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Abstract 

 
 Each year all over the world, Millions of patients from infants to adults are 

diagnosed with heart failure. A limited number of donor hearts available for these 

patients results in a tremendous demand of mechanical circulatory support (MCS) 

system, either in the form of total artificial heart (TAH) or a ventricular assist device 

(VAD). Physiologically MCS are expected to provide heart; a time to rest and 

potential recovery by unloading the ventricle, while maintaining the adequate 

peripheral as well as coronary circulation.  

Existing ventricular assist devices (VAD) have employed either displacement 

type pulsatile flow pumping systems or continuous flow type 

centrifugal/rotodynamic pumps systems. Displacement type devices produce a 

pulsatile outflow, which has significant benefits on vital organ function and end 

organ recovery. Continuous flow devices are small and can be placed within body 

using minimal invasive procedures, in addition they reduces infection as well as 

mechanical failure related complications. Despite availability of success stories for 

both types of pumping systems, the selection of the either of them is an ongoing 

debate.  

This thesis aims to merge the advantages of displacement pumps (pulsatile 

flow) and axial-flow pumps (continuous flow) into a novel left vertical assist device 

(LVAD), by designing a novel minimal invasive, miniature axial-flow pump 

producing pulsating outflow for the patients having early heart failure and 

myocardial infarction as a Bridge-To-Recovery (BTR) or Bridge-To-Decision (BTD) 

device. The design of VAD, the experimental setup and dedicated control system 

were developed for the in vitro evaluation of pulsatile flow. Computational fluid 

dynamics (CFD) had been employed for the detail investigation of pulsatile flow. In 

addition, CFD was also applied to optimize the pulse generation for low haemolysis 

levels.  

 Outcome of the study produces comprehensive understanding for the 

generation of pulsatile flow using an axial flow pump. Further, it provides the means 

of generating a controlled pulse that can regulate flow rate for varying heart rate 

within low haemolysis levels. 
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Chapter 1  Background 
 

1.1 Abstract  
 

This chapter highlights the prevalence as well as the clinical scenario of various heart 

diseases with its classification system. Brief overview of pharmacological and 

surgical treatments is given along with need and expectations from the Mechanical 

Circulatory Support (MCS). Further, detail classification of MCS is discussed at the 

end of this chapter. 
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1.2 Introduction 

 

Heart disease continues to be the leading cause of death across the globe (Mathers 

and Loncar, 2006). Heart disease is a disorder in the normal functioning of the heart. 

Although heart disease may be present from birth, often the ageing process leads to 

higher-pressure levels and reduction in the overall elasticity of the vessels, making 

the heart unable to generate adequate cardiac output for peripheral and cardiac 

circulation. Each year heart disease causes over 4.3 millions deaths in Europe, 

approximately 48% of all deaths(Allender et al., 2008). In recent years only in the 

United Kingdom (UK), around 2.6 million people are diagnosed with Coronary 

Artery Disease (CAD)(Allender et al., 2008). Along with CAD, occurrence of other 

circulatory disease appears to be rising, dominantly for men in older age group 

(2009a). Despite significant progress made over the last 30 years in the medical field 

and a decrease in death rate from all cardiovascular disease up to 45% in Unite States 

of America (USA), each year  over 5 million people suffer from chronic heart disease 

and around 1.5 million people suffer from myocardial infarction (MI) that is 

commonly referred to as a heart attack (2009b). According to the National Heart, 

Lung, and Blood Institute (2009b) , an estimated 4.8 million Americans suffer from 

Congestive Heart Failure (CHF), a condition in which the heart cannot pump enough 

blood to meet the need of various body organs. 

1.2.1 Myocardial Infarction   

 

Myocardial infarction, MI is a form of necrosis of the heart muscle caused by an 

acute insufficiency of blood flow through the coronary arteries nourishing the heart 

tissues. For most of the cases, MI is a consequence of atherosclerosis of the coronary 

arteries, which causes acute interruption in coronary flow due to stenosis of coronary 

vessels. Stenosis is an occlusion of the lumen due to gradual deposition of 

atherosclerosis plaque or thrombus. Hypertension, diabetes, high cholesterol, 

cigarette smoking, coronary artery diseases, close family members with cardiac 

disease history  and obesity are all factors that increase the risk of myocardial 

infarction.  

http://encyclopedia2.thefreedictionary.com/cholesterol
http://encyclopedia2.thefreedictionary.com/smoking
http://encyclopedia2.thefreedictionary.com/coronary+heart+disease
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Infection is one of the causes of dilated cardiomyopathy, a disease of heart 

muscle, in which the heart cavity is dilated. Infection may also affect the 

endocardium, heart valves, or electric conduction system of cardiac tissues and 

muscles. The most common viral infections leading to myocarditis are 

coxsackievirus-B, hepatitis viruses, adenovirus, arbovirus, cytomegalovirus, 

echovirus, influenza virus, and HIV. 

 

Figure 1-1 [A] an overview of a heart and coronary artery showing 

damage (dead heart muscle) caused by a myocardial infarction. [B] Is a 

cross-section of the coronary artery with plaque build up and a blood clot 

(National Heart Lung and Blood Institute, 2011). 

The most severe consequence of myocardial infarction is a cardiogenic shock 

(CS). It can be best described as an inability of heart to generate sufficient blood 

pressure & flow. During cardiogenic shock, blood pressure falls sharply (below 

90/60 mm Hg) and cold sweats appear with weakness in body. On a mechanical 

level, a noticeable decline in contractility reduces the ejection fraction and cardiac 

output. Subsequently it leads to increased ventricular filling pressures, dilatation of 

cardiac chamber, and ultimately uni-ventricular or bi-ventricular failure that result in 

lower blood pressure and/or pulmonary edema in which lung alveoli are filled with 

fluid. 
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1.2.2 Congestive Heart Failure  

 

Congestive heart failure (CHF) is a complex clinical syndrome with various factors 

compromising the heart’s ability to pump blood through body. The syndrome of CHF 

arises because of an abnormality in cardiac structure, function, rhythm, or conduction 

(Figueroa and Peters, 2006). CHF is characterized by ventricular malfunction leading 

to a decrease in cardiac output, neurohumoral activation, and a decrease in exercise 

capacity as well as the endurance. There is also a ―vicious cycle‖ of blood flow 

maldistribution with hypoperfusion of vital organs. The most common reasons are 

ischemic heart disease and hypertension, resulting in ischemic dysfunction of the 

myocardium. Other important causes of CHF include valvular heart disease, primary 

myocardial disease (idiopathic, infiltrative, or inflammatory) and congenital cardiac 

malformations (Hunt and Frazier, 1998). 

The New York State Heart Association (NYSHA) has established a classification 

system for CHF (The Criteria Committee of the New York Heart Association, 1994). 

A classification system is based upon the severity of the symptoms associated with 

CHF. In each class, the patient has already been diagnosed with CHF. The NYSHA 

classes, or ―stages‖, are as follows, 

 

Class I – No limitation of physical activity. Ordinary physical activity does not cause 

excess fatigue, shortness of breath, or palpitations. 

Class II – There is slight limitation of physical activity. Patients are comfortable at 

rest but ordinary physical activity results in fatigue, shortness of breath, 

palpitations, or angina. 

Class III – There is marked limitation of physical activity. Although patients are 

comfortable at rest, even less than ordinary activity will result in symptoms. 

Class IV – There is inability of the patient to carry out any physical activity without 

significant discomfort. Symptoms of congestive heart failure are present even 

when patient is at rest. With any physical activity, the patient experiences 

increased discomfort. 

Each class identifies the cardiac status associated with probable course and outcome 

of a disease. Class-1 is a person with uncompromised cardiac status having a good 
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prognosis. The prognosis is worse with each subsequent class, where Class IV group 

of patients rely on heart transplantation for their survival.  

 

A more recent classification system for CHF was released by the American College 

of Cardiology Foundation (ACCF) and American Heart Association (AHA) in 

November of 2001 (Rooke et al., 2012). The new system of classification is not 

limited to patients already diagnosed with CHF. As such, it is intended to be used in 

combination with the NYSHA classification system, rather than as a replacement. 

The ACCF/AHA classes are as follows, 

 

Class A – The patient is at risk for developing CHF, but has no structural disorder of 

the heart. These would include patients at high risk for CHF due to the 

presence of hypertension, coronary artery disease, diabetes mellitus, a history 

of drug or alcohol abuse, a history of rheumatic fever, a history of 

cardiomyopathy, etc. 

Class B – The patient has a structural disorder of the heart but has never developed 

CHF. This would include patients with structural heart disease such as left 

heart enlargement, heart fibrosis, valve disease, or a previous heart attack. 

Class C – The patient has current or past CHF symptoms and underlying structural 

heart disease. 

Class D – The patient has end-stage disease and is frequently hospitalized for CHF, 

or requires special treatments such as a left ventricular assist device (LVAD), 

artificial heart, inotropic infusion, heart transplant, or hospital care. 
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1.3 Treatment for Heart Disease  

Pharmacological treatments are usually implemented with certain level of change in 

life style for patients diagnosed with heart disease. Surgical treatments are essential 

for the patients with structural abnormalities of heart, associated cardio vascular 

system or heart valves(Tahy, 1998). Heart transplantation is the last option to 

consider for the severely affected cardiac patients (NYSHA Class IV and ACC/AHA 

Class D). 

 

Dietary changes to maintain appropriate weight and reduce salt intake may be 

required. Reducing salt intake helps to decrease swelling in the legs, feet, and 

abdomen. Appropriate exercise also recommended, but it is important that heart 

failure patients only begin an exercise program according to the guidance of their 

doctors. Walking, bicycling, swimming, or low-impact aerobic exercises may be 

recommended. Other lifestyle changes that may decrease the symptoms of heart 

failure include, stopping smoking as well as other tobacco uses, eradicating or 

reducing  alcohol consumption, and not using harmful drugs(Tahy, 1998). 

1.3.1 Pharmacological Therapy  

The objective of the pharmacological therapy is to reduce mortality and morbidity, 

and to improve quality of life (Uretsky et al., 1993). One or more of the following 

types of medicines can be prescribed for heart failure is as follows, 

 Diuretics 

 Digitalis 

 Vasodilators 

 Beta blockers 

 Angiotensin Converting Enzyme inhibitors (ACE inhibitors) 

 Angiotensin Receptor Blockers (ARBS) 

 Calcium channel blockers 

Diuretics help to get rid of excess salt and water from the kidneys by increasing 

the urine output. This helps to reduce the swelling caused by accumulated fluid in the 

tissues. Digitalis helps the heart muscle to have stronger pumping action (Packer et 

http://medical-dictionary.thefreedictionary.com/Exercise
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al., 1993) . Amyl Nitrate, Mercurial Diuretics and Digitalis Glycosides becoming 

available in the early part of the twentieth century (1997).  

 

Vasodilators for heart failure were introduced by the acute use of Nitroprusside in 

1974, followed by Hydralazine in 1977, demonstrating improved survival with the 

Hydralazine-Isosorbide Dinitrate combination (Richardson et al., 1987, Parker et 

al., 1996). With the release of Captopril in 1980 and Enalapril in 1984, multiple 

large, randomized, placebo-controlled trials established the Angiotensin Converting 

Enzyme (ACE) inhibitors as the cornerstone of therapy, with extensive unforeseen 

benefits for this drug class occurring beyond that expected only from vasodilatation 

(Swedberg and Kjekshus, 1988, Pfeffer et al., 1992, Cohn et al., 1991, 1992). 

Vasodilators, ACE inhibitors, ARBs, and Calcium Channel Blockers lower blood 

pressure and expand the blood vessels so blood can move more easily through them. 

This action makes it easier for the heart to pump blood through the vessels.  

 

ACE inhibitors reduce both mortality and morbidity in patients with depressed LV 

systolic function (1991). Inhibition of the chronic sympathetic stimulation with β-

blockers is safe (Waagstein et al., 1993). The combined use of ACE inhibitors and 

β-blockers has improved functional status of the patients, improved LV function and 

reduced mortality and morbidity, more than applying each strategy alone 

(Hjalmarson et al., 2000). Cholesterol-lowering drugs called Statins can help prevent 

death from heart failure. Spironolactone which is a potassium sporting diuretic has 

in addition to standard therapy (Pitt et al., 1999), reduced mortality, and morbidity in 

patients with CHF.  

Metabolic intervention can be helpful for decreasing the duration and extent of 

myocardial stunning (Vinten-Johansen and Nakanishi, 1993, Svedjeholm et al., 

1995b, Lazar et al., 1980), It has been reported that metabolic intervention prior to 

administration of Inotropic agents can be helpful for myocardial recovery 

(Svedjeholm et al., 1995a, Lazar et al., 1981). The administration of 

supraphysiological doses of insulin, 1 U/kg/hour, overcomes the stress induced 

insulin resistance in the myocardium, leading to a shift towards carbohydrate 

oxidation, which provides the heart with a better oxygen economy (Svensson et al., 

1990). High doses of insulin also encourage a dilatation of the arterial vascular bed 
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(Svensson et al., 1989). These effects are favourable for the failing left ventricle. 

Administration of amino acids, i.e. Glutamate and Aspartate, alone or in 

combination with Glucose-Insulin-Potassium (GIK) treatment can be used during the 

post ischemic phase (Vanhanen et al., 1998) or when signs of myocardial ischemia 

exist. 

1.3.2 Surgical Therapy  
 

Surgical therapies are considered as an option, when pharmacological treatments are 

not sufficient to cure heart disease. Surgical procedures are carried out based on the 

severity of myocardial dysfunction aiming to improve the quality of life. Surgical 

therapy for cardiac failure (mainly for left ventricular failure) includes coronary 

revascularization, ventricular remodelling, valvular heart surgery, and the use of 

Mechanical circulatory support. One of the listed surgical procedures, which can be 

applied for patients suffering from severe heart disease. 

 Thyroidectomy 

 Pericardiectomy 

 Valvular heart surgery 

 Coronary revascularization 

 Coronary artery bypass grafting(CABG)  

 Stenting 

 Cardiac remodelling 

 Aneurysmorrhaphy/aneurysmectomy 

 Infarct reduction 

 Ventricular reduction surgery 

 Cardiac transplantation 

 Orthotopic 

 Heterotopic 

 Mechanical circulatory support  

 Post-Cardiotomy 

 Bridge to Recovery from Cardiomyopathy 

 Bridge to Transplant 

 Destination Therapy 
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Surgical procedures for heart failure as thyroidectomy, pericardiectomy, and valve 

replacement are available from early days. Thyroidectomy is an operation that 

involves the surgical removal of all or part of the thyroid gland. Thyroidectomy helps 

by decreasing the demands of the heart by decreasing the basal metabolic rate. 

Pericardiectomy is a surgical removal of part or most of the pericardium. This 

operation is most commonly done to relieve constrictive pericarditis, or to remove a 

pericardium that is calcified and fibrous. Valvular heart surgical procedures like 

Valvuloplasty and Rose Procedures are performed to repair or replace heart valves. 

 

Use of counter pulsating intra-aortic balloon pump for Cardiogenic Shock was 

proposed in 1967 (Moulopoulos et al., 1962), and LV aneurysmectomy which refers 

to removal of aneurysm, introduced for chronic HF in 1962 (Masters, 1999). Cardiac 

Remodelling refers to the changes in size, shape, and function of the heart after 

injury to the ventricles. Various cardiac remodelling procedures like 

neurysmorrhaphy/aneurysmectomy, infarct reduction, application of cardiac 

restraining and ventricular splinting devices have recently been introduced and 

reported in small numbers. 

 

Cardiac Transplantation (CT) is a surgical transplant procedure performed on 

patients with end-stage heart failure (NYSHA Class IV and ACC/AHA Class D) or 

severe coronary artery disease. Cardiac transplantation was introduced as a therapy 

for end-stage heart disease in 1967 (Barnard, 1967). The most common procedure is 

to take a working heart from an organ donor (cadaveric allograft) and implant it into 

the patient. The patient's own heart may either be removed (Orthotopic Procedure) 

or, less commonly, left in to support the donor heart (Heterotopic Procedure). Post-

operative CT complications include infection, sepsis, organ rejection, as well as the 

side effects of the immunosuppressive drugs. Since the transplanted heart originates 

from another organism, the recipient's immune system may attempt to reject it. 

Immunosuppressive drugs reduce the risk of rejection, but it might create unwanted 

side effects, such as increased risk of infections or nephrotoxic effects. 

http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Thyroid_gland
http://encyclopedia.thefreedictionary.com/Pericardium
http://encyclopedia.thefreedictionary.com/Constrictive+pericarditis
http://encyclopedia.thefreedictionary.com/Organ+transplant
http://encyclopedia.thefreedictionary.com/Heart+failure
http://encyclopedia.thefreedictionary.com/Heart
http://encyclopedia.thefreedictionary.com/Allograft
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1.4 Need of Mechanical Circulatory Support (MCS) as a Therapy 
 

A limiting factor for cardiac transplantation is a significant shortage of donor hearts. 

Around 50,000 patients requiring heart transplantation with availability of around 

2500 donor hearts every year. An average waiting period prior to heart transplant is 

approximately three to six months (2009a, 2009b, Allender et al., 2008, Mathers and 

Loncar, 2006) . Many patients died or become ineligible for cardiac transplant due to 

irreversible failure of vital organs during their waiting period. 

 The lack of available donor hearts, emphasise the need for an alternative option 

of treatment. Mechanical circulatory support (MCS) can provide the circulatory 

support for patients waiting for heart transplant. Along with circulatory support, 

MCS restores the optimum level of health for patient suffering cardiac dysfunction. 

The severe shortage of donor heart has supported the idea for the development of 

permanent artificial pumping devices (artificial heart) as a solution to the existing 

problem. Artificial hearts are also known as total artificial heart (TAH). 

  Another reason for the requirement of MCSs & TAHs is financial, which 

relates the cost of care for patients suffering cardiovascular disease. Heart disease is 

one of the top causes of hospitalisation that require longer period of stay at hospitals, 

as well as it consumes the major portion of the overall spending on health by 

government. MCSs can be helpful in reducing the number of days for hospitalisation, 

decreasing the amount of resources consumed along with the improvement in quality 

of life for the patients with end stage heart failure. 

1.4.1 Physiological expectation from MCS 

Physiologically MCS are expected to provide heart a time to rest and 

potential to recover by unloading the ventricle, while maintaining the adequate 

peripheral as well as coronary circulation. Insufficient cellular perfusion results in 

anaerobic metabolism and triggers the release of mediators causing further damage to 

cells. If this cycle of injury continues, can lead to multiple system organ failure 

(MOSF).The mortality for single organ dysfunction is 30%, which increases as more 

organ systems fails. With four organ failure mortality rate is 100% (Ayres et al., 

1988).MCS should restore the adequate circulation and break the deadly cycle of 

MOSF.  
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 The primary objective is to sustain systemic/peripheral circulation as in case 

of NYSHA Class IV patients. When patients are waiting for donor’s heart to survive, 

MCS are expected to support patients with circulatory assistance as a Bridge-To-

Transplant (BTT) device. 

In case of patients with cardiogenic shock, myocardial infection and 

myocardial infarction MCS are expected to provide support as a Bridge-To-

Recovery (BTR) device to save the patient’s heart by reducing the workload of left 

ventricle and increasing in coronary perfusion. The group of patients having severe 

heart failure in an extremely critical condition, MCS are expected to provide support 

as a Bridge-To-Decision (BTD) device, where patients have end stage organ failure 

or uncertain neurological status. 

In some cases, despite having NYSHA Class IV symptoms patients cannot be 

treated with transplant due to Immunodeficiency virus disease, degenerative, 

neuromuscular disease, liver cirrhosis, severe renal failure, severe chronic 

obstructive pulmonary disease, malignancy or Patients with a fixed high pulmonary 

vascular resistance or patients with diabetic end-organ dysfunction. In such cases 

MCS are likely to provide circulatory support as an Alternative-To-Transplant 

(ATT) or Destination-Therapy (DT) device. 

MCS are used to support either left ventricle (most cases) only or in some 

cases the right ventricle. Due to this fact, MCS are generally referred as Ventricular 

Assist Devices (VADs). Survival rate of patients with severe myocardial dysfunction 

treated with VADs after CPB has been reported to be in the range of 30 to 60% 

(Wiebalck et al., 1993, Mehta et al., 1996, Hedenmark et al., 1989, Creswell et al., 

1992). The overall survival rate of patients treated with VAD for long-term use as a 

BTT is reported to be around 70 to 80% (Sun et al., 1999, McCarthy et al., 1998) . 
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1.5 Classification of MCS 

To satisfy the patient specific therapeutic objective, numerous different types 

of designs and pumping technology have been used to construct MCSs. It is difficult 

to judge any specific design as right or wrong due to lack of awareness of constraints 

and parameters influencing the results. This is the reason for an existing variety of 

different designs and pumping technologies. Different identifiable therapeutic needs 

also motivate the use of different designs for the construction of MCSs. 

In general, MCSs consist of three different components 

1) Pump and Cannulas,  

2) Energy source  

3) Control and Monitoring console.  

All the MCSs can be divided between extracorporeal verses implantable 

devices based on the location of the placement of device. For example, the roller 

pump is an extracorporeal device placed outside of body with cannulas entering the 

body. While the Jarvik 2000 heart pump is an example of an implantable device, 

where pump and cannulas are placed within body. A key benefit of an Implantable 

device is a reduced risk of infection. 

 

MCSs can be broadly classified in two major groups,  

1. Total Artificial Heart (TAH) 

2. Ventricular Assist Devices (VAD) 

1.5.1 Total Artificial Heart (TAH) 

Total artificial heart (TAH) is a mechanical circulatory support (MCS) 

system that replaces the native heart. The TAH consists of two blood pumps that are 

implanted in the place of the patient’s native heart within the pericardium 

(Orthotopic Procedure). TAH is also different from a cardiopulmonary 

bypass machine (CPB), which is an external device used to provide the functions of 

both the heart and lungs. Cardio-pulmonary bypass (CPB) is only used for a few 

hours at a time, most commonly during heart surgery.  

 

http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Cardiopulmonary_bypass
http://en.wikipedia.org/wiki/Cardiopulmonary_bypass
http://en.wikipedia.org/wiki/Cardiopulmonary_bypass


Background 

32 

 

Figure 1-2 Classification of Mechanical circulatory support with sub 

classification of VAD  

1.5.2 Ventricular Assist Device (VAD) 

A Ventricular assist device, or VAD, is a type of MCS that is used to partially 

or completely replace the function of a failing ventricle. The VADs can support or 

replace the function of the failing left ventricle, right ventricle, or both ventricles. 

The VADs do not require removal of the native heart and therefore can be used as a 

bridge-to-transplantation (BTT) as well as a temporary bridge-to-recovery (BTR) in 

patients with expected myocardial recovery. VADs can be further classified into 

groups based on  

1. Working Principle/Pumping Technology 

2. Type of Assistance 

3. Therapeutic Method 

4. Output flow Characteristics 

5. Application Time 

6. Power Supply 

7. Generations  
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Figure 1-3 continued sub classification of ventricular assist device. 

1.5.3 Working principle/pumping technology  

Based on the working principle Ventricular assist devices can be classified 

into two main categories; Displacement Type VAD and Rotary Type VAD.  

