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2-D CA Variation With Asymmetric Neighborship for
Pseudorandom Number Generation
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Abstract—This paper proposes a variation of two-dimensional
(2-D) cellular automata (CA) by adopting a simpler structure
than the normal 2-D CA and a unique neighborship charac-
teristic—asymmetric neighborship. The randomness of 2-D CA
based on asymmetric neighborship is discussed and compared
with one-dimensional (1-D) and 2-D CA. The results show that
they are better than 1-D CA and could compete with conventional
2-D CA under certain array setting, output method, and transition
rule. Furthermore, the structures of 2-D CA based on asymmetric
neighborship were evolved using some multiobjective genetic
algorithm. The evolved 2-D CA could pass DIEHARD tests with
only 50 cells, which is less than the minimal number of cells (i.e.,
55 cells) needed for neighbor-changing 1-D CA to pass DIEHARD.
In addition, a refinement procedure to reduce the cost of 2-D CA
based on asymmetric neighborship is discussed. The minimal
number of cells found is 48 cells for it to pass DIEHARD. The
structure of this 48-cell 2-D CA is identical to that of the evolved
10 5 2-D CA, except that 2 horizontal cells in the evolved 10 5
2-D CA are removed.

Index Terms—Asymmetric neighborship, cellular automata
(CA), multiobjective genetic algorithm (MOGA).

I. INTRODUCTION

I N THE PAST ten years, one-dimensional (1-D) cellular
automata (CA) PRNGs were studied extensively [10]–[13],

[15]–[23]. However, 1-D programmable CA (PCA) still failed
some randomness tests. To improve the randomness of 1-D
PCA, the idea of controlling the status of CA cells has been
proposed in [20]. In later papers [21] and [22], this idea was
further refined to the concept of neighbor-changing CA (NCA).
The randomness test results on the improved 1-D PCA showed
that they are better than 1-D PCA. In [23], neighbor-changing
1-D PCA are evolved to its best performance with minimal
cost. But it is not easy to implement in hardware design due to
its irregular structures.

On the other hand, some researchers began to employ
two-dimensional (2-D) CA in pseudorandom number genera-
tion to improve further the randomness quality of CA PRNGs.
Tomassini et al. [14] evolved a 64-cell 2-D CA that could
pass the DIEHARD test [7]. Though the structural complexity
is higher in 2-D CA, test results showed that 2-D CA are
comparable to neighbor-changing 1-D CA in randomness.
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In this paper, we propose a variation of 2-D CA that has
an array structure and the interconnection among cells is sim-
pler than that in a normal 2-D CA. Due to its special structure,
the neighborship among some cells in this 2-D CA is asym-
metric. Asymmetric neighborship is a unique property of 2-D
CA. The structural complexity of asymmetric-neighborship 2-D
CA could be as simple as 1-D CA, except that the neighbor con-
nection of boundary cells is more complex. The ENT [25] and
DIEHARD test results on this structure of 2-D CA with asym-
metric neighborship show that their randomness could compete
with neighbor-changing 1-D CA and normal 2-D CA under cer-
tain array setting, output method, and transition rule. Further,
multiobjective genetic algorithm (MOGA) is applied to evolve
its structure. The evolved 10 5 2-D CA (with asymmetric
neighborship) could generate good random number sequences
that pass DIEHARD. Also, we try to reduce the number of cells
in the evolved 10 5 2-D CA (with asymmetric neighborship)
while maintaining their randomness quality.

To avoid ambiguity, 2-D CA described in this paper refers to
a 2-D CA with asymmetric neighborship property and with such
a simple array structure than a normal 2-D CA, which will be
discussed later.

The paper is organized as follows. In Section II, we first give
an overview on 1-D CA PRNGs, introduce structure and proper-
ties of 2-D CA PRNGs, and present randomness test results on
10 5 2-D CA without using an evolution algorithm. Section III
presents the evolution algorithm and randomness results on the
evolved 2-D CA. Section IV discusses the process to minimize
the cost of 2-D CA. Section V provides a conclusion.

