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Abstract

Abstract

Healthcare systems are traditionally characterised by complexity and heterogeneity. With
the continuous increase in size and shrinkage of available resources, the healthcare sector
faces the challenge of delivering high quality services with fewer resources. Healthcare or-
ganisations cannot be seen in isolation since the services of one such affects the perfor-
mance of other healthcare organisations. Efficient management and forward planning, not
only locally but rather across the whole system, could support healthcare sector to over-

come the challenges.

An example of closely interwoven organisations within the healthcare sector is the emer-
gency medical services (EMS). EMS operate in a region and usually consist of one ambu-
lance service and the available accident and emergency (A&E) departments within the cov-
erage area. EMS provide, mainly, pre-hospital treatment and transport to the appropriate
A&E units. The life-critical nature of EMS demands continuous systems improvement
practices. Modelling and Simulation (M&S) has been used to analyse either the ambulance
services or the A&E departments. However, the size and complexity of EMS systems con-

stitute the conventional M&S techniques inadequate to model the system as a whole.

This research adopts the approach of distributed simulation to model all the EMS compo-
nents as individual and composable simulations that are able to run as standalone simula-
tion, as well as federates in a distributed simulation (DS) model. Moreover, the hybrid ap-
proach connects agent-based simulation (ABS) and discrete event simulation (DES) models
in order to accommodate the heterogeneity of the EMS components. The proposed FIELDS
Framework for Integrated EMS Large-scale Distributed Simulation supports the re-use of
existing, heterogeneous models that can be linked with the High Level Architecture (HLA)

protocol for distributed simulation in order to compose large-scale simulation models.
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iii

Based on FIELDS, a prototype ABS-DES distributed simulation EMS model was devel-
oped based on the London EMS. Experiments were conducted with the model and the sys-
tem was tested in terms of performance and scalability measures to assess the feasibility of
the proposed approach. The yielded results indicate that it is feasible to develop hybrid DS

models of EMS that enables holistic analysis of the system and support model re-use.

The main contributions of this thesis is a distributed simulation methodology that derived
along the process of conducting this project, the FIELDS framework for hybrid EMS dis-
tributed simulation studies that support re-use of existing simulation models, and a proto-
type distributed simulation model that can be potentially used as a tool for EMS analysis

and improvement.
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CHAPTER

Introduction

This chapter presents an outline of the
research context and states the prob-
lem area under study. Moreover, it dis-
cusses the aims and objectives of this
research, as well as the methodology
applied to reach the solution. Finally,
it introduces descriptively and dia-

grammatically the rest of the thesis.
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1.1 Overview

The research presented in this thesis is an investigation of simulation approaches that can
be beneficial for modelling large-scale healthcare systems. The emphasis of this thesis is on
the emergency medical services (EMS) and, more specifically, on the issues around model-
ling large and complex systems. The proposed framework addresses the challenges faced
by the healthcare stakeholders to provide quality and cost effective EMS. In line with this,
the main focus is to understand and address the managerial and clinical challenges, as well

as support re-use of existing resources.

Before diving further into the particularities of this study, it would be helpful for the
reader to be introduced to the context of the research together with the research approach
taken to conduct this research. Therefore, next in this first introductory chapter, the context
of the research is established. This thesis investigates novel modelling and simulation
(M&S) technologies that can be utilised as managerial tools to assist healthcare policy
makers in improving EMS performance with minimal cost. To support this, this research
develops the foundation on which, large-scale models can be developed by reusing existing
simulation models of the subsystems that compose the complex model. Building on this,
the research aims and objectives were set. A discussion on the adopted research approach to
fulfil the aim and to meet the objectives of the project is presented. The chapter closes with
an overview of the remaining document, as well as a diagrammatic roadmap where the

reader can go through the whole structure of the thesis.

1.2 Context and rationale

As the technology advancements in computing are moving in a rapid pace, more and more
computing resources are becoming available in affordable costs. Desktop personal comput-

ers, nowadays, are powerful machines with large storage and memory capacity. Additional-
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ly, more recent advancements, such as cloud computing, constitute a robust computing
power resource that can be used as a utility. Consequently, a user can take advantage of the

offered services without investing in expensive assets.

These advances in computing technology provide a new perspective in the area of M&S.
Simulation modelling is an important decision-making and system analysing tool. It is be-
ing used in a range of scientific disciplines to study new systems or changes to existing
ones and answer “what-if”” questions when the physical implementation of a system is diffi-
cult or even impossible to be achieved. Naturally, simulation uses historical data as input

and outputs an estimation of the system behaviour.

However, simulation experiments require massive computing capacity. As the model
complexity increases, the required computing resources increase, too, and the execution
time of a single experiment increases in a non-linear way. This research proposes the em-
ployment of distributed simulation (DS) techniques in order to efficiently model a tradi-
tionally complex system, such as the EMS, and to support experimental execution over

several Pprocessors.

Discrete event simulation (DES) is being used to analyse problems in the healthcare sec-
tor for several decades (Mustafee et al., 2010; Brailsford et al., 2009a). During which time,
a growing number of healthcare providers worldwide have deployed simulation modelling
in order to improve healthcare services. However, according to Professor Brailsford in
(Taylor et al., 2013), this is not reflected in the academic literature. More recently, agent-
based simulation (ABS) has been adopted by operational research (OR) and is being used to
model complex systems that consist of interacting agents (Heath et al., 2011). A significant
proportion of this research has focused on EMS. For example, Ramirez et al. (2011) and Su

and Shih (2003) use DES to model EMS; Aringhieri (2010) employs combined ABS-DES
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approach for EMS analysis. EMS are the units of the healthcare system that respond to

medical emergencies and involve pre-hospital and/or in-hospital care.

Often, large and complex systems can be divided into smaller subsystems that have their
own characteristics. The fact that all subsystem may be modelled by the same simulation
technique is a possibility but most frequently the individual systems are heterogeneous enti-
ties and, therefore, it is possible that different simulation techniques are more appropriate

for modelling the component subsystems. Consequently, hybrid DS is adopted in this study.

DS initially meant the execution of DES models on parallel and distributed platforms
(Chen et al., 2008) and can be defined as the distributed execution of a simulation program
across multiple processors (Fujimoto 2000). That is, if there are several simulations running
separately on several computers, then a DS model is one in which these simulations coop-
erate (or interoperate) together, linked by a communications network and specialist soft-
ware (middleware), as if they were a single simulation. Typically, a popular middleware
used to link simulations together is an implementation of the IEEE 1516 High Level Archi-
tecture (HLA) standard (IEEE-1516, 2010). HLA is a set of standard rules that specify in-
formation sharing and coordination during the interactions of simulation models. HLA is
realised programmatically via its run-time infrastructure (RTI) implementation. It has been
developed by the Defense Modelling and Simulation Office (DMSO), now re-designated to
Modelling and Simulation Coordination Office (MSCO), for the US Department of De-

fense (DoD). Up until now, HLA/RTI is mainly utilised in military simulation applications.

Various standards, based on the HLA, have been developed to either aid in the develop-
ment of DS or to address specific domain M&S requirements (such as, common representa-
tion of activities, or maintaining data objects). One such standard is the Simulation Interop-
erability Standards Organisation’s (SISO) SISO-STD-006-2010 “SISO Standard for Com-

mercial-off-the-shelf (COTS) Simulation Package Interoperability Reference Models
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(IRM)” (Taylor et al., 2012a) which was developed to facilitate the development of DS

with COTS simulation packages.

Hybrid simulation, as inferred from the name, is when more than one simulation tech-
niques are used to model a system. The utilisation of the hybrid approach largely increases
the realism of the simulation model when it is in fact difficult to emulate the real system by
a single simulation approach. In this thesis, the hybrid model combines ABS with DES

techniques.

DES is a technique that models a system behaviour as discrete events. That is an instant
of time at which, for example, an entity enters or leaves an activity. An activity changes the
state of an entity. For example, if the entity is a customer awaiting some service the state of
the customer could be awaiting to be served, being served and is served. DES is being used
in various industries to analyse process behaviours within a system. ABS simulates the in-
dividual behaviour of agents. Agents are individuals that have certain properties. The
agents interact with other agents and the environment of the system. These interactions
have as a result the change of agents’ properties which define the agents’ behaviour. ABS is
being used mainly to model individual behaviours within a system. Arguably, ABS is con-
tinuously gaining in popularity within the simulation community (Taylor et al., 2013). One
of the reasons is its similarities with the object oriented paradigm (North and Macal, 2007).
In both DES and ABS, simulation time progresses in discrete time steps and their model-
ling view can be a bottom-up approach of a system behaviour. However, the boundaries
between the two techniques are not yet clearly defined (Brailsford, 2014). In this thesis, hy-

brid DS is a combination of DES and ABS.

Nevertheless, as the scope of a system being studied grows in terms of size and/or com-
plexity, it becomes increasingly more difficult to use M&S. DS has been proposed as a

technique that can be used to ease the difficulty of large model development. Healthcare

Anastasia Anagnostou



Chapter 1 — Introduction 6

systems are, traditionally, considered to be complex with high levels of uncertainty. More-
over, healthcare organisations worldwide are seeing continuous shrinkage of resources and
growth of structural complications. M&S has been used to study some of these problems.
For example, simulation models are expensive to build in terms of development time and
technical skills. The re-use of existing models, facilitated by DS, to save this cost of simu-
lation development has attracted attention in recent years. Additionally, it may be more
convenient to use different M&S techniques that might not be available in a single simula-
tion package. Again, DS makes the use of multiple models, bind on multiple techniques,

possible.

On this basis, the research hypothesis is now presented.

1.3 Research hypothesis

The hypothesis that will be tested in this research is that it is feasible to develop a hybrid
DS model for analysing EMS as a holistic system that consists of independent components.
The underlying importance of this hypothesis is that by achieving efficient integration and
collaboration of individually independent simulation model components, it enables model

re-use of existing simulations with minimal modifications.

1.4 Research motivation

This research was motivated by the fact that although a lot of effort has been done to model
and develop computer simulation artefacts in healthcare, and especially in emergency med-
icine, these models are typically used for the purpose they are developed only. Being able
to re-use individual models and build different ecosystems of independent but interoperat-
ing simulations in order to study the behaviour of larger systems, would be beneficial to
both the healthcare management and the M&S community. Furthermore, capturing the in-

teractions between all components of emergency services in runtime can provide better in-
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formed decisions for EMS improvements. Another aspect of large-scale M&S is its re-
quirements in computational power. Often, large simulations take vast amount of time to
execute on a single CPU, and sometimes this is impossible due to memory consumption.
Therefore, distributed simulation was selected as a technique that enables interoperability
and reusability of heterogeneous simulation ecosystems. Moreover, distributed simulation
enables the computational distribution of large-scale simulation execution over many CPU

in a networked environment.

1.5 Research aims and objectives

The aim of this research is:

“To explore new approaches to emergency medical services simu-
lation modelling by using distributed simulation techniques to sup-
port model reusability and to develop a novel simulation methodol-

ogy for developing hybrid distributed simulation models.”
To achieve the aim of this thesis, the following six objectives will be met:
® Objective 1

To formulate the research hypothesis and establish the aim of this thesis. Furthermore, to
identify the appropriate research methodology that will be the vehicle to reach the aim and

test the hypothesis.
e Objective 2

To review the normative literature and investigate issues in the EMS modelling field that

can be studied efficiently by applying M&S.
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e Objective 3

To develop a distributed simulation methodology for constructing hybrid ABS and DES

distributed simulation models.
e Objective 4

To develop a framework for developing hybrid ABS-DES DS of EMS systems based on

the distributed simulation methodology as stated in objective three.
e Objective 5

Based on the framework, to develop a prototype model of the London EMS and test the

feasibility of the framework developed as specified in objective four.
® Objective 6

To evaluate the distributed simulation methodology, stated in objective three, and the
framework for ABS-DES DS for EMS, stated in objective four, by applying it to a case
study. This will be achieved by developing a realistic large-scale EMS model and experi-

ment with different scenarios.

