigated in depth. To this purpose the results of additional 

numerical analyses conducted for specimens SP.6-Set B and SP.10-Set A, studied by 

Giezen et al. (1991) are presented. 

In a first set of analyses, reported in section 5.1, 3 separate cases are considered in 

which the initial imperfection, of varying size, is generated by three different 

eigenmodes. For the same specimens a second set of analyses, reported in Section 5.2, 

have also been conducted, in which the imperfection was generated as a linear 

combination of the same three eigenmodes considered in Sub-section 5.2.  

Furthermore, in Section 5.3 the analyses for the same specimens were performed 

again using BOSOR5, combining a nonlinear analysis of the axialsymmetric perfect 

cylinder with an eigenvalue analysis based on harmonic variation of radial 

displacements in the circumferential direction. 

5.1 Imperfections generated by different eigenmodes  

The results reported in this section are relative to specimens SP.6-Set B and SP.10-

Set A, which were studied by means of a non-linear analysis of the imperfect cylinders 

with imperfection sizes varying from 1% to 14% of the thickness, and the imperfection 

shapes based on the first, third and fifth elastic eigenmodes, which correspond to a 

number 𝑛 of circumferential waves equal to five, four and six, as shown in Figure 5.1.  

 

n=5 n=4 n=6 

 
  

Figure 5.1: Imperfection distribution considered in this analysis 
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Figure 5.2 shows, as it was expectable, that the buckling pressures are sensitive to 

the size and shape of imperfection. The imperfection shape based on the linear elastic 

eigenmodes with 5 waves, which provides the lowest elastic buckling pressure, also 

provides the lowest plastic buckling pressure. Moreover, the buckling pressure values 

predicted by the deformation theory are lower than those predicted by the flow theory. 

The discrepancies between the flow and deformation theories results vary from 18.7% 

to 8.5% for the case of SP.6-Set B and from 8% to 2% for the case of SP.10-Set A. It can 

be also noticed that the discrepancies between both plasticity theories decrease with 

increasing imperfection ratios. 
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Figure 5.2: Effect of imperfections size and shapes on the buckling pressure calculated 
using the flow and deformation theories of plasticity. 
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good agreement with the experimental finding reported by Giezen (1988), for instance 

in Figures 3.13 and 3.21 of his work, where the radial displacements present a rather 

irregular profile, which cannot be easily identified with a particular one of the 

eigenmode shapes.  

 

 

N. of 
waves 

Imperfection amplitude  
(% of shell’s thickness) 

PFlow / PExperimental PDeformation / PExperimental 

Case 1 

4 2 

1.14 0.98 5 1 

6 1 

Case 2 

4 3 

1.09 0.96 5 2 

6 2 

Case 3 

4 6 

1.06 0.94 5 2 

6 2 

Case 4 

4 10 

1.04 0.93 5 2 

6 2 

Case 5 

4 10 

0.97 0.89 5 5 

6 5 

Case 6 

4 10 

0.9 0.83 5 10 

6 10 

Table 5.1: Buckling pressures for specimen SP.6-Set B obtained from our numerical 
analysis (ABAQUS) based on the flow and deformation theories. 4, 5 and 6 waves are 

used to seed the imperfection (P is the plastic buckling pressure). 

 

 

 

 

 

 

 

 

 

 
 



 

38 
 

 

N. of 
waves 

Imperfection amplitude  
(% of shell’s thickness) 

PFlow / PExperimental PDeformation / PExperimental 

Case 1 

4 2 

0.96 0.91 5 1 

6 1 

Case 2 

4 3 

0.92 0.87 5 2 

6 2 

Case 3 

4 6 

0.91 0.86 5 2 

6 2 

Case 4 

4 10 

0.88 0.86 5 2 

6 2 

Case 5 

4 10 

0.83 0.82 5 5 

6 5 

Case 6 

4 10 

0.77 0.77 5 10 

6 10 

Table 5.2: Buckling pressures for specimen SP.10-Set A obtained from our numerical 
analysis (ABAQUS) based on the flow and deformation theories and using a combination 

of imperfections generated with 4, 5 and 6 waves. 