II. CA PRNGS

A. 1- and 2-D CA PRNGs

Following the idea of uniform CA, Hortensius [17] studied
rule 90–150 programmable CA (PCA) and rule 30–45 PCA.
Their study showed that rule 90–150 PCA has better potential
than rule 30–45 PCA in pseudorandom number generation.
These two PCAs are 1-bit PCA, where the rule control signal
for each programmable cell is 1-bit. Later in 1996, Sipper and
Tomassini [15] evolved a 2-bit 50-cell PCA with a mélange of
rule 90, 150, and 165, where the rule control signal for each
programmable cell is 2-bit. Also, Tomassini et al. [13] evolved
another 2-bit 50-cell PCA with the rule combination 90, 105,
150, and 165 in 1999. These two 2-bit PCA were evolved
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using a cellular programming evolutionary algorithm, while
the two 1-bit PCA proposed by Hortensius were handcrafted.
The DIEHARD test results showed that although 2-bit PCA are
better than 1-bit PCA in randomness, they still fail to pass all
the tests in DIEHARD with time spacing as 1.

To further improve the randomness quality of nonuniform
CA, we proposed controllable cellular automata (CCA) in [22].
A CCA is a CA in which the action (how the state of a cell is
updated in each cycle) of some cells can be controlled via cell
control signals. If a cell is under control via some cell control
signal, it is a controllable cell; otherwise, it is a basic cell. CCA
is the combination of controllable cells and basic cells. Both
controllable cells and basic cells have rule control signals.

The action of a controllable cell is decided by its current
cell control signal. A controllable cell can be normal (when
the cell control signal is 0) or active (when the cell control
signal is 1). When the controllable cell is normal, the compu-
tation of the states of the controllable cell and its neighbors
are as usual (according to the current rule control signals and
the states of its neighbors). When the controllable cell is active,
the state computation of the controllable cell and its neighbors
are specified by some predefined action. If an active control-
lable cell keeps its latest state while its neighbors bypass it, it
is a neighbor-changing controllable cell. The randomness and
properties of neighbor-changing 1-D CA have been discussed
in [21]–[23]. The randomness of neighbor-changing 1-D CA is
the best among 1-D CA PRNGs but it is not ideal for very large
scale integrated design due to its irregular structures.

All of the 1-D CA introduced above are three-neighborhood
CA, i.e., state computation depends on the left and right neigh-
bors in addition to itself. In [1], Barry et al. expanded the neigh-
borhood size to four and introduced a nonlocal neighborhood
connection scheme. They found a number of 64-cell 1-D CA
PRNGs passing DIEHARD through exhaustive searching.

CA with 2-D grids are conventional or normal 2-D CA. Gen-
erally, two types of neighborhood are considered in a normal
2-D CA: five cells, consisting of the cell along with its four
immediate nondiagonal neighbors (known as the von Neumann
neighborhood) and nine cells, consisting of the cell along with
its eight surrounding neighbors (known as the Moore neighbor-
hood). In this paper, 2-D CA refers to 2-D CA with the von
Neumann neighborhood.

The first work on these 2-D grid CA PRNGs was done by
Chowdhury et al. [5] in 1994. Their results suggested that
normal 2-D CA structures are superior to 1-D ones with the
same size in pseudorandom number generation. Following their
idea, Tomassini et al. [14] evolved several 8 8 2-D CA with
rule 15, 63, 31, and 47. Their DIEHARD test results showed
that some of the evolved 2-D CA could pass all the tests in
DIEHARD. Different from 1-D CA, spacing was not used in
conventional 2-D CA. Apparently, nonspacing results in higher
output efficiency. Compared with 1-D CA, the structure of
normal 2-D CA cells and the interconnection among them are
more complex than 1-D CA because the number of neighbors
is increased from three to five in 2-D CA cell.

Fig. 1. Basic 2-D CA model.

B. Structure and Properties of 2-D CA With
Asymmetric-Neighborship

A simple structure that a 2-D CA can take is an array of sev-
eral 1-D CA with the boundary cells connected. Or it could be
regarded as a normal 2-D CA with all the internal vertical neigh-
bors connections disconnected as shown in Fig. 1.

According to the location of 2-D CA cells, we could place
them under three categories:

1) corner cell: the four cells at the array corner;
2) vertical boundary cell: except corner cells, all the cells in

the first and last columns are vertical boundary cells;
3) horizontal cell: except corner cells and vertical boundary

cells, all the remaining cells in 2-D CA are horizontal
cells.

Note that all 2-D CA described in this paper use the array
structure presented in Fig. 1.