1.6 Research methodology

This section discusses the research methodology that is adopted in this work and provides
the justification behind this selection. The appropriate selection of the research strategy
plays a vital role in achieving the goals of a research project. The research questions should
act as a guide for the use of suitable research tools. A combination of methods is often used

in order to be complementary and to form a better framework to achieving a research goal.
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The purpose of this research is to explore new approaches to EMS simulation modelling
by using DS techniques to support model reusability and to develop a novel simulation
methodology for developing hybrid DS models. In doing so the following research ques-

tions will be addressed:

e  Which simulation techniques are more appropriate for EMS modelling?

e [Is DS better than standalone simulation for holistic EMS modelling?

e s it feasible to support model re-use with DS?

In this study, empirical research methods are adopted in order to address the research
questions and test the hypothesis that stated earlier in this Chapter. Based on the empirical

research cycle the steps that will be followed are:

1. Review the literature and form the hypothesis;

2. Build scenario case studies based on the hypothesis by using simulation techniques;

3. Validate the derived simulation model by comparing the findings with those of the

literature;

4. Conduct a case study and test the hypothesis using real-world data; and

5. Evaluate the findings of the case study.

Generally, empirical research starts with a given theory and the researcher continuously
tests this theory or develops it by practice in the real-life arena or by testing a hypothesis

(Davis et al., 2007).

Empiricism has been widely used in computer science (Hoefer and Tichy, 2007). “A

case study is an empirical inquiry that investigates a contemporary phenomenon within its
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real-life context, especially when the boundaries between the phenomenon and context are
not clearly evident” (Yin 2009, p. 13). There is a wide spectrum of case study designs each
of which is fit to answer specific questions (Demeyer, 2011). Driven by the hypothesis that
is tested here, namely, if it is feasible to develop a hybrid DS model for analysing EMS as a
holistic system that consists of independent components, a feasibility study is selected for

this thesis.

Furthermore, computer simulation is a software artefact. The derived model of the real
system is a product of the design science (March and Smith, 1995). According to Carlsson
(2006), design research attempts to create artefacts that have as a purpose to address a spe-
cific problem. The process of a design science research consists of four steps, i.e., problem
identification, design, implementation and evaluation (Bilandzic and Venable, 2011). To
address the simulation artefact design and evaluation, design science research approach is

adopted as well.

In brief, a combination of empirical and design research methodologies is applied in this
thesis (see Figure 1). Empiricism is a well-established research methodology in computer
science. In the same way, design research frames the process of a software artefact devel-
opment that a computer simulation model can be seen as such. One empirical research tool
for testing the hypothesis is the case study. From the various types of cases studies, a feasi-

bility case study is conducted in this thesis, in line with the hypothesis that is under testing.

1.7 Thesis outline and roadmap

To help the reader follow the structure of this project, a brief description of each chapter
and a diagrammatic roadmap (see Figure 2) of the thesis are provided below. The thesis is
divided into seven chapters, each of which serves a particular purpose in the documentation

of a research project.
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In Chapter 1, the research context and rationale are presented. Furthermore, a brief
background is provided to support the following subsections where the problem area and
the research hypothesis of this thesis are presented. Further on, the research aim is stated
and the identified objectives in order to achieve the aim are explained. A brief analysis of
the methodology followed in order to guide this work is mentioned. Finally, an overview of

the following chapters is provided together with a diagrammatic roadmap of the document.

The background theory and the review of the relevant literature are provided in the sub-
sequent Chapter 2. This chapter analyses in depth the underlying theoretical topics of simu-
lation and modelling discipline that are relevant to this thesis. There is an introductory sec-

tion of the general concepts of computer simulation, and a thorough analysis of the simula-
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tions methodologies that are relevant to this project and support the proposed DS method-
ology. Furthermore, there is an analysis of the different simulation world views that under-
pin the implementation of various simulation packages and languages. The theoretical
background of the simulation paradigms that are used in this thesis, i.e., ABS and DES, is
provided. Subsequently, the hybrid simulation concept is discussed briefly and the issues of
reusability of simulation models are discussed in more details. Finally, the theoretical back-
ground of DS is presented and the software tools that are relevant to the presented project

are discussed.

Chapter 3 clarifies and justifies the statement that ABS and DES are the appropriate
simulation paradigms for modelling EMS. Furthermore, an analysis of the EMS is provided
in order to help the reader to understand the challenging and complex nature of the system.
Additionally, a discussion on the relevant literature is provided together with the identified
gap that helped in the planning and design phases of this research. Moreover, the semantic
relationship between ABS and DES is presented and the selected interface approach, i.e.,
DS, is compared with the alternative option of standalone modelling. To end with, the pro-
posed methodology development process and rationale is described. Built upon existing
strategies for simulation projects construction, the proposed distributed simulation method-
ology expands the scope in order to incorporate the main concepts of this research, namely

hybrid ABS-DES modelling and DS simulation.

In Chapter 4, there is a step-by-step walk-through of the proposed Framework for Inte-
grated EMS Large-scale Distributed Simulation (FIELDS) for designing the hybrid ABS-
DES distributed EMS M&S. The proposed framework derived after analysing the EMS is-
sues and complexities, integration issues of ABS and DES techniques, the interoperability

reference models (IRM) design, and issues on DS and standards.
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CHAPTER 1 | Introduction, hypothesis generation,
and statement of the aim and Objective 1
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v
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of the research gaps. Background of
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\!
CHAPTER 3 | Development of the proposed

distributed simulation methodology > Objective 3
for the construction of DS models.

\!

CHAPTER 4 | Design of the FIELDS conceptual
framework for hybrid ABS-DES DS > Objective 4
of EMS.

v

CHAPTER 5 | Implementation of the prototype
hybrid DS model. Validation and Objective 5
experimental results.

\

CHAPTER 6 | Evaluation  of  the  proposed
distributed simulation methodology
and the FIELDS framework by
conducting a case study.

CHAPTER 7 | Conclusions, limitations and future
research. Statement of  the
contributions.

Figure 2: Thesis roadmap
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The planning of the case study and the prototype design and development are discussed
in Chapter 5. Here, a prototype model of a 1:5 scaled-down model of the London EMS is
developed. The data that populate the model is data published online by the UK’s Depart-
ment of Health (DoH). Several experiments conducted in order to validate the prototype
model and to demonstrate the feasibility of the proposed framework. The results are en-

couraging and a further evaluation of the concept is provided in Chapter 6.

Chapter 6 presents the evaluation of the proposed approach and supports the hypothesis
testing. Several scenarios are run in a large-scale hybrid DS model of the EMS system. The
produced results were analysed and interesting conclusions are drawn. Furthermore, the
proposed DS methodology is revisited and refined. Finally, the proposed FIELDS concep-

tual framework for hybrid distributed EMS modelling is discussed further.

Finally, Chapter 7 provides the summary and the conclusions of the thesis. A reflection
on the identified objectives to reach the research aim is provided. The contributions of this

thesis are analysed. Finally, the limitations and the potential future work are stated.

1.8 Summary

In this chapter, an overview of the research context has been presented with the problem
area and the motivation behind this study. Further, the thesis aims, objectives and method-

ology are discussed.
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CHAPTER

This Chapter presents a review of the recently published
articles in the area of EMS modelling and simulation.
Also, it presents the research theoretical context of this
thesis. There is an introduction to the simulation meth-
odologies that frame a simulation project. Also, the dif-
ferent simulation world views are discussed and ex-
plained. Finally, the simulation technologies, relevant to
the current thesis, are analysed. That is, DES, ABS, hy-
brid technique, DS concepts and standards, as well as
software tools that implement the aforementioned tech-
nologies. Furthermore, simulation model reusability is-

sues are discussed.
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2.1 Overview

Chapter 1 introduced the topic of this thesis. The problem area behind this research that
motivated this study was stated. Furthermore, the hypothesis that it is feasible to develop a
hybrid ABS-DES DS model to study EMS as a whole system that consists of composable
component models was established. The motivation, and the research aim and objectives
were discussed and the methodology to achieve the objectives was presented. Finally, an

outline of the whole thesis was presented.

This Chapter presents a review of the recently published articles in the area of EMS
modelling and simulation and identifies the gap in the published research in this area. Also,
the theoretical context of the thesis is presented. There is a discussion on every theoretical
aspect that supports the hypothesis of this research. First, this chapter introduces the reader
to the general concepts of computer simulation. Then, there is an analysis of the simulations
methodologies that are relevant to this project and support the completion of simulation
projects. Subsequently, it provides the background on the different simulation world views
(or conceptual frameworks) that support the logic of the simulators’ implementation. As
stated in Chapter 1, within the context of EMS, the suitable simulation techniques for stud-
ying the system are ABS and DES. Therefore, the theoretical backgrounds of both M&S
paradigms are explained in detail in the following sections. Henceforth, hybrid simulation
concept is discussed briefly, in terms of DES and ABS hybrid models, and the issues of re-
usability of simulation models are discussed in more detail. Another aspect of the presented
approach is the DS utilisation for the integration of the component models. Hence, the theo-
retical background of DS and the time management implications are presented in this Chap-

ter, too. Finally, software tools that are relevant to the presented project are discussed.
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2.2 Literature Review

In the recently published literature, i.e., after 2010, many articles present simulation studies
of the ambulance services. The studies focus on a variety of problems that ambulance ser-
vices policy-makers face, such as dispatching strategies, scheduling, covering, etc. For ex-
ample, improvement scenarios of the French ambulance service were studied by
Abouljinane et al. (2012) using DES. Response time and resource utilisation were used as
the benchmarking KPIs for the system performance. They used the ARENA
(www.arenasimulation.com) commercial simulation software to develop the simulation and
the ARENA input analyser to fit the input data to distributions. The travel times were calcu-
lated according to data provided by the National Geographic Institute of France. The model
was verified by stakeholders and developers and was validated by comparing the model
output to the real system performance. The authors experimented with three improvement
scenarios, i.e., an increase of resources, ambulance redeployment, and decreasing the call
triage time, and concluded that the ambulance redeployment strategy can achieve the tar-

geted performance.

Ibri et al. (2012) modelled the emergency medical services in Switzerland using multi-
agent systems (MAS). They studied two decentralised approaches and compared them with
the current centralised approach in terms of response time and covering area. The MAS was
developed in the JADE (jade.tilab.com) platform and the simulator was programmed as
discrete event simulation using java. The ambulance vehicles are considered busy only
when attending an incident and pre-emption is allowed both en route to an emergency, if
the decision module finds that this improves the performance, and en route to the ambu-
lance station. They found out that a decentralized approach, i.e., the dispatching and cover-
age optimum is decided locally, where the agents are coordinated implicitly can improve
the system’s quality of service, i.e., response time, while the system’s performance, i.e.,

coverage, is not affected.
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Air-ambulance services were modelled by Lee et al. (2012) using Korean trauma cases
data. The authors used DES with mathematical optimisation modeling. They studied the
problem of trauma centres and helicopter ambulance location for designing an efficient and
effective a trauma care system in Korea, i.e., maximising the covering area with the mini-
mum resources. They use recursive optimization and simulation to find the optimum in sto-
chastic environments. The DES development was realised in C# programming language.
After experimentation, they concluded that the feature of simulation to analyse temporal

data can give more realistic results.