 
 

 Flow theory Deformation theory 
Buckling 
pressure 

After buckling 
pressure 

Buckling pressure After Buckling 
pressure 

Case1 

    

Case2 

    

Table 5.3: The deformed shape at the mid-section of the SP.6-Set B cylinder at the 
buckling pressure and after buckling pressure (the deformation is 10 times enlarged 

and the outer circle of each picture represents the un-deformed shape of the cylinder). 
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5.3 Bifurcation analysis for a perfect model using BOSOR 5 and an 

asymptotic approach in ABAQUS  

While the results of the nonlinear analyses conducted using the flow theory in 

ABAQUS are in good agreement with the test results, similar analyses conducted in 

BOSOR5 tend to strongly over-predict plastic buckling pressures, by about 100% and 

29% for SP.6-Set B and SP.1-Set A cylinders, respectively, as reported in Table 5.4. The 

procedure used in BOSOR5 is discussed in detail in Section 6.1, but here  it is worth 

noticing that no imperfection are introduced and that bifurcations are searched by 

means of an eigenvalue analysis using a tangent stiffness matrix that accounts for the 

elasto-plastic material stiffness and is computed assuming a harmonic variation of the 

radial displacement with a predefined number 𝑛 of circumferential waves. 

 

Specimen PExp 
(MPa) 

Flow theory-BOSOR5 Deformation theory-BOSOR5 

P(MPa) P/PExp. Number 
of waves 

P(MPa) P/PExp. Number 
of waves 

SP.6-Set B 2.99 6.12 2.04 3 3.20 1.1 5 

SP.10-Set A 5.02 6.5 1.29 4 4.83 0.97 5 

S5 8.25 NB NB NB 8.71 1.05 5 

Table 5.4: Buckling pressures and corresponding buckling modes obtained from 
BOSOR5 code based on the flow and deformation theories. 

 

In ABAQUS it is not possible to compute the bifurcation loads with a similar 

procedure, that is using a geometrically perfect model in the elastoplastic range. This is 

because, even if an eigenvalue buckling analysis can be conducted starting from a “base 

state geometry” equal to “the deformed geometry at the end of the last general analysis 

step, … during an eigenvalue buckling analysis, the model's response is defined by its 

linear elastic stiffness in the base state. All nonlinear and/or inelastic material 

properties, as well as effects involving time or strain rate, are ignored” (Simulia, 2011). 

Therefore, in order to estimate the bifurcation load for a perfect model, an 

asymptotic procedure was used in ABAQUS for the two specimens S5 and SP.6-Set B, 

using six different values for imperfection amplitudes. The values of the imperfection 

amplitudes were 0%-0.05%-0.1%-1%-10% -50%. Four circumferential waves were 

chosen to generate the initial imperfection as this was the number waves observed 
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experimentally. Figures 5.3 and 5.4 show the equilibrium curves of the external 

pressure versus the radial displacement. It can be appreciated that, with a progressively 

decreasing amount of imperfection, the load-displacement curve tends towards a limit 

curve, which however does not coincide with the curve obtained for a perfect cylinder. 

The point where these deviate is the bifurcation point for the perfect model. 

 

 

Figure 5.3: External pressure vs. radial displacement curves for specimens S5 (upper 
value of the yield stress) for different imperfection amplitudes 
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 Flow theory Deformation theory 
 At the onset of 

buckling 
pressure 

Post buckling 
path 

At the onset of 
buckling 
pressure 

Post buckling 
path 

Perfect 

   

------- 

0.05% 
imperfection  

    

0.1% 
imperfection  

    

Table 5.5: The deformed shape at the mid-section of the S5 cylinder at the buckling 
pressure and after buckling pressure (Deformation is 10 times enlarged) 

 
 

The buckling pressure for the cylinder S5 calculated in the present numerical 

analysis using the flow theory with 0.05% imperfection is equal to 9.23MPa while the 

flow theory employed in BOSOR5 code fail to predict plastic buckling pressure, as 

shown in Table 5.3. Moreover, the buckling pressure of the cylinder SP.6-Set B 

calculated in the present numerical analysis using the flow theory with 0.05% 

imperfection is equal to 4.05MPa while the flow theory employed in BOSOR5 code over-

predicts plastic buckling pressure. 
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Figure 5.4: External pressure vs. radial displacement curves for specimens SP.6-Set B 
(upper value of the yield stress) for different imperfection amplitudes 
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Overall, the performed sensitivity imperfection analyses confirm the fact that, according 

to the present numerical studies, the flow and the deformation theory of plasticity tend 

to yield very similar results when the predominant imperfection coincides with the 

experimentally observed buckling mode. At the same time they show that for 

progressively different imperfection modes, the difference between the results from the 

flow and deformation theory tend to increase but significantly less than observed in 

other previous numerical treatments. 