1.5.3.1 Displacement Type VAD 
 

In displacement type pump, the fluid is pumped using the periodic change of 

working space. That produces a pulsating inflow and a pulsating outflow. 

Displacement pumps can be easily controlled because output is directly related to the 

stroke volume and the pumping frequency. This makes it very easy to maintain a 

precise and accurate outflow even under varying inflow and outflow conditions. 

Displacement pump ejects and fills during two separate phases of the pumping cycle. 

These pumps are usually large in sized to satisfy for clinical requirements. Examples 

of these types of pumps are: 

 Push-plate pumps      

 Membrane (blood sac, or diaphragm) pumps 

 Balloon pumps 

 Roller Pump 
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1.5.3.2 Rotary Type VAD.  
 

In case of rotary pump, the energy transfer to fluid is established by the 

velocity change within the impeller. These devices create the pressure difference at 

its inlet and outlet. Fluid enters axially through an inlet on a rotating impeller blades, 

or concentric cones. These devices impose a rotating motion on the fluid, accelerates 

it through the pump, producing a non-pulsating inflow and outflow.  

Rotary flow pumps can provide high flow rates at low pressures. These 

pumps are incapable of maintaining a precise output under changing inflow and 

outflow conditions. This device gives maximum efficiency at a design speed.  For 

example: 

 Centrifugal pump 

 Axial flow pump 

Generally, for a large volume and low-pressure requirement, a rotary pump 

could be the preferred choice for the application. While for low volume and high-

pressure demand, the displacement type pumps are more suitable. Displacement 

pump requires open-heart surgery for installation. Hence, they are prone to infection. 

Compared to displacement pump, axial flow rotary pump are very small and non-

invasive. 
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1.5.4 Type of Assistance 
   

VAD are used to assist either left (LVAD) or right ventricle (RVAD) and in 

some cases they are use to assist both ventricles (BIVAD). The VAD use to support 

both ventricles is known as biventricular assist device.      

1.5.4.1 Left ventricular assist devices (LVAD) 
 

In case of LVAD, Blood is withdrawn from left atrium or the apex of the LV 

and returned to the ascending aorta (figure 1-4). Atrial cannulation is easier to 

perform and it is less traumatic for the heart in comparison to the apical cannulation. 

Therefore, the left atrial cannulation is preferred for a temporary LV support. 

However, a LV cannulation via the apex provides better LV unloading and better 

VAD performance. For that reason, the apical cannulation is preferred for LV assist 

as a bridge to transplantation. 

 

Figure 1-4: Schematic overview of cannulation approach for LVAD. 

Arrows shows that blood is delivered directly to ascending aorta from 

either left atrium or apex of left ventricle or pulmonary veins by use of 

LVAD. [Sketch by Author] 
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1.5.4.2 Right Ventricular Assist Devices (RVAD)  
 

In case of RVADs, blood is withdrawn from the right atrium and returned to 

the main pulmonary artery. Figure 1-5 depicts the schematic overview of cannulation 

approach for RVAD. 

 

Figure 1-5: Schematic overview of cannulation approach for RVAD. 

Arrow indicates the direction of blood flow from right atrium to main 

pulmonary artery by RVAD. [Sketch by Author] 
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1.5.4.3 Biventricular Devices (BiVAD)  
 

The BiVADs are actually a combination between LVAD and RVAD, and can 

be seen as a functional heart. Figure 1-6 depicts the schematic overview of 

cannulation approach for BiVAD. 

 

Figure 1-6: Schematic overview of cannulation approach for BiVAD. 

Arrows in LVAD indicates blood is withdrawn from apex of left ventricle 

and delivered directly in ascending aorta and in case of RVAD, blood is 

withdrawn from right atrium and delivered to the pulmonary artery. 

[Sketch by Author]  
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1.5.5 Therapeutic Objective 
 

Different techniques can be used to reduce the after load and/or myocardial 

oxygen consumption. Two different ways to assist the heart are the series type VAD 

and bypass type VAD. 

1.5.5.1 Series Type Ventricular Assist Device 
 

A series-type ventricular assist device is a device pumping from the 

ascending aorta to the descending aorta. In this case, the VAD is working in series 

with a natural heart and operates synchronously. It should achieve lower LV output 

pressure during diastole, to reduce the workload. In this type of VAD, blood is filled 

during the systolic phase of the natural heart, allowing the heart to eject blood into 

the ascending aorta at a lower ventricular resistance. Consequently the VAD ejects 

blood during the diastolic phase of the natural heart, when the intra myocardial 

pressure is low, directing flow into the coronary arteries.    

 

Figure 1-7: General principle of Series-type ventricular assist device. 

Arrows indicate the direction of blood flow directly from ascending aorta 

to descending aorta. [Sketch by Author] 

Series-type ventricular assist method is advantageous because of no in- and 

outflow valves requirement. The blood is pumped from the ascending aorta to the 
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descending aorta, both having the same haemodynamic pressure. Hence, no pressure 

gradients are able to create back flow through the pump. VAD without valves is a 

very useful concept.  

1.5.5.2 Bypass-Type Ventricular Assist Device 
 

In this method of assistance, the blood is pumped directly from the atrium to 

the aorta or from the ventricular apex to the aorta bypassing the mitral valve.           

 

Figure 1-8: General principle of Bypass-type ventricular assist device. 

Arrow depicts that blood is pumped directly from the left atrium to 

ascending aorta or from the left ventricle to ascending aorta, thereby 

bypassing the mitral valve. [Sketch by Author] 

In this case, the VAD works parallel to the natural heart and almost whole 

volume of the blood is pumped by the VAD. Here VAD is allowed to fill directly 

either from left atrium or left ventricle during the systolic phase of the natural heart, 

which than eject blood into the ascending aorta at a lower ventricular resistance. 

Rotary pumps can be used as a bypass-type ventricular assist device. One example is 

the Jarvik 2000 FlowMaker marketed by Jarvik Heart, Inc. 
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1.5.6 Output flow characteristics 
  

VAD designs can also be divided into groups by considering their outflow 

characteristics, i.e. pulsating outflow or non- pulsating outflow. Generally, the 

displacement pumps generate a pulsating outflow, while the radial-flow pumps 

generate a non- pulsating outflow.  

1.5.6.1 Pulsating outflow 
 

Pulsatile type pump were the first to be used as VAD. The pulsatile pump 

mimics the natural heart in terms of generating the body pulse, with pulsating inflow 

as well as outflow. For that reason, pulsating outflow pumps rest on decades of 

clinical experience. In addition, the REMATCH trial (Rose et al., 2001) was also 

based on the use of the Heart Mate VAD system, which is a pulsating outflow pump. 

1.5.6.2 Continuous / Non-pulsating outflow 
 

Continuous pumps are smaller than the pulsatile pump for the similar output 

capacity. Lower volume (small size) makes them ideal for the total implantation. 

These devices are widely used for the short-term cardiac assistance. These types of 

pumps are also advantageous during cardiopulmonary bypass, while operating on the 

heart. The effects of non-pulsatile outflow pumps on the human body are still 

unknown. 

1.5.7 Application period 
 

VAD used as a bridge to transplant have short-term application. Therefore 

they are designed for specific period. Based on their application period they can be 

categorised as short-term assist device or a long-term assist device. 

1.5.8 Power supply  
 

Majority of VAD use electrical power to pump the blood. Some VAD use the 

chest muscle to pump the blood. Based on their power supply we can categorise the 

VAD in two groups as Muscle power VAD and non-muscle power VAD (Birks, 

2010) . Non-muscle power VADs can be further divided into pneumatically driven or 

electrically driven VADs . 
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1.5.9 Generations  
 

Based on overall technological development VADs can be classified into 

three generations. 

1.5.9.1 First generation  
 

First-generation blood pumps are positive-displacement or pulsatile pumps. 

In the 1980s, in vivo studies gave evidence that animals could survive for a long 

period of time in an entirely non pulsatile  state, proving that pulsatile blood flow 

does not represent a necessarily physiological condition. Until today, the debate 

continues among investigators on whether pulsatile mechanical support provides any 

substantial benefit to the patient by reproducing the natural heartbeat and blood flow. 

1.5.9.2 Second generation  
 

Second-generation blood pumps are non-pulsatile pumps. They are 

characterised by the use of a spinning impeller providing a continuous blood flow. 

Typically, second-generation VADs use contact bearings and/or seals, where the 

bearings are immersed in the blood stream or separated from the stream by seals. 

1.5.9.3 Third generation 
 

The transition from second- to third-generation rotary blood pumps is 

characterised by magnetic bearings allowing the impeller to be magnetically 

supported in housing. The work by Wood (Wood et al., 2005) and the references 

there in argue that the third-generation systems are at present the leading technology 

in the development of mechanical circulatory support. 
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Chapter 2 Review of Mechanical Circulatory Support  
 

2.1 Abstract 
 

This chapter overviews the historical development of MCS along with the worldwide 

inventory of famous blood pumps, including FDA approved and under trial devices. 

It is based on an extensive literature review and hopefully fairly complete.  This 

chapter discusses details of the existing device technology and the rationale behind 

the development of a pulsatile axial flow blood pump as a Left Ventricle Assist 

Device (LVAD). Furthermore, this chapter shows the pathway by setting up the aims 

and objectives of the research work. 
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2.2 Historical Development of MCS 
 

Providing temporary MCS in severely ill cardiac patients can mean the difference 

between life and death. Mechanical cardiac support with ventricular assist devices 

(VAD) and total artificial heart (TAH) is an established therapy for a variety of 

clinical scenarios, including postcardiotomy shock, BTT and DT. Recent 

REMATCH Study has demonstrated conclusively the benefits of a MCS over 

pharmacological treatment  (Frazier and Delgado, 2003) for patients with irreversible 

heart failure. The following is a historical summary of VAD and TAH, based on the 

previous published papers by Magovern (Magovern and Pierce, 1990) , G. A. 

Maccioli (Maccioli, 1997), Reul & Akdis (Reul and Akdis, 2000), Wheeldon 

(Wheeldon, 2003), Wood  (Wood et al., 2005) and  Rose (Rose et al., 2001) . 

 

It has been observed by Spencer (Spencer et al., 1965),Dennis (Trauma, 

1966), DeBakey(DeBakey et al., 1964) that some patient who cannot be weaned off 

from cardiopulmonary bypass (CPB) after surgery, can be easily detached from 

heart-lung machine if they are allowed to have rest and recover for longer period of 

time. These observations have stimulated the development of MCS as a BTR of 

heart. 

 

Physiological and hematologic trauma caused by the oxygenator was the 

main obstacle for long-term use of the heart-lung machine for cardiac recovery. If 

MCS could be used to maintain circulation for more prolonged periods using patients 

own lungs for oxygenation then the probability of improvement in cardiac recovery 

increases.  

 

The work of Drs Michael DeBakey, Domingo Liotta, and William Hall, led to 

the first use of an implantable left ventricular assist device (LVAD) in 1963 (Hall et 

al., 1964) at Baylor College of Medicine, in Houston, Texax. A similar VAD device 

was successfully implanted in 1966 in a young woman for 10 days. She was the first 

long-term Survivor of the use of VAD technology. 
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In a classic article published in 1971, Dr. DeBakey reviewed his experience 

in the 1960s with LVAD technology and summarises its limitations. In summary, the 

drawbacks of VAD (Hall et al., 1964, DeBakey, 1971) at that time were lack of 

electronic controllers, efficient portable power sources, lack of biocompatible 

materials, and need of extensive implant surgery, along with the high price of VAD. 

 

In the late 1960s and early 1970s, the failure of cardiac transplantation 

(Frazier and Delgado, 2003) to fulfil its initial promise encouraged the development 

of implantable MCS for DT, as an option to cardiac transplantation. This was the 

original goal outlined in a 1976 request for proposal (RFP) issued by the National 

Heart, Lung, and Blood Institute, for a pump that could provide assistance for up to 2 

years without external venting. 

Current devices such as the Novacor Left Ventricular Assist System (World 

Heart, Inc), the HeartMate implantable LVAD (Thoratec Corporation), and the 

Thoratec Ventricular Assist Device System (Thoratec Corporation) evolved from this 

program. Among the first patients to undergo successful BTR were 3 patients at 

Texas Heart Institute, two of whom received a TAH in 1969 and 1981. LVAD 

implanted in 1978 in one of those three patient (Cooley, 1988) .Despite having 

satisfactory TAH & LVAD performance, all this three patients died due to infection 

complication related to immune suppression.  

Since early of 1980s introduction of the immunosuppressive drug 

cyclosporine has allowed several newer technologies to be successfully apply for 

BTR. The Novacor (1984), the Jarvik-7 TAH (Jarvik Heart, Inc) (1985), and the 

HeartMate (1986). Since the mid-1980s, the use of MCS for this purpose has 

gradually increased. In 2001, approximately 20.1% of all heart transplant recipients 

in the United States underwent MCS before transplantation (Sun et al., 1999). 

Despite the fact that the US Food and Drug Administration (FDA) had approved 

these pumps only for 30-day implants, the initial goal of 2-year assistance using 

MCS has been achieved by both the implantable Novacor and the Heart Mate.  

Till January 2003, the HeartMate LVAD had been used to support 217 

patients for more than 1 year, 33 patients for more than 2 years, and 3 patients for 

more than 3years, all on an outpatient basis. These patients initially received the 

HeartMate as a BTR and remained on the transplant waiting list. The Novacor 
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implantable pump has a similar record (Wheeldon et al., 2002), 1 patient having been 

supported by it for more than 4.5 years. In Europe, the Berlin Heart group have 

reported the use of MCS for 38 patients (Drews et al., 2003). This group of patients 

were living their normal life without hospitalisation for an average of 454 days in the 

range 20 to 769 days.  

In 2001, the control study (REMATCH) has been carried out with the 

objective of examining the use of VAD as destination therapy (DT). This study has 

reported the successful use of HeartMate LVAD (Rose et al., 2001). Valuable 

experience has been gained with the extensive use and success of MCS for BTR. In 

fact, the more than 2-year durability and reliability of the HeartMate pump was 

demonstrated because of the prolonged waiting times endured by BTT patients, and 

these waiting times will likely continue to increase. 

In 2000, the average waiting time for O–blood-type patients was 869 days in 

those lucky enough to receive a transplant (Transplantation et al., 1993). The first 

patient to be discharged from the hospital with an electrically powered LVAD 

occurred in 1991 and was reported by Texas Heart Institute researchers in 1994 

(Frazier, 1994). Other patients were soon able to return to productive work while 

awaiting transplants as outpatients. In 1995, one patient had worked productively for 

6 months before receiving a transplant. In these cases, MCS offered long-term 

effectiveness and the potential to return patients to full, active lives. Currently, most 

patients who need MCS for more than 90 days are discharged from the hospital. 

A number of patients have had their devices removed, generally because of 

device malfunction, and were able to survive with conventional pharmacological 

therapy and without transplantation or additional device support (Khan et al., 2003, 

Hetzer et al., 2001). To date, the number of patients treated in this manner has been 

limited, but numerous studies from a wide range of transplantation centres have 

reported improvement histologically, biochemically, neurohormonally, and 

ultrastructurally in the BTT patient population. Adjunctive therapy may further 

enhance the chance of ventricular recovery. For example, cell transplantation at the 

time of LVAD implantation may enhance myocardial functional recovery, and 

Yacoub in Great Britain (Yacoub, 2001) has reported the use of the β-antagonist 

clenbuterol with promising results. Controlled clinical studies around a wider range 

of patients will further define the role of ventricular recovery with MCS. 
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2.3 Existing Ventricular Assist Devices (VADs) 
 

The numbers of VAD systems that are commercially available with the FDA 

and CE approval or in their final stage of development. Table 2-1 provides the 

tabular overview of the general advantages and disadvantages of existing and future 

VAD technology.  

 

Note: Appendix-1 provides the images of the VAD systems mentioned in table 2-1.
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NAME OF 
EXISTING 
VAD 
 

      
PLACEMENT  
 

WORKING 
PRINICIPLE 
 

         
OUTPUT 
 

TYPE OF 
ASSITANCE 
 

APPLICATION 
PERIOD 
 

PUMP 
ACTUATION 
 

    
AMBULATION 
 

FDA 
STATUS 
 

CE 
STATUS 
 

AbioMed 
BVS 5000 
system 
 

Extra 
corporeal 
 

Displace-
ment 
 

5 L/min 
(100ml 
stroke) 
 

LVAD/RVAD/
BIVAD 
 

Short 
 

Pneumatic 
 

No 
 

BTR 
 

BTR 
 

AbioMed AB 
5000 system 
 

Extra 
corporeal 
 

Displace-
ment 
 

6 L/min 
(100ml 
stroke) 
 

LVAD/RVAD/
BIVAD 
 

Intermediate 
 

Pneumatic 
 

Fair-short 
transportation 
 

BTR 
 

BTR 
 

Arrow 
Int.Intra 
aortic ballon 
pump 
 

Internal 
 

Displace-
ment 
 

N/A 
increase 
coronary 
perfusion 
 

       ---------- 
 

Short 
 

Pneumatic 
 

No 
 

BTR 
 

BTR 
 

Datascope 
CS100/Syate
m 98XT 
 

Internal 
 

Displace-
ment 
 

N/A 
increase 
coronary 
perfusion 
 

       ---------- 
 

Short 
 

Pneumatic 
 

No 
 

BTR 
 

BTR 
 

Medtronic 
Biopump(80
ml &48ml) 
 

Extra 
corporeal 
 

Radial flow 
 

10 L/min 
(80 ml 
version) 
 

LVAD/RVAD/
BIVAD 
 

Short for <5 
days 
 

Electrical 
 

No 
 

BTR/BTT 
 

BTR/BTT 
 
 
 
 

Thoratec 
VAD 
 

Extra 
corporeal 
 

Displace-
ment 
 

1.3-7.2 
L/min 
(65ml 
stroke) 

LVAD/RVAD/
BIVAD 
 

Intermediate-
months 
 

Pneumatic 
 

Fair with TLC-II 
portable VAD 
driver 

BTR/BTT 
 

BTR/BTT 
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NAME OF 
EXISTING 
VAD 
 

      
PLACEMENT  
 

WORKING 
PRINICIPLE 
 

         
OUTPUT 
 

TYPE OF 
ASSITANCE 
 

APPLICATION 
PERIOD 
 

PUMP 
ACTUATION 
 

    
AMBULATION 
 

FDA 
STATUS 
 

CE 
STATUS 
 

Thoratec 
Heartmate 
XVE LVAS 
 

Internal 
 

Displace-
ment 
 

11 L/min   
( 85ml 
stroke) 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good, discharge 
possible 
 
 

BTT/DT 
 

BTT/DT 
 

World Heart 
Novacor 
 

Internal 
 

Displace-
ment 
 

10 L/min 
(85 ml 
stroke) 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good,    
discharge 
possible 
 

BTT 
 

BTR/BTT/
DT 
 

AbioMed 
Abiocor 
 

Internal 
 

Displace-
ment 
 

12 L/min 
 

TAH 
 

Long-years 
 

Electrical 
 

Good, discharge 
possible 
 

Not 
approve        
(in trial) 
 

Not 
approve 
(in trial) 
 

Arrow 
Int.CorAide 
 

Internal 
 

Centrifugal 
(radial flow) 
 

4.1 ± 0.8 
L/min 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good, discharge 
possible 
 

Not 
approve 
(in trial) 
 

Not 
approve 
(in trial) 
 
 
 

Berlin Heart 
Incor  
 

Internal 
 

Centrifugal 
(axial flow) 
 

7 L/min 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good 
 

Not 
approve 
(in trial) 

BTR/BTT 
 

 

 

Impella 
Recover 
LP2,5 & LP 
5,0 
 

 

Internal 
 

Radial flow 
 

2.5 and 5 
L/min 
 

LVAD 
 

Short for 5-7  
days 
 

Electrical 
 

Fair-short 
transportation 
 

Not 
approve 
(in trial) 
 

BTR 
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NAME OF 
EXISTING 
VAD 
 

      
PLACEMENT  
 

WORKING 
PRINICIPLE 
 

         
OUTPUT 
 

TYPE OF 
ASSITANCE 
 

APPLICATION 
PERIOD 
 

PUMP 
ACTUATION 
 

    
AMBULATION 
 

FDA 
STATUS 
 

CE 
STATUS 
 

Jarvik Heart 
Jarvik 2000 
Flow Maker 
 

Internal 
 

Axial flow 
 

7 L/min 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good 
 

In trial 
 

BTT/DT 
 

Micromed 
DeBakey 
 

Internal 
 

Axial flow 
 

10 L/min 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good 
 

Not 
approve 
(in trial) 
 

BTT 
 

Terumo 
DuraHeart 
 

Internal 
 

Centrifugal 
 

No 
informa-
tion 
 

LVAD 
 

Long-upto 5 
years 
 

Electrical 
 

Good 
 

Not 
approve 
(in trial) 
 

Not 
approve 
(in trial) 
 

Thoratec 
Heartmate 
III 
 

Internal 
 

Axial flow 
 

12 L/min 
 

LVAD 
 

Long 
 

Electrical 
 

Good 
 

Pre 
clinical 
 

Pre 
clinical 
 

Ventracor 
VentrAssist 
 

Internal 
 

Centrifugal  
( radial flow) 
 

12 L/min 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good 
 

Approve 
for pilot 
study 
 

In trial 
 

 

World Heart 
HeartQuest 
VAD 
 

Internal 
 

Centrifugal 
 (radial flow) 
 

No 
informa-
tion 
 

LVAD 
 

Long-years 
 

Electrical 
 

Good 
 

Pre 
clinical 
 

Pre 
clinical 
 

Table 2-1: list of the existing VAD 
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2.4 Evaluation of Existing VAD Technology   
 

Most of the FDA approved VAD/TAH are positive displacement type systems. Due to 

their large size, they are not suitable for implantation in many of the paediatric and 

female patients. The external displacement pumps allow for support of smaller sized 

patients.  

Displacement pumps like the HeartMate IP / VE, Thoratec and Novacor are able 

to deliver flow rates up to 10 L / min with maximum heart rate of 120 BPM and have a 

well-established clinical history of up to 20 years. Developments that are more recent 

include the Novacor II and  HeartSaver.  

Most of this positive displacement pumps consist of one or more chambers with 

a pusher plate mechanism to create the pulsatile flow. In case of the IABP, pulsatile flow 

is generated by inflation and deflation of a balloon placed in the descending aorta, which 

is inserted through the femoral arteries.  

Apart from this extra chamber, all existing external as well as internal VAD 

systems requires either transcutaneous cannulas/catheters, or transcutaneous 

pneumatic or electric lead. This constitutes a serious issue of infection in all existing 

VAD systems. Pennington (Pennington et al., 1994) and Murakami (Murakami et al., 

1994) have observed that 20% to 55% of the patients receiving displacement type 

VAD also receive transcutaneous driveline related infections. The use of many 

moving parts, mechanical failure of membranes and valves, resulting in blood damage 

and spallation (Hetzer et al., 2001) make displacement type VAD suitable only for short-

term application. 

In case of pulsatile pump, sometimes blood looses contact with the moving 

surfaces of the blood sac resulting in the formation of thrombus. Farrar and 

colleagues (Farrar et al., 1988) have observed the need of consistent washing of all 

blood contacting surfaces to avoid the risk of thrombus formation. Anticoagulation 

agents like Heparin and Warfarin help in avoiding the risk of lethal thromboemboli. 