Aside from the vertical boundary cells, all cells have two di-
rectly connected cells, which would consequentially be their
left and right neighbors. In the case of vertical boundary cells,
they have three directly connected cells. Choosing left and right
neighbors from these three cells is another concern. We de-
fine consistent neighborship as follows. In a column of vertical
boundary cells, each cell uses the same neighboring cell posi-
tion relative to it, as its left and right neighbors. As an example,
each of the cells in the first column of array would treat the cells
connected directly below and right to it as its left and right neigh-
bors respectively. Simply put, neighbor assignment has a pattern
for each column of cells. This is called consistent neighborship.
On the other hand, if the cells in one column do not follow a
uniform pattern of neighbor assignment, it is called inconsis-
tent neighborship. Inconsistency in neighborship is described
column-wise, i.e., in the same CA, one column may exhibit con-
sistent neighborship while another column may use inconsistent
neighborship.

Using the basic model, neighborships of cells were evolved
using a genetic algorithm. From the basic model, only neigh-
borships of vertical boundary cells can be varied. Thus, only
vertical boundary cell neighborships were evolved. The config-
urations obtained are tested using ENT test. The results showed
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that inconsistent neighborship performs better than a consistent
one (see the Appendix).

To provide a rational analysis, we summarize our approach
as follows. First, we start by introducing three different struc-
tures under the basic model, which uses consistent neighbor-
ship. Next, we analyze these structures by gradually increasing
its complexity through connections, i.e., enhancing the basic
model. Then, we involve some new CA properties called asym-
metric neighborship property. Finally, we find good CA struc-
tures by using another genetic algorithm. Evolving CA struc-
ture means finding good neighborship of cells, which may be
inconsistent.

According to the neighbor connection of vertical boundary
cells, 2-D CA may have three different structures under the basic
model: 2-D CA-1, 2-D CA-2, and 2-D CA-3. The difference lies
in which of the three possible neighbor connections of the ver-
tical boundary cells are chosen as left and right neighbors. Note
that we use consistent neighborship for simplicity. Anyhow, we
still evolve the neighborship of cells as we draw near to our
conclusion.

Though the basic model has lower complexity than a normal
2-D CA, some preliminary experiments showed that the ran-
domness of these 2-D CA (2-D CA-1, 2-D CA-2, 2-D CA-3) are
worse than 1-D uniform CA. Compared with neighbor-changing
1-D CA, the randomness of the basic 2-D CA is far behind.
As we have known, increasing the structural complexity of CA
could improve the randomness quality. This has been proven
from the development of 1-D uniform CA to neighbor-changing
1-D CA. Hence, we extend the neighbor connection of corner
cells and vertical boundary cells in the basic model and derive
an enhanced model of 2-D CA.

This enhanced 2-D CA model is shown in Fig. 2. Some ini-
tial experiments (see Appendix) showed that by using additional
diagonal connection in the corner cells, randomness may be im-
proved. To further improve the randomness of the basic 2-D CA,
we expand the neighbor connection of corner cells and vertical
boundary cells to diagonal direction while keeping the neighbor
connection of horizontal cells remain the same. All the cells are
uniform cells and have two neighbors. The neighbor connection
of corner cells and vertical boundary cells are more flexible.

Each corner cell could be connected to three cells as shown
in Fig. 2. Each vertical boundary cell could be connected to
five cells. For example, vertical boundary cell could be
connected to cell , cell 1, cell , cell 2, and cell

. But the number of neighbors for each cell remains as
three. Hence, for corner cells and vertical boundary cells, there
exists more than one combination to select neighbors from more
than two connected cells. For each corner cell, there are three
combinations to select two neighbors from three cells. For each
vertical boundary cell, there are ten combinations to select from
five cells.

In the following, we present two 2-D CA structures with dif-
ferent neighbor connections—2-D CA-4 and 2-D CA-5. In 2-D
CA-4, the left neighbor of a corner cell is the one next to it the
same row; the right neighbor is the one next to it in the diag-

Fig. 2. Enhanced 2-D CA model.

onal direction. The left neighbor of a vertical boundary cell is
the cell next to it in the same row; the right neighbor is the cell
above it in the same column. Note that there is no neighbor
connection in the diagonal direction for vertical boundary cells
but one for each corner cell. The neighbor connection of 2-D
CA-5 is shown in Fig. 3(b). There is no neighbor connection in
the diagonal direction for corner cells but one for each vertical
boundary cell.