Van Buuren et al. (2012) developed an EMS simulator for the Netherland’s ambulance
service in the Amsterdam region. For portability purposes, they used C++ programming
language to realise the simulator. Their tool, called TIFAR, has a GUI for visualisation of
the simulation and the output. The authors use a postal code method for emergencies loca-
tion. The distance and travel times are calculated using route planning services. The dis-
patch of an emergency vehicle is decided according to the fastest approach to the incident
which is calculated taking into account the distance and the travel time dependent on road
conditions. TIFAR supports relocation of ambulance vehicles for covering purposes. The
simulation can run in a visual mode where the visualisation is more realistic. However, it
can run in a speed mode as DES, where an ordered list of current and future events is main-

tained.

The ambulance redeployment problem was also studied by Naoum-Sawaya and Elhedhli
(2013). Their work was motivated by the fact that 27% of the ambulance activities, in the
Region of Waterloo, Canada ambulance service, were relocations in the year 2006-07. The
authors used stochastic optimisation that minimizes the number of ambulance relocations
while keeping an acceptable quality of service. Their model optimises ambulance relocation
in two stages and takes into account the time of day demand. They tested redeployment

scenarios against the new introduced target of the ambulance service which is to reach the
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incident site in less than 8 min. The results show, that this target is not achievable without
redesigning the ambulance stations, even if the ambulance fleet is increased. Also, they ex-
perimented using Euclidean and Manhattan distance calculation and they concluded that the
performance is better with the Euclidean calculation, as expected since the distances are
smaller than the Manhattan calculation. However, they do not comment whether the differ-

ence is statistically significant.

At the same time, a lot of simulation studies focus on the operations of the A&E depart-
ments. For instance, Wang (2009) presented a prototype ABS model of the emergency de-
partment at the University hospital, Virginia. The author argues that ABS may be adopted
easier than complex mathematical models by healthcare managers. However, the model
does not capture the decision making and the interactions among the agents but rather mod-

els the processes as workflow.

DES using the commercial simulation software FlexSim  Healthcare
(www.flexsim.com/flexsim-healthcare) was utilised by Holm and Dahl (2010) for model-
ling the Akershus University Hospital emergency department Norway. The model was de-
veloped to study the effect of an expected increase in patient volume. The authors report on
the model validation process and present the results of different resource levels scenarios.
The effect of the patient volume increase was measured against the current system using

waiting times and resource utilisation as KPIs.

A DES model of a busy A&E department in West London, UK was developed by
Eatock et al. (2011) using the commercial package Simul8 (www.simul8.com). The authors
studied the four-hour length of stay target for the A&E departments in the UK. The model
was able to capture the complexity and the details of the A&E behaviour towards this tar-

get. The authors comment on the usefulness of simulation in gaining insight and under-

Anastasia Anagnostou



Chapter 2 —Research context 20

standing the factors that affect the A&E performance. Also, they point out that developing a

complex simulation model can be a very lengthy process.

Paul and Lin (2012) used DES to investigate the reasons for patient overcrowding in
emergency departments and identify strategies for resolving them. They developed the
model using ProModel (www.promodel.com) simulation software. They followed a four-
phase methodology to conceptualise, develop, validate and experiment with the simulation.
Parametric regression models were developed, using the simulation results, and the authors
provide the regression coefficients for the length of stay in the emergency department for
both the admitted and discharged patients. They found that the addition of a doctor during
the peak hours would improve the patient throughput. After following up the implementa-
tion of the suggestions to the participating hospital, the authors comment on the usefulness

of DES in analysing complex systems such as emergency departments.

A decision support framework based on simulation was developed by Abo-Hamad and
Arisha (2013). Balanced scorecard tool was incorporated in the tool in order to improve the
communication within the organisation and assist in making better informed decision tak-
ing into account the vision and objectives of the emergency department management and
operations. The simulation model was developed using an object-oriented programming
language and the scenarios that were tested were suggestions by the senior management
team of the emergency department. They applied different strategies to the emergency de-
partment of a University Hospital in Dublin and concluded that the management of the out-
flow of admitted patients improves the performance of the emergency department more
than the increase of capacity and workforce of the department alone. The weight of the
KPIs in each scenario was assessed by a preference model developed using preference rati-

os in multi-attribute evaluation.
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The overcrowding of the emergency departments was studied by Ashour and Okudan-
Kremer (2013), too. The authors developed a DES model using the commercial package
Simio (www.simio.com). The authors point out the importance of the triage process in the
department’s crowding and compare two triage algorithms against the major performance
measures of an emergency department. According the results, the proposed algorithm, i.e.,
Fuzzy Analytic Hierarchy Process (FAHP) and Multi-Attribute Utility Theory (MAUT),
does not perform better, when reviewing the averages of the KPIs, than the popular Emer-
gency Severity Index (ESI) triage algorithm. However, FAHP-MAUT outperformed ESI
when comparing the severity level specific statistics. For this reason, and due to the nurse
judgment involvement in ESI, the authors propose the use of the FAHP-MAUT triage algo-

rithm.

The split-flow process of the emergency department of Saint Vincent Hospital in
Worcester, USA was studied by Konrad et al. (2013) using DES. The authors developed
the model in the ARENA package (www.arenasimulation.com) and experimented with 17
scenarios in order to study the impact of the split-flow process redesign. The scenarios de-
cided after consultation with the stakeholders and involved different staffing levels and dif-
ferent patient arrival patterns. Furthermore, the authors point out that an organisational cul-
ture with minimum resistance to changes and the quantitative evidence of the DES study

contributed in the implementation of the suggested changes.

Lim et al. (2013) modelled the clinical staff of an emergency department as pseudo-
agents (i.e., entities with embedded decision logic) in a DES model. Instead of the conven-
tional resources of the DES technique, they introduced interactions among the clinical staff.
The difference of the true agents, as defined in agent-based modelling, is that the pseudo-
agents are not autonomous. The pseudo-agents interact with each other and make decision
about the treatment of a patient. The computer simulation was realised using the ARENA

simulation package (www.arenasimulation.com) and the experiments involved comparison
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between a pseudo-agent and a traditional DES approach. Data from the emergency depart-
ment of a University Hospital in Ontario, Canada was used for the experiments. The au-
thors conclude that modelling the interactions among the emergency department clinical
staff can contribute to more realistic representation of the system and better resource
scheduling analysis. However, they point out that the pseudo-agent approach using DES

packages can become overcomplicated and hinder the scalability of the simulation.

Rahmat er al. (2013) used ABS to model the re-triage process within emergency de-
partments. ABS was selected in order to model the interactions among the emergency de-
partment objects. The authors investigated the introduction of re-triage process in the emer-
gency department of a Malaysian hospital according to the Canadian and Australian triage
models. The experiments suggested improvements in the waiting times of the patients with

severe conditions.

An ABS model was developed by Wang et al. (2012) to study preparedness and re-
sponse of an emergency service to a mass casualty event in urban area. The topology of the
ABS model is a Geographic Information System (GIS) that provides data related to road
networks and location of the ambulance vehicles and hospitals. The model can react to the
temporal variable amount of information about the scene of the disaster. Evacuation ambu-
lances travel between the scene and the regional hospitals in order to transport the casual-
ties to medical facilities. The authors modelled both aspects of an EMS, as presented in this
thesis, too. For example, they include in the simulation both pre-hospital and hospital oper-
ations. They modelled the whole disaster management simulation logic using three sub-
models, i.e., the incident scene, the pre-hospital responders, and the in-hospital processes.
The medical facilities are modelled with high level of abstraction. For example, there are no
diagnostic facilities, and there is no mention on clinical staff capacity. The model takes into
account only the bed capacity of these facilities. Also, there is no information about patient

arrivals by other means. The experiments involve 12 different dispatch policies, related to
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the amount of the available information based on which the decisions are taken, grouped in
two categories. The first category does not reserve specialised care while the second group
of policies include reservation of specialised care, according to the number of casualties
that need this type of care, when still on scene. The authors comment on the service im-
provement when resource reservation for specialised treatment is implemented. However,
they mention the potential high cost of this policy. Furthermore, the authors point out that
the more informed decisions result in better outcomes, however, this comes at a cost to the

model execution time since the level of detail becomes higher.

As it is evident from the above, there is a gap in the literature regarding studies that in-
corporate all the components of an EMS. Although many simulation models have been de-
veloped to analyse the operations of ambulance services and emergency facilities in hospi-
tals, little evidence from the literature indicates that the whole EMS system and the interac-
tions among the different subsystems have been adequately studied. This is due to multiple
reasons. First, developing all the involved models requires massive effort from modellers,
second, the required data may not be available, third, the execution of such large and com-

plex simulations are very computationally expensive.

This research proposes the re-use of existing simulation models that run on different
nodes of a computer network and can be composed to form a large distributed simulation

model.

2.3 Computer simulation

In systems analysis, the commonly practised modelling paradigm is mathematical model-
ling, which can be used to give analytical or simulation solutions (Gruene-Yanoff and
Weirich, 2010). However, complex systems, such as EMS, are very difficult to study using
analytical models. With the advances in computer science and the increase in computation-

al power, computer simulation has become a widely available tool for systems analysis and,
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therefore, continuously gains in popularity. For example, in an academic literature survey
on M&S in healthcare, Brailsford ef al. (2009b) found out that after year 2000, there has
been an increase in the use of simulation more than 50 per cent. The range of publications
dates was from 1952 to 2007, where the majority of articles (82 per cent) were published

after 1990.

Computer simulation can be characterised regarding the randomness, or the lack of it, in
the system as stochastic or deterministic, and the time progression as discrete or continu-
ous. Also, a simulation model is either terminating or non-terminating. In terminated simu-
lations, there is a natural cause for the simulation to stop, while non-terminating simula-
tions do not have a natural point where the simulation stops. Such a model will run for a

long period of time, ideally until the output reaches a steady-state.

2.4 Simulation methodology

Conducting a simulation study is more than often a laborious task. It requires a lot of effort,
time and technical expertise by researchers and practitioners to plan, develop and conduct
experiments with computer simulation models. A simulation project is not just the devel-
opment of a computer simulation artefact but rather involves multiple tasks, all of which
are equally important to successfully complete the project. Having a defined methodology
with clear steps to follow during a simulation project can save unnecessary work and re-

duce the possibility of errors.

Several efforts can be found in literature that attempted to frame the process of conduct-
ing a simulation study. Ulgen et al. (1994) tackled this issue from a practitioner’s view-
point. They analysed the phases of a simulation project as a set of guidelines mainly for
supporting future modellers and concluded in an eight-phases methodology, as shown in

Table 1, with the steps defined for each phase.
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Table 1: Ulgen’s et al. simulation methodology (Ulgen et al., 1994)

Phase 1.

Define-the problem
Step 1. Define the objectives of the study.
Step 2. List the specific issues to be addressed.
Step 3. Determine the boundary or domain of the study.
Step 4. Determine the level of detail or proper abstraction level.
Step 5. Determine if a simulation model is actually needed; will an analytical
method work?
Step 6. Estimate the required resources needed to do the study.
Step 7. Perform a cost-benefit analysis.
Step 8. Create a planning chart of the proposed project.
Step 9. Write a formal proposal.

Phase 2.