HeartMate and DuraHeart VAD systems have claimed their devices are free from 

thrombus and hemolysis. 

Most of the FDA and CE approved VAD requires the highly invasive procedures 

to insert and removal of device. Patient with external VAD support for bridge-to 

recovery (BTR) also require cannulas and consequently a sternotomy(opening made 

in sternum) for insertion. . 
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In case of failure, bulky implantable devices increases surgical stress on the patient’s 

body. 

Most of the VAD systems under development need to address the shortcoming 

of the FDA approved systems. These systems focused on miniaturising, less invasive, 

and fully implantable solutions. Many of the developing system use the centrifugal or 

axial flow pumping system over the displacement type of devices. DeBakey , Jarvik 

2000, HeartMate III and Berlin Heart Incor are comparable to the size of a battery.  

Miniaturization has been a key in the most of the ongoing VAD's 

development projects. These VAD can also be implanted in paediatric patients. The 

Impella pump was a modern incarnation of the Hemopump, and a very good 

example of catheter mounted miniature pumping system that require only a small cut 

on femoral artery to be implanted within body with minimal surgical trauma. These 

types of systems are also very easy to remove in case of device failure. 

Miniaturization has also benefited the management of patients as they can be 

managed outpatient bases or requires shorter duration of hospitalisation.  

The existing VAD developments also focus on achieving completely 

implantable system. That involves combining the various components with implantable 

power sources and controllers that can be recharged and reprogrammed without 

removing them from the body. 

As with all new technology, axial-flow and centrifugal VADs have also 

introduced a different set of management issues, as well as certain complications, 

that were previously absent or unimportant with pulsatile VADs (Stevenson et al., 

2001). Many of the centrifugal devices use blood immersed bearings for the 

lubrication and cooling purpose. That increases the risk of in-situ thrombus and 

thromboemboli. Due to rotating impeller, a certain degree of hemolysis is common 

and the long-term effects of hemolysis on body are unknown. Concerns include, 

increased incidence of gastrointestinal bleeding and ventricular arrhythmias, as well 

as the effects of partial unloading on pulmonary hemodynamic. Chronic 

anticoagulation is necessary. In addition, Feedback systems for controlling pump 

speed are complex and most of them are clinically unproven or under development.
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2.5 Study Rationale 
 

The rationale behind this study is to take an advantage of the pulsatile flow by 

producing it using an axial flow-pumping device. Due to tubular configuration and 

small size of axial flow pump requires less time to implant without major surgical 

procedure. It is easy to implant an axial flow pump compared to other centrifugal 

device that has different location of inlet and outlet ports. That reduces cost of 

surgery as well as surgical stress on the body. Due to their small size the blood-

contacting surfaces are less than those of other devices. That helps in reducing the 

risk of infection as well as blood trauma. It also reduces the residence time for blood 

within rotating impeller region. Axial flow pump has an absence of secondary flow 

that minimise the risk of flow stagnation. By performing optimisation of design, low 

stress tip clearance region can be achieved to have minimum traumatic effects on 

blood components. 

Both existing pulsatile and non-pulsatile VAD technologies have their 

advantages and disadvantages. Both types of VAD systems have complications of 

bleeding, thrombosis, hemolysis, infection, Right ventricle (RV) dysfunction/failure, 

device malfunction and in case of continuous flow pump ventricle might collapse in 

the absence of preload. Displacement type devices produce a pulsatile output, which 

has significant benefits on vital organ function and end organ recovery after acute or 

chronic mechanical circulatory support (Undar, 2004). While centrifugal and axial 

flow pumps produces continuous non-pulsatile flow. However, the implications of 

long-term continuous flow conditions remain unclear. Pro, non-pulsatile flow 

investigators have claimed that, there is no difference between pulsatile and non-

pulsatile systems in terms of end organ recovery (Undar, 2004). In-depth research has 

been carried out to determine the effects of providing circulatory support by means of 

continuous or pulsatile flow. Despite that, choice between pulsatile and non-pulsatile 

assistance is an ongoing debate, although hundreds of CHF patients have had 

continuous flow support exceeding thousands of hours (Allen et al., 1997). Pulsatile 

Devices are noisy and more susceptible to mechanical failure than the continuous flow 

pumps due to failing membranes and valves (Goldstein and Oz, 2000). While continuous 

flow pumps are quiet and cannot be heard outside of patient’s body. 
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2.6 Aims and Objectives 
 

This thesis aims to design a novel minimal invasive, miniature axial-flow 

pump with pulsating outflow to work as a left ventricle assist device (LVAD) for 

patients with heart conditions including myocardial infarction, myocardial infection, 

and cardiogenic shock as a Bridge-To-Recovery (BTR) or Bridge-To-Decision (BTD) 

device. 

This thesis focuses on the design of an axial flow pump that can generate a 

pulsatile flow by achieving the listed objective. 

2.6.1 Objectives 
 

 Design an axial flow pump that can satisfy the hydraulic and clinical 

requirement of LVAD. 

 CFD based statistical design of experiment (DOE), investigation of the design 

parameters to determine the response of the pressure rise, flow rate, and shear 

stress for the range of the rotating speed of LVAD impeller. 

 Optimisation of the design parameters using Multi Objective Genetic 

Algorithm, to derive the operating speed of rotation for the low hemolysis 

level in LVAD. 

 CFD based evaluation of the performance of LVAD as a continuous axial flow 

pump.  

 In vitro experimental evaluation of LVAD, as a continuous flow pump to 

validate the CFD model. 

 CFD based evaluation of LVAD as pulsatile axial flow pump, using the 

validated CFD model and time varying rotating speed of impeller.  

 In vitro experimental evaluation of LVAD as Pulsatile flow axial flow pump. 

 

The main objective of the thesis is to develop a pulsatile flow using an axial flow 

pump. Conventional design theories presented by Stepanoff, Csanady GT, and Balje 

OE, for the axial flow pumps focus mainly to generate constant head and flow rate at 

a constant rotating speed. In absence of the design theory for the pulsatile flow 

generation using an axial flow pump; it is a difficult task for any designer to derive 
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the specification for the pulsatile axial flow pump. The basic specifications of 

conventional axial flow pump are the pressure rise and the mass flow rate, for which 

the rotating speed of impeller is derived. In case of pulsatile flow pump the pulse are 

generated based on the heart rate. Hence, heart rate is an added specification along 

with the pressure rise and flow rate. For the generation of pulse, the LVAD’s 

impeller is accelerated up to the limit speed of rotation and decelerated back to zero, 

within systolic period of heartbeat according to heart rate. Thus, to find out the limit 

speed of rotation, which is able to satisfy the hydraulic and clinical requirement of 

LVAD is a key design objective of the thesis. To investigate the effects of heart rate 

on the pressure rise and flow rate, the initial design specifications are generated 

using the traditional design theory. In addition, it provides the base to initiate the 

study as well as for the evaluation of pulsatile flow.  
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Chapter 3  Methodology 
 

3.1 Abstract 
 

Designing an implantable medical device requires the broad understanding of the 

effects of device on the body and effects of body on the device. This chapter 

illustrates the methods used for the design and development of a pulsatile axial flow 

blood pump as LVAD that addresses the hydraulic and clinical requirements. The 

conventional design equations produced a geometrical estimation to initialize pump 

design. CFD was used to carry out a parametric study using statistical design of 

experiment and Goal driven optimization of the design parameters. Mesh generation 

and boundary condition are discussed in detail as they are essential to generate an 

appropriate mathematical (CFD) model for a reliable design.  
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3.2 Introduction 
 

Designing an axial flow pump for the generation of pulsatile flow within safe limit 

of hemolysis is a novel feature and the main objective of this thesis. The important 

primary step for the design of VAD is to identify the specifications or requirement of 

VAD for treatment of patients. This thesis demonstrates the method to design axial 

flow LVAD that can generate pulsatile flow and satisfy the clinical requirement. As 

shown in figure 3-1, the specifications for LVAD can be divided into two parts that 

are the hydraulic and clinical requirement. 

 

Figure 3-1: specification for VAD 

Hydraulic requirements from the LVADs are mainly the pressure rise and 

flow rate. The patient specific requirements vary according to their heart condition. 

In general, VAD should be able to generate 60 to 120mmHg pressure rise, with the 

flow rate of 2 to 12 lit/min (Wood et al., 2005). These pressure and flow rate 

requirement help in determining the size of pump.  

The clinical requirements from the LVADs are mainly low hemolysis and 

good washout of rotating and non-rotating components. The hemolysis and platelet 

activation are the consequence of high shear stress acting on the blood components 

mainly near the tip region of the impeller. Blood is a viscoelastic fluid and its 

rheological properties mainly viscosity and elasticity are depend on the rate of flow 

or shear rate. Shear rate that is a product of shear stress and angular velocity is also 

an important parameter for the designing of VAD. Sallam and Hwang et al. (Sallam 

and Hwang, 1984) measured approximately a threshold stress level of 400Pa for 100 
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milliseconds during a turbulent jet experiment where Reynolds stresses dominated 

the flow field.  

In case of implantable axial flow LVAD, the size of pump has clinical 

constraints based on the surgical procedures as well as the place of installation. 

Geometry of blade also plays a critical role in generation of pressure head and the 

flow rate which is also dependent on the rotational speed. Clinical demand emphasis 

that LVAD should deliver the flow rate according to the physical activities of 

patient, that means the difference between left ventricular pressure and  aortic 

pressure should be maintained irrespective of the flow rate along with the low 

hemolysis. According to the theory of axial flow pump, the size of pump and 

rotating speed of impeller are the important parameters that can deliver the required 

flow rate and the pressure rise.  

In case of pulsatile axial flow LVAD; for the generation of pulse, impeller is 

accelerated up to the limit speed of rotation and then decelerated back to zero, within 

systolic period of heartbeat. The rotating speed of impeller never remains constant 

apart from the halt during diastolic phase of heartbeat. Hence, the heart rate becomes 

a critical design parameter that can also influence the flow rate, pressure rise and the 

shear stress.  

Design method adopted for the purpose of this thesis is a combination of both 

classical design and computational fluid dynamics (CFD).  

1. Design of axial flow pump is derived to satisfying the hydraulic and clinical 

requirement of LVAD that is 6L/min of flow rate at 100mmHg pressure head 

with shear stress below 400Pa. 

2. Design of Experiment has been carried out to investigate the response of 

design parameters for the range of rotating speed up to 30000 RPM. 

3. Goal Driven Optimisation using Multi Objective Genetic Algorithm  is used 

to investigate the range of rotating speed that can generate the flow rate and 

pressure rise with the low level of hemolysis. 

4. The axial flow pump performance as a continuous flow LVAD carried out for 

the optimized range of speed of rotation.  

5. The experimental evaluation is carried out for LVAD as continuous flow 

pump to validate the CFD model and design of experimental study. 
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6. Using the validated CFD model and time varying the rotating speed, LVAD 

performance is predicted for the pulsatile flow. 

7. Experimental investigation is carried out for the LVAD as a pulsatile axial 

flow pump to characterise the pressure rise and mass flow rate based on the 

heart rate.    

3.3 Clinical design Criteria of an Implantable LVAD 
 

Design of any implantable device requires comprehensive understanding of the 

effects of the device on the body and the effects of body on the device. Conventional 

design theories are helpful for the initial estimation of the size and shape of various 

rotating and static components of pump. Along with conventional theories, designing 

a VAD requires consideration of blood compatibility, implantability, durability, 

portability, control feasibility, and reliability during design phase (Wood et al., 

2005).  

In order to design a completely implantable pump, the overall size of the 

device becomes the most important engineering constraint during the initial design 

phase. Designing a pump with high efficiency and low power consumption helps in 

minimizing the size of the motor, thereby reducing the overall size of the axial flow 

pump. If one wished to make the pump as small as possible (small D), this would 

dictate not only a higher rotational speed, ω, but also higher impellers tip 

speed 2/D . Consequently, the increase in tip speed, suggested above could lead to 

a cavitation problem (Brennen, 2011). The cavitation number is inversely 

proportional to the square of the tip speed or . Often therefore, one designs the 

smallest pump that will still operate without cavitation; this implies a particular size 

and speed for the device. Generally, industrial pumps are designed to operate at 

specific design point; at which the pump works with maximum efficiency. While 

blood pumps are required quite frequently to perform well at off-design conditions 

(Wu et al., 2004b, Wu et al., 2003, Wu et al., 2004a). Most of adult cardiac failure 

patients require 6 L/min at 100mmHg pressure rise. VADs must be able to produce 

flows from 2 to 12 L/min (Wood et al., 2005) for the pressures rise of 60 to 

120mmHg (physiological). Depending on the diversity of patients and the level of 
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their physical exertion (from sleeping to walking to climbing stairs), the VAD must 

be able to operate over a wide range of flow conditions. 

Pump’s operational speed is inversely proportional to the pump’s size; thus, a 

smaller pump corresponds to a higher rotational speed of the impeller. A higher rotor 

speed implies a higher value of fluid stresses, which could have a traumatic effect on 

blood components. With respect to allowable rotational speed, important limitations 

are cavitation threshold and maximum allowable shear stress. With respect to blood, 

this limitation results in the tip speed of 10 m/s for any pump rotor (Reul and Akdis, 

2000) . Cavitation is most critical for axial flow pump; likely to occur at the low-

pressure inlet section. Longer lasting cavitation can damage the pump as well as 

blood.  

In addition to meeting hydraulic requirements, red blood destruction and 

platelets activation is one of the most important issues in the design of rotary pump. 

Rotary pump has the gap between the tip of moving blade and static casing. As 

shown in figure 3-2. This is responsible for the tip leakage flow as well as the back 

flow at the inlet, due to pressure difference from inlet to outlet. The back flow and 

tip leakage flow are associated with turbulent mixing, superimposed by high shear 

flow in the same region causes the blood damage. Shearing or lysing of red blood 

cell may compromise the delivery of oxygen and nutrition to muscle or tissues. 

Formation of thromboemboli can occlude major arteries. This occlusion can result in 

oxygen deprivation and likely death to surrounding tissue as well as muscle. 

 

Figure 3-2 : Lateral View Of Impeller Inlet Flow Showing Tip Leakage 

Flow Leading To Backflow. 
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Sealing problem between the rotating shaft and static housing is associated 

with the heat generation and thrombus formation. If this heat generation occurs in 

low washout areas of the pump, this may lead to local thrombus formation(Reul and 

Akdis, 2000). Many advanced pump uses blood immersed seals or magnetic bearings 

as an alternative to mechanical seals.  

3.3.1 Hemolysis  
 

Haemolysis is the damage or destruction of red blood cells, which causes the 

contained protein haemoglobin to be released into blood plasma (Leverett et al., 

1972, Skalak and Chien, 1987). The main source of haemolysis in blood pumps is 

the sub lethal damage of the RBCs due to leaking of haemoglobin (Leverett et al., 

1972)rather than catastrophic damage due to rupturing at shear rates above 42,000s
-1

.  

These released haemoglobin contents within plasma may activate platelets 

and subsequent clot formation. Continuous lysing or damage of red cells reduces the 

blood’s ability to effectively transport oxygen. Premature haemoglobin release 

shortens the RBC’s normal life span, which is 120 days(Skalak and Chien, 1987) for 

a healthy person. It also increases risk of morbidity to patients with blood pumps. 

The available commercial blood pumps have a range 20-100 N/m
2
   of 

Newtonian shear stress with the exposure time of 1s per passage. For small axial 

pump stress is considerably higher and can reach the peak value of 400 N/m
2
, while 

exposure time or transition time are in order of 100ms. (Reul and Akdis, 2000)  

According to Giersiepen  haemolysis and platelet activation are the function of both 

shear stress level and transition time or exposure time (Giersiepen et al., 1990). 

Heuser  and  Giersiepen  used a two-dimensional regression analysis on their data to 

establish their empirical formula for the calculation of a haemolysis index (HI) (Heuser 

and Opitz, 1980, Giersiepen et al., 1990)  in percentage. 

 

                                                                           (3.1) 

Where t is the exposure time (s) and τ (N/m
2
) indicates the overall single scalar stress 

tensor. C, α and β are constants. Heuser  defined these constants (Heuser and Opitz, 

1980) [80] as C = 1.8*10
-6

, α = 1.991, and β = 0.765.  
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Giersiepen (Giersiepen et al., 1990) defined them as C = 3.62*10
-5

, α = 2.416, and β 

= 0.785. Data obtained by numerous researchers based on the above formulation 

corroborate that both models gives values similar to hemolysis in blood pumps (Wu 

et al., 2010) . 

The above correlation is valid for steady shear only, while the flow in the 

axial flow VAD is three-dimensional and unsteady. Therefore, Bludszuweit  

proposed to calculate τ, representing an instantaneous one-dimensional stress 

parameter in the above equation (Bludszuweit, 1995b, Bludszuweit, 1995a), by 

summing the components of the viscous and Reynolds stress tensor: 

                                                  (3.2) 

 

More recently, Arora (Arora et al., 2004) have proposed a tensor based blood 

damage model (optional to the above stress-based model) for CFD analysis. Where 

Time- and space dependent strain is estimated for individual blood cells, and correlated 

to data from steady shear flow experiments. 

 

The American Society for Testing and Materials (ASTM) recommends the 

standard normalized index of haemolysis (NIH) (Thom et al., 2006). The NIH is 

related to the proportion of ΔHb and the total amount of haemoglobin Hb as: 

 

                   (3.3)  
 

Where  denotes the haematocrit (%), i.e. the proportion of blood volume 

occupied by RBCs (45% for a healthy person and 37% for normal bovine blood), 

and κ is the haemoglobin content of the blood (150 g L
−1

 for a healthy person). 
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3.3.2 Thrombosis  
 

Thrombosis is a formation of a clot or a thrombus, which is one of the protecting 

mechanisms of the body to prevent the blood loss. Under normal, healthy 

circumstances, this coagulation system constructively promotes clot growth and 

repairs the damaged vessels (Wood et al., 2005). Thrombosis is dependent upon 

three main factors: contact surface properties, the state of the blood cells and the 

flow environment (Virchow Triad). Nevertheless, irregular flow patterns and 

inflammatory conditions within the vessels due to genetic, hemodynamic, and 

dietary factors could produce unnecessary and undesired thrombus 

formation(Gartner et al., 2000). Therefore, inside VADs, regions of high shear stress, 

recirculation or stagnation or blood contacting surfaces with low haemocompatibility 

must be avoided. Hence, for manufacturing of implant, surfaces that are exposed to 

blood should have excellent biocompatibility (Song et al., 2003c, Song et al., 2003b, 

Song et al., 2003a). 

When the thrombus formation mechanism has been triggered by such non-

physiological causes, it can lead to a pathologically high degree of clotting 

(Behbahani et al., 2009). If a thrombus forms on a surface of the VAD, it may 

compromise its function, and if it circulates as a free thrombus in the blood stream, it 

can occlude blood vessels in vital organs(Behbahani et al., 2009) . These 

thromboembolic incidents count among the primary causes of death for patients with 

ventricular assist support. With respect to VAD design, the listed situations can give 

rise to hemolysis and thrombosis (Wood et al., 2005) as well as platelet 

activation/deposition. 

1. Recirculation regions 

2. cavitation 

3. high shear stress areas  

4. extremely low shear stress areas 

5. flow separation regions  

6. surfaces with sharp edges  

7. surfaces with high roughness 

8. narrow passages within the pump  

9. Flow stagnation leading to blood pooling  
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In summary, the conditions that might lead to hemolysis, thrombosis, and platelet 

activation in blood pump must be eliminated or minimised during the design phase. 

With careful design and iterative optimisation of design, these traumatic conditions 

can be avoided. 

3.4 Theory of Axial Flow Pump Design 
 

The physics of axial flow pump presented here is given as a means for determining 

the outline dimensions of an axial flow pump. Assuming a ―free vortex‖ means there 

is no head change radially as well as constant axial velocity through the annulus. The 

input to this classical pump design procedure is the performance specification for 

design, based on VAD design criteria.  

Pump transfer its energy to flowing fluid via impeller. Hence, the impeller is 

the most important region of VAD which defines its operating range. Impeller 

receives its energy from an electric motor. Basic design expression of an impeller is 

a form of Newton’s law of motion applied to fluid flowing through the impeller, 

which states that the torque on the impeller is equal to the rate of change of angular 

momentum of the fluid (Balje, 1981, Csanády, 1964, Stepanoff, 1957). 

 

)                        (1) 

 

               (2) 

 

Equation-1 defines the torque ― ‖ as a function of the mass flow rate ― ‖, the 

radii (  and ) and the tangential absolute velocities (  and )(Stepanoff, 

1957). Derived from Euler’s velocity triangles. Equation-2 expresses the absolute 

fluid velocity ― ‖ as a sum of the relative velocity of fluid ― ‖ with respect to the 

moving blade and the blade velocity ― ‖, related velocity triangles are shown in 

figure 3-3.  
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Pump’s power ― ‖ can be derived from torque ― ‖ with rotational speed ― ‖ in 

radians per second, power ― ‖ can be written as 

 

                                  (3) 

 

Where the blade speed , is equivalent to Ω  (n representing 1 or 2 to signify 

inlet or outlet Location, respectively).  

 

By dividing Equation-3 by the mass flow rate ― ‖ and gravity ―g‖, we can derive 

head equation as  

 

                        (4) 

 

Equation-4 represents the well-known Euler’s head equation, where corresponds 

to a theoretical head or pressure as idealized flow has been assumed and hydraulic 

losses have been ignored. 

 

 

Figure 3-3: Velocity  at Inlet and Outlet 
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Equation 1, 2, 3 & 4 are applied for much larger capacity pumps those used in 

industrial application where inertial forces dominates the viscous forces which are 

important in case of VAD. 

 

Dimensionless parameters that are a consequence of dimensional analysis are used to 

have initial design estimation of an impeller. This parameters relate performance 

characteristics with the density of the fluid, ρ, the typical rotational speed, N, and the 

typical diameter, D, of the pump. Thus the volume flow rate through the pump, Q, 

total head rise across the pump, H, torque, T, and the power absorbed by the pump, 

P, will scale according to equations mentioned below, 

 

Flow co-efficient ―Φ‖ 

 

                           (5) 

 

Head co-efficient ―ψ‖  

 

                                  (6) 

 

Specific Speed ―Ns‖ 

 

                                  (7) 

 

Specific diameter ―Ds‖ 

 

                         (8) 

 

Power co-efficient ―Cp‖ 

 

 where                                  (9) 

 

Reynolds number ―Re‖ 

 

                             (10) 
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These simple relations allow basic scaling predictions and initial design estimates as 

well as the performance prediction of the pump. Overall size of pump has limitation 

of available space in the ascending aorta.  

 

As the proposed pump is intended to be placed at aortic root, the overall size of 

pump needs to be selected according to output mass flow rate taking viscous forces 

in to account using equation,  

 

                                   (11) 

 

This equation-11 is a form of a Reynolds number, in which the impeller diameter D 

presents the size of pump,  kinematic viscosity, and Q/D
2 

the velocity(Stepanoff, 

1957). Placing the Reynolds number of ascending aorta at the left side of equation 

the outer diameter can be derived. Using this outer diameter for an impeller, specific 

diameter ―Ds‖ can be derived using equation- 9. That can be rewritten as, 

 

                                   (12) 

 

Based on cordier diagram (Csanády, 1964) for axial flow pump Relationship 

between specific diameter ―Ds‖ and specific speed ―Ns‖ can be approximated by 

equation,  

 

                                   (13) 

 

Generally axial flow pump have dimensional hub to tip ratios in the range of 0.3 to 

0.7 which is directly connected with the specific speed of pump. That can be 

determined by the chart presented in Stepanoff AJ (Stepanoff, 1957) . Solidity that is 

a chord spacing ratio can be determined by the chart available in the same reference. 