 

 Flow theory Deformation theory 
 At the onset of 

buckling 
pressure 

Post buckling 
path 

At the onset of 
buckling 
pressure 

Post buckling 
path 

Perfect 

   

------ 

0.05% 
imperfection  

    

0.1% 
imperfection  

   

------- 

Table 5.6: The deformed shape at the mid-section of the SP.6-Set B cylinder at the 
buckling pressure and after buckling pressure (Deformation is 10 times enlarged) 

 

6. Discussion 

6.1 A brief analysis of the procedure used in BOSOR5 

It is worth noticing that the bifurcation load in the plastic range and the 

corresponding buckling mode for axisymmetrically loaded shells is determined in 

BOSOR5 through a sequence of two consecutive analyses (Bushnell, 1982). The first one 

is a nonlinear pre-buckling analysis which is valid for small strains and moderately 
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large rotations and accounts for material nonlinearity. This nonlinear problem is solved 

using a strategy in which nested iteration loop are applied at each load level. The inner 

loop is used to analyse the nonlinear behaviour caused by the moderately large 

displacements using the Newton-Raphson method. The outer loop is used to evaluate 

the constitutive matrix and the plastic strain components, and to test loading and 

unloading condition in the material by means of a sub-incremental strategy (Bushnell, 

1982). The results from this analysis are used in the following analysis, which is an 

eigenvalue analysis which yields the bifurcation load and the corresponding 

axisymmetric or non-symmetric buckling mode, respectively (Bushnell, 1982). At the 

bifurcation load the infinitesimal displacement field, has components in the axial, 

circumferential and radial direction denoted as 𝛿𝑢, 𝛿𝑣 and 𝛿𝑤. They are assumed to 

vary harmonically around the circumference as follows (Bushnell, 1984) 

 

{

𝛿𝑢 = 𝑢𝑚(𝑠) sin 𝑛𝜃

𝛿𝑣 = 𝑣𝑚(𝑠) cos 𝑛𝜃

𝛿𝑤 = 𝑤𝑚(𝑠) sin 𝑛𝜃

 (6.1) 

 

where 𝑛 is the number of circumferential waves, 𝑠 and 𝜃 are the arc length of the shell 

measured along the reference surface and the circumferential coordinate, respectively. 

BOSOR5 users are asked to specify the range of circumferential wave numbers (𝑛𝑚𝑖𝑛  

and 𝑛𝑚𝑎𝑥), and the starting wave number, 𝑛𝑜 , which might correspond, in the user’s 

judgment, to the minimum bifurcation load. BOSOR5 calculates the determinant of the 

global stability stiffness matrix for the chosen 𝑛𝑜  (𝐾1𝑛𝑜) at each time increment until the 

determinant changes sign. If the determinant of the stiffness matrix changes sign, 

BOSOR5 sets up, for all the values of 𝑛 ranged between 𝑛𝑚𝑖𝑛  and 𝑛𝑚𝑎𝑥 , a series of 

eigenvalue problems of the form illustrated in the equations (Bushnell, 1982) 

 

(𝐾1𝑛 + 𝜆𝑛𝐾2𝑛)(𝑞𝑛) = 0 (6.2) 

 

where 𝐾1𝑛 and 𝐾2𝑛 are the stiffness matrix and load-geometric matrix corresponding to 

𝑚 circumferential waves, respectively, and 𝜆𝑛 and 𝑞𝑛 are the eigenvalues and 

eigenvectors for the numbers of wave 𝑛, respectively. The critical wave number 
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𝑛𝑐𝑟  corresponds to the minimum value of 𝜆𝑛 . The strategy used to identify buckling load 

is explained in detail in Bushnell (1982). 

It is important to note that the discretisation in BOSOR5 is only performed in the 

meridian direction because the resulting displacements are axisymmetric in the pre-

buckling phase and the buckling mode is assumed to vary harmonically in the 

circumferential direction in the bifurcation buckling analysis (Bushnell, 1982). 