Design the study
Step 1. Estimate the life cycle of the model.
Step 2. List broad assumptions.
Step 3. Estimate the number of models required.
Step 4. Determine the animation requirements.
Step 5. Select the tool.
Step 6. Determine the level of data available and what data is needed.
Step 7. Determine the human requirements and skill levels.
Step 8. Determine the audience (usually more than one level of management).
Step 9. Identify the deliverables.
Step 10. Determine the priority of this study in relationship to other studies.
Step 11. Set milestone dates.
Step 12. Write the Project Functional Specifications.

Phase 3.

Design the conceptual model
Step 1. Decide on continuous, discrete, or combined modelling.
Step 2. Determine the elements that drive the system.
Step 3. Determine the entities that should represent the system elements.
Step 4. Determine the level of detail needed to describe the system components.
Step 5. Determine the graphics requirements of the model.
Step 6. Identify the areas that utilize special control logic.
Step 7. Determine how to collect statistics in the model and communicate re-
sults to the customer.

Phase 4.

Formulate inputs, assumptions, and process definition
Step 1. Specify to operating philosophy of the system.
Step 2. Describe the physical constraints of the system.
Step 3. Describe the creation and termination of dynamic elements.
Step 4. Describe the process in detail.
Step 5. Obtain the operation specifications.
Step 6. Obtain the material handling specifications.
Step 7. List all the assumptions.
Step 8. Analyse the input data.
Step 9. Specify the runtime parameters.
Step 10. Write the detailed Project Functional Specifications.
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Step 11. Validate the conceptual model.

Phase 5.

Build, verify, and validate the simulation model

Guideline 1. Beware of the tool limitations.

Guideline 2. Construct flow diagrams as needed.

Guideline 3. Use modular techniques of model building, verification, and vali-
dation.

Guideline 4. Reuse existing code as much as possible.

Guideline 5. Make verification runs using deterministic data and trace as need-
ed.

Guideline 6. Use proper naming conventions.

Guideline 7. Use macros as much as possible.

Guideline 8. Use structured programming techniques.

Guideline 9. Document the model code as model is built.

Guideline 10. Walk through the logic or code with the client.

Guideline 11. Set up official model validation meetings.

Guideline 12. Perform input-output validation.

Guideline 13. Calibrate the model, if necessary.

Phase 6.

Experiment with the model and look for opportunities for design of exper-
iments

Step 1. Make a pilot run to determine warm-up and steady-state periods.

Step 2. Identify the major variables by changing one variable at a time for sev-
eral scenarios.

Step 3. Perform design of experiments if needed.

Step 4. Build confidence intervals for output data.

Step 5. Apply variance reduction techniques whenever possible.

Step 6. Build confidence intervals when comparing alternatives.

Step 7. Analyse the results and identify cause and effect relations among input
and output variables.

Phase 7.

Document and present the results
. Project Book.
. Documentation of model input, code, and output.
. Project Functional Specifications.
. User Manual.
. Maintenance Manual.
. Discussion and explanation of model results.
. Recommendations for further areas of study.
. Final Project Report and presentation.

0NN B W

Phase 8.

Define the model life cycle
Step 1. Construct user-friendly model input and output interfaces.
Step 2. Determine model and training responsibility.
Step 3. Establish data integrity and collection procedures.
Step 4. Perform field data validation tests.

The above methodology is a very detailed process description and guidelines for good

practice that mostly applies to consultants and practitioners. However, M&S, apart from a
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powerful systems analysis tool for practitioners, is a technology that is widely applied in

academia as a tool and methodology for scientific research.

In Figure 3a, the 10-step methodology of Law and Kelton (2000) is depicted. The simu-
lation process appears as a sequence of distinguished tasks that are performed with some

iteration during the conceptual and coding validation processes.

Figure 3b illustrates the simulation methodology that was developed by Banks et al.
(2000). They introduced the parallel activities of data collection and model conceptualisa-
tion as separated activities, in addition to the iterative processes at the experimentation
phase. Further, Law and Kelton (2000) include the conceptual design validation process
before commencing the programming activity while Banks et al.”s methodology (2000) re-

visits the model conceptualisation step only if the model validation failed.

Another view of simulation projects development is the cyclic methodology of Robinson
(2004). Robinson (2004) describes the key stages in a simulation study and with the dou-
ble-headed arrows forming a cycle indicates that there is movement between the key stages

during the simulation project.

From Figure 4, there can be seen that Robinson’s (2004) cyclic simulation methodology
describes the simulation study with four key stages (rectangles) and four processes (ar-
rows). The key stages represent the deliverables of the project and the processes enable

movement between the stages.

All four methodologies that are presented in this section include the fundamental proce-
dures and the key steps that a modeller should follow for completing a simulation project.

These procedures are explained next.
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Figure 3: a) Law and Kelton’s simulation methodology (Law and Kelton, 2000) b)

Banks et al.’s simulation methodology (Banks et al., 2000)

Problem formulation/definition is the first stage of a simulation study and defines the

problem to be analysed. Usually the involved parties, e.g., managers/policy-makers and

modellers, recognise that there is a problem but the nature of the problem is identified while
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the analysis is evolving. Banks et al. (2000) raised awareness that managers/policy-makers

and modellers should understand and agree of the problem to be simulated.

Banks’s et al. (2000) second step is the Setting of objectives and overall project plan,
during which, the questions to be answered by the simulation study are specified. The soft-
ware tools to be used should be decided by the involved parties and, also, the time and re-
sources requirements. Law and Kelton (2000) and Ulgen et al. (1994) position the identifi-
cation of objectives and scope of the study in the first phase, namely problem formula-
tion/definition. Their first stage also includes determining the questions to be answered and
the issues to be addressed, as well as the key performance indicators (KPIs), i.e., the per-
formance measures to be output by the simulation project. Lastly, the required resources

and the timeframe and the plan of actions and milestones are identified at this starting stage.

The Model conceptualisation and data collection phase is considered as one step in Law
and Kelton’s (2000) methodology, while Banks et al. (2000) described then as two different
parallel processes. Also, Robinson (2004) points out that data collection and analysis starts

with the conceptual modelling process since contextual data is necessary in order to con-
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Figure 4: Robinson’s simulation methodology (Robinson, 2004)
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struct the conceptual model. However, detailed data is needed for the model coding stage.
Ulgen et al. (1994), taking the practitioner’s point of view, divide the activities that are in-
volved in this stage into three phases, i.e., the second, third and fourth of their methodolo-
gy. At the conceptualisation stage, there is a selection of the underlying assumptions of the
model and the level of abstraction of the simulation model is decided in order to reach the
desired approximation of the reality. Banks et al. (2000) do not mention a conceptual model
validation step, however, they have clarified that the involvement of the user is essential
during conceptualisation which implies validation of the conceptual design. Data collection
begins at this early stage, too. Data collection usually is a demanding procedure and fre-

quently the data requirements change while the programming of the simulation evolves.

The next stage is the Model translation/programming and refers to the coding of the
model. In order the system to be simulated in a computer, the model should be transformed
to the appropriate format, e.g., a computer program. There are various tools available to
assisting in model coding. The modeller can use a simulation language to program the
model or can use simulation software packages which can considerably reduce the develop-

ing time.

The Verification and validation phase involves the process of debugging the simulation
program and testing that it represents the simulated system. The term verification refers to
the former and the term validation to the latter. The modeller verifies whether the computer
program performs as it is supposed to and there are no inconsistencies in the code. Valida-
tion is the process of determining whether the model is a true representation of the real sys-
tem. In doing so, the model behaviour is compared with the real system behaviour against
some performance measures. The procedures of verification of the code and validation of
the model are iterative processes and stop when acceptable accuracy is achieved. Robinson
(2004) does not include verification and validation as separate stages but rather are incorpo-

rated in the four key stages.
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In the step of Experimental design and productions runs and analysis, the modeller has
to decide whether initialisation or warm-up period is needed and if so, how long this period
will be. Also, the length and the number of simulation runs using different random numbers
are decided. The analysis of the runs will determine whether more runs are needed and

what design the experiments will have.

It is essential, in the phase of Documentation and reporting, that the analyst produces
proper documentation for the program and the progress of the simulation study. The pro-
gram documentation is important for future modifications by the same or different analysts.
Also, it helps users to better understand and trust the model. The progress report can be
considered as a documented chronological roadmap of the simulation project that can give
insight to the model. Furthermore, reporting to the team during the process helps all the
concerned parties to be updated of the progress even if they are not involved in the day-to-
day model construction, and most importantly can give credibility to the model (Law and
Kelton, 2000). Ulgen et al. (1994) defined different levels of documentation, i.e., project
book, user manual, maintenance manual, etc., in their simulation methodology. According
to Ulgen er al. (1994), project book is a diary of the development process, including
minutes of the project team meetings, project scope changes, verification and validation

details, etc., and is usually kept by the development team.

The last phase of the simulation methodologies that are presented here is the Implemen-
tation phase, as mentioned in Banks et al. (2000), or the use of the results, as mentioned in
Law and Kelton (2000). Ulgen et al. (1994) refers to the model lifecycle. The successful
implementation of the simulation project heavily depends on the involvement of the user of
the model during the whole process. This stage is actually the use of the simulation model
as a tool for planning and decision making. Often, simulation projects do not reach the im-
plementation phase (Taylor et al., 2009a), a fact that is more commonly seen in simulation

projects conducted for academic research purposes.
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The common characteristic of the published simulation methodologies is that a simula-
tion methodology cannot be seen as a sequential process but rather as an iterative one with
clearly defined steps that are repeatable. However, regardless of the repeatability and itera-
tive nature, a simulation project should be conducted following ordered steps that can be
revisited and revised. For example, the problem definition always precedes the conceptual
design and the model programming always precedes the experimentation phase. Essential-
ly, a rigorous planning and conceptualisation can lead to a successful and credible simula-

tion project.

2.5 Simulation world views

In the theory of DES, from early days, there was a discussion on the different world views
of simulation modelling (Overstreet and Nance, 2004). The term “world views” is used to
describe the different conceptual frameworks for scheduling the next events and the differ-

ent perspectives of the simulation objects. As defined by Derrick et al. (1989):

“A conceptual framework (CF) is an underlying structure and organisation of
ideas which constitute the outline and basic frame that guide a modeller in rep-
resenting a system in the form of a model. ‘Simulation Strategy’, ‘world view’

and ‘formalism’ are other terms used in lieu of CF.”

Another definition is given by Pegden (2010):

“A simulation modelling world view provides the practitioner with a framework
for defining a system in sufficient detail that it can be executed to simulate the
behaviour of the system. Unlike simple static descriptive tools such as Visio,
IDEF, UML, etc., a simulation modelling world view must precisely define the
dynamic state transitions that occur over time. The world view must provide a

definitive set of rules for advancing time and changing the state of the model.”
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Essentially, the simulation world views describe how the simulation software operates
and vice versa. According to Overstreet and Nance (2004), there are three classic DES
world views but in the literature one can find many more. For example Derrick et al. (1989)

attempted to compare thirteen conceptual frameworks or world views that applied to DES.

The three classic world views are the event-based approach, the activity scanning ap-
proach, and the process-based approach. Another approach that is based on the activity
scanning approach is the three-phase approach and is considered to be preferable than the

other three (Pidd 2004, p.85).