Note that in 2-D CA-4 and CA-5, cell A is a neighbor of
cell B does not imply cell B as a neighbor of cell A. This is
different from the neighborship in conventional 1-D/2-D CA,
in which two cells are neighbors of each other under period-
ical boundary conditions. In 2-D CA-4 & CA-5, neighborship
is not symmetric. This type of neighborship is called as asym-
metric neighborship. 2-D CA-1, CA-2, and CA-3 are all 2-D
CA based on asymmetric neighborship. For example, in 2-D
CA 3, each vertical boundary cell is a neighbor of the cell next
to it in the same row while the reverse is not true. Compared
with 2-D CA-4 & CA-5 based on the enhanced model, there are
fewer asymmetric neighbor connections in the basic model. 2-D
CA-1, CA-2, and CA-3 have the simplest structures that adopt
the asymmetric neighborship property.

C. Parameters

Randomness varies with different structures—the neighbor
connection of cells. To show this, the randomness of different
2-D CA structures is compared with 1-D uniform CA and
neighbor-changing 1-D CA. Other than structure, there are
several other factors that could affect the randomness quality of
2-D CA with fixed number of cells. They are setting of L and A
(in short, array setting), transition rule selected (rule selection),
and output method. Our methodology in studying these issues
is to focus on one factor while fixing the other two at one time.
Here, we study array setting first, with rule selection and output
method following.

Because 2-D CA-1, CA-2, and CA-3 obtain similar random-
ness, we choose 2-D CA-3 as an example to study the random-
ness of 2-D CA based on the basic model. On the other hand,
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Fig. 3. Some examples of neighbor connections in 2-D CA: (a) neighbor connections in 2-D CA-3, (b) neighbor connections in 2-D CA-5. An arrow pointing
from cell A to cell B means cell A is a neighbor of cell B.

we choose 2-D CA-5 as an example to study the randomness of
2-D CA based on the enhanced model.

Array Setting: Most work on conventional 2-D CA was done
on regular settings like 4 4, 6 6, and 8 8. Such settings may
not be the best choice for our 2-D CA. In this section, we study
the randomness of all possible settings in our 2-D CA, based on
the basic and enhanced models to find a suitable setting for L
and A. The value of A decides the number of vertical boundary
cells and the value of L decides the number of horizontal cells
in each row. Considering a basic 2-D CA with a fixed number
of cells, if L is too large, there will be few vertical boundary
cells. We may deduce that maintaining a sufficient number of
vertical boundary cells in 2-D CA could be crucial to obtain
good randomness quality. On the other hand, if A is too large,
the number of horizontal cells in each row will be too small
to maintain the randomness quality of horizontal cells. Thus, a
suitable choice of L and A will be critical to generate good 2-D
CA PRNGs.

Rule Selection: Although the overall structure of the basic
and enhanced CA is 2-D, the structure of each horizontal cell

is identical to that of a cell in 1-D uniform CA in terms of cell
structure and neighbor connection. Work on 1-D uniform CA has
shown that their randomness depends highly on the rules used
[19]. Due to their structure similarity, it won’t be surprising to see
that the randomness of 2-D CA also varies under different rules.

Output Methods: We already know that in 1-D CA, adjacent
cells have correlations because bits are generated by the
horizontal cells. In 2-D CA, we choose to avoid generating
the output bits in the horizontal direction. Hence, the random
number sequences could be recorded in many methods. Our
study is to find out the output bits should be extracted in
the vertical direction or horizontal direction. The following
methods have been tested. Fig. 4 shows each output method.

D. Randomness Test Results
The randomness of 10 5 CA-1, CA-2, CA-3, CA-4, and

CA-5 is shown in Table I. The experiment conditions are iden-
tical for the 2-D CA tested. The output sequences are gener-
ated by all the cells in the 2-D CA, recorded from the first
cell to the last one. The length of the tested sequences for each
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Fig. 4. Diagrams of method 0–method 9.

TABLE I
ENT TEST RESULTS ON CA-1, CA-2, CA-3, CA-4, AND CA-5

CA is 10 000 bytes. 100 initial seeds are tested for each indi-
vidual CA. The transition rule used is rule 150. Both of them
obtain better randomness than 1-D uniform CA. Table I shows
that 2-D CA under the basic model could not outperform 1-D
uniform CA. The comparison between the basic model (CA-1,
CA-2, CA-3) and the enhanced model (CA-4, CA-5) shows that
the randomness of 2-D CA is improved under the enhanced
model. Yet when compared with neighbor-changing 1-D CA,
the randomness of CA-4 and CA-5 is still lower, which may
mean that these CA need to be further evolved to compete with
neighbor-changing 1-D CA. The randomness of CA-5 is better
than that of CA-4. Considering that the structural complexity
of CA-5 is higher too, we could deduce that the randomness of
these CA is closely related to their complexity levels.