This chord spacing ratio is important in determining the degree to which the flow is 

guided by the blades. As mention by Earl Logan R. (Logan, 1981) the relation 

between solidity, hub-tip ratio and specific speed can be approximated by,  
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                                  (14) 

 

Where ―c‖ represents the chord length, ―s― is the space between the blades, ―Dr― is 

the hub diameter while ―Dt― is the tip diameter.  

The annular flow area and flow rate can now be used to calculate the axial velocity 

component ―Va‖, where 

 

                                   (15) 

 

The blade speed ―U” can be calculated using 

 

                                   (16) 

 

Where, ―N” is the rotational speed in radians per second and ―D” is diameter. 

The inlet Velocity diagram shown in figure 3-4 helps in determining the inlet flow 

angle ―β1‖. 

 

                                   (17) 

 

 

 

 

 

 

 

 

 

Figure 3-4 Velocity Diagram at Rotor Inlet 

Similarly, the flow angle ―β2‖can be calculated using velocity diagram at outlet of an 

impeller shown in figure 3-5. As same annular flow area is available at inlet and 

 

Va 

β1 

W1 

U=Wu1 
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outlet of axial flow pump, the axial velocity ―Va‖ remains same for outlet which is 

already derived. 

 

 

 

 

 

 

 

 

 

 

 

With known pressure rise across pump or head and no inlet whirl (Vu1=0), we can 

calculate the whirl velocity at outlet ―Vu2‖using  

 

                                   (18) 

 

The exit flow angle ―β2‖can be easily calculated using geometric relation 

 

                                  (19) 

 

After deriving these flow angles, a calculation for the blade angle is an iterative 

process. That includes the calculations of incident and deviation angles for 

subsequent derivation of camber angle.  

 

 

 

 

 

 

Figure 3-5: Velocity Diagram at 

Impeller Outlet 
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Figure 3-6: Impeller blade angle 

The reference (Howard, 2001)contains the related correlations and equations based 

on Johnsen and Bullock (1965), which commonly is referred to as NASA SP-36 

correlations. Considering reference (Howard, 2001) calculation of incident angle, 

which is the difference between the inlet blade angle and the inlet flow angle, can be 

derived using  

 

                                 (20) 

 

Where,  is an incident angle and ―ksh‖ is the correction factor for blade shape and 

kit is the correction factor for blade thickness. ―ksh‖ differs for the different blades 

shape as shown in table 3-1. 
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ksh Blade shape 

0.7 DCA 

1 NACA 65-series 

1.1 C-series 

 

 Table 3-1: Values of ksh for Different Blade Shapes 

―kit‖can be calculated using percentage of thickness by, 

 

                              (21) 

 

And  can be derived based on percentage of thickness using,  

 

 

                                             (22) 
 
 

The variable ―n” represents the incident slope factor which can be derived using, 

 

 
 

                                                                      (23) 

  

Values of  ,  & ‖ in in the above polynomial equations can be found out in 

charts and tables available in reference (Howard, 2001). 

 

Deviation angle which is the difference between the blade angle from the trailing 

edge and the exit flow angle can be derived using equation below which enables 

designer to use classical Carters rule (Csanády, 1964). 

 

                                   (24) 

 

Where, ‖ is deviation angle,‖ is an empirical function of stager angle, ―θ” is 

camber angle, “s” is solidity, and ―x” is an experimental factor. This angle is 

depends on camber angle and stager angle, this makes quite difficult to calculate its 
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value. One early empirical relation mention in reference (Brennen, 1994) relates the 

deviation angle to the camber angle ―θ‖, and the solidity, ―s/c”, through 

 

                                                     (25) 

 

As mentioned  in reference (Howard, 2001) deviation angle can be derived using 

similar equation to incident angle which is, 

 

                                   (26) 

 

 has the same values mention in table 3-1 while can be calculated using 

 

                    (27) 

 

 is the deviation angle based on percentage of blade thickness  

 

                                                   (28) 

 

Variable ―m‖ represents the deviation slope factor by, 

 

                                               (29) 

 

Where  

           (30) 

 

 

The  is the modified slop factor that has different values for DCA, NACA & 

C-series profiles, For NACA-65 series 

 

                                     (31) 

 

For DCA & C- series profile  

 

               (32) 

 

Values of   ,  ,  and “b” in above polynomial equations can be found out 

in charts and tables available in reference (Howard, 2001). 
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Once the values of incedent angle and deviation angle is calculated the blade angle 

and  can be derived using  

 

                                    (33) 

 

                         (34) 

 

Using this  camber angle ‖ can be calculated using 

 

                                   (35) 

 

Approximate value for stagger angle  can be calculated using 

 

                       (36) 

 

The next important step is to calculate the co-ordinates of blade profile according to 

the calculated values in previous steps. Through the span of an impeller blade, 

coordinates of cross sectional profile needs to be calculated from hub to shroud. The 

mathematical approach is used for determining the aerofoil cross sectional profile. 

Compare to charts and tabular data to obtain the cross sectional profile, this approach 

helps to get direct generation of profile coordinates by incorporating equations with a 

computer program (Wallis, 1983). It also makes it easier to determine the values of 

area, centroid location, and moment of inertia for aerofoil shape blade profile.  

 

As depicted in figure 3-7, Impeller Blade cross section has three main curves namely 

camber line, upper surface and lower surface.  

Calculation of coordinates for Mean line or camber line can be done by using 

equation for the x values of chord length as mentioned below 

 

For x < 0.2025  

 

              (37) 
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For x > 0.2025 

 

 

                                           (38) 

 

 

 

Figure 3-7: Cross section of an Impeller Blade 

Where  is the camber angle, d is the variable that varies between 0% - 3% for 

generation of composite camber line, for NACA 65 series. Coordinates of Upper 

surface of the profile can be derived using, 

 

 

                                  (39) 

 

                       (40) 

 

In a same manner the coordinates of Lower surface can be derived using, 

 

                                  (41) 
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                                  (42) 

 

Where angle  is given by, 

 

                            (43) 

 

Calculation of thickness function  depends on the profile selected by designer. 

For NACA series of blade profile, which is used for the development of VAD, 

is calculated using, 

 

       (44) 

 

Where “t” is the percentage of thickness .that can be derived using last two numbers 

of NACA series and dividing those two numbers by 100. For example, for a unit 

chord length of NACA 6510 profile has 10% of maximum thickness at position 0.5 

of the chord from the leading edge with maximum camber of 6%. The NACA 65 

series aerofoils are defined in terms of mean camber line designated by ―CL0‖ This 

value can be obtained from the reference (Wallis, 1983). The related camber line can 

be obtained by multiplying the ―CL0‖ value with the values of camber line 

coordinates. 
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3.4.1 Limitations of Theory  
 

The thesis objective of pulse generation and VAD design criteria demands the off-

design performance from impeller to meet the varying physical demand of oxygen 

and nutrition for vital organ function. This generates a logical disagreement, with the 

assumption of constant axial flow through the annulus.  

Time varying demand of flow and pressure rise across the impeller represents 

the need to constant change in the shape of blade that includes the blade angles, 

length, and the thickness of blade. In theory, we can determine these time varying 

changes in the shape of the blade, but practical application of these changes in the 

real world is a technical challenge. Future advances in technology might help in 

overcoming this technical challenge. 

Hence, this thesis focuses on the operating parameters and optimisation of 

these parameters to pursue its original goal of pulse generation. Despite the 

differences, assumption of constant axial flow is an essential for calculating the size 

and shape of VAD components, mainly Impeller.  

Generation of pulse according to varying heart rate requires an impeller to be 

accelerated up to its designed RPM and then decelerated to rest in a cyclic manner as 

shown in figure 3-8. To operate LVAD in time varying operating condition represent 

the need to fix the maximum limt (design limits) of RPM for impeller with least 

traumatic effects on blood components.  

 

Figure 3-8: RPM Vs Time 

The intention behind the optimisation process is to derive optimum speed of rotation 

by satisfying design criteria and objectives. Shaft’s rotational speed is a control 
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parameter on which all other parameters are dependent, and can be controlled 

physically by controlling motor speed.  

3.5 Computer Aided Design (CAD) of an Axial Flow Pump  
 

Computer aided design (CAD) is helpful in visualising derived geometry using 

classical theory. For the purpose of this thesis and study, commercially available 

CAD tool CATIA has been used to develop 3D geometry of various components of 

VAD. Geometry creation for an impeller requires the skill to generate surfaces for 

complex impeller geometry, while other components can be modelled with basic 

parametric geometry functions. 

The calculation procedure gives the profile of blade and others geometric 

parameters on a 2D surface for the each span wise location from hub to shroud. 

These 2D shapes can be visualised as they are lying on unfold cylindrical surfaces, 

which has a rectangular shape, with πD as its base length and Hub length as its 

height. For easy understanding of the concept, only two layers of blade profiles were 

used to generate figures. 

It is very important to decide the axis of rotation at this stage of design. It is 

advisable to use the default origin of X, Y, Z coordinates and default axis and plane. 

That smoothes the transfer of geometry data from one design packages to another as 

well and their use in meshing and simulation software.  

The model shown in figure 3-9 uses x-axis as an axis of rotation to place all 

the calculated coordinates on XY plane. The hub surface can be created by drawing 

circle with hub diameter on YZ plane and extruding it in the direction of X-axis. As 

shown in figure 3-9. 

For generation of a 3D impeller blade, all the calculated profiles based on its 

location form hub to shroud needs to be placed on respective 2D planes form hub to 

tip as shown in figure 3-9. 
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Figure 3-9: Hub and blade profile 

Spline curve can be use to generate profile of blade on 2D plane. As shown in figure 

3-10 this profile is then projected on the hub surface to get the exact shape of blade 

on hub surface. 

 

Figure 3-10: Projection of blade profile over hub surfaces. 
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By following this step for every span wise 2D profile and the derived  cylindrical 

surfaces, the skeleton of blade can be constructed. As shown in figure 3-11. 

 

Figure 3-11: Skeleton of Blade Profile in 3D 

Using the base curves generated from above step the blade shape can be formed by 

filling those curves with surfaces. As shown in figure 3-12. 

 

Figure 3-12: 3D Impeller Blade 

The advantage of CATIA is its ability to generate hybrid of surface and solid 

geometries. Using the surfaces of blade and hub, the solid geometry of an impeller 

can be constructed as shown in figure 3-13. 
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Figure 3-13: Blade Impeller Used for the VAD 
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3.6 Computational Fluid Dynamics (CFD) 
 

Obtaining a satisfactory design of a pump is an iterative procedure. The derived 

values of design parameters need an experiment to support the design theory and 

hypothesis. An experiment at every stage of design procedure can be very expensive 

and time consuming. Numerical tools like computational fluid dynamics (CFD) can 

be employed in the early stages of the design process as well as in later stages of 

optimisation. Along with added benefits of the detail flow visualisation and goal 

oriented optimisation codes, CFD is a very useful tool for reducing numbers of 

experiments required for the design of a blood pump. 

The pump impeller is a solid object that generates the pressure difference across the 

pump by rotating within fluid region. In order to study the flow behaviour across the 

impeller this fluid regions needs to be created using the 3D CAD geometry of an 

impeller. For the purpose of this thesis and study commercially available ―ANSYS 

CFX‖ (Ansys Inc., Canonsburg, PA, USA) software has been used. Ansys platform 

support the smooth flow of data amongst various meshing and numerical tools. 

3.6.1 Converting CAD geometry for CFD Analysis 
 

―TurboGrid‖ is an interactive hexahedral grid generation tool available in 

ANSYS platform, specifically designed for turbomachinery. Turbo Grid requires the 

hub curve, shroud curve and the blade curve as an input to create rotating fluid 

domain. Generation of coordinates of impeller is an essential part of the procedure. 

That can be done via meshing software available in ANSYS platform. Procedure to 

incorporate 3D geometry of an impeller within TurboGrid for modelling of fluid 

region is as follows, 

Coordinates for Hub & shroud curves are defined using coordinates of line 

for the respective geometry. For meshing the solid geometry of an impeller these line 

needs to be labelled to extract the coordinates of hub, shroud  and blade as shown in 

figure 3-14. 
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Figure 3-14: Defining the Hub, Shroud & Blade Profile for Generation of 

Coordinates Required by TurboGrid 

All the coordinates should be saved in separate text file with an extension of *.curve 

or *.crv  

Machine data required for the generation of passage of a fluid domain needs 

to be provided before loading the curve files. That requires the selection of numbers 

of blade, axis of rotation and units of machine. Select the axis of rotation, which was 

defined while making 3D solid geometry of an impeller. 

Load the hub & shroud curve and blade curve in the details of hub, shroud, 

and blade set. TurboGrid is pre-programmed with several templates tailored to the 

complex curvatures of various types of turbomachinery to generate the fluid region 

and structured mesh of that region. The figure 3-15 shows 3D fluid region generated 

by TurboGrid based on machine data. 
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Figure 3-15: Fluid Region Generated By TurboGrid 

3.6.2 Mesh Generation 

 

Generation of computational mesh is a vital prerequisite to achieve reliable 

numerical solution for turbomachinery configurations. Mesh can be a mono domain 

or multi domain structured, unstructured or hybrid. Based on AGARD-AR-355 

(AGARD-AR-355, 1998) listed grid characteristics can have significant affects on 

accuracy of computational results, 

1) Grid type 

2) Grid size 

3) Near wall characteristic, including normal spacing and cell aspect ratio 

4) Grid distortion parameters, including stretching and skewness 

5) Tip clearance treatment 

Structured mono domain H-grid gives good results for far-field and periodicity 

conditions while it is not good at near wall region of leading and trailing edge due to 
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its highly skewed formation (AGARD-AR-355, 1998). A C-grid provides good 

resolution near leading edge and in wake, but became skewed near inflow and in the 

wake. While an O-grid gives good resolution, near leading edge and trailing edge but 

include skewness at inflow, outflow, and periodic boundaries. Use of unstructured 

tetrahedra gives greater flexibility in mesh generation process but they are less 

efficient in CPU time compare to structured mesh, however tetrahedral meshes are 

less tolerant of high aspect ratio, which generally occurs near solid wall boundaries 

(AGARD-AR-355, 1998). Hybrid meshing approach uses different types of 

structured and unstructured meshes in a way that makes use of the best of both 

approaches.  

Numbers of investigators have studied the effects of grid size on accuracy of results. 

Generally this study has shown that an average grid with 200000 points is necessary 

to capture satisfactory performance characteristic(AGARD-AR-355, 1998). Much 

finer grid with more than 1000000 points might require isolating the detailed flow 

features such as secondary flow and tip clearance flow. By using wall function for 

near wall region the overall number of grid, points can be reduced. 

 

Figure 3-16 Grid distribution over shroud  

Grid spacing near to wall and the cell aspect ratio affects the solution 

accuracy locally in the near wall region of the wall shear layers. A general guideline 

for calculation suggest the use of Y
+
 less then 1,which ensures that the first point of 

wall lies within the viscous sub-layer of the boundary layer (AGARD-AR-355, 

1998) . However, it depends on the turbulence model used for calculation, in contrast 
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to this guideline, majority of investigators have suggested Y
+
 value in between 20 to 

60.  

 

 

 
 

Figure 3-17 Grid distribution over Hub   

 
 

Figure 3-18 Spanwise layers of 3D volume mesh 

Cell aspect ratio near the blade and end wall surfaces can become extremely 

large as points are grouped in those regions (AGARD-AR-355, 1998). Typical 

recommended values for cell aspect ratio are in the range of 200 to 800.  
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Grid distortion can be characterised by the degree of grid stretching in any 

coordinate direction and the degree of grid skewness or shear between any two 

coordinates(AGARD-AR-355, 1998). The cell-to-cell size ratio should be less than 

1.3.  

Considering the recommended values for meshing designed impeller: these 

have been meshed using hybrid structured mesh with C-grid, H-grid and O-grid for 

better results is as shown in figure 16, 17, 18, 22. 

For the purpose of the thesis, the CFD flow domains were generated for the 

experimental setup that includes the inlet and outlet ducts along with the rotating 

impeller region [figure 3-19].  

 

 

Figure 3-19 Fluid Domain of Experimental Setup 
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For the entire flow domain, the mesh has been generated using 730604 elements that 

include prismatic inflation layers at walls of ducts and guide vane along with 

tetrahedra elements [figure 3-20] that are generated using Ansys CFD meshing tool.  

 

 

Figure 3-20: Mesh For Static Inlet Duct with Prismatic Layers at Wall 

surfaces 

Rotating fluid region is generated by Ansys TurboGrid using H, J, C, L and O gird 

with 280708 nodes and 264302 elements per passage of rotating fluid domain. 

[Figure 3-21]. For rotating mesh generation, the span wise blade distribution 

parameters are specified using boundary layer method. The Reynolds number 4000 

along with y+ 0.1 were used to generate the mesh. 

 

 

Figure 3-21 Hybrid Structured Hex Mesh for Rotating Fluid Domain 



Methodology 

87 

 

 

 
 

Figure 3-22 Hybrid structured 3D volume mesh 

 

 

Figure 3-23 Tip Clearance Mesh Using Quad Elements 

Tip clearance is also included in model at 95% of span using and 336 quad elements 

and 430 nodes. [Figure 3-23]. 
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3.6.3 Boundary Condition   
 

Boundary conditions are a set of properties or conditions on surfaces of domains, and 

are required to fully define the CFD flow simulation(ANSYS, 2011). The boundary 

parameters should have the meaningful values that represent the physical scenario in 

virtual CFD environment. However, it also depends on what exactly we want to 

study by performing a CFD simulation. For an implantable VAD pump the boundary 

condition needs to be applied according to cardiac events going on during cardiac 

cycle. Figure 3-24 depicts the cardiac events for the two complete cardiac cycles.   

 

Figure 3-24 Cardiac Events during Two Complete Cardiac Cycles 

(Guyton and Hall, 2006) 

Mainly two types of boundary are available in ANSYS CFX that is Fluid boundaries, 

and Solid boundaries. The type of boundary condition that can be set for VAD 

simulations depends upon the bounding surfaces. 

• A fluid boundary is an external surface of the fluid domain excluding 

surfaces where it meets other domains. 

• A solid boundary is an external surface of the solid domain excluding 

surfaces where it meets other domains. 
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• A fluid-fluid interface is the interface between two fluid domains. 

• A fluid-solid interface is the interface between a solid and fluid domain. 

• A solid-solid interface is the interface between two solid domains. 

 

 

Figure 3-25: Boundary Condition for Rotating Fluid Domain 

Figure 3-25 depicts the boundary condition for rotating fluid domain in CFX. A fluid 

boundary is an external surface of a fluid domain and supports following boundary 

conditions: 

• Inlet Flow- Fluid predominantly flows into the domain. 

• Outlet Flow- Fluid predominantly flows out of the domain. 

• Wall - Impenetrable boundary to fluid flow. 

• Symmetry Plane - A plane of both geometric and flow symmetry. 

 

A solid boundary is an external surface of the solid domain and supports the 

following boundary conditions: 

• Wall - Impenetrable boundary to fluid flow. 

• Symmetry Plane - A plane of both geometric and flow symmetry.
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3.6.4 Assumptions  
 

For the purpose of this thesis, two main assumptions are made regarding CFD 

investigation. Those are Turbulence and near-wall modelling and second working 

fluid blood. K-ω turbulence model with no-slip wall boundary (where fluid 

immediately next to the wall assumes zero velocity of the wall) were assumed for the 

rigid VAD components, and blood is considered as a Newtonian fluid. 

3.6.4.1 Turbulence and near wall modelling  
 

An elastic property of larger arteries clearly plays a significant role in wave 

reflection, vessel collapse, pressure and velocity profiles (Wiebalck et al., 1993), and 

may be important to atherosclerosis (one of the causes of myocardial infarction MI). 

Thus, these properties cannot be ignored when comparing numerical and clinical 

results. 

However, this thesis seeks to compare CFD and experimental models, both of 

which have rigid walls and thus no accuracy is lost due to no-slip wall (rigid wall) 

assumption. CFD calculations of the clinical effects of a rigid wall mechanical 

device in the circulation, are also unaffected by solvers capacity to model the wall 

elasticity.  

The selection of turbulence model is an important factor in CFD simulations. 

However, determining the best turbulence model for miniature axial flow pump can 

be challenging task (Behbahani et al., 2009). The default turbulence model available 

in CFD tools has to be re-evaluated for specific application of small size blood 

pumps. Wall effects become significant due to the complicated geometry of blood 

pump and relatively low flow rate. 

One of the advantages of the k-ω formulation is the near wall treatment for 

low-Reynolds number computations. The model does not involve the complex non-

linear damping functions required for the k-ε model and is therefore more accurate 

and more robust (ANSYS, 2011). A low-Reynolds k-ε model would typically 

require a near wall resolution of y+ <0.2, while a low-Reynolds number k-ω model 

would require at least y+ <2. In case of VAD flows, even y+ <2 cannot be 
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guaranteed in most of the applications. This is reason for the selection of   k-ω 

turbulence model. That allows for smooth shift from a low-Reynolds number form to 

a wall function formulation. 

3.6.4.2 Blood as Newtonian fluid 
 

Blood plasma is an incompressible fluid with a viscosity of about 1.2 cP (centipoise) 

slightly higher than water. Elasticity of red blood cell membrane and viscosity of 

intracellular fluid gives the viscoelastic property to whole blood. These properties 

depend on the shear rate, temperature and hemotocrit (Hellums, 1994). At constant 

haematocrit (in large vessels D> 0.5 mm) blood can be considered as uniform fluid 

of constant viscosity. Physiologically viscosity becomes independent of shear rate 

more than 1000 1/s (Meyns et al., 1994).  

At the macro scale, there exist different models with different degrees of 

accuracy in capturing the rheological behaviour of blood. In CFD analysis of flow 

quantities inside VADs blood is usually considered as a Newtonian fluid (Thurston, 

1979, Easthope and Brooks, 1980), although it is known to display non-Newtonian 

properties. Rheological properties mainly viscosity and elasticity are dependent on 

the rate of flow or shear rate (Sallam and Hwang, 1984). Shear rate that is a product 

of shear stress and angular velocity is also important parameters for the designing of 

VAD. Sallam and Hwang et al. measured approximately a threshold stress level of 

400Pa for 100 milliseconds during a turbulent jet experiment where Reynolds 

stresses dominated the flow field (Sallam and Hwang, 1984). 

 

3.6.5 Convergence and Grid Independence 

 

For running a successful CFD simulation for a complex profile like axial flow 

LVAD, it is essential to monitor the behavior of the numerical process. The concept 

of residual value is to depict the imbalance error occurring in every node of the grid. 