Overstreet and Nance (2004) proclaimed the opinion that each world view captures a
different type of simulation locality. That is, for the three classic world views, the event-
based approach provides locality of time, the activity-scanning approach provides locality
of state, and the process-based approach provides locality of object. In their justification of
this view they mentioned: “event-based: each event routine in a model specification de-
scribes related actions that should always all occur in one instance; activity-scanning: each
activity routine in a model specification describes all actions that should occur due to the
model assuming a particular state (that is, due to a particular condition becoming true); and,
process-based: each process routine in a model specification describes the action sequence

of a particular model object”.

The four approaches are described in the following subsections and their program

flowcharts are shown in Figure 5.

2.5.1 Event-based approach

In the event-based approach the sequence of the simulation program is controlled by the
event routines. The event routines cover all possible logical consequences of the state

changes that occur due to the events. The events occur at an instant of time. The modeller
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Figure 5: Simulation world views

needs to schedule the event routines, within which the following tasks are known. The
flowchart of an event-based simulation program is shown in Figure 5a. That is, the event-
based simulation executive keeps a list of all known future events; this list is enquired for
any events that are due to occur at the current simulation time; all the events that are sched-
uled for the current simulation time are moved to a temporary events list; while the simula-
tion clock is held to the current simulation time, all the event routines that are noted in the
temporary events list are executed; the temporary events list is emptied; and, finally, the
simulation clock can be advanced. The above process is repeated until the simulation run is

over.

Since the logical sequences of the events are kept in the event routines if a change hap-

pens to the logic, the event routines should be modified, in the programming level. For ex-
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ample, when different scenarios are tested, the event routines program should be modified

for each scenario.

An example of the required event routines for a single service queuing model can be: 1)
arrival routine, 2) start service routine, and 3) end service routine. A simplistic pseudocode

of a version of the three event routines can be seen in Table 2.

2.5.2 Activity-scanning approach

The flowchart of an activity-scanning approach simulation program can be seen in Figure
5b. In the activity-scanning all events are turn into activities. Each activity carries checking
mechanism, the ’test-head’, that is used to test whether this activity is due to happen at the
current simulation time. The ‘test head’ could be, for example, IF simulation clock =
start activity time DO the actions. The simulation executive follows the sequence:
check the time for when the next activity is to happen (this can be an event calendar); scan
repeatedly for all the matching ‘test-head’ checks to the current simulation time; execute

the activities with matching ‘test head’; and, finally, the simulation clock can be advanced.

Table 2: Event routines example pseudocode

Arrival routine Start service routine End service routine

1 IF server is availa- | 1 Make server busy 1 Make server idle

ble 2 Calculate service |2 IF service queue not
2  Call start service | time empty

routine 3 Schedule end service |3 Take the next item
3 ELSE routine 4  Call start service
4 Add to service routine

queue

5 END IF
5 Schedule next arri-
val routine

6 END IF
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The above process is repeated until the simulation run is over.

2.5.3 Process-based approach

In the process-based approach the modeller should identify the whole process of each dif-
ferent type of entity/object of the simulation. The complete sequence of tasks and, most im-
portantly, the delays that an entity might come across should be defined in a form of enti-
ty/object process template. Each new object that enter the simulation will inherit the pro-
cess template of the same type of entities/objects. As shown in Figure Sc, the flow of a pro-
cess-based approach simulation program is generally consists of the following steps: for
each entity the simulation executive checks whether there is a delay due at the current time;
if there is no delay, executes the next event; if there is delay, the simulation clock advances
and check again; when the simulation clock reaches the simulation end time, the simulation

run stops.

In Table 3, there is a simple pseudocode example of a process routine for a single server
queuing model. In this example there are three delays; the blue-highlighted delay in line 13
is a conditional delay while the other two in lines 4 and 9 are unconditional delays. In the
unconditional delays, the entity/object just waits for the specified delay time to pass and
then progresses in the process. The conditional delays hold the entity/object until a specific
condition is satisfied. In the given example, the entity/object waits until it reaches the head

of the service queue.

As stated in Pidd (2004, p.104), the process-based simulation program should maintain
two lists. The first list keeps the future reactivation events of all entities/objects processes
that have unconditional delays. The second list keeps the current event list, first for the enti-
ties/objects that are conditionally delayed and the current simulation time equals the reacti-
vation time, and second for the entities/objects that are unconditionally delayed and the cur-

rent simulation time reaches their reactivation time.
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Table 3: Entity/object process routine

Process routine

1 Entity arrives

2 Schedule next arrival

3 Instantiate process routine for next arrival

4 DELAY next arrival until arrival time is reached

5 IF service queue is empty AND server is available

6 Seize server
7 Calculate service time
9 DELAY entity/object until end of service time is reached

10 Release server

11 ELSE

12 Join service queue

13 DELAY until first in the service queue
14 IF server is available

15 GO TO line 6

16 END IF

17 END IF

2.5.4 Three-phase approach

The three-phase approach is mainly interested in the conditions that cause events to occur,

rather than the sequence of events as in the process-based approach.

Similar to the conditional and unconditional delays, in the three-phase approach there is
the concept of conditional and unconditional events and activities (Pidd, 1995). The uncon-
ditional events are called B events from the initial of the word ‘Bound’ or ‘Bookkeeping’,
because these event are bound to happen when the simulation clock reaches a specific time
or because they may be used for keeping records of the system, respectively. The condi-

tional events are called C events from the initial of the word ‘Conditional’ or ‘Cooperative’,
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because these events will occur only if some conditions are met or because some other enti-

ty is ready to cooperate in the activity they are involved, respectively (Pidd 2004, p.85-87).

The B events are known to the system and therefore can be scheduled directly. On the
other hand, the system does not know in advance when a C event will occur. This depends
on whether the related conditions are met. These conditions are kept within the C event in a
test-head. Usually the end of an activity represents a B event while the start of an activity
represents a C event. The conditions of the “start an activity” C event may be, first the ex-
istence of an entity in the respective queue and second, the availability of the required re-

sources (Tocher, 1965).

In the current approach, the simulation engine keeps records about three information
units of the entities. Through this record, the simulator manages the entities and their con-

nection to B and C events. The units of information are:

e The time cell — If the entity is involved in a future B event, the time cell is the time
when the entity is due to change state.

e The availability — The availability is a Boolean variable and indicates whether an en-
tity is committed to a future B event. If the availability field is ‘false’, the entity is
committed to a B event and the time cell will indicate the time that this is due to oc-
cur. If the availability field is ‘true’, the entity is not involved to any future B event
and therefore its time cell is not taken into account.

e The next activity — The next activity defines which B event is due to occur next. In
the same way as the time cell, the next activity is taken into account only when the

availability variable is ‘false’.

The complete three-phase approach logic is executed in three phases, as the name infers.
In the flowchart of Figure 5d, the three phases are illustrated. The phase A is usually called

‘time scan’ and involves the checking of the event calendar for the time of the next event
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and the advance of the simulation clock to that time. Also, in this phase, there is a check on
the availability and time cell of the entities’ records. The phase B indicates the execution of
all the unconditional events that are due to happen. Once the B events are executed, they
are deleted from the current events list. The phase C involves the execution of the condi-
tional events. The simulation executive scans the list with the C events and tests the condi-
tion in their ‘test-head’. The ones that their conditions are satisfied are executed. During the
execution of B events and the testing and execution of C events, the simulation clock re-
mains still. After the execution of all C events that their conditions are satisfied, if the simu-
lation has reached the end run time, the simulation ends, otherwise the simulation clock ad-

vances to the time of the next event (phase A).

2.5.5 Object-oriented world view

In the case of the ABS paradigm, the aforementioned world views cannot be applied. The
agents, which are a fundamental component of ABS, are intelligent entities that can take
decisions according to some conditions. Thus, there is no predetermined process that the
agents follow, but rather this depends on their interaction with the other agents and their
environment. However, agents are governed by rules which can be considered as a process

to be followed by each individual agent.

The object-oriented world view can naturally represent a physical system, which can be
viewed as a collection of independent and interacting objects (Fujimoto, 2000). A class of
objects includes the properties of the objects, namely, their characteristics and their behav-
iours. The characteristics are described by fields, i.e., variables and attributes, and the be-
haviours are described by methods (Pegden, 2010). Instances of objects can be created dy-
namically during the simulation runtime. Objects can interact with other objects and invoke
their methods. Significant concepts of the object-oriented world view are the inheritance,

encapsulation and polymorphism.
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Inheritance allows the creation of classes in a hierarchical structure, where the children
classes can inherit properties from the parent class. The parent class represents a general
representation of an object type while children classes are more specific type of objects. For
example, in the context of ambulance services, a parent class can represent the vehicle ob-
jects with the general properties of vehicles, e.g., speed, move(). From the Vehicle
class, children classes can be created, such as Ambulance and TwoWheelVehicle classes

that inherit the general properties of the parent class.

Encapsulation allows the objects to control the modification of their fields. That is, their
variables and attributes can be private (can be modified only by the class), protected (can be

modified by the class and its subclasses) or public (can be modified globally).

Polymorphism allows the existence of different methods under the same name. For ex-
ample, the classes Nurse and Surgeon can both have a method named treatPa-
tient (). However, in the first case it can be to administer medication while in the latter

case to perform an operation.

The object-oriented world view in simulation programming languages first appeared as
an idea in the 1960s in SIMULA language (Pidd, 1995). SIMULA introduced the notion of
classes, behaviours and instances. SIMULA I was developed by the Norwegian Computing
Center (NCC) in the spring of 1961 and was a predecessor of the SIMULA 67, the basic
concept of which was classes and objects (Nygaard and Ole-Johan, 1978). Subclasses can

be created with the hierarchical inheritance capabilities of the language.

Object-oriented world view seems a natural choice for ABS languages. Agents can be
seen as instances of objects with their individual behaviours governed by rules and their
attributes that distinguish agents among each other. Also, interactions among the agents can
be supported by the remote access of objects and message passing feature of object-

oriented paradigm, usually supported by the “method call” capability. However, the con-
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nection of DES with object-oriented world view is not so straight forward. The process-
oriented nature of DES indicates that there is a centralised view of the system where indi-
vidual entities do not take part in decision making. Usually, a type of hybrid approach is

taken for object-oriented DES languages.

Pollacia (1989), in a survey of DES languages, mentions, among others, the PASION
and the SDL object-oriented DES languages. PASION (PAScal simulatlON) combines
process-based approach with object-oriented world view. PASION, and its later version
PSM++ (Pascal Simulation and Modelling), generates Delphi Pascal code, while the new
version, Bluesss (Blues Simulation System) generates C++ code. SDL (Specification and
Description Language) combines activity-scanning approach with object-oriented world
view. SDL defined in the Z.100 recommendation of the Telecommunication Standardisa-
tion Sector of the International Telecommunication Union (ITU-T) (Fonseca-i-Casas,
2008). Pidd (1995) discusses the combination of the object-oriented world view with the
three-phase approach. This approach was taken to implement an evacuation planner system
using C++ language (Pidd et al., 1993 ). He pointed out that for the sake of encapsulation a
large amount of source code was produced without actually having computational function-
alities. Also, he highlighted that the B and C activities (or events) should be kept in a sepa-
rate class and cannot be part of the entities class in order, first to avoid deadlocks and, sec-
ond to make it efficient (and perhaps possible) to update the event lists that belong to the

system.

In general, in object-oriented world view, when adopted by DES, a system class should

exist that keeps track of events and the system state changes.