 

6.2 Interpretation of the presented FE results in the context of the 

plastic buckling paradox  

The main findings from the numerical results presented in Sections 3, 4 and 5 are the 

following: 

(i) When an accurate and consistent FE model is set up, both the flow and 

deformation theories can predict buckling loads within acceptable plastic strains 

for different values of applied axial tensile load; 

(ii) Buckling pressures calculated numerically by means of the flow theory are 

generally in better agreement with the experimental data. 

 

These results are in contrast with the conclusions obtained by Blachut et al. (1996) 

and Giezen et al. (1991) by means of the code BOSOR5. In fact, according to BOSOR5 the 

flow theory tends to overpredict the values of the buckling pressure and of the plastic 

strains while the deformation theory results are more in line with the experimental 

results.  

In general, it has been observed BOSOR5 is not a very good predictor of non-

axisymmetric buckling because it does not handle pre-buckling transverse shear 

deformation and non-axisymmetric initial imperfections (Bushnell, private 

communication).  In fact, for a long time it was believed that the difference in buckling 

predictions between flow versus deformation theory was entirely caused by the 

difference in the effective shear modulus used for the bifurcation buckling phase of the 

analysis (Onat and Drucker, 1953). However, Giezen (1988) showed, using the code 

BOSOR5, that in the case of cylinders under non-proportional loading the adoption of 

the effective shear modulus predicted by the deformation theory, G, instead of the 
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elastic one, G, in the flow theory does lead to a certain reduction in the value of the 

buckling load but not as much as to make it comparable with the predictions from the 

deformation theory, based on the secant modulus in shear. 

Table 5.4 clearly shows that, although this modification is used in the BOSOR5 

calculations based on the flow theory of plasticity (Bushnell, 1974), the results still 

overestimate the experimental buckling pressures or even fail to predict buckling at all. 

It is so clear that the difference in buckling predictions between flow versus 

deformation theory can be only partially attributed to the difference in the effective 

shear modulus used for the bifurcation buckling phase of the analysis. 

The discrepancies between the numerical results from the presented study, 

particularly in terms of buckling pressure, and those obtained numerically using 

BOSOR5 can be explained by analysing the type of assumptions made in BOSOR5. 

In fact, Shamass et al. (2014) already concluded, in the case of proportional loading, 

that the simplifying assumptions on the buckling shape made in several analytical 

treatments, which result in a sort of kinematic constraint, lead to an excessive stiffness 

of the cylinders and, consequently, to an overestimation of the buckling stress for both 

the flow and deformation theories. However, the deformation theory tends to 

compensate this kinematic overstiffness and provides results that are more in line with 

the experimental ones.  

This fact seem confirmed also in the case of non-proportional loading by the 

presented comparison between the FE results and those obtained by Blachut et al. 

(1996) and Giezen et al. (1991) using BOSOR5. In fact, BOSOR5 assumes that the 

buckling shapes vary harmonically in the circumferential direction. Once again, this 

assumption regarding the kinematics of the problem seems to be the main reason for 

the systematic discrepancies between the results from BOSOR5 based on the flow 

theory of plasticity and those from the numerical analyses performed in the present 

study, especially when a noticeable value of axial loading is applied. 

 

7. Conclusions 

The present study has been addressed to a further understanding of the apparent 

discrepancy between the predictions of the flow and the deformation theory of 

plasticity on the basis of accurately modelled and conducted FE analyses of cylinders 
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under non-proportional loading. By comparing the obtained results with some 

experimental and numerical results in literature, it has been found that the FE 

predictions based on the flow theory of plasticity result in good agreement with the 

experimental findings. This is in contrast with the conclusions by other authors, who 

reported that the results from the flow theory led to incorrect predictions of plastic 

strains and buckling pressures and that the deformation theory led to much more 

accurate predictions.  

The root of the discrepancy can be thought to lay, once again (see Shamass et al., 

2014, 2015), in the harmonic buckling shapes assumed in the circumferential direction. 

This fact leads to overestimate the buckling pressures when the flow theory of plasticity 

is employed, while the deformation theory tends to counterbalance the excessive 

kinematic stiffness and apparently provides results which are more in line with the 

experimental findings. 

Also in the case of cylinders subjected to non-proportional loading it can thus be 

concluded that there does not seem to be any plastic buckling paradox.   
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