Convergence is obtained only when the scaled residual value achieves the specified 

range of tolerance. There are two types of convergence, namely qualitative and 

quantitative convergence. A decrease of the residual value by three orders of 

magnitude during the iteration process indicates the least qualitative convergence 
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(Anderson, 1995) .For the purpose of this thesis, 10
-4 

is considered as the residual 

value and at this the results are considered to be converged. There are various 

reasons for the convergence failing such as poor mesh, improper solver setting, non-

physical boundary conditions and selection of inappropriate turbulence models.  

 

Anderson (Anderson, 1995) argues that we cannot confirm the convergence based on 

getting the residuals obtained from discredited algebraic equations or by getting the 

time derivative approaching zero with pseudo time stepping will give accurate 

results. Hence the alternative way of assessing convergence which is quiet common 

is called grid independence or mesh convergence. By this method, ―the successive 

results obtained by finer and finer grids until the solution variation from one mesh to 

next mesh are under prescribed tolerance‖.  It means, when the result obtained at ―n‖ 

number of grid points reflects the result obtained at ―(0.5*n)‖, then it is considered to 

be grid independent solution.  
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3.7 Design of Experiment: A Parametric Study 
 

3.7.1 Introduction  
 

 

To initiate the design procedure for LVAD to achieve clinical objective, the 

specifications for the design needs to be set for the design of an axial flow pump. 

The specification parameters can be divided in two groups mainly the independent 

and the dependent parameters (figure3-26).  

 
Figure 3-26 Specification and parameters of axial flow VAD 

In case of the axial flow, LVAD size can be determined based on hydraulic 

requirement, surgical procedure, as well as the location of the pump installation. The 

rotational speed of the pump is the independent parameter that can be controlled 

physically; in addition, all the dependent parameters vary with the rotating speed. 

Clinical requirement from LVAD are diverse, that are 6L/min to15 L/min flow rate 

with 5mmHg to120mmHg of pressure rise depending on the severity of heart failure. 

This implies the LVAD should be able to operate at different design points rather 

than the specific design point to satisfy the clinical need. Statistical Design of 



Methodology 

94 

 

Experiment (DOE) technique is used to investigate the responses of the independent 

and dependent parameters using Design Explorer tool of Ansys. 

3.7.2 Design of Experiments (DOE) 
 

The detail explanation provided in this section for DOE is based on the Ansys help 

(ANSYS, 2011) provided by the Ansys Inc., Canonsburg, PA, USA. 

 

Design of Experiments is a statistical method used to determine the location of 

sampling points .There are several versions of design of experiments available in 

engineering literature. These techniques all have one common characteristic: they try 

to locate the sampling points such that the space of random input parameters is 

explored in the most efficient way, or obtain the required information with a 

minimum of sampling points. Sample points in efficient locations will not only 

reduce the required number of sampling points, but also increase the accuracy of the 

response surface that is derived from the results of the sampling points. 

Deterministic method uses a central composite design (CCD), which combines one 

centre point, points along the axis of the input parameters, and the points determined 

by a fractional factorial.  

3.7.3 Central Composite Design (CCD) 
 

Central Composite Design (CCD) also known as Box-Wilson designs is preferred 

since the prediction variance is the same for any two locations that are the same 

distance from the design centre. In addition, there are other criteria to consider for an 

optimal design setup using the design matrix.  

 

1. The degree of non-orthogonality of regression terms can inflate the variance 

of model coefficients.   

2. The position of sample points in the design can be influential based on its 

position with respect to others of the input variables in a subset of the entire 

set of observations.  

 

An optimal CCD design should minimize both the degree of non-orthogonality of 

term coefficients and the opportunity of sample points having abnormal influence. In 

file:///I:\THESIS%20V2\SEMI%20FINAL\Nksf%20new\dx_DOE_Generator_o_r.html
file:///I:\THESIS%20V2\V2%20OFFICE\dx_DOE_Generator_o_r.html
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minimizing the degree of non-orthogonality, the Variation Inflation Factor (VIF) of 

regression terms is used. For an optimal CCD, level is selected such that both the 

maximum VIF and the maximum advantage are the minimum possible.  

It is good practice to always verify some selected points on the response surface with 

an actual simulation evaluation to determine its validity of use. To capture a drastic 

change within the design space and to provide a better response surface fit seem to 

be conflicting in some cases where the response surface might not be as good as that 

of the Standard DOE due to the limitation of a quadratic response surface in 

capturing a drastic change within the design space.  

 

The location of the generated design points for the deterministic method is based on 

a central composite design. If N is the number of input parameters, then a central 

composite design consists of:  

1. One centre point.  

2. 2*N axis point located at the -α and +α position on each axis of the selected 

input parameters.  

3. 2
(N-f)

 factorial points located at the -1 and +1 positions along the diagonals of 

the input parameter space.  

The fraction f of the factorial design and the resulting number of design points are 

given in the following table:  

 

Number of input 

parameters 

Factorial 

number f 

Number of 

design points 

1 0 5 

2 0 9 

3 0 15 

4 0 25 

5 1 27 

6 1 45 

7 1 79 

8 2 81 

9 2 147 

10 3 149 

 

Table 3-2: Number of Generated Design Points as a Function of the 

Number of Input Parameters (ANSYS, 2011) 
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3.7.4 Response Surfaces  
 

There is one response surface or curve for every output parameter. Output 

parameters are represented in terms of the input parameters, which are treated as 

independent variables. For the deterministic method, response surfaces for all output 

parameters are generated in two steps:  

 Solving the output parameters for all design points as defined by a design of 

experiments (DOE).  

 Fitting the output parameters as a function of the input parameters using 

regression analysis techniques.  

3.8 Goal Driven Optimisation 
 

The Goal Driven Optimization (GDO) is a multi-objective optimization technique in 

which the "best" possible designs are obtained from a sample set of parameters. The 

GDO process is particularly useful in determining the effects of the input parameters 

with certain objectives on the output parameters. 

 

For the purpose of the thesis, GDO has been performed using Design explorer and 

CFX available within ANSYS platform by following listed steps: 

 Selection & Setup of input & output parameters in CFD simulation using 

CFX. 

 Generation of Pareto optimal set based on input and output parameter using 

MOGA (NSGA-II). 

 Selecting the best candidate using DSP. 

 

To make use of miniature motor for pump with high efficiency and low power 

consumption with minimum possible traumatic effects on blood components, size of 

rotary blood pump needs reduction. The pump’s operational speed is inversely 

proportional to the pump’s size; thus, a smaller pump corresponds to a higher 

rotational speed of the impeller. A higher rotor speed implies a higher value of fluid 

stresses, which could have a traumatic effect on blood components and presents a 

design trade-off scenario. 

file:///I:\THESIS%20V2\SEMI%20FINAL\Nksf%20new\dxresponse.html
file:///I:\THESIS%20V2\SEMI%20FINAL\Nksf%20new\dxparameters.html%23dxinputpar


Methodology 

97 

 

In order to generate these trade-off solutions, an old notion of optimality is normally 

adopted. This notion of optimality was originally introduced by Francis Ysidro 

Edgeworth in 1881(Edgeworth, 1981) and later generalized by Vilfredo Pareto in 

1896 (Pareto, 1896).It is called Edgeworth-Pareto optimum or, simply, Pareto 

optimum. In words, this definition says that a solution to a Multi objective problem is 

Pareto optimal if there exists no other feasible solution, which would decrease some 

criterion without causing a simultaneous increase in at least one other criterion. 

It should not be difficult to realize that the use of this concept almost always gives 

not a single solution but a set of them, which is called the Pareto optimal set. The 

vectors of the decision variables corresponding to the solutions included in the 

Pareto optimal set are called non-dominated. The plot of the objective functions 

whose non-dominated vectors are in the Pareto optimal set is called the Pareto front.  

 

GDO which uses Multi-objective Genetic Algorithm (MOGA), which can optimize 

problems with continuous input parameters, have been used for the optimisation of 

pump operative parameters mainly RPM. The GDO framework allows use of 

Decision Support Process (DSP) based on satisfying criteria as applied to the 

parameter attributes using a weighted aggregate method. In effect, the DSP can be 

viewed as a post processing action on the Pareto optimal set as generated by MOGA 

(NSGA-II). 

3.8.1 MOGA (NSGA-II) 
 

The MOGA used for this GDO is a hybrid variant of the popular NSGA-II (Non-

dominated Sorted Genetic Algorithm-II) based on controlled elitism concepts.(Weile 

et al., 1996, Deb et al., 2002, Deb and Goel, 2001).The non-dominated sorting GA 

(NSGA) proposed by Srinivas and Deb in 1994 has been applied to various problems 

(Mitra et al., 1998, ANSYS, 2011). The NSGA-II with controlled elitism has much 

better convergence property than the original NSGA. 

 

The Pareto ranking scheme is  done by a fast, non-dominated sorting method that is 

an order of magnitude faster than traditional Pareto ranking methods (ANSYS, 

2011). The constraint handling uses the same non-dominance principle as the 

objectives, thus penalty functions and Lagrange multipliers are not needed. This also 
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ensures that the feasible solutions are always ranked higher than the infeasible 

solutions.  

The first Pareto front solutions are archived in a separate sample set internally and 

are distinct from the evolving sample set (ANSYS, 2011). This ensures minimal 

disruption of Pareto front patterns already available from earlier iterations.  

3.8.2 Decision Support Process (DSP) 
 

GDO framework uses Decision Support Process (DSP) is a goal-based, weighted, 

aggregation-based design ranking technique(ANSYS, 2011).In these method n- input 

parameters, m-output parameters, their individual targets, and the collection of 

objectives is combined into a single, weighted objective function, Φ, which is 

sampled by means of a direct Monte Carlo method using uniform distribution.  

Lower the value of Φ, the better the design with respect to the desired values and 

importance. Thus, a quasi-random uniform sampling of design points is done by a 

Hammersley algorithm and the samples are sorted in ascending order of Φ. The 

desired numbers of designs are then drawn from the top of the sorted list (ANSYS, 

2011). A crowding technique is employed to ensure that any two sampled design 

points are not very close to each other in the space of the input parameters.  

Example of candidate generated for design-XX using DSP are shown in table 3-3. 

 

Selected Candidate From The GDO Sample Set using DSP 

 Candidate 1 Candidate 2 Candidate 3 

H In To Out 0.3789 1.2481 1.684 

Mass Flow Rate 0.06125 0.16878 0.059452 

Shaft Power 6.0089 25.882 26.01 

Total Efficiency 45.459 58.653 46.449 

RPM 8825 11968 14684 
 

Table 3-3: selected candidates from Pareto fronts using DSP 

From the generated candidates set as shown in table 3-3, Candidate 1 is selected as a 

design point. Further CFX simulations has been carried out to verify the pump 

performance at the RPM of candidate 1. 
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3.9 Concluding section  
 

The aim of this chapter was to demonstrate the general methodology used in this 

study and to describe the main tools involved. 

 

Main points that are discussed in this chapter are as below; 

 First section of this chapter helps in identifying the hydraulic and clinical 

requirement of VAD for the treatment of patients.  

 Second section provides the details of the clinical design criteria of VAD 

along with the details of hemolysis and thrombosis.  

 Third section discusses about the conventional design theory and provides 

equations for initialisation of design procedure. Conventional pump design 

equations were used to estimate the initial dimensions of the VAD. 

Depending on the specific desired operating conditions (rotating speed, flow 

rate, and pressure rise) and clinical requirements, the blade characteristics 

including diameter, leading/trailing edge angles, thickness and height were 

estimated using the pump design equations. 

 The fourth section discuss about the generation of 3D CAD geometry using 

the initial design calculation. CAD model helps in visualization of derived 

geometry and provides the base for the generation of CFD model.   

 The fifth section discuss about the CFD in detail that includes converting 

CAD model into .curve file, mesh generation, boundary condition and 

assumptions for the turbulence model .In addition it also provides the details 

for  the convergence and gird independency study. 

 Sixth section provides the details of parametric design of experiment study. 

 Last section discuss about the goal drivel optimization(GDO) including multi 

objective genetic algorithm(MOGA) and decision support process(DSP) 

which are helpful in deriving the optimum range of the operating speed of 

LVAD. 

 

Next chapter discuss about the outcome on the steady state CFD simulations of 

LVAD operating as a continuous axial flow pump. 
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Chapter 4 CFD Evaluation of LVAD as a Continuous Axial 

Flow Pump 
 

 

4.1 Abstract 
 

The design of an axial flow LVAD is an iterative procedure that requires exploring 

various impeller geometries and shapes; moreover it involves the verification of 

those shapes for their suitability to be used as a VAD. CFD simulations results 

presented for the purpose of this thesis and in this chapter are limited to the 

particular design that was selected for in vitro experimental evaluation of LVAD.  

 

This chapter provides simulations result of an LVAD operating as a continuous flow 

pump, that includes the results of CFD based parametric study using statistical 

design of experimental (DOE) method. This was carried out to analyse the impact of 

operating speed on the characteristic design parameters. The operating speed of the 

LVAD is obtained using Goal Driven Optimisation (GDO) considering the 

hemolysis criteria. The performance of the pump as continuous flow pump is 

computed using the result of an optimisation. The outcomes of the steady state CFD 

simulations for pressure, velocity and shear stress are discussed to visualise the 

internal flow details.     
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4.2 Design of Experiment (DOE): A Parametric Investigation  
 

The CFD based Design of experiment (DOE) study has been carried out to 

investigate the response of the dependent parameters mainly Pressure rise, mass flow 

rate, and the shear stress for the range of the independent parameter that is a rotating 

speed of LVAD. The design matrix is generated for the range of LVAD rotating 

speed-varying from 3000 to 30000 RPM, pressure rise of 5mmHg to 120mmHg and 

flow rate varying from 6L/min - 15L/min. Total efficiency (Incorporate flow leakage 

and mechanical losses) and shaft power are also taken into consideration while 

formatting the design matrix using Central Composite Design (CCD) method.  

4.2.1 Mass Flow Rate Vs Rotating Speed of LVAD 
 

 

Figure 4-1: Response Chart for Mass Flow Rate 

Figure 4-1 depictes the response of  mass flow rate of LVAD for the rotating 

speed,where  mass flow rate increases with  increasing rotating speed. The maximum 

flow rate or more than 2.541E-04 M
3
/sec is observed at 30000 RPM. The conversion 

of M
3
/sec in cc/sec gives the 254.1 cc/s that gives 15.246 L/min of flow rate. The 

minimum flow rate of 10.64 cc/sec that is 0.64 L/min ,is observed at 3000 RPM.  
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4.2.2 Pressure Rise Across Impeller Vs Rotating Speed of LVAD 
 

 

 

Figure 4-2: Response chart for pressure difference across impeller 

Above figure, 4-2 shows the response of pressure difference across impeller against 

rotating speed of LVAD. The maximum pressure rise of 18.769 KPa that is 140.76 

mmHg across the impeller is observed at 30000 RPM. At low speed, the pressure 

rise is observed to be 0.68 KPa that is 5.1mmHg at 3000 RPM.  
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4.2.3 Total efficiency  Vs Rotating Speed of LVAD 
 

 

 

 

Figure 4-3: Response chart for total efficiency 

Figure 4-3 depicts the response of total efficiency for the rotating speed of LVAD. 

Up to 20000 RPM the efficiency increases with the increasing rotating speed. After 

that it remains at ~74.5% through the axis. Minimum of  3.6343 % efficiency is 

observed at 3000 RPM.  
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4.2.4 Shaft Power  Vs Rotating Speed of LVAD 
 

 

 

 

 

Figure 4-4: Response chart for shaft power 

Figure 4-4 shows the shaft power response for the speed of pump. Shaft power 

decreases with increasing speed up to 5524 RPM, there after it increases with the 

increasing speed. Maximum ~14.8 watt power is observed at 30000 RPM. 
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4.2.5 Shear Stress Vs Rotating Speed of LVAD 
 

 

 

 

Figure 4-5: Response chart for shear stress 

Figure 4-5 depicts the response of shear stress for the rotating speed of LVAD. 

The response of shear stress depicted in figure 4-5 was located at the rotating 

impeller that includes the blades and hub. ~100 Pa shear stress were observed for 

low rotating speed which increases with the increasing speed. Maximum observed 

value is around 1550 Pa at 30000 RPM.  
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4.3 Need of Optimisation  
 

Designs of experiment (DOE) have demonstrated the anticipated performance of 

design as a continuous flow pump. In addition, it provides the detail view of the 

pump capacity to provide adequate flow rate and pressure rise for clinical objective. 

The maxima and minima for various parameters are derived from steady state 

simulations of LVAD. The best efficiency point 74.226 % is observed at 23083 

RPM, where the flow rate was 9.7L/min with the pressure rise of 12.930 KPa that is 

around 100mmHg pressure rise across the impeller, with the shaft power of 8.33 W. 

The shear stress is around 1031.3 Pa that is higher than the recommended value of 

400 Pa(Sallam and Hwang, 1984). At the best efficiency, the tip speed of the 

impeller is around 12.08 m/sec which is more than the recommended value of 10 m/s 

(Reul and Akdis, 2000). Despite having the best efficiency at 23083 RPM, it is 

unsuitable to operate LVAD at this design point due to complex behaviour of blood 

as well as the requirement of peripheral circulation. Thus, to operate the pump within 

the allowable limit of the shear stress for low hemolysis, the pump speed and 

efficiency are sub-optimal. Below the best efficiency point, the flow rate also 

reduces along with the require shaft power. In summary, the design parameters 

exhibit a trade off scenario amongst them for satisfying the design criteria as well as 

objective of LVAD.  

4.4 GDO of Operating Parameters 
 

Purpose of the Goal Driven Optimisation (GDO) is to determine the speed of 

rotation for LVAD, at which the pump can generate physiological flow rate with the 

least traumatic effects on blood components. The objectives for GDO were set 

according to the clinical requirement, primarily shear stress and Mass Flow Rate. 

The shear stress were set to have less than 300Pa keeping factor of safety of  1.3 

based on the limit shear stress 400Pa (Sallam and Hwang, 1984) . Mass flow rate is 

set for the 6 L/min which is mass flow rate required for an average cardiac patient 

(Wood et al., 2005). Along with the clinical parameters, the total efficiency and 

pressure rise across the pump were set to be maximum possible with the shaft power 

set to have a minimum possible.  
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The Multi Objective Genetic Algorithm (MOGA) is used to generate the Pareto 

fronts (sample set of parameters). Total 10000 initial sample set were used to begin 

the MOGA optimisation process. The total 800 Pareto fronts were generated by 

MOGA. The trade-off charts for Shear Stress, Mass Flow Rate, Pressure difference 

across the impeller and Total efficiency are shown in figure 4-6, 4-7, 4-8 and 4-9 

respectively. The feasible points are shown in the green color rectangles, where 

every point is a set of input and output parametrs. The  best feasible points( 

parametrs set) are shown Blue color rectangles while the non feasible points are 

shown in red color rectangle. 

 

 

Figure 4-6: Tradeoff chart of rotating speed of LVAD Vs shear stress 

 

The figure 4-6 shows the tradeoff chart for the rotating speed Vs the shear stress. The 

best feasible points are availabe up to 10500 RPM, where shear stress are well below  

300 Pa. For the shear stress below 250 Pa the LVAD speed can go up to 9000 RPM.  

Up to 8000 RPM the shear stress are observed to be well below 220 Pa.  
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Figure 4-7: Tradeoff chart of rotating speed of LVAD Vs mass flow rate 

Figure 4-7 shows the trade-off plot for the mass flow rate against the rotating speed. 

The best feasible points are available up to 10500 RPM. At the 10000 RPM LVAD 

can deliver the flow rate up to 6 L/min that is 100 cc/sec.  
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Figure 4-8: Trade-off chart of rotating speed of LVAD Vs Pressure 

difference across Impeller 

Above figure 4-8 depicts the trade-off amongst the pressure difference across the 

impeller and the rotating speed of LVAD. The pressure difference increases with the 

increasing speed of LVAD. Up to 10500 RPM the best feasible points are available 

that give the pressure rise up to 4.2 kPa that is 31.50 mmHg across the impeller. 
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Figure 4-9: Trade-off chart of rotating speed of LVAD Vs total efficiency 

Figure 4-9 shows the tradeoff plot for the total efficiency Vs rotating speed of 

LVAD. The best possiable points are available up to 11000 RPM that are presented 

around 50% line through  the axis.  

The tradeoff amongst the parameters shows the numbers of feasible candidate 

that can satisfy the LVAD requirement. The Decision Support Process (DSP) is 

employed to find out the best possible solution form the generated feasible solution 

sets (Pareto fronts). DSP have shortlisted the three best possible candidate that 

satisfies the clinical objective as well as the hydraulic requirement of the LVAD. The 

best design point gives the 8167.3, 8853.9, and 10077 RPM. These points show the 

range of rotating speed of LVAD that is 8000 RPM to 10000 RPM. At this speed, 

pump can deliver flow rate up to 6 L/min with pressure rise of 31.50mmHg and 50% 

efficiency with the shear stress well below 300Pa.  
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4.5 Pressure Vs Flow characteristics of LVAD as a Continuous Flow 

Pump 
 

The purpose of this CFD study is to find out the performance for the range of 

rotating speed derived using GDO. Steady state CFD simulations were carried out to 

investigate the characteristics of LVAD at different RPM. The computational run 

covers the range of operating condition to obtain the performance curves for an 

impeller at different RPM. Performance map of the pump is predicted in terms of 

head and  total efficiency of impeller against flow rate. Flow rate is varied keeping 

RPM constant. Total efficiency has been considered and plotted against flow rate, 

rather than static efficiency because of the relative importance of velocity head in 

case of axial flow pump. In case of the low-head pumps, at a given velocity, head 

loss constitutes a larger percentage of total dynamic head than in a high-head pump. 

Hence acute and complete evaluation of all head losses must be considered in higher 

specific speed pumps, since each element of head constitutes an important part of the 

total head, in case of axial flow pumps. The quality of the prediction deteriorates for 

the flow rate different from the nominal flow rate. Particularly at very low flow rates, 

calculations give serious underprediction of the head as well as efficiency.  

 

Figure 4-10: Head Vs Flow Rate 
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Figure-4-10 depicts the predicted performance of LVAD in terms of head against the 

flow rate for the range of RPM (3000-10000). At 3000 RPM, pump generates 5 mm 

of Hg pressure rise with 31.411% of total efficiency and  22.48 CC/s of flow rate. 

The pump generates 36.87 mm of Hg  with 106 CC/s of flow rate at 10000 RPM 

with 49.31% of efficiency. Table 1-1 shows the details for the derived rotating speed 

range of LVAD.  

 

Rotating 
speed of 

LVAD 

Total 
efficiency 

Mass 
Flow 
Rate 

Pressure Rise 
across the Impeller 

Shear 
Stress 

 RPM % CC/sec KPa mmHg Pa 

10000 

49.312 106.31 4.92 36.87 314.6 

55.857 87.93 5.34 40.03 333.09 

36.07 52.66 5.23 39.23 317.66 

12.938 17.05 5.72 42.94 261.17 

0.80086 1.01 6.22 46.64 229.15 

  
  
 9000 
  
  

59.938 93.78 4.31 32.35 276.32 

49.684 74.72 4.22 31.66 286.08 

30.524 64.72 4.64 34.78 264.47 

9.049 43.81 4.54 34.06 217.79 

0.78794 12.24 4.92 36.89 206.17 

  
  
8000  
  

56.182 82.98 3.41 25.56 231.5 

48.95 71.15 3.35 25.12 237.59 

36.511 52.58 3.43 25.75 239.43 

11.216 15.40 3.81 28.59 295.74 
 

Table 4-1: CFD simulation results for the Optimum range of rotational 

speed 

Shear stress is an important parameter for determing blood trauma. Blood trauma is 

dependent on stress level and exposure time of blood components with rotating & 

stationary surfaces of LVAD . Besides pump’s performance, it is essential to study 

the blood damage for the application of LVAD. To investigate the behaviour of wall 

shear for the range of RPM (3000-10000),  predicted values of wall shear is 

tabulated along with the total efficiency and the flow rate,  as shown in table 4-1. 