Using CA-3 and CA-5 as examples, 50-cell 2-D CA is studied
under various array settings. Table II shows the ENT test results.
The experiment conditions are identical for the 2-D CA tested
and the same as that in Table I. The results show that the random-
ness of 2-D CA varies a lot under different array settings. The
randomness of CA-5 is better than that of CA-3 under most array
settings. One reason could be that there are more asymmetric
neighbor connections in CA-5. Another reason may be due to
the neighbor connections in the diagonal direction in CA-5.

In 36-cell 2-D CA, 9 4 2-D CA-5 can get the best random-
ness. In 50-cell 2-D CA, 10 5 2-D CA-5 can get the best ran-
domness. In 64-cell 2-D CA, 16 4 2-D CA-5 can get the best
randomness. It shows that regular size is not the best choice in
2-D CA. In conclusion, 10 5 CA-5 obtains the best ENT re-
sults. Our study in the following will focus on 10 5 CA-5.

TABLE II
ENT TEST RESULTS OF 50-CELL CA

TABLE III
ENT TEST RESULTS OF 2-D CA-3/5 UNDER DIFFERENT RULES

In the previous experiments, we use rule 150. In the fol-
lowing, we test the randomness of 10 5 2-D CA-3 and CA-5
under different rules. We test rule 30, 90, 105, and 165 because
they are reported as the best rules for 1-D uniform CA [17].
Table III shows the ENT test results. The experiment condition
is the same as that in Table I and Table II.

The ENT test results show that 2-D CA-3 cannot generate
good random number sequences under all the rules tested, while
2-D CA-5 outperform 1-D uniform CA under all the transition
rules except rule 30. Generally, rule 30 is not a good choice for
10 5 2-D CA, but we cannot exclude the possibility that it
could generate good results under other array settings and output
methods. Comparison on the remaining rules shows that the ran-
domness improvement of 2-D CA-5 is most prominent with rule
150. Hence, we choose to apply rule 150 on 2-D CA cells in our
work.

The ENT/DIEHARD test results of 2-D CA-5 under output
method 0 to 9 are shown in Table IV. The experiment condition
is the same as that in Tables I–III. The length of sequences for
DIEHARD test is 10 000 000 bytes. It shows that method 5–8
could generate better random number sequences than the other
methods, which shows that output in the vertical direction is
better than output in the horizontal or diagonal direction. We
can deduce that output bit extraction in the vertical direction
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TABLE IV
ENT/DIEHARD TEST RESULTS OF 2-D CA-5

UNDER DIFFERENT OUTPUT METHODS

presents lesser correlation than in the horizontal direction. Thus,
we choose to use vertical direction in generating the output. The
performance of method 5–7 is similar while the implementation
of method 5 is a more natural way. Hence, we choose method 5
as the output method in the following experiments.

In the following experiments, all the 2-D CA are 10 5 2-D
CA using rule 150 and output method 5. The best randomness
quality of 2-D CA is obtained by 2-D CA-5, failing one test in
DIEHARD. But we have shown in [22] that 1-D 50-cell NCA
could pass all the tests in DIEHARD with time spacing at 1.
The question is can we find other structures that generate better
random number sequences than 2-D CA-5 and at the same time
pass DIEHARD? In the next section, the structure of 2-D CA is
to be evolved.

III. EVOLUTIONARY MULTIOBJECTIVE

OPTIMIZATION APPROACHES

The objective of the evolution process is to find some 2-D
CA that could generate good random number sequences. Be-
cause DIEHARD test is too time-consuming, we use ENT test
results to evaluate the randomness of these CA in this work.
Different from Tomassini et al.’s method [14] that uses entropy
value alone as the objective to evolve 2-D CA, we choose to
use entropy value along with SCC and chi-square values as
objectives to get a more comprehensive evaluation. Some 2-D
CA may get good entropy values but fair SCC values while
some other 2-D CA may get reverse results. Because entropy,
SCC, and chi-square values may not be aligned, we cannot
simply add them together to generate one single value as objec-
tive. Hence, single-objective evolution algorithm does not make
sense here.