2.6 Discrete event simulation

DES is a dynamic simulation technique. That is, the processes of the system evolve over

time. For example, a treatment for a chronic illness takes place for the whole lifetime of a
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patient. Such a system can be simulated using DES. Basically, DES involves queuing sys-
tems. In the previous example of a chronic illness, a queue may be a waiting list for a hos-
pital treatment. The mechanism for advancing the time in a DES model is usually next-
event advance. That is, the simulation clock will “jump” to the time instance of the next
scheduled event in uneven amounts of simulation time units. However, the simulation time
in a DES model can advance in a fixed-time increment, too. That is the progress of simula-
tion time will always be in the same amount of simulation time units. Within these steps,

there may be events to occur or not.

In the next subsection, there is an analysis of the DES fundamental concepts.

2.6.1 Concepts of DES
2.6.1.1 DES objects

A DES model is characterised by its objects. The objects of a DES model are the entities

and the resources (Pidd, 2004).

Entities are individual items of the system under study that their behaviour is fully fol-
lowed. The simulation program preserves information about each entity so each one can be
individually identified. As an entity changes state, the program keeps track of these state
changes. The number of entities in a model indicates its complexity and possibly indicates

the speed of its run. Examples of entities in a healthcare model could be the patients.

Resources are again individual elements of the system but without being modelled indi-
vidually. A resource consists of countable identical items that their states are not being
tracked by the simulation program. Instead, the program keeps a count of how many re-
source items are available. The number of resource types in a model is another indicator of
its complexity. Here, a distinction should be made between the resource types and resource

items. Resource types are the different categories of resources, whereas resource items are
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the identical objects within a resource type. Examples of resource types in a healthcare
model could be hospital beds and clinical staff. While resource items are the individual

beds and the individual clinical staff.

2.6.1.2 DES entities characteristics

When an element is classified as entity, further distinction should be made to help in organ-
ising the entities. According to Pidd (2004) the organisation of entities consists of three

groups that can be permanent or temporary, i.e., classes, sets and attributes.

Classes are permanent groups of similar entities. A class is a suitable way to represent
similar entities with similar behaviour. Sometimes it is possible to subdivide classes to sub-
classes for more detailed distinction. An example of a class in a healthcare model could be

the patients, while a subclass could be the patients with chronic illnesses.

Sets are the temporary groups that entities consist when in a state or in a queue. Entities
move from set to set as the simulation progresses and they change states. The order in
which the entities are kept within a set can be particular, for example first-in-first-out
(FIFO) or last-in-first-out (LIFO), or according to some priority rules, or even random. An

example of a set in a healthcare model could be the patients that wait for a CT scan.

Attributes are items of information that belong to each entity. Their purpose is the dis-
tinction between members of the same class and/or to control the behaviour of an entity. If
the latter is happening, attributes can substitute sets. Example of attributes in a healthcare

model could be the blood glucose level or the age of patients.

2.6.1.3 DES entities actions

The entities in a simulation model are participating in various actions during the course of

simulation while the flow of time is progressing. The flow of time is measured by the simu-
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lation clock and represents the current value of simulated time. The time units in the simu-
lation clock are decided by the modeller and can vary depending on the system that is simu-
lated. If the simulation clock reaches the point of time that an event is scheduled, then the

appropriate activity will be initiated.

Events are the instances of time when a change of state occurs in the simulation. Event
can be the time when an entity enters or leaves a set. For example, the point of the simula-

tion clock that an entity enters a queue is an event that changes the state of the entity.

Activities are the operations and procedures that commence at each event. These activi-
ties are the actions that transform the state of the entities. For example, when the entity en-
ters a queue its state changes to “waiting for a service”. Accordingly, when the service be-

gins, the state of the entity changes to “being served”.

Process is a group of sequential events in the chronological order in which they will oc-
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Figure 6: Relationship between actions of the entities (source: Pidd, 2004)
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cur. A process is used to represent a part or all of the life of an entity. An example of a pro-
cess could be: 1. A call arrives at a call centre, 2. The call is answered, 3. The call is dis-

missed.

An illustration of entities’” actions in a DES model is depicted in Figure 6. The time in-
stances represent events that start or end an activity and change the state of the entities
(Nance, 1981). For example, at time t; the first activity for Entity 1 starts and Entity 1’s
state is State 1, at time t4 the second activity for Entity 1 starts and its state changes to State
2. The whole process that Entity 1 is going through finishes at time t;. Similarly, Entity 2’s
process starts at time t, and ends at time t, after going through activities that changes its

state. Entity’s 3 process starts at time t3 and ends at time tg.

2.6.1.4 DES components

The flowchart in Figure 7 illustrates the control flow of the DES fundamental components

when the time advance mechanism is next-event, which is almost always the case in DES.

Before explaining the control flow of the DES components, it is wise to briefly mention
what these are. Listed below are the main components of a DES simulation program as

mentioned in Banks ef al. (2000) and Law and Kelton (2000).

e System is a set of entities that interact and act according to specific targets over time.

® Model is an abstract representation of a real system. A model is usually described by
logical, structural, or mathematical relationships.

e System state is the collection of state variables at a certain time that can describe the
system.

e Simulation clock is a variable that gives the current value of simulation time.

e Event list is a list that contains the time when the next event is scheduled to happen.
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e Statistical counters are variables that are used for storing statistical information dur-

ing the simulation run. Statistical counters record historical data and enable statisti-
cal analysis of the results.

o Initialisation routine is a subroutine that resets the simulation clock to 0. This routine

1s useful for experimental run of the simulation model.

e Timing routine is a subroutine that identifies the next event from the event list and
then sets the simulation clock to the time when this event is to happen.

e Event routine is a subroutine that updates the system state when a specific type of

event occurs.

@

Initialisation routine Main Program
1. Set simulation clock < | Timing routine
=0 0. Call the initialisation routine
2. Initialise system 1 D::"""'"" the next
state and statistical »{1. Call the timing routine event type (¢.g.,
counters 2. Call event routine n <«{yPen
3. Initialiso ovent list 2. Advance the
. simulation clock
Event routine n y
A Library routines
2. Update statistical counters ¢ |variates
3. Generate future events and add
to event list
No

Report generator

1. Compute statistical information of interest

2. Write report
.

Figure 7: Components of DES models and control flow (source: Law and Kelton, 2000)
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e Library routines are a set of subroutines that generate random numbers from proba-
bility distributions that were determined from the modeller.

e Report generator is a subprogram that produces reports from the aggregated results

of the statistical counter.

e Main program is a subprogram that coordinates the various subroutines of the simu-
lation model. More specific, the main program triggers the timing routine to deter-
mine the next event and then gives control to the corresponding event routine to up-
date the system state accordingly. It may as well check for termination and trigger

the report generator.

When the execution of a simulation program starts, the main program calls the initialisa-
tion routine, as shown in Figure 7. The initialisation routine will set the simulation clock to
zero, initialise the variables and the statistical counters, and initialise the event list. Next,
the main program calls the timing routine, which will determine the event that is due to
happen next and advance the simulation clock to the time that this event is scheduled. Then,
the main program calls the specific event routine. The event routine updates the system
state, the statistical counters and the event list. If the simulation end time is reached, the
statistical calculations are happened in the report generator and the results are exported. If
the simulation end time is not reached yet, the main program will call the timing routine to
determine the next event and progress the time. This flow will continue until the simulation

end time is reached and the results are produced from the report generator.

2.7 Agent-based simulation

ABS historically originated from the complex adaptive systems (CAS), where the principal
area of study is the complex behaviours among individual and autonomous agents. CAS
have the ability to self-organise and dynamically restructure their components in order to

adapt and stand out in their environment. Their initial interest was to investigate into adap-
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tation and emergence of biological systems (Macal and North, 2006). CAS can be charac-

terised by properties and mechanisms that demonstrate a valuable framework for ABS de-

sign. As identified by Holland (1995), the properties and mechanisms of CAS are:

e Properties:

o Aggregation that allows groups to form, i.e., individuals can be classified into

©)

©)

general categories.

Nonlinearity that invalidates simple extrapolation, i.e., simple changes can cause
large effects, not easily predictable.

Flows that allow the transformation and transfer of information and resources be-
tween the nodes of a network. Two main concepts can describe the flows in
CAS: the multiplier effect and the recycling effect. The multiplier effect denotes
the changes in the system when a node is added, and the recycling effect denotes
the changes in the system when information and resources are reused.

Diversity that allows agents to behave differently from one another.

e Mechanisms:

@)

Tagging that allows agents to be named and identified. Tagging may refer to a
simple name or ID of an item of the aggregated group or it may refer to more
complex behaviours that characterise an item.

Internal models that allow agents to reason about their micro-worlds, for exam-
ple, an agent is able to anticipate the outcome of an input if this input reoccurs.
Building blocks that allow components and whole systems to be composed of
simpler components. For example, a bicycle can be a combination of a frame,
wheels, etc. These components can have different characteristics, i.e., colour,
size, etc. and can be reused and recombined as building blocks to compose dif-

ferent bicycles.
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ABS is used mainly to model decentralised, complex systems that consist of many inter-
dependencies. Comparing with other modelling techniques, ABS provides a more realistic
view of the system (Hawe at al., 2012; Sumari et al., 2013). The main components of ABS
are the agents. Agents are autonomous components that have a sort of intelligence, for ex-
ample, they can recognise their environment and other agents and interact with them. Also,
they can be heterogeneous, adaptive and goal-directed components. That is, the agent char-
acteristics and behaviours may vary, agents may learn from their environment and change
their behaviour accordingly, and they may have a goal to reach and therefore compare their
status with their goals and adjust accordingly. Agents can contain a basic level set of rules
that determine their behaviour and a higher level set of rules that can change these rules

(Loefstrand et al., 2003; Macal and North, 2010).

In Figure 8, the structure of the agents and their characteristics is depicted as identified
in Macal and North (2010). The agents have attributes and methods (Hawe et al., 2012).
According to Macal and North (2010), the agents’ attributes can be static, that is they do
not change, i.e., name, ID, or dynamic, that change during the simulation run. Dynamic at-
tributes can be the agent’s memory that holds instances of past events, the resources that the
agents may have (i.e., food), the knowledge of their neighbours, etc. The methods of an
agent are, among others, its behaviours, its ability to modify these behaviours, and the abil-

ity to update its rules and its dynamic attributes.

However, the essential characteristics of the agents are four, according to Macal and

North (2010), and analysed below:

e Agents are distinguished, independent individuals with rules that administer their
behaviour and decision-making capability. Their nature is discrete, which means that
they have clear boundaries and it can be easily determined whether a characteristic

belongs to a specific agent or not, or it is shared among agents.
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Figure 8: Agents’ structure (source: Macal and North, 2010)

e Agents are active components of an environment and coexist with other agents, and,
therefore, can be characterised as social components. Usually, communication proto-
cols enable agents to interact with one another and their environment. Agents can
recognise the behaviour of other agents.

e Agents are autonomous and self-directed. They have their own set of behavioural
rules that dictate their decisions and actions. The degree of sophistication of these
behavioural rules indicates the intelligence of the agent which is decided according
to the scope of the model.

® Agents have a state that varies over the simulation time. The state of an agent is dic-

tated by its state variables and can be a set or a subset of its attributes.
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As mentioned earlier, agents can be heterogeneous entities that are characterised by their
behavioural rules. The level of the behavioural rules sophistication depends on the agents’
cognition, the agents’ internal model of the external environment and other agents, the ex-
tent of memory of past events that agents use as experience for decision making. Also, the
diversity of agents consists of different attributes and accumulated resources (Macal and

North, 2010).