Total efficiency increases with increasing flow rate up to its higher efficiency point. 

Where the pump is generating the pressure head without any restriction at the outlet.  
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4.6 Detail flow investigation of continuous flow LVAD 
 

Internal flow details are investigated along with the bulk performance parameters. 

The descriptions of detailed flow are based on results obtained from steady state 

CFD simulation. The important regions of investigation of detailed flow are mid 

span, hub wall & tip wall region of LVAD impeller. Concentration of wall shear on 

the blade surfaces like leading edge, suction side, & pressure side were also 

deliberated.  

 

Figure 4-11: Region of Interest 

Figure 4-11 depicts the regions of interest where the span wise pressure & velocity 

data are collected at inlet, mid section and at outlet along the axis of rotation shown 

in yellow, red and green line. Along the span, hub wall region is presented in dark 

gray colour, mid span region is presented using transparent yellow cylindrical 

surface and tip wall region is presented using transparent gray colour. For the 

purpose of this thesis, results are discussed for the high efficiency point at 8000 

RPM.  
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4.6.1 Pressure  
 

Predicted span wise pressure values are plotted in figure 4-12 for the inlet, mid 

section & outlet. Predicted values near hub wall region gives the lower pressure 

below 20% of blade span. After 95% of span, near the tip region, higher pressure is 

observed. Increment of pressure form, inlet to outlet is also observed.  

 

Figure 4-12: Predicted Span Wise Local Pressure 

Pressure drop is observed near hub wall region as shown in figure4-13 as well as the 

drop in mass flow compare to upstream flow shown in figure 4-14. The deficit in 

mass flow is observed up to 20% of span. Observed pressure drop in the near wall 

region might be due to difference between the upstream flow with the flow in the 

cavity of near hub wall region and rotating blade surfaces. From figure 4-13 and 14, 

it is shown that, pressure side of the blade near leading edge generates higher 

pressure where mass flow is also higher compared to the surface towards trailing 

edge of pressure side where deficit in mass flow is observed up to 20% of span.  
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Figure 4-13: Pressure contour at 0.001% of Span 

 

Figure 4-14: Mass flow at 0.001% of Span 

Figure 4-15 to 4-17 shows the pressure contour for 20 %, 50%, and 80% of span. At 

20% of span, the maximum pressure of 13.49 KPa is observed at leading edge of the 

aerofoil-sectioned blade, which increases as we move towards tip section with 14.04 

KPa at 50% and 14.69 KPa at 80% span.  
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Figure 4-15: Pressure Contour at 20% of Span 

 

 
 

Figure 4-16: Pressure Contour at 50% of Span 

 

 
 

Figure 4-17: Pressure Contour at 80% of Span 
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4.6.2 Blade loading  

Streamwise blade loading chart in figure 4-18, 19 & 20 for respectively 20%, 50% & 

80 % of span. Across the length of blade, positive work done is observed over the 

span. The blade loading chart helps in understanding pressure variation along the 

surface of the blade; suction surface behaves like a flat plate prior to passage. 

 

 

 

 

Figure 4-18: Blade Loading at 20% Span 
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Figure 4-19: Blade Loading at 50% Span 

 
 

Figure 4-20: Blade Loading at 80% Span 
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4.6.3 Velocity 
 

Span wise velocities are plotted as shown in figure 4-21. Meridional velocity 

observed near hub wall region and shroud wall region, are less when compared to 

mid-span of impeller blade. Maximum meridional velocities are observed between 

20% to 80% of span, with maximum at 50% of span. 

 
 

Figure 4-21: Spanwise Meridional Velocity 

 
 

Figure 4-22: Velocity Streamline near hub wall region 

Figure 4-22 depicts the velocity streamline across the blade near hub wall region. 

Streamline are observed parallel to the blade surfaces and have higher velocities at 
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suction side compare to pressure side of blade. Figure 4-23 shows the velocity 

streamlines at 50% of span where no recirculation or secondary flow are observed. 

 

 
 

Figure 4-23: Velocity streamline at 50% span 

 

Figure 4-24: Velocity Streamline at Tip with Velocity Vector Plot at 

Trailing Edge of Blade 

At tip section of blade shown in figure 4-24, streamlines at training edge of blade are 

merging with upstream streamlines and moving away from the tip. This separation 

show signs of amendments for blade angle β2  at  trailing edge . 
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4.6.4 Shear Stress 
 

Figure 4-25, 26, 27 and 28 depict the observed shear stress at leading edge of 

impeller blade and hub wall region. Concentration of wall shear is observed at the 

leading edge towards suction side of the blade, mostly in the mid span area.  

 

Figure 4-25: Wall Shear at Blade and hub section           

 

 
 

 

Figure 4-26: Shear Rate 
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Figure 4-27: Wall shear stress at pressure side   

 
 

Figure 4-28 : Wall Shear Stress at Suction Side 

 

The high velocity gradient (shear rate) of 49669.539 S
-1

 is observed at tip of the 

leading edge over 80% of span, shown in figure 4-26. While pressure side shows less 

wall shear stress below 231.501 Pa, shown in figure 4-27 and 28. Apart from leading 
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edge of pressure side of the blade, remaining area of blade shows wall shear stress 

well below 57.876 Pa. 

4.7 Concluding Section  
 

This chapter demonstrates use of CFD as an important design tool. The results of the 

steady state CFD simulation proves the pumps ability to satisfy the hydraulic and 

clinical requirement of designed axial flow LVAD operating as a continuous flow 

pump. 

 

The main points, which were observed in this chapter: 

 In the first section, CFD based parametric design of experiment (DOE) study 

helps in verifying the LVAD’s ability to generate the physiological flow and 

pressure rise at different operating speed. This DOE study was mainly carried 

out to find out the effects of rotating speed on the various hydraulic and 

clinical design parameters.  

 Response charts of the hydraulic and clinical design parameters for the 

LVAD’s operating speed have demonstrated the trade off scenario amongst 

the parameters that can satisfies both hydraulic and clinical requirements. 

This trade off amongst the parameters requires the optimisation to get the 

operating speed of LVAD. 

 Third section shows the goal driven optimisation (GDO) which uses Multi-

objective Genetic Algorithm (MOGA) and Decision Support Process (DSP) 

to determine the operating speed of an LVAD. Using DSP, the range of 

operating speed which is 8000RPM to 10000RPM is derived. At this speed 

LVAD can deliver blood flow up to 6L/min, with the pressure rise of 31.50 

mm of Hg across the impeller with 50% efficiency and shear stresses well 

below 300Pa. 

 Fourth section shows the LVAD’s pressure Vs flow characteristics. This 

characteristic was determined using the approach similar to industrial pump 

design. Outcome of the study shows the anticipated performance of an axial 

flow pump. Moreover shear stresses are observed well below the hemolysis 
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limit for the optimum operating range that makes the axial flow pump 

suitable to operate as a continuous flow LVAD. 

 Last section of this chapter shows internal flow details of continuous flow 

LVAD. The detailed CFD investigation helps in visualizing the flow 

behaviour at critical locations of rotating and stationary components of   

LVAD. The key outcome of the simulations are listed below: 

 Velocity streamline for the tip section show the need of amendment to avoid 

probable recirculation of flow.  

 Shear stresses are mainly concentrated towards the leading edge and higher 

shear rate is observed near the leading edge of the rotating impeller blade. 

The maximum shear stresses are observed below the hemolysis limits. 

 

Next chapter will demonstrate the use of CFD for the evaluation of LVAD as 

pulsatile axial flow pump. 
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Chapter 5 CFD Evaluation of LVAD as Pulsatile Axial 

Flow Pump 

5.1 Abstract  
 

Generation of a pulsatile flow using an axial flow pump is a novel feature of this 

thesis. This chapter demonstrates the results of transient CFD simulations that are 

used to investigate axial flow pump performance for the pulsatile mode of operation. 

Transient CFD simulations allow more realistic calculations of the velocity and 

pressure fluctuations within LVAD during dynamic flow conditions. The outcome of 

the transient CFD analysis of an axial flow pump including pressure flow 

characteristics and shear stress estimation are discussed in detail. Furthermore 

internal flow details for the time varying changes for pressure, velocity and the shear 

stress is illustrated. 



CFD Evaluation of LVAD as Pulsatile Axial Flow Pump 

126 

 

 

5.2 Boundary condition for CFD simulation of pulsatile flow. 
 

After successful mesh generation for transient simulation, boundary condition for 

computational flow model, were set to initiate the simulations. Flow through the 

pump was defined to be transient for the investigation of flow behaviour of single 

pulse based on the heart rate. The reservoir pressure (hydrostatic tank) was applied at 

the inlet and outlet for initiation of simulation. The time varying motor speed was 

applied to rotating domain for generation of pulse using parabolic function based on 

heart rate [figure 5-1]. The optimised speed range that is 8000RPM to 10000 RPM 

was selected as a limit speed for the transient CFD simulations. 

 

 

Figure 5-1: Time Varying Speed for Rotating Domain 

Following the standard CFD practice, prior to each transient run the steady state 

CFD simulation were carried out to define the initial condition to fluid domain. The 

pressure rise across the impeller, flow rate and shear stress data were collected at 

each 0.01 s of the time step. 
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5.3 Pressure Vs Flow characteristic of LVAD as Pulsatile Axial flow 

Pump 
 

Pressure Vs flow characteristics helps in understanding the performance of pump 

during systole and diastole. Traditionally, this characteristic is obtained by keeping 

the shaft rotating at a constant speed and by restricting the flow at the outlet. In case 

of pulsatile flow LVAD, the shaft speed varies with time for the respective heart rate. 

Hence, the characteristics are obtained by varying the rotating speed and observing 

the outlet flow for the single pulse based on the heart rate. Figure 5-2 depicts 

pressure rise across the impeller against mass flow rate that is generated for 40, 60, 

80, and 100 BPM heart rate for the 10000 RPM limit speed. Despite the different 

heart rate, the pressure rise across the impeller Vs flow rate curve remains the same 

as shown in figure 5-2. In addition, Figure 5-3 shows the time varying flow rate and 

pressure rise for the same pulse. And figure 5-4 and 5-5 shows the time varying 

pressure and flow characteristics for the different heart rate.  

 

Figure 5-2: Pressure Vs Mass Flow Rate for 10000 RPM 
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Figure 5-3: Flow Rate and Pressure Rise Across Impeller Vs Time 

Pressure rise across the impeller varies according to the varying rotational speed 

during acceleration and deceleration phases of systole. Respective pressure and flow 

values forms a curve as shown in figure 5-3. During diastole, the pressure rise and 

flow remain constant. Despite this, the pressure rise is stopped at the end of systole, 

the flow remain continue during diastole. A constant pressure difference is also 

observed across the impeller during diastole.  

 

Figure 5-4: Pressure Vs Time based on Heart Rate 
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Figure 5-5: Flow Rate Vs Time based on Heart Rate 

For10000 RPM limit speed, Figure 5-4 shows the pressure rise across the impeller 

Vs time for different heart rate and figure 5-5 shows the flow rate Vs time for the 

different heart rate.  

 

5.4 Detail flow investigation of pulsatile axial flow LVAD  
 

The detail CFD investigation of pulse generation using transient analysis has been 

carried out, for 40, 60, 80, and 100 BPM heart rate and the limit speed of impeller 

varying from 5000 to 10,000 RPM. For the purpose of this thesis, outcomes of 

60BPM heart rate with 10,000RPM limit speed are discussed in detail. 
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5.4.1 Pressure  
 

 

Figure 5-6: Pressure rise across rotating domain (Pout -Pin) 

Computed time varying pressure rise across the impeller is depicted in figure 5-6. 

The maximum pressure rise of 3.43 KPa across the impeller is observed at 0.17 sec 

which is almost at the same time of the maximum RPM that is shown in figure 5-7. 

 

Figure 5-7: Rotational Speed Vs Time 

These figures are generated for 60 BPM heart rate considering 0.333-systole duration. 

Rotating domain accelerates up to limit speed and decelerates back to zero within 
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333ms. Pressure rise across the pump is negligible for initial 30ms. From 40ms to 

170ms, the pressure rise across the impeller rises with the increasing rotational speed, 

then decreases in correspondence to rotational speed up to 333 ms. Further increments 

in pressure rise across the impeller is observed even after the rotational speed reaches 

zero. This remains until the end of pulse with 0.5KPa magnitude. Even though there 

is no energy transferred to the fluid domain, this evident pressure difference drives the 

flow across fluid domain.  

5.4.1.1 Span wise pressure distribution at 15% span 
 

Time varying span wise pressure distribution near hub at 15% span are depicted in 

figures below. These figures are generated for the 0,70,150,220,270,300,333,360, 

700 and 999 ms  that covers the pulse generated during systole ( 0-333msec ) as well 

as diastole ( 333-1000msec ).  

 

 

 

C D 

A B 
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Figure 5-8: Pressure Distribution At 15% Span. A) Pressure Distribution 

at 0ms B) At 70ms C) At 150ms D) At 220ms E) At 270ms F) At 300ms G) 

At 333ms H) At 360ms I) At 700ms J) At 999m 

 

At the beginning of acceleration (initial 30ms), the pressure difference between inlet 

and outlet of the rotating domain is negligible and corresponding span wise pressure 

contour plots at hub, shows the pressure difference across the blade, where the high 

pressure is evident at lower surface. Upper surface shows the formation of low-

I J 

G H 

E F 
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pressure region near the leading edge and the trailing edge. During this initial period 

of 30 ms, high pressure is observed at both inlet and outlet. With progressing time 

during systolic phase,  high pressure is observed at lower surface of blade and the 

upper surface shows evenly distributed low pressure through out the length of blade, 

which is evident in the figures for systolic time duration of 0 to 300 ms. During the 

systolic time period,  the pressure difference between the inlet and outlet increase 

with increasing rotational speed and decreases with the reducing speed. At 333ms, 

the systolic phase of VAD finished and the impeller is at rest. During this period, the 

pressure rise across the blade is observed to be negligible. Further increase in 

pressure difference across the fluid domain is observed in diastolic period where 

inlet pressure is more than outlet pressure: this in contrast to the systolic phase where 

outlet pressure in observed to be more than inlet pressure. In addition, the high 

pressure in observed at the upper surface, near leading edge and low pressure is 

observed at lower surface of blade.   

5.4.1.2 Span wise pressure distribution at 50% span. 
 

Span wise pressure distribution near mid span at 50% span are depicted in figures 

below. These figures are generated for the same periods of the previous section. 

Time varying Pressure distribution is similar to the near hub region with the 

noticeable difference in the magnitude of pressure, where at the beginning of systole 

lower pressure is observed through the length of blade along with the separate low-

pressure region in fluid domain above the upper surface near trailing edge side. 

 
 

A B 
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Figure 5-9:  Pressure Distribution at 50% Span. A) Pressure Distribution 

at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) at 300ms G) at 

333ms H) at 360ms I) at 700ms J) at 999ms. 
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5.4.1.3 Span wise pressure distribution at 85% span. 
 

Span wise pressure distribution near mid span at 85% span are depicted in figures. 

These figures are generated for the same periods of 15% and 50% span.  

 

 

 

 

F 

 D 

B 

I J 

A 

E 

H 

C  

G 



CFD Evaluation of LVAD as Pulsatile Axial Flow Pump 

136 

 

 

 

Figure 5-10: Pressure Distribution at 85% Span. A) Pressure Distribution 

at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) at 300ms G) at 

333ms H) at 360ms I) at 700ms J) at 999ms. 

At the beginning of systole, similar to mid span and near hub region at 85% span, 

high pressure is observed at lower surface however, no separate high or low-pressure 

region in fluid domain is observed. During acceleration period of systole near 

trailing edge of lower surface, a high-pressure region is observed. At the same time, 

low-pressure region at upper surface seem to be dragging the blade against rotation. 

Similar to mid span and near hub region during diastole, the low-pressure region is 

observed at lower surface mainly at the leading edge side. Further in time frame, at 

the end of diastole this low-pressure region expands across the length of lower 

surface along with the concentration of low-pressure moves away from lower surface 

within the fluid domain. 

5.4.1.4 Meridional Pressure Distribution  
 

In this section, time varying meridional pressure distribution are depicted in the 

figures. Meridional plots helps in observing the pressure distribution along the axis 

of rotating fluid domain. Periods of these plots are in line with the previous section. 

During the systolic phase, low-pressure at inlet and high pressure at outlet is 

observed.  
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Figure 5-11: Meridional Pressure Distribution. A) Meridional Pressure 

Distribution at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) at 

300ms G) at 333ms H) at 360ms I) at 700ms J) at 999ms. 

 

At the end of systole the pressure at inlet is observed to be higher than the outlet and 

the difference between the two sides remain almost same for rest of the diastolic 

period [figure 5-11].  

I J 
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5.4.2 Velocity 
 

 
Figure 5-12: Velocity Vs Time 

 

Computed time varying velocity at outlet is depicted in figure 5-12. Maximum of 

3.79 m/s is observed at 170 ms during systole. During diastole, velocity remains 

almost 1.07m/s. The velocity streamline provides information concerning areas of 

irregular flow patterns. These velocity profiles can be examined along any plane of 

interest in computational flow field to identify regions of irregular flow patterns and 

large gradients resulting in fluid stresses. The velocity streamline plotted at 15% 

span that is near to hub region, at 50% span near the mid section and at 85% span 

near to the tip of impeller.  

5.4.2.1 Velocity streamline plot at 15% span 
 

The velocity streamline depicted in figures below are generated for the near-hub 

region at 15% span. At the beginning of systole, streamline shows the disturbance in 

flow. During acceleration and deceleration, the streamline from inlet and outlet are 

observed to be in parallel to the blade surfaces and have higher velocity at upper 
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surfaces of the blade compared to lower surfaces of blade. In addition, no 

recirculation or secondary flows are observed. 
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Figure 5-13: Velocity Streamline Plot at 15% Span. A) Velocity 

streamline plot at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) 

at 300ms G) at 333ms H) at 360ms I) at 700ms J) at 999ms. 

 

During diastole phase where impeller is at rest the streamline shows the formation of 

recirculation regions at the lower surface of the blade. Because flow continues 

during this phase, the impeller blade behaves as an obstacle for the flowing fluid.  

5.4.2.2 Velocity streamline plot at 50% span 
 

Velocity streamline plot at 50% span shows similar behaviour of the near hub region 

during systole and diastole. Noticeable difference in the magnitude of velocity at the 

mid span, where the flow velocities are higher than the near hub region. Despite that 

recirculation and secondary flows are absent during systole. 
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Figure 5-14: Velocity Streamlines Plot at 50% Span. A) Velocity 

streamline plot at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) 

at 300ms G) at 333ms H)at 360ms I) at 700ms J) at 999ms. 

During diastole, the recirculation region is observed near leading edge of lower 

surface of the blade. 
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5.4.2.3 Velocity streamline plot at 85% span 
 

In this section figures shows the Velocity streamline at 50% span for the systole and 

diastole phase. Velocity streamline shows the similar behaviour that is observed at 

15% and 50% spans.  
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Figure 5-15: Velocity streamline plot at 85% span. A) Velocity streamline 

plot at 0ms B) at 70ms C) at 150ms D) at 220ms E) at 270ms F) at 300ms 

G) at 333ms H)at 360ms I) at 700ms J) at 999ms. 

Noticeable low velocity streamlines were observed in fluid domain above the  

upper surface of blade in fluid region during systole.  
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5.4.2.4 Meridional velocity plot 
 

Times varying meridional velocity are depicted in figures for the period of systole 

and diastole. During systole, the higher velocity is observed at the inlet of pump and 

near shroud region. At the beginning of systole, the velocity vectors show the flow in 

both direction that is in the direction towards inlet and outlet. For the same period, 

the pressure rise across the pump is also negligible. With the increase in acceleration, 

the velocity vectors show the flow from inlet to outlet, with higher velocity near 

shroud region. 
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Figure 5-16: Meridional Velocity Plot. A) Meridional Velocity Plot at 0 

msec. B) at 70msec C) at 150msec D) at 220msec E) at 333msec F) at 

360msec G) at 700msc H) at 999msec. 

 

Through the acceleration and deceleration during systolic phase, recirculation or 

secondary flow were absent within the fluid domain. During diastole the higher flow 

velocity were observed near the hub region compared to the shroud region. The 

magnitude of the velocity during systole is 1.07 m/s that is very low compared to the 

peak velocity of 3.79 m/s. Similar to the streamline observations the recirculation is 

observed near hub region during diastole, that remains till the end of diastole. 

G H 
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5.4.3 Shear stress 
 

To avoid hemolysis, shear stress on the impeller is one of the crucial design 

concerns. Figure 5-17 shows the graphical representation of time varying maximum 

shear stress levels in VAD. This graphical representation provides predictions 

regarding regions of low and high stresses in VAD. At 170 ms highest shear stress is 

observed at the tip of blade as well as the leading edge [figure 5-18] that is around 

320 Pa  which is far below the value of 400 Pa quantified by Sallam and Hwang 

(Sallam and Hwang, 1984) threshold at which hemolysis occurs. The lower stresses 

ware found near the hub.  

 

Figure 5-17: Wall Shear Stress Vs Time 

 

Figure 5-18: Wall Shear Stress At 170ms 
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The fluid is exposed to higher shear stress during systole compare to diastole. At 

higher values (above 300 Pa) fluid is exposed for 50ms time duration. The average 

shear stress in rotating component during systole is 175.55 Pa for 333ms. During 

diastole, fluid is exposed to 32Pa shear stress for 667ms time duration.  

5.4.3.1 Shear rate  
 

Shear rate that is a product of shear stress and angular velocity is also important 

parameters for the design of VAD. It is also critical due to the fact that the blood is a 

viscoelastic fluid and its rheological properties mainly viscosity and elasticity are 

depends on the rate of flow or a shear rate(Hellums, 1994). Figure 5-19 depicts the 

time varying shear rate in X, Y and Z direction during systolic and diastolic phase of 

pulse. 

 

Figure 5-19 : shear rate Vs Time 

The shear rate varies with the time varying speed of rotating fluid domains and 

remains predominant in the direction of flow. Similar to shear stress observation, 

fluid is exposed to high shear rate for shorter duration of systole and low shear rate is 

observed for longer duration than diastole. The fluid is exposed to shear rate above 
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50000 s
-1 

for 150 ms and average shear rate of 42319.8 s
-1 

is observed for total 

systole of 333 ms.  

5.5 Concluding Section 
 

This chapter demonstrates the use of CFD for characterisation of LVAD’s pulsatile 

flow .The results of the transient CFD simulations proves the unique feature of the 

thesis that is a generation of pulse using an axial flow LVAD. The characteristic 

curves were generated for 40, 60, 80 and 100 BPM heart rates and limit operating 

speed in between 8000 to 10000 RPM. The results presented in this section are 

mainly for the 10000RPM.  