MOGA is then used to evolve the structure of 2-D CA.
MOGA is widely used to solve engineering problems where
simultaneous optimization of multiple, often competing,
objectives is required. Various schemes have been developed
in recent years [6]. These techniques could be divided into two
categories: the population-based approach and the Pareto-based

Fig. 5. The chromosome structure: (a) bits 1–8 for four corner cells; (b) bits
9–20 for three vertical boundary cells in the first column; and (c) bits 21–32 for
three vertical boundary cells in the last column.

approach. On the whole, the population-based approach has a
common deficiency that it tends to generate solutions such that
the performance of one objective is extremely good while the
other objectives are not so [6]. Hence, we use the Pareto-based
approach.

Different from the population-based approaches, the
Pareto-based approach performs selection/reproduction by
referring not only to the objective values themselves but also
to the dominance property of them. Among several proposed
schemes, we choose Fonseca and Fleming’s [2] as our basic
algorithm. In their scheme, the rank of each individual is
defined as one plus the number of individuals in the current
population that dominates it.

A. Evolutionary Algorithm—MOGA

The structure of an individual 10 5 2-D CA includes three
parts: the interconnection of horizontal cells and their neighbors,
the interconnection of the four corner cells and their neighbors,
and the interconnection of six vertical boundary cells and their
neighbors. Because the interconnections of horizontal cells and
their neighbors are fixed in these CA, the structure of 10 5 2-D
CA is decided by the interconnection of the four corner cells, the
six vertical boundary cells and their neighbors.

For each corner cell, there are three possible combinations
and for each vertical boundary cell, there are ten possible
combinations. Different corner cells could have different
neighbor connections and the same for vertical boundary cells.
Hence, we have two bits for each corner cell and four bits
for each vertical boundary cell in the chromosome to identify
their neighbor connections Fig. 5 shows the structure of the
chromosome. Bits 1–8 stand for the neighbor connection of
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Fig. 6. Structures of the three evolved 10 � 5 2-D CA. (a) Structure of chromosome 1. (b) Structure of chromosome 2. (c) Structure of chromosome 3. An arrow
pointing from cell A to cell B means cell A is a neighbor of cell B.

four corner cells, bits 9–20 stand for the neighbor connection of
three vertical boundary cells in the first column, and bits 21–32

stand for the neighbor connection of three vertical boundary
cells in the last column.
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The randomness of 2-D CA is evaluated using ENT.
100 initial seeds are tested and the average performance is
taken as the randomness of the tested CA. The three objectives
are the average entropy value, average 1-SCC value, and the
chi-square pass rate. The relationship of these objectives has
been extensively studied in [22]. Each 32-bit chromosome iden-
tifies one CA structure. The detail is presented in Algorithm 1.

Algorithm 1: Evolution of the 2-DCA
structure

Input: chromosomes randomly initiated.
//evolution
While (stopping criteria is not true) do
Calculate the objective values of each
chromosome;

Calculate the Pareto-rank of each chro-
mosome;

Perform crossover and mutation to gen-
erate child chromosomes;

Calculate the objective values of each
child chromosomes;

Calculate the Pareto-rank of each child
chromosome;

Copy the first half of parent chromo-
somes and first half of child chromo-
somes to the next generation;

End while
Output chromosomes in the last genera-
tion

The input of the evolution process is chromosomes that
are randomly initiated. The output is chromosomes in the
last generation. The total population size is set at 80. The
stopping criterion is the maximum stagnation steps , which
is set at 300 . Or, if the best chromosome keeps
unchanged for 200 continuous evolution steps, the evolution
process will be stopped. The 1-point crossover rate is set at 0.95.
The bit mutation rate is set at 0.05. During reproduction, half of
the better-performing parents and child chromosomes will be
copied into the next generation.

B. Evolution Results

The final objective of the evolution process is to find some
2-D CA to pass DIEHARD. However, due to the limitation of
the computation ability, we use ENT test results to evaluate
the randomness of these 2-D CA during the evolution process.
DIEHARD test is applied to the whole population every ten
evolution steps to check whether the evolved CA could pass
DIEHARD. In the last population, three out of 80 chromosomes
are found to pass DIEHARD. These three chromosomes are
considered as the final evolution results. The structures of the
evolved CA are shown in Fig. 6. It shows that neighbor connec-
tions in the diagonal direction are