The way that agents are connected to each other constitutes the topology of the ABS
model. Agents usually do not communicate with all the other agents in the space. A com-
mon concept of agents is the neighbourhood. Each agent can hold information about its lo-
cal neighbourhood and the neighbouring agents and communicate with them. The agents

can move in a number of different spatial topologies as shown in Figure 9.

a c
Cellular Automata (von Neumann) Euclidean 2D/3D Space Network topology

d e
Geographic Information System (GIS) “Soup” Model (Aspatial)

o i £
e® %

Figure 9: ABS topologies (source: Macal and North, 2010)
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A very common spatial topology for agents is a form of cellular automata (CA). Agent
move on a grid and their neighbourhood consists of the adjacent grid cells. A common grid
neighbourhood is the von Neumann neighbourhood that consists of five cells, i.e., the cen-
tral cell and the four adjacent cells that represent right angle directionality, as shown in
Figure 9a. Another commonly used neighbourhood is the Moore neighbourhood that is
formed of nine grid cells and includes the 45° angle directionality. In the Euclidean topolo-
gy, agents can travel in two- or three-dimensional space, as depicted in Figure 9b. The radi-
us of the agents’ neighbourhoods is to be decided by the modeller. Figure 9c shows a net-
work topology. The nodes of the network are the interacting agents and the links indicate
the communication between the nodes. When the links are predefined, the network is called
static. However, a network topology can be dynamic too. In a dynamic network, the com-
munication links are changed during the course of the simulation. Sometimes the nodes of
the dynamic network are changed, as well. Another popular topology for an ABS is the ge-
ographic information system (GIS), as shown in Figure 9d. Agents are moving on a realis-
tic geospatial environment. GIS deployment gives a more realistic view of the model. Fi-
nally, agents can have no locality. This type of topology is called aspatial or “soup” model.
The interactive agents are randomly selected and they return in the aspatial model for fur-
ther selections. This topology is depicted in Figure 9e. It is possible one ABS model to

comprise more than one topology.

In this thesis, the agents are moving on an Euclidean two-dimensional topology and are
distinguished in two types. First, there are the active agents that have attributes, rules and
behaviours, and generally the characteristics that are described earlier. Second, there are the
passive agents that do not interact with other agents or the environment. They do not have
the ability to learn and adapt their rules of behaviour. Therefore, from the agents’ character-
istics, they possess only attributes but not methods. Consequently, the passive agents are

defined as agents that are part of the environment, they have attributes, and these attributes
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contribute to active agents’ behaviours, but they do not hold any form of intelligence. In
Figure 10, the structure of this thesis ABS model is depicted, where between the environ-
ment and the typical active agents, there is a layer of the passive agents that support the de-

cisions of the active agents.

2.7.1 ABS and object orientation

ABS programming can be directly related to object-oriented programming (OOP). Thus,
OOP languages are usually used for developing ABS models. The main concepts of OOP
can relate in some forms with the main characteristics of the agents and the underlying the-

ory of CAS. The main concepts of OOP are described briefly here.

A class is a structure of certain attributes and methods of a system. It can be considered
as the mould for creating objects. An example of a class can be “Trees” that describes the
general characteristics of trees that are common to every kind of tree, i.e., height, age,
leaves_colour, etc. The “Trees” class has some methods too, i.e., grows(), dies(), etc. From

the trees class, “tree” objects can be created. Every tree object is called an instance of a tree

Active agents interacting
Agents interacting in an Euclidean space ~ With each other Active agents interacting

with passive agents and
e “ the environment
Passive agents not aware
of other agents and the

- i environment

Environment

Figure 10: Active and passive agents concept of this thesis
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and has all the attributes and the methods of the “Trees” class. From the “Trees” class, sub-
classes can be developed. These subclasses may be a more specified kind of tree, i.e.,
“ForestTrees” class, “FruitTrees” class, etc. These subclasses inherit all the characteristics,
attributes and methods, of the parent “Trees” class and also they may have some additional
attributes and methods that characterised the specific type. Each object can hide their inter-
nal components from other objects. However, the hidden components information can be
accessed by other objects through methods. For example, the tree attribute “age” can be
held in a private variable for a tree object, however it can be accessed by a public getAge()
method. This concept is called encapsulation. Another concept of OOP is polymorphism.
Polymorphism is the ability of the subclasses to differentiate from the parent class and yet
share some common characteristics and functionalities. For example, the FruitTrees class
share all the attributes and methods of the parent Trees class, i.e., height, grows(), etc., and
also has some unique behaviours, i.e., fruitProduction, fruitColour, pruning(), fertilise(),
etc. Also, in OOP, the concept of message passing between objects exists. That is, for ex-
ample, an object can instruct another object to do something or invoke a method to be im-
plemented. In the example that is used here, there may be another class which is called
“Gardeners”. An object of this class, i.e., gardener object, can send a message to a fruitTree

object to fertilise().

From the characteristics of CAS and agents that were reviewed in the previous subsec-
tion and the concepts of OOP that are mentioned above, some relationships can be drawn,

as shown in Table 4.

The concept of a class and the ability to create subclasses that inherit the elements of the
parent class is related with the property of aggregation of ABS and the underlying CAS
theory. Individual instances of objects are similar with the agents in ABS in a way that both
have attributes and behaviours. In both ABS and OOP, agents and objects have attributes

and methods. Attributes are variables that characterise the agents/objects and methods are
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the functions that allow them to perform actions. The flows property of ABS is associated
with the message passing concept of OOP. By the means of flows/message passing,
agents/objects can communicate with other agents/objects and invoke some actions, i.e., an
agent/object may ask another agent/object to perform a task. That is, for example, a cus-
tomer agent/object asks the mechanic agent/object to repair a car. The agents are autono-
mous entities and, therefore, can hold private information and can decide what to share with
other agents. This property is associated with the encapsulation concept of OOP. Similarly,

objects can permit access to specific elements.

Table 4: Relationships between ABS and OOP

Agent-based simulation Object-oriented programming
Aggregation Class/Subclass/Inheritance
Agent Object

Attributes Attributes

Methods Methods

Flows Message passing

Autonomy Encapsulation
Heterogeneity/Diversity Polymorphism

Building blocks Inheritance/Polymorphism
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Agents are heterogeneous and diverse entities. Each agent can have different characteris-
tics, even if it is generated from other agents. Likewise, in OOP, objects of subclasses can
have different characteristics even if they are created from the same parent class. Therefore,
polymorphism can be linked to the heterogeneity/diversity property of ABS. Finally, an
ABS mechanism mentioned above is the ability to compose an agent from other agents
which are conceived as building blocks. This can be related with the concepts of inher-
itance and polymorphism in OOP, i.e., a class can be composed by other classes, inherit

what is required and introduce new characteristics, too.

2.8 Hybrid simulation

Hybrid simulation is when two or more techniques are combined in the simulation. The
term applies in a broad range of simulation applications. For example, hybrid simulation
may refer to the combination of physical and numerical models, of analytical and simula-
tion models, of continuous and discrete time models, or, as it is in this thesis, of different

paradigms of M&S.

In a review, contacted by Jahangirian et al. (2010), it was found that the hybrid simula-
tion techniques have increased in popularity. The review included 281 articles that were
published in peer-reviewed literature between 1997 and 2006. Complex and large systems
that consist of heterogeneous subsystems are generally difficult to analyse using only one
simulation paradigm (Zulkepli et al., 2012). Therefore, hybrid simulation is considered

beneficial for dealing with complexity rather than utilising a single simulation technique.

2.8.1 Hybrid ABS-DES

In this project, ABS and DES are used to form a hybrid simulation model of a large-scale
healthcare system. Healthcare systems, in general, are characterised by high level of com-

plexity, and more so, if the systems are large and consist of heterogeneous subsystems.
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ABS is mainly used to study complex social phenomena or the behaviour of a system at
an individual level. Agents have their own behaviours that are governed by rules and these
behaviours can change during the course of the simulation. Cognition elements can be add-
ed to agents and, therefore, are intelligent objects that adjust their internal processes accord-
ing to their goals. Agents have local view of the system and have the control of their ac-

tions. Therefore, ABS models are characterised as decentralised models.

DES is mainly used to analyse the processes of a system. Typically, systems that are
modelled by DES are the queuing systems. DES is a centralised model, where there are sys-
tem-level rules that decide the global state of the simulation. Some of the systems analysis
areas that DES is commonly used for, are: queue management, “what-if”” scenario analysis

and process re-engineering.

Consequently, when the system under study consists of process level concern subsys-
tems and individual behaviour concern subsystems, a combination of those two paradigms
can be considered the most appropriate approach for simulating such a system. Hybrid sim-
ulation presents the difficulty that the modeller should have knowledge of more than one
simulation technique, and possibly, tools (Brailsford et al., 2013). Usually models are built

independently and communicate in real- or logical-time.

2.9 Model reusability

The idea of simulation model re-use is not new. Re-use of simulation models has been de-
bated among simulation experts and advantages and disadvantages of this practice have
been discussed in the literature. As early as in the 1980s, Reese and Wyatt (1987) discussed
simulation software re-use in terms of software re-use. They discussed mainly component
re-use in a simulation software support level, such as time management routines, statistics
collection routines, etc. However, re-use in the simulation model support level is discussed,

too, in respect to domain specific applications. Pidd (2002) raised concerns about the cost
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of simulation model re-use. Using a simple cost-benefit model for model re-use, he reached
the obvious conclusion that re-use is worthwhile only if the average cost per use is less than
the initial model development cost. Also, the vital issues of validity and credibility were
discussed and it was pointed out that when the model is intended to be reused in a different
domain that it was designed for, new validation and credibility assessment strategies should

be followed.

Paul and Taylor (2002) viewed the re-use of models from the commercial packages
modeller’s point of view. They classified the re-use of simulation models into three catego-
ries: basic modelling component re-use, re-use of subsystem models, and re-use of similar
models. They, particularly, emphasise the role that trust plays in reusing simulation models.
Building trust to the existing model can be a costly and timely process, many times, more
than building the model anew. However, modern technologies, such as web-enabled simu-
lations, can support re-use of models, in a way of assisting modellers in better understand-

ing the problem rather than assisting in model building.

In line with the above, Robinson er al. (2004) discuss the benefits and drawbacks of the
different levels of model re-use. They mention, among others, the analogies with the object-
oriented paradigm and the different artefacts of a simulation project that can be considered
for re-use. One of the conclusions is that when modellers build simulation models with tak-
ing reusability into consideration from the early stages of the project, it is more likely to
build re-use enabled simulations. However, there is limited motivation for modellers to do
so. Nevertheless, careful recycling of simulation models has the potential to reduce model-

ling time and cost.

The analysis above can be summarised in the diagram depicted in Figure 11, where the
different levels of reusability are depicted in a pyramid scheme. The base of the pyramid

represents the lowest level of reusability, i.e., software support level, and has the least de-
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Figure 11: Re-use of simulation models

gree of complexity and the highest frequency of re-use. On the other end, the top of the
pyramid represents the simulation model reusability that has the greatest degree of com-
plexity and, consequently, the lowest frequency of re-use. The middle layers of the pyramid
represent the less complex re-use types of the simulation model support level re-use, i.e.,

subsystem model re-use and model component re-use.

Balci et al. (2008) studied the simulation model re-use domain in terms of conceptual
modelling. They argue that a high level conceptual model of an interest-specific domain has
the highest level of applicability regarding the re-use of models. Further, they debate that a
conceptual model with a high level of abstraction can be reused regardless of the simulation
technique that will be selected for implementation. However, they discuss the re-use of stat-

ic models rather than the re-use of dynamic simulation models.