 

The key findings of this chapter are listed below. 

 The first section discusses about the boundary conditions needed to simulate 

the real world scenario of a pulsatile flow LVAD where the rotating domain 

speed varies with time to generate a pulsatile flow.  Prior to each transient 

run the steady state CFD simulation are helpful in defining the initial 

condition of fluid domain.  

 Second section discusses about the characterisation of a pulsatile axial flow 

LVAD. This novel feature of thesis was presented using the tabulated data 

collected at each 0.01 s of the time step for systolic and diastolic pressure rise 

across the impeller and a time varying mass flow rate. Outcome of these data 

clearly shows the LVAD’s ability to generate pulse by controlling the 

operating speed of an axial flow pump impeller. 

 Last section of this chapter shows flow details of pulsatile axial flow LVAD 

for systole and diastole at different time frame. The time varying flow details 

helps in understating the flow behaviour during the single pulse.  The key 

features are as below; 

o Pressure distribution shows the high pressure at lower surface of 

blade during systole,  while during diastole the pressure concentration 

is observed at the upper surface of the blade. For the same time frame 

the high pressure is generated by impeller at outlet section during 

systole while it reverses during diastole.  
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o Velocity distribution has shown the disturbance in flow at the 

beginning of systole, while during systole the smooth steamlines were 

observed. Higher velocity streamline observed at upper section of the 

blade. During diastole blade is seems to behave as an obstacle to 

flowing fluid. Recirculation regions were observed near the lower 

surface of blade. 

o During systole, higher shear stresses and shear rate were observed at 

tip and leading edge. As anticipated the shear stresses and shear rate 

were increasing during acceleration phase of systole. While during 

diastole low shear stresses and shear rate are observed throughout the 

rotating domain.  

 

Next chapter will discuss the experimental setup which was design and 

manufactured for the purpose of the study and thesis.  

 

.  
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Chapter 6 Experimental Setup 
 

6.1 Abstract  
 

Experiments are essential to validate the mathematical (CFD) model as well as the 

geometrical design of a pulsatile axial flow LVAD. It also helps to assess LVAD 

functions under dynamic flow conditions and analyzes the LVAD’s ability to 

perform in animal and support life.  The special purpose experimental setup, control 

and data accusation system were developed for the purpose of the thesis. This 

chapter provides the step-by-step details for the experimental setup and its various 

electro-mechanical components. Moreover the limitations of experimental setups are 

discussed in detail.   
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6.2 Introduction  
 

This section introduces the general features of the experimental setup with the 

description of the components, calibration, and limitations. The experimental setup is 

mainly built for in vitro evaluation of pulsatile pumping function. The motor control 

system is specifically designed and developed for generation of pulsatile flow at 

different heart rates. It can also be used for the validation of CFD simulations of 

impeller.  

Figure 6-1 shows the schematic overview of the experimental setup. In the 

setup, water comes from the reservoir which was placed at a certain height that 

provides pressures of 10.66KPa, 13.2KPa and 16KPa. These pressures are equivalent 

to ventricular pre-load of 80mmHg, 100mmHg, and 120mmHg respectively. Two 

silicon tubes of 12mm diameter were placed between the reservoir and setup.   

 

The two pressure transducers were inserted at the inlet (P1) and outlet (P2) 

respectively through a Y-Junction and advanced inside the tubes until the desired 

position was reached. An ultrasonic flow probe was attached to the tube, which is 

near to outlet. Rotating shaft with impeller was placed in the middle of housing with 

two flow straightners on both sides. Distal end of shaft was connected to motor, 

which is connected to the PC based motor controller. Data was acquired from:  

pressure transducer-1, pressure transducer-2 and ultrasound flow probe.  

 

An angle of 30° was maintained between the axis of rotation and inlet as well 

as outlet tubes, which allows the motor to remain outside the flowing fluid. That 

helps in selection of a normal DC motor without any waterproofing functionality. 

Flow straightners blades were placed at the either side of the rotating impeller; to 

eliminate flow disturbance that might occurs due to 30° inclination of tubes angle.
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Figure 6-1: Schematic view of the experimental setup used for pulsatile flow experiments as well as CFD validation 
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6.3 Experimental Setup  
 

 

 
 

Figure 6-2 A) CAD model of experimental setup. B) Experimental setup. 

C) Experimental setup with control computer. 

6.3.1  Components of Setup 
 

6.3.1.1 End block 
 

End blocks are designed to provide the structural support to various components of 

setup. It is made of aluminum alloy and coated with corrosion resistant material. The 

Y shape internal ducting helps to accommodate flow straighteners and end covers, 

A 

C 

B 
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Single opening of the end block provide the structural support for the impeller casing 

that is a made up of a transparent Perspex material. 

        

Figure 6-3: A) CAD cross-sectional model of end block. B) Experimental 

setup of end block.  

6.3.1.2 Flow straighteners with End cover 
 

      

 

Figure 6:6-4: A) Straighteners assembly with end block. B) Experimental 

setup with end block. C) CAD assembly of straighteners with end block. 

The flow straighteners lies inside the end block housing nearby inlet and outlet. Flow 

straighteners with End cover are made of aluminum alloy and coated with corrosion 

A B 

C 

A B 
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resistant material. It helps to maintain the flow in straight line thereby eliminate the 

flow disturbance as well as pre-whirl in front of impeller. 

6.3.1.3 Impeller 
 

The VAD impeller is made of titanium- Ti6Al4v that helps in its biocompatibility as 

well as making the impeller lightweight.  It is made using 5-axis CNC machine with 

two blades positioned 180 degrees apart. 

 

 

Figure 6-5 Impeller with rotating shaft  

6.3.1.4 Ducts and Reservoir 
 

 12 mm silicone tubes are used to carry the water between reservoir and pump: two 

cocks and one-way valve, controls the flow of water inside these ducts.  

 

Figure 6-6 Reservoir 
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6.3.1.5 Rotating shaft  
 

A 120mm long rotating shaft made of stainless steel, rotates within the straightener 

and end cover assembly without coming in contact with working fluid. The dynamic 

FEA simulation has been carried out for the shaft impeller assembly using 10609 

triangular elements to find out the total deformation during pulsating mode of 

operation. Maximum deformation 0.003049 mm is observed at 12000 RPM.  

 

Figure 6-7 FEA stimulation of rotating shaft depicting total deformation 

at 15msec. 

6.3.1.6 DC motor 
 
The pump is driven by an EC-MAX 22 brushless 12 W DC motor (Maxon Motor ag, 

Sachseln, Switzerland). The motor has embedded Hall-effect sensors and 512 CPT 

encoder at the end of the axes.  
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Figure 6-8 DC motor assembly with experimental setup. 

6.3.1.7 Y-connectors  
 

Two Y shaped connectors are used to connect the ducts and inlet of setup. They are 

mainly used to insert the pressure transducers within fluid region of setup.  

Y-connecters are also useful in maintaining water levels in reservoirs as well as the 

pre-load for VAD impellers.   

 

 

Figure 6-9 Y connectors attached to experimental setup. 
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6.4 Control and Data Acquisition Systems 

For the purpose of this thesis, two separate systems are used for motor control and 

data acquisition purpose. The motor control system is specifically designed and 

developed for generation of pulsatile flow for different heart rate. For pressure and 

flow rate measurement, commercially available Sonometrics data acquisition system 

is used. 

6.4.1 Motor Control System Using EPOS 2 24/5 Positioning    Controller and 

Lab View 
 

 

Figure 6-10 Wire diagram of EPOS 2 24/5 controller system 

EPOS2 24/5 features 32-bit Digital Signal Processor Technology permitting 

outstanding motion control functionalities. EPOS2 24/5 executes complex 

mathematic algorithms with high efficiency. The encoder input offers a resolution of 

up to 2 500 000 increments and an input frequency of up to 5 MHz. Due to 

Interpolated Position Mode, the positioning unit is able to synchronously run a path 

specified by interpolating points; this with great dynamics and high accuracy. 
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Coordinated multiple-axes movements within a master system or any profile within a 

single-axis system can also be executed using EPOS2 24/5.  

6.4.1.1 Calibration of Velocity, Speed and Current  
 

Prior to experiment, regulation tuning permits an extremely efficient adjustment of 

current, velocity, speed (RPM) or position regulation. The Graphic User Interface 

(GUI) EPOS Studio allows fast-automated calibration. This GUI tool helps in tuning 

the motor control parameter after assembly in setup, which helps to assure accurate 

and precise control over impeller speed. 

6.4.1.2 LabView interface using EPOS2 24/5  
 

An integrated data acquisition and control system is designed using LabView for a 

DC motor in an experimental setup. The EPOS2 can be controlled by means of a 

CAN Master (for example PLC, Soft PLC) or with PC via USB or RS232. The 

standardized CAN open interface permits integration and coordination of several 

drives. Additionally integrated gateway functions (USB-to-CAN, RS232-to-CAN) 

facilitate access to CAN frame-works once more. IBM ThinkPad, P3 1.1 GHz and 

512 MB RAM, laptop computer have been used to control EPOS2 24/5 unit.  
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Figure 6-11 Labview control box for experimental setup. 

LabView software (National Instruments Corporation) provides seamless hardware 

integration for control and data acquisition. EPOS.dll file provides useful tools for 

integration of EPOS2 unit with PC using LabView for motor control and data 

recording purpose. Using embedded motor encoder and hall sensors, the control and 

data acquisition code has been developed for generating pulse at heart rate varying 

from 0 to 120 beats per minute. This code also record the time based current, speed, 

and position of axis in ―.txt‖ format. This is very helpful in future post processing of 

the data.  
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6.4.2 Data Acquisition System for Pressure and Flow Measurement  
 

Two Ø2.0 mm pressure catheters,  Millar Instruments Inc, Houston, TX, USA with 

sensors and an Ø12 mm ultrasonic flow probe,  Transonic, Ithaca, NY, USA were 

used to detect real time pulsating flow. For collection of signals from the pressure 

and flow transducers, they were connected to a PC. Signals from that were fed into 

custom-made programs for data processing and logging, based on the PC running 

SonoLAB on Sonometrics data acquisition software (Sonometrics Corporation, 

London, Ontario, Canada). SonoLAB helps in collecting real time data for flow rate 

in CC/s and pressure in KPa. Sonolab also helps in converting data into ―.txt‖ 

format.       

   

6.4.2.1 Calibration of Pressure and Flow Probes 
 

At the beginning of each experiment, the calibration of two pressure probes and one 

flow probe is necessary. The calibration of the two pressure probes were done by 

inserting both the probes together in column of water at different levels to ensure 

consistent calibration between the probes. Depending on measured value, the slope is 

derived, which gives the calibration value for pressure probes. 

 

Figure 6-12 Calibration chart for pressure  
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Flow probe calibration was done by use of a continuous flow pump with valve to 

control the flow. Values obtained by timed collection of water in measuring jar at 

different flow rate. The slope for flow calibration was then obtained by plotting these 

values on the graph. 

 
Figure 6-13 Calibration chart for flow rate. 

 

6.5 Technical Limitation of Experimental Setup  
 

Experimental setup consists of various mechanical and electronic components. 

Despite the best efforts made during manufacturing and assembling the components, 

certain physical limitation might affect the outcome of the experiments.  

6.5.1 Time delay 
 

Electronics components like EPOS-2, Pressure transducers and ultrasound flow 

probes have inherent time delay. Control and data acquisition systems have 10-

millisecond time delay. In addition these devices are connected to computers. The 

CPU time delay might also affect the outcome of the control and data actuation 

systems. 

6.5.2 Sampling Rate  
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The cardiac events are in the range of millisecond that is 333ms for systole based on 

heart rate. While the sampling rate for the data acquisition system used for the 

experimental setup, has 1000Hz sampling rate that gives one sample per millisecond. 

Therefore, for systole the 333 samples and for diastole the 667 samples can be 

acquired using the existing system. That is considered acceptable as the experiments 

are carried out in vitro without using blood as working fluid.  

 

For the further detailed experimental investigation the sampling rate should be more 

than 1000 Hz with real time control and data acquisitions systems, are 

recommended.   

6.5.3 Vibration of rotary components  
 

While designing and manufacturing the rotating shaft, the total deformation was 

minimised to 3 micron at 12000 RPM and roller bearings were used to minimise the 

friction. Despite that, vibration might occur due to mis- alignment or loose fittings of 

the components, while rotating at high speed. A vibrating shaft can reduces the tip 

gap between the blade and casing. In the worst scenario shaft could be suddenly 

blocked during operation. A vibrating shaft can also adversely affect the encoder of 

the motor.  

6.5.4 Silicon tubes 
 

Silicon tubes were used to connect the reservoir and the control valves were also 

connected using these elastic tubes during continuous and pulsatile mode of 

experimental evaluation. The silicon tubes can inflate under the pressure that can 

create extra space for the fluid to accommodate. This inflation acts as a capacitor that 

can affect pressure and flow rate observation.  
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6.6 Concluding Section 
 

This chapter introduces the various features of the experimental setup. The setups 

was mainly designed and built for the in vitro evaluation of LVAD’s impeller. Using 

the dedicated control system setup is capable to investigate the LVAD’s performance 

in both continuous and pulsatile mode. It was also used for the validation of 

mathematical model (CFD). 

 

The main points, which were reviewed in this chapter: 

 The first section of this chapter provides the schematic overview of the 

experimental setup. 

 Second section describes various components of setup in detail. 

 Third section discusses the dedicated control and data accusation systems. 

This section also provides the details for the calibration of pressure probes 

and ultrasound flow probes. 

 Last section shows the limitation of setup that might affect the outcome of an 

experiment. 

 

Next chapter will provide the results of in vitro experiments of LVAD as a 

continuous flow pump. 
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Chapter 7 In Vitro Evaluation of LVAD as a Continuous 

Axial Flow Pump 
 

7.1 Abstract  
 

This chapter details the experimental results of an LVAD operating as a continuous 

flow pump. In Vitro, experiments were carried out to evaluate the performance of an 

axial flow LVAD as a continuous flow pump. The pressure rise across the impeller 

and flow rate were measured for the impeller rotating at a constant speed.  

Experiments were carried out for the range of rotating speeds without exceeding the 

limit speed derived using GDO. 
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7.2 Setup Preparation  
 

Prior to each experiment, calibration of pressure and ultrasound flow probes 

were performed and motor tuning was done to ensure the quality of measurement 

and control. The prototype impeller was mounted in the experimental setup and inlet 

and outlet port of setup were connected to reservoir. The motor was connected with 

the experimental setup and tuning was done to verify smooth impeller rotation in the 

assembly. Calibrated pressure transducers were placed 10mm away from the suction 

and pressure side of the rotating impeller, thought Y-connectors. Water was filled 

within circuit though the reservoir. A manual control valve was placed at the outlet 

and the ultrasonic flow probe at the inlet for flow measurement. The motor was then 

started to initiate the experiment.  

7.3 Protocol 
 

The control valve was kept open during the start-up of motor. The flow was 

freely allowed to come at constant rate before controlling the valve to initiate the 

experiment. The speed of motor was kept constant and valve was kept open for the 

first observation. Subsequence measurements were done by keeping the motor speed 

constant and the restricting the flow by closing the control valve. Flow rate and 

motor speed were maintained in line with the flow rate and the rotating speed of 

VAD used for the steady state CFD simulation.  

The pressure and flow signals were acquired for the 10 sec duration at a 

sampling rate of 1000 Hz. At least two minutes gap is maintained between the 

acquisitions of each measurement for the system to settle. The pressure and flow data 

were acquired for the range of motor speed varying from 1000 RPM to 10000 RPM. 

Valve was operated to maintain the flow rate according to the steady state CFD 

simulations.  

7.4 Pressure Vs flow characteristics of LVAD 
 

Results presented in this section are in line with the objective of the in vitro 

experiment of the LVAD as a continuous flow pump. Experimentally obtained 

pressure and flow signals were post processed and tabulated to derive the pressure 
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against flow characterises of the LVAD. The experimental data are presented in the 

form of figure 7-1 for the different range of motor speed.  

 

Figure 7-1: Pressure Vs Flow Characteristics of LVAD 

 As shown in figure 7-1, it is evident that the pressure rise across the impeller 

increase with the increasing speed. At any constant speed, the variation in mass flow 

rate also affects the pressure rise across the impeller. For the full valve open 

condition the maximum mass flow rate is observed and for the same operating point, 

the minimum pressure rise across the impeller is observed. Maximum pressure rise 

of 38.29mmHg is observed at full valve closed position at 10000 RPM. For the same 

motor speed, at the full valve open condition 31.49mmHg pressure rise is observed 

with the 107.67 CC/sec flow rate. Experimental data for the optimum range of motor 

speed are tabulated in table 7-1.  
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Rotating 

speed of 

LVAD 

Mass 

Flow 

Rate 

Pressure Rise 

across the Impeller 

 RPM CC/sec KPa mmHg 

10000 

107.67 4.20 31.50 

87.67 4.28 32.10 

52.50 4.69 35.18 

17.00 5.04 37.80 

1.83 5.10 38.25 

  

  

 9000 

  

  

93.50 3.35 25.13 

74.50 3.43 25.73 

43.67 3.76 28.20 

12.17 3.97 29.78 

-0.03 4.06 30.45 

  

  

8000  

  

82.74 2.62 19.65 

70.94 2.65 19.89 

52.43 2.74 20.58 

15.30 3.03 22.71 

-0.01 3.09 23.16 

 

Table 7-1: Experimental data for the optimum rage of motor speed 

 

At the lower motor speeds the difference between the values of pressure rise across 

the impeller at full valve open and completely closed, reduces when comparing 

difference at higher motor speed. When the motor speed is below 6000 RPM, the 

pressure Vs flow rate curve is almost linear with negligible differences for the 

maximum flow and the no-flow condition.  

 

7.5 Concluding Section  
 

This chapter demonstrate the LVAD’s ability to support failing hearts as a 

continuous flow pump. Pressure flow characteristic curves are generated for the 

operating speeds from 1000 to 10000 RPM. The outcomes of optimum range of 

operating speeds were separately tabulated. 

 

Next chapter deals with the experimental results of LVAD operating as pulsatile 

axial flow pump. 
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Chapter 8  In Vitro Evaluation of LVAD as a Pulsatile 

Axial Flow Pump 
 

8.1 Abstract  
 

This chapter discusses the results of an in vitro experimental work carried out to 

validate the novel feature of this thesis. It also demonstrates the way to characterise 

the pulsatile flow for an axial flow pump. Characterisation of LVAD’s inlet-outlet 

pressure and flow for the different heart rate are discussed in detail.  
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8.2 Introduction  
 

In Vitro, experiments were performed to evaluate the pumping function of a pulsatile 

axial flow LVAD. Prior to each experiment, calibration of pressure and ultrasound 

flow probes were performed and motor tuning was done to ensure the quality of 

measurement and control. The prototype impeller was mounted in the experimental 

setup and inlet and outlet port were connected to a reservoir. Motor was connected to 

setup and tuning was done to verify smooth impeller rotation within setup. 

Calibrated pressure transducers were placed at 10mm away from the suction and 

pressure side of rotating impeller, thought Y-connectors. Water was filled within 

circuit though the reservoir. Water level in open reservoir was maintained at room 

temperature and atmospheric pressure. 

8.3 Experiment 1: Characterisation of LVAD’s Inlet and Outlet 

Pressure  
 

The objective of this experiment is characterisation of pump inlet and outlet 

pressure and to further document the behaviour of inlet and outlet pressures 

generated at different heart rate.  

The LVAD impeller was accelerated up to a limit speed and decelerated back 

to zero within systolic time frame for the generation of pulsatile flow at 40, 60, 80, 

and 100 beats per minutes (BPM) of heart rate (HR). Time of systole is considered as 

1/3
rd

 of the total length of heartbeat, which is kept constant for the generation of 

pulse. Irrespective of motor speed, that gives systolic period of 333 ms for 60 BPM 

of heart rate.  

As shown in figure 8-1 the motor accelerates up to 5000 RPM and decelerate 

back to zero within the systolic period, that is 0.3 of a second (333 ms) and it 

remains stationary during diastolic phase. The pressure signals were acquired at a 

sampling rate of 1000 Hz and at least two minutes gap was maintained between the 

acquisitions of each measurement for the system to settle. The further data has been 

recorded for speeds of 5000, 6000, 8000 and 10000 RPM to document the effects of 

motor speed for 40, 60, 80, and 100 beats per minutes of heart rate.  
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Figure 8-1: Motor Speed [RPM] Vs Time [s]  

8.3.1 Result-1   
 

Results that are presented in this section are inline with the objective of the 

experiment -1. Inlet pressure and outlet pressure data were collected for 40, 60, 80 

and 100 BPM heart rate at different limit speed of 5000, 6000, 8000, and 10000 

RPM. The characterisation of inlet and out pressure is shown in figure-8-9 that has 

been produced by taking pressure rise across the impeller against heart rate for 

different limit speed of motor. 

8.3.1.1 Inlet pressure  
 

 
Figure 8-2: Single pressure pulse at inlet for 60 BPM  

Figure 8-2 depicts the single pressure pulse generated at the inlet for 60 BPM 

heart rate for limit speed of 10000 RPM. Pulse duration of 0.3s is observed with 
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negative pressure of -0.5KPa at suction side of impeller. 0.3s is matched with motor 

speed, that is accelerated and decelerated to generate pulse within systolic time 

frame of 1/3
rd

 of a second at 60BPM. A small positive pressure rise is observed at 

the beginning as well as at the end of suction pressure curve.  

 
Figure 8-3: Inlet pressure Vs time for 80 BPM for 10000 RPM 

Above figure 8-3 depicts the inlet pressure based on time. A total of four 

pulses are observed in 3 second, equivalent to 80 BPM at the limit speed of 10000 

RPM. The peak value of individual pulse varies and the average suction pressure of -

0.2 KPa is observed for the 80 BPM heart rate for the limit speed of 10000 RPM.  

 
Figure 8-4: Inlet pressure Vs time for 40, 60, 80, and 100 BPM for 10000 

RPM 

Figure 8-4, demonstrates the suction pressure generated for 40, 60, 80, and100 BPM 

at the limit speed of 10000 RPM. It clearly shows the decrement of inlet suction 
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pressure with increment of heart rate. Maximum suction pressure is observed at 40 

BPM that is an average peak pressure of -1.2 KPa. While for 100 BPM, the average 

peak suction pressure is 0.6 KPa.  

8.3.1.2 Outlet pressure  

 
Figure 8-5: Single outlet pressure pulse at 60 BPM 

Figure 8-5 depicts the single pressure pulse at 60 BPM for limit speed of 

10000RPM. The duration of the outlet pressure pulse is 0.3s that matches with inlet 

pulse duration. In contrast to inlet pressure curve, a small decrement is observed at 

the beginning and end of the pressure pulse. The peak pressure rise of 2.3KPa is 

observed for 60BPM. 

 

Figure 8-6: outlet pressure Vs Time for 80BPM heart rate at 10000 RPM 
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Figure 8-6 shows the outlet pressure variation based on time. A total four beats are 

observed in 3 sec that matches 80 BPM heart rate. The peak value of individual pulse 

varies, 1.8KPa pressure rise is observed in outlet pressure. 

 

Figure 8-7: Outlet pressure Vs time for 40, 60, 80, and 100 BPM for 10000 

RPM 

Figure 8-7, depicts the pressure rise at outlet for 40, 60, 80, and100 BPM at the limit 

speed of 10000 RPM. The peak value of pressure reduces with the increasing heart 

rate. The maximum pressure rise is observed at 40BPM while minimum is observed 

at 100 BPM. The difference between the inlet and outlet pressure rise during pulse 

generation means pressure rise across the impeller is shown in figure 8-8. The peak 

of outlet pressure is observed after ~20ms of the peak of suction pressure. Total 

difference between the two peaks is 3.464 KPa that is 25 mmHg for limit speed of 

10000 RPM. 

 
 

 

Figure 8-8: Pressure pulse at inlet and outlet for 60BPM 
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Figure 8-9: Characteristic curve of Pressure rise Vs Heart Rate 

Above figure 8-9, demonstrates the characteristic of pressure rise across the 

impeller of LVAD with respect to heart rate. The experimental data are generated for 

the limit speed of 5000, 6000, 8000 and 10000 RPM. The linear relationship is 

observed between pressure rise across the impeller and heart rate. With increment in 

limit speed of LVAD’s impeller, the pressure rise across impeller is also increasing. 

At the limit speed of 5000 RPM, the maximum pressure rise of 9.553mmHg is 

observed for 40 BPM heart rate. The slope of the linear relationship between the 

Pressure rise and HR also increases with the increment in limit speed. It is evident 

from the observation where slope of 5000RPM is less than the slope of 10000RPM. 

At 10,000 RPM, the maximum pressure rise of 40.119 mmHg is observed for 40 

BPM heart rate. 
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8.4 Experiment 2: Characterisation of LVAD Output Flow  
 

The objective of this experiment is to determine the nature and timing of Outflow, 

verifying the pulsating outflow similar to a pure displacement pump. This 

experiment verifies the unique feature of this thesis where axial the flow pump 

generates the pulsatile flow. 

Setup preparation was similar to the experiment-1 and the experiment was 

carried for 40, 60, 80, and 100 BPM of heart rate. Ultrasound flow probe was placed at 

setup outlet for the flow measurement. Pressure data were also recorded for the detail 

investigation purpose. 

Flow signals and pressure signals were acquired at a sampling rate of 1000 Hz 

and at least two minutes gap is maintained between two measurements. Further data had 

been recorded for 5000, 6000, 8000, and 10000 RPM to document the effects of 

motor speed for different heart rate (frequency). 

8.4.1 Result-2   
 

Results that are presented in this section are inline with the objective of the 

experiment -2. Flow rate along with Inlet pressure and outlet pressure data are 

collected for 40, 60, 80 and 100 BPM heart rate at different limit speed of 5000, 

6000, 8000, and 10000 RPM.  

 

Figure 8-10: Flow rate Vs Time 

The figure 8-10 depicts the flow rate with time. A pattern is evident almost in every 

pulse of flow recorded for purpose of this investigation. As shown in figure the flow 
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rate increases sharply during AB. Followed by BC where rate decreases almost at the 

same rate of an increment flow during AB. The CD shows the increment in flow rate 

followed by DE where rate decreases gradually. The decrement rate of the DE is less 

than the increment rate of AB. In some of the pulses as shown in figure 8-10 that are 

marked in brown ellipse, CD phase is showing gradual decrement in flow rate. For 

the same flow pulse, the pressure rise is also observed low between the two peaks in 

flow curve that is shown in figure 8-11. Apart from such low-pressure peaks, the 

flow rate curve has shown the ABCDE pattern. 

  

Figure 8-11: Flow rate, Outlet Pressure Vs Time 

Above figure 8-11, is generated to demonstrate the pulse with respect to time 

and the pressure rise. The figure shows the flow rate in CC/s at the left side Y-axis 

and at the right side Y-axis, shows the outlet pressure in KPa. It has been observed 

that the pressure pulse occurs during the systole. From figure 8-11, it is also evident 

that the flow rate curve is also following the pressure curve. In other words the 

pressure difference across the impeller is  driving the flow within the systolic and 

diastolic period. The flow rate curve AB starts with the beginning of the pressure 

pulse. Rise of AB curve is observed during the rise of pressure pulse. In addition, the 

flow curve BC follows the decreasing pressure. The flow rate curve CD is observed 

almost at the same time, when the pressure reaches back to its normal static reservoir 

pressure. This is shown as a  red rectangle. The figure also shows the flow rate curve 

DE decreases gradually till the next decrement in pressure pulse start prior to 
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reaching its peak. The area under the flow curve ABC is considered as flow 

generated by VAD’s impeller during systole.  

. 

 

Figure 8-12: Characteristic curve of flow per pulse Vs Heart rate 

Above figure 8-12, depicts the characteristic of flow per pulse at 40, 60, 80, and 100 

BPM heart rate, and peak motor speed of 5000, 6000, 8000, and 10000 RPM. Flow 

per pulse has shown the linear relationship with heart rate. With increasing heart 

rate, the flow per pulse reduces linearly. The flow per pulse also linearly increases 

with the increasing limit speed of motor. The slope remains almost the same for all 

RPM rates despite increment in motor limit speed. The maximum flow per pulse is 

generated at 10000 RPM limit speed at 40 BPM which is 4.66 CC while minimum 

flow per pulse of 0.50 CC is observed at 100 BPM with the limit speed of 5000 

RPM. 



In Vitro Evaluation of LVAD as a Pulsatile Axial Flow Pump 

180 

 

 
8.5 Experiment 3: Characterisation of Flow Rate vs. Frequency (HR) 
 

The objective of this experiment is to determine the relationship between LVAD’s 

flow output and frequency (heart rate). This will provide a better understanding of 

the effects of heart rate on the flow rate, delivered by pump.  

Setup preparation was similar to experiment 1 and 2. Data for the flow rate 

and pressure were acquired for 40, 60, 80, and 100 BPM heart rate. Further data 

were documented by varying motor speed for 5000, 6000, 8000, and 10000RPM. 

8.5.1  Result-3   
 

Flow rate data were collected for 40, 60, 80 and 100 BPM heart rate at 

different limit speed of 5000, 6000, 8000, and 10000 RPM. Results of these data is 

presented in figure 8-13. 

 

Figure 8-13: Flow rate Vs Heart rate 

Above figure 8-13, represent the characteristic of flow rate with respect to heart rate. 

Non-linear relation is observed between the flow rate and heart rate. From 40 BPM 

to 60 BPM flow rate increases with the increasing heart rate. In addition, in the range 

of 80 BPM to 100 BPM the flow rate decreases with the increasing heart rate. The 

nature of relationships between heart frequency and flow, remains the same with 

increment in the motor limit speed. 
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8.6 Concluding Section  
 

This chapter demonstrates the LVAD’s ability to generate a controlled pulse using an 

axial flow pump that fulfils the aim of the thesis. In addition this chapter shows the 

techniques for experimental characterisation of a pulsatile axial flow LVAD. 

Experiments were carried out for 40, 60, 80 and 100 BPM heart rate at different limit 

speed of 5000, 6000, 8000, and 10000 RPM. 

 

The key findings of this chapter are as below; 

 A small positive pressure rise is observed at the beginning as well as at the 

end of suction pressure curve at inlet. Moreover decrement of peak inlet 

suction pressure with increasing heart rate is also observed. 

 In contrast to inlet pressure, outlet pressure curves shows small decrement in 

the beginning as well as at the end of pressure pulse. While in accordance to 

inlet pressure, peak value of outlet pressure has shown decrement with 

increasing heart rate. 

 Characteristics curves of pressure rise Vs heart rate shows a liner relationship 

where with increasing heart rate results in low pressure rise across the 

impeller. With increasing operating limit speed, pressure rise across the 

impeller increases. 

 Pressure difference across the impeller is driving the flow during the systolic 

and diastolic period. Flow per pulse shows linear relation with the heart rate, 

where the flow per pulse reduces with the increment in heart rate. With 

increasing operating limit speed flow per pulse increases. 

 Characteristics curves of flow rate Vs heart rate shows the nonlinear 

relationship where the flow rate increases with increasing heart rate from 

40BPM to 60 BPM and further reduces from 80BPM to 100 BPM heart rate. 

Shape of curve remains same for all the operating limit speed. 
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Chapter 9 Discussion 
 

Generation of pulsatile flow using an axial flow pump is a novel feature of the thesis. 

Pulsatile flow is a natural phenomena occurring in the human body. Moreover, 

researchers have demonstrated the benefits of pulsatile flow for vital organ function 

and end organ recovery during acute and chronic mechanical circulatory support 

(Undar, 2004)[67]. Due to the small size and tubular configuration, axial flow pumps 

are easy to implant using minimal invasive surgical procedures that reduces surgical 

stress on the patient’s body. In addition, the small size axial flow pump reduces the 

risk of infection related complications. The initial design of axial flow pump 

geometry is done using the classical design theory to generate continuous flow at a 

fixed hydrostatic head. This initial assumption has helped in the evaluation of 

pulsatile flow as well as providing the base to initiate the study.  

 

To satisfy hydraulic and clinical requirement of the LVAD, a detailed parametric 

investigation has been carried out using the statistical Design of Experiment (DOE) 

method to see the effects of rotational speed of the impeller on the design 

parameters, mainly the flow rate, pressure rise and wall shear stress. The parametric 

study shows the overall behaviour of the pump for the whole range of speed. It has 

demonstrated the LVAD’s ability to generate mass flow rate and pressure rise that 

can satisfy the hydraulic requirement. At very high motor speed (30,000 RPM), the 

axial flow pump can generate 15.246 L/min with 140mmHg pressure rise and shear 

stress reaching  1550 Pa.  

 

The clinical requirement of low hemolysis constrains the rotating tip speed below 

10m/s (Reul and Akdis, 2000). The hemolysis depends on shear stress and the 

exposure time. Sallam and Hwang  (Sallam and Hwang, 1984) have measured the 

threshold level for the shear stress 400Pa for 100 ms. The Leverett (Leverett et al., 

1972)  found that above 150Pa shear stress, hemolysis occur  primarily in bulk rather 

than  near wall region. With the corresponding value of 50000 S
-1

 shear rate for 

whole blood where the RBC membrane reaches its 6%  strain limits.  
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Operating the LVAD within safe hemolysis levels, a tradeoff is required amongst 

design parameters. Thus,  Goal Driven Optimisation has been performed to find out  

safe operating range of LVAD that can generate the flow rate up to 6.0 L/min and 

hemolysis levels below 300 Pa and maintains the left ventricular and the aortic 

pressure difference across the impeller. The optimised rotating speed ranges from 

8000RPM to 10000 RPM that can match the hydraulic and clinical requirements. 

The steady state CFD simulations were carried out to find out the performance of the 

LVAD as a continuous flow pump.  

 

The computed estimation of pressure and flow characteristics using steady state CFD 

simulations are shown in figure 4-10 for the rotational speeds of 3000 to 10000 

RPM. At 3000 RPM, pump generates 5 mm of Hg pressure rise with 31.411% of 

total efficiency and  22.48 CC/s of flow rate. Pump generates 36.87 mm of Hg  of 

pressure rise with 106 CC/s of flow rate at 10000 RPM with 49.31% of efficiency. 

The internal flow details shows the flow velocity near hub region around  0.90 m/s 

and the maximum axial flow is observed near 50% span that is around 1.12 m/s. 

Blade loading chart have shown the positive work done by blade through the span. 

The shear stress are observed reaching up to the maximum 333.09 Pa at 10000 RPM 

at the tip and the leading edge of the blade. The remaining area of blade and hub 

have shown the shear stress below 58Pa. At the lower rotating speed, the  low shear 

shear stress were observed compared to 10000 RPM. For the optimised range, the 

shear stress ranges between the 206Pa – 333 Pa. Based on the axial velociy of 1.12 

m/s the transition time is 8.93 ms for the 10mm length of the rotating fluid domain. 

Considering the maximum value of the shear stress, the hemolysis was 

approximately 3.229 % , based on the equation-3.1 developed by Giersiepen 

(Giersiepen et al., 1990).  

 

The steady state CFD simulations were mainly carried out for the experimental 

validation of the CFD model. The parametric DOE study as well as the optimisation 

were performed using the same CFD model that was used in steady state CFD 

simulation. Moreover, the difference between the pulsatile and continuous CFD 

simulation is the time varying rotating speed of a rotating fluid domain. Thus, it is 
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important to experimentally validate the CFD model before using it for the pulsatile 

flow simulations.  

9.1 Comparison of CFD and Experimental Results of LVAD as a 

Continuous Flow Pump. 
 

 

 

Figure 9-1: CFD and experimental results of LVAD as a continuous axial 

flow pump. 

Experimental evaluation of LVAD was carried out mainly for rotating speeds of 

3000 to 10000 RPM. The main objective of the experimental evaluation was to 

validate the CFD based work that was done using commercially available tools. The 

experimental performance consisting of tests of the LVAD prototype, have shown 
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results comparable to the steady state CFD performance. The CFD results were 

having higher values compared to experimental outcome. The difference between the 

experimental and CFD is observed to be less than 20% for the majority of the flow 

rate condition. For the very low flow rate, the difference is observed to be less the 

30%. The allowable deviation between the commercially available CFD tools and 

the experimental results are in the range of 10% to 20% (Throckmorton et al., 2007). 

Turbulent flow above Reynolds’s number (Re) 3000 is also expected for the 

experimental work. The reason behind the difference might be due to the turbulence 

model. The standard K-ω model is used for the CFD simulation that has shown 

comparable results, according to the available literature. By applying the 

experimental pressure rise and flow rate for the CFD simulation, the difference 

reduces to 5%, which increases the confidence in the use of generated CFD model to 

predict the LVAD’s behaviour with pulsatile flow. It also increases the confidence in 

the DOE parametric study as well as the optimisation. 

9.2 Comparison of CFD and Experimental results LVAD as 

pulsatile flow pump 
 

The VADs impeller accelerates and decelerates during systole to generate the pulse. 

Normally duration of the systolic phase is 1/3rd of a pulse. In vitro experiments were 

carried out to derive the pressure flow characteristics of the pulsatile flow. The 

Outcome of Experiment-1 shows the decrement in pressure at inlet and increment in 

pressure at outlet during the acceleration phase of the systole. This trend reverses 

during the deceleration phase of the systole. A peak inlet suction pressure and outlet 

pressure occurs with the 20ms time delay between them. At the initial phase of every 

beat, the pressure at inlet and outlet shows the small rise and fall at inlet and outlet 

respectively. The CFD simulations have also revealed the similar trend at the 

beginning and at the end of the systolic phase. During diastole, the pump pressure 

remains at the reservoir pressure. Outcomes of Experiment-1 shows, the pressure rise 

across the pump ―   is inversely proportional to heart rate and directly 

proportional to the limit speed of motor. The relation amongst these parameters can 

be defined using the following equation. 
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Where ―   is the pressure rise is across the impeller, ―N‖ is the limit speed of 

impeller, ―HR‖ is heart rate, and the Pc is a constant that relates the peak pressure 

rise during the pulse with the operating parameters that are limited by the speed of 

pump, which varies  according to heart rate. Figure 9-2 shows CFD and experimental 

results of the pressure rise across the impeller for single pulse of  60 BPM heart rate 

at the limit speed of 10000 RPM.  

 

Figure 9-2: CFD and Experimental Pressure Rise Vs Time 

The experimental performance of the axial flow pulsatile VAD shows the pressure 

rise across the impeller is comparable to the CFD prediction. The experimental 

duration of systole is delayed by 17 ms that is around 6 % higher compare to CFD. 

Around 10% difference amongst the peak value for pressure rise is observed at 

150ms where the CFD predicts higher values than the experimental results. During 

the diastole, the difference remains less than 20%.  
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Figure 9-3: CFD and Experimental Mass Flow Rate Vs Time 

Figure 9-3 shows the CFD and experimental results of mass flow rate. A CFD result 

shows the higher mass flow rate during the systolic acceleration phase compare to 

the experimental values. The peak values have around the 25ms delay with the less 

than 10% difference between the CFD and experimental results. At the end of 

acceleration phase of systole, the flow rate reduces with the time in case of CFD 

predictions while for the same period flow rate shows the higher values in 

experiments. The difference of CFD and experiment results during this deceleration 

phase is around 30%. As shown in the red rectangle, the experimental flow rate 

reduces gradually compared to the CFD and continues thus even during diastole. 

Further decrease in mass flow rate is also observed during diastole that is shown in 

curve DE. At the point E, the difference between the CFD and experiment is around 

10%. After point E flow rate continues with the values remaining below point D. In 

the case of CFD prediction, the flow rate remains constant during diastole. Through 

the diastole, the higher values are observed in experiments compared to the  CFD 

model.  
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In summary, the pressure and mass flow rate results have shown agreement amongst 

the CFD and experimental values. More than 20% difference is observed for the 

mass flow rate during diastole. At that time, the impeller is not rotating during 

experiments. Moreover, the difference of CFD and experiment for the pressure rise 

during the diastole is less than 20%.   

9.3 Hemolysis in Pulsatile Axial Flow LVAD 
 

Giersiepen (Giersiepen et al., 1990) has developed correlation for the hemolysis 

(equation 3-1) that is based on the shear stress and the exposure time using the 

Couette experimental system. Using the similar Couette model,  S.Klaus (Klaus et 

al., 2001) have demonstrated  that , hemolysis starts at the shear stress of 400 Pa with 

the exposure time more than  400ms. In this thesis, higher shear stresses are observed 

in CFD simulation during systolic phase where the total time duration of systole is 

333 ms for the 60 BPM heart rate. For the same heart rate, above 300 Pa, shear 

stresses were observed for the total 20ms time duration with the peak value of 320Pa 

for 10000RPM rotating speed. Exposure time of the high shear stress in pulsatile 

LVAD is less than the continuous flow pump. In addition, the peak value is observed 

for the 1ms time duration. Less exposure time of high shear stress in pulsatile LVAD 

have demonstrated the LVAD’s ability to satisfy the hydraulic and clinical 

requirement for the varying heart rate with low hemolysis levels. 
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Chapter 10 Conclusions 
 

 

This thesis demonstrates the design and development of a pulsatile axial flow Left 

ventricular assist device (LVAD). The performance evaluation using CFD and 

experimental testing of a LVAD prototype specifies an acceptable design to build 

upon and optimised pulsatile LVAD. The experimental and CFD results of LVAD as 

a pulsatile axial flow pump have shown the way to develop a controlled pulsatile 

flow that can satisfy the hydraulic requirement with low hemolysis levels for treating 

patient. 

The range of operating condition chosen for this study is intended to cover 

the range of condition that the pulsatile LVAD will experience during clinical use 

when operating with the native heart. Pulsatile LVAD can support the range of 

pressure and flow rate requirement with low hemolysis levels by operating it at a 

different limit speeds. The main difference among the continuous and pulsatile axial 

flow pump is a method of operating the rotating impeller. Hence, the classical design 

theory of an axial flow pump can be employed to design the axial flow pump that 

can generate a controlled pulsatile flow. As an initial design step, the operating 

parameters were optimised for the continuous flow and pressure rise with low 

hemolysis, the pulsatile LVAD can assist patients as a continuous flow pump.  

The proposed pulsatile axial flow LVAD will improve the clinical treatment 

of the patients with early stage of heart failure, myocardial infarction, myocardial 

infection, and cardiogenic shock as a Bridge To Recovery (BTR) or Bridge To 

Decision (BTD) device.  
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Future work  
 

In Vitro, evaluation of the first prototype of the pulsatile axial flow LVAD pump has 

provided data to support technical proof-of-concept for pulsatile flow generation 

using an axial flow pump. The in and outflow characteristics have been mapped, 

providing a better understanding of the pulsatile pumping mechanism. However, the 

first generation prototype was deliberately designed to pump saline or water, with a 

viscosity much lower than blood.  

The future development work is needed to design and develop the second-

generation experimental setup that will allow in vitro evaluation by LVAD using of 

blood or a suitable blood mimic as fluid.  

Moreover, a second generation setup needs to include the artificial heart that 

can simulate certain diseased heart conditions in the fluid circulation loop that will 

allow a more realistic in vitro evaluation of the pulsatile axial pump.  

 The second generation pulsatile LVAD needs to include the real time control 

and data acquisition systems along with small size motors that will be used for in- 

vivo experiments. 

 The first generation prototype impeller is designed using the standard 

equation to generate coordinates of the blade profile. The second-generation 

prototype needs to be developed using the optimised blade shape for the low 

hemolysis levels. 

 In the long-term, the third-generation prototype of the pulsatile axial flow 

LVAD system needs to be developed for in vivo evaluation in a suitable animal 

model such as pig. The third-generation prototype will be a full system prototype, 

including a power supply and control system that is clinically relevant. This will 

involve issues that have been outside the scope the current thesis.  
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Appendix 

 
Appendix-1: Figures of existing VADS. 

 

 

1. AbioMed BVS 5000 system  
 

   
 

Figure 1: AbioMed BVS 5000 system 

 

2. AbioMed AB 5000 system  

 

 
 

Figure 2 :AbioMed AB 5000 system 
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3. Arrow Int. Intra-Aortic Balloon Pump 

 

  
 

Figure 3: Arrow Int. Intra-Aortic Balloon Pump 

 

 

 

 

4. DataScope CS100 / System 98XT 

 

     
 

Figure 4 : DataScope CS100 / System 98XT 
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5 : Medtronic Biopump (80ml & 48ml) 
 

 
 

Figure 5 : Medtronic Biopump (80ml & 48ml) 

 

 

 

 

6. Thoratec VAD 

 

 

 
 

Figure 6 : Thoratec VAD 
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7. Thoratec HeartMate XVE LVAS 

 

 
 

Figure 7 :Thoratec HeartMate XVE LVAS 

 

 

 

 

 

8. World Heart Novacor 

 

 
 

Figure 8 : World Heart Novacor 
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9. Abiomed Abiocor 

 
 

Figure 9 : Abiomed Abiocor 

10. Arrow Int. CorAide 

 

 
 

Figure 10: Arrow Int. CorAide 

11. Berlin Heart Excor (10 to 80ml versions) 

 
 

Figure 11: Berlin Heart Excor (10 to 80ml versions) 
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12.Berlin Heart Incor 

 

 
 

Figure 12: Berlin Heart Incor 

 

13. Impella Recover LP 2,5 & LP 5,0  
 

 

   
 

Figure 13 : Impella Recover LP 2,5 & LP 5,0 
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14. Jarvik Heart Jarvik 2000 FlowMaker 

 

     
 

Figure 14 : Jarvik Heart Jarvik 2000 FlowMaker 

 

 

 

 

15.Micromed DeBakey 

 

 

   
 

Figure 15 : Micromed DeBakey 

 

 

 



Appendix 

208 

 

 

16.Terumo DuraHeart 
 

 
 

Figure 16 : Terumo DuraHeart 

 

 

 

 

17. Thoratec HeartMate III 

 

 
 

Figure 17 : Thoratec HeartMate III 
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18. Ventracor VentrAssist 

 

 

 
 

Figure 18:Ventracor VentrAssist 

 

 

 

 

 

19. World Heart HeartQuest VAD 

 

  
 

Figure 19:World Heart HeartQuest VAD 

 

 

 

 

 

 