Another view in M&S re-use is that of ontologies deployment. Ontologies, as the term is
used in the information systems context, use well-defined languages to explicitly conceptu-
alise and describe the relationships between the disciplines within a domain (Silver et al.,

2011). Turnitsa et al. (2010) analysed the implementation of two modelling ontologies for
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DES systems. They noted that the ontologies present a semiotic representation of M&S and
address the philosophical questions “who, what and why”. For example, “who” this model
1s in respect of its reality, “what” is known about this reality, and “why” this model should
exist, i.e., the purpose of implementing the model. Both ontologies have been used for im-
plementing DES models in different domains. In the level of ontology-based simulation re-
use, Bell ef al. (2008) developed an ontology for DES component re-use based on commer-
cial simulation packages using semantic web services. It is a generic ontology for supply

chain simulations that is structured in industry-specific classes.

After the latter additions in the modelling reusability analysis, another layer should be
added in the re-use pyramid of Figure 11. Consequently, in Figure 12, the conceptual model
support level of model re-use can be seen. Here, the reverse pyramid indicates that, in the
ontology layer, the reusability frequency is potentially higher. The adverb “potentially” is
added because, as yet, there has not been a significant number of ontologies developed for
M&S. Therefore, the field is still immature. However, it is expected to present a lesser de-
gree of re-use complexity than that of the conceptual model re-use. That is because it can
be used in a wide area of applications, comparing with conceptual models that should be

developed for a domain-specific application.

The focus of this thesis is on the subsystem model reusability. A key technology in
achieving re-use in that level is DS. The issues that the modellers face when trying to reuse
subsystem models, i.e., composability and data sharing problems, are discussed in Chapter

3.

2.10 Distributed simulation

DS, typically, can be defined as the distributed execution of a simulation program across
multiple processors (Fujimoto, 2000). However, in areas outside computer science and op-

erational research (i.e., medical training), it has been used to describe accessible and porta-
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Figure 12: Levels of re-use of simulation models

ble physical simulation environments (Kneebone et al., 2010). In the context of this thesis,
DS refers to the execution of computer simulation models over multiple nodes in a net-
worked environment that are linked by specialist software (frequently referred to as inter-

face).

In a DS system, the participating simulation models are able to interoperate with each
another. That is, the simulation models can send information to and receive information
from other simulations and be able to operate effectively together, i.e., sending the right
information to the right destination and at the right time, also without adding prohibitive
communication time overhead. Hence, data and time synchronisation is essential in DS sys-

tems.
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DS adoption is widespread in military applications. However other sectors are still lag-
ging behind (Taylor et al., 2002a). One of the main reasons for reluctance in DS adoption is
the intense technical expertise that is required for implementing communication interfaces.
Standardisation of the DS practices could contribute largely in overcoming this barrier

(Taylor et al., 2012a).

Several efforts have been made towards this direction. The most commonly used stand-
ard for DS is the IEEE-1516 High Level Architecture (HLA) which has replaced its prede-
cessors Distributed Interactive Simulation (DIS) and Aggregated Level Simulation Protocol

(ALSP) (Baker, 1999).

DIS is an IEEE standard (IEEE-1278, 1993) and was developed within the US DoD. The
foundation for DIS was the SIMNet project which implemented one of the first large-scale
real-time simulator networking environment. SIMNet was a battlefield simulation and used
for training purposes. In DIS, each node broadcasts protocol data units (PDU), with data
about the entity state, when an event occurs. DIS uses “dead reckoning” algorithms, a term
borrowed from navigation, for self-corrections and compensation for lost datagrams. For
example, if the receiving node does miss a PDU, it continues with the behaviour anticipated
by the dead reckoning prediction. When the next PDU arrives, the behaviour will be cor-

rected and a new extrapolation will be initiated (Miller and Thorpe, 1995).

ALSP was developed by The MITRE Corporation (www.mitre.org) within the US DoD.
It was an initiative motivated by the limitations of DIS, i.e., supports only real-time simula-
tions, does not provide time and data sharing management, and performs well only in local
area network (LAN) environments. ALSP is a confederated protocol and supports commu-
nication between confederate DES models. Its most important additions to DIS were the
data and time management services and the object ownership. The ownership of an object

can change dynamically during the course of the DS execution.
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Both DIS and ALSP were replaced by the HLA standard for DS. HLA is a set of stand-
ard rules that specify information sharing and coordination during the interactions of simu-
lation models. It has been developed by the DMSO, now re-designated to MSCO, for the
US DoD.

In this study, the DS project implements the HLA standard and thus, HLA will be ana-

lysed in more detail in the following subsection.

2.10.1 High Level Architecture

The HLA is an IEEE standard for DS developed by the US DoD, as mentioned above. HLA
is a federated architecture; all participating individual simulations are called federates and
the complete DS is called federation. The coordination of data exchange and time manage-
ment occurs in the RTI component of the HLA which is connected with the federation
through an interface (see Figure 13). The ultimate goal of HLA is to support interoperabil-

ity and reusability of simulation models.

L -- et e (e s i 4= —-—-
RTI calls 1 RTI calls lnte rface 1 RTI calls 1
I I I
Vv RTI response : Vv RTI response : v RTI response :
Run-Time Infrastructure (RTI)
* Federation Management * Object Management * Time Management
* Declaration Management ¢ Ownership Management ¢ Data Distribution Management
* Support Services

Figure 13: High Level Architecture
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The main three parts of the HLA, i.e., federation, interface and RTI, as can be seen in

Figure 13, are described by the three different components of the HLA, listed below:

e HLA Framework and Rules (IEEE-1516)
e Federate Interface Specification (IEEE-1516.1)

® Object Model Template Specification (IEEE-1516.2)

HILA Framework and Rules provides the ten HLA rules that every federation and feder-
ate must obey. There are five rules defined for the federations (1-5) and five rules defined
for the federates (6-10) (IEEE-1516, 2010). In summary, the HLA rules dictate that there
should be formalisation of information exchange within a federation. The supporting infra-
structure should not have any information about each individual simulation but rather all
federate attributes should be owned by the federate and maintained by it, not by the RTIL.
All communication of the federation object model (FOM) data among the participating fed-
erates in a federation execution should happen only through the RTI services. Federates
should comply with the HLA interface specification. The ownership of an attribute can be
dynamically changed during the simulation execution but it can never be owned by more
than one federate, simultaneously; however, an attribute can be owned by no federate.
There should be a clear description of each simulation federate (object classes, attributes,
interactions) to support federate’s reusability (Moeller and Loefstrand, 2009). All internal
representations and interactions that are made public in a federation execution should be
stated in the simulation object model (SOM) of the respective federate. The attributes own-
ership requirements should be documented in the SOM of the respective federate. Each
federate can update the owned attribute according to the local conditions, and these condi-
tions should be documented. Lastly, federates should manage their local time so that it

complies with the time management approach of the federation.

Anastasia Anagnostou



Chapter 2 —Research context 65

Federate Interface Specification documents the services provided by the interface dur-
ing a federation execution, as well as programming languages mapping (Java and C++).
There are seven service groups that provided by the RTI implementation, that is, Federation
Management; Declaration Management; Object Management; Ownership Management;
Time Management; Data Distribution Management; and, Support Services (IEEE-1516.1,

2010).

Object Model Template Specification provides a template, or a common structural
framework, for describing the objects of a HLA DS. Its purpose is to provide a common
understanding of the DS components and to assist in designing and developing potential
federation members. Object Model Templates (OMT) define the individual federates
(SOM) or the federation (FOM), or subsets of these, i.e., SOM modules and FOM modules.
The OMT can be presented either in tabular format or in data interchange format (DIF), de-

pending on the purpose of the document (IEEE-1516.2, 2010).

It should be noted that the terminology of HLA does not imply correspondence with

OOP.

Apart from the main three parts for the DS implementation, HLA defines three more
standards. The IEEE-1516.3 recommends a methodology for federation development and
execution. In the “IEEE Recommended Practice for High Level Architecture (HLA) Feder-
ation Development and Execution Process (FEDEP)”, procedures for implementing and
experimenting with HLA simulations, and analysing the produced results are defined
(IEEE-1516.3, 2003). The IEEE-1516.4 standard discusses verification, validation and ac-
creditation (VV&A) processes for HLA simulations (IEEE-1516.4, 2007). The “IEEE Rec-
ommended Practice for Verification, Validation, and Accreditation of a Federation — An
Overlay to the High Level Architecture Federation Development and Execution Process”

provides guidelines for VV&A in the implementation level of HLA DS. Building upon
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IEEE-1516.3, IEEE with the support of the SISO approved the IEEE-1730 in September
2010, which was approved by the American National Standards Institute (ANSI) in June
2011. The “IEEE-1730 Recommended Practice for Distributed Simulation Engineering and
Execution Process (DSEEP)” is a high level framework that describes recommended pro-
cesses and procedures for DS development (IEEE-1730, 2010). SISO has developed two
more standards relevant with the HLA DS systems: the Base Object Model (BOM) Tem-
plate Specification (SISO-STD-003-2006) and the Guide for BOM Use and Implementa-
tion (SISO-STD-003.1-2006). The first document describes the BOM standard and the lat-
ter document provides guidance for developing BOMs. BOM specifies how to map concep-

tual model designs to FOMs.

2.10.1.1 Time management

Simulations are dynamic models. That is, the state of the model or its entities changes over
time in a similar way to the state of the system that the model represents or imitates. Events
that occur during the course of the simulation have a cause and an effect. It is of utmost im-
portance for the correct functionality and output of a simulation program to maintain the
causality of the events. For example, in a real system, a departure event can never precede
the arrival event for the same entity. Therefore, this relationship should always be true in

the simulation system, too.

In standalone simulations that run in a single node the causality of the events is man-
aged by an event list or the simulation scheduler. The simulation engine ensures that the
event with the smallest timestamp will be executed first. In a DS model, however, there are
multiple simulation programs, that run in different nodes in a network and they communi-
cate. An event that occurs in one federate can affect one or more federates in a federation.
Therefore, it is critical to synchronise the federation execution, such as to maintain the local

“cause and effect” relationships in each federate.
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Time can have three dimensions in a simulation project: physical time, simulation (or
logical) time and wallclock time (Fujimoto, 2000). The physical time refers to the actual
time in the physical system. For example, a working day starts at 9.00am and ends at
5.00pm. The simulation time refers to the concept of time used by the simulation program
to model the physical time. For example, a working day starts at 7; and has duration of
eight time units, assuming that the simulation time unit corresponds to one hour of physical
time. Finally, wallclock time refers to the time of the execution of the simulation program
and depends on the hardware characteristics and the operating system. For example, the

simulation of one working day may run from 7pm to 7.10pm in wallclock time.

The federates in a HLA federation execution can have either different simulation and
wallclock times or synchronised. However, the federation must ensure wallclock synchro-
nisation in order to deliver the messages in the right order and maintain the causality of the
events. In the case that the simulation time and wallclock time are synchronised, the rela-
tionship between the simulation time and the wallclock time is described by the following

equation:

AT = S « AW )

where, AT is the simulation time lapse, S is a scale factor {SeR : S>0}, and AW is the

wallclock time lapse (Fujimoto, 1998).

When S = 1 then the simulation is called real-time simulation. The virtualisation effect is
realistic since the duration of the activities is the same as in real-life. When S # 1 then the
simulation is called scaled real-time simulation and can run faster or slower in relation to

wallclock time. For example, if

AW = current wallclock time — wallclock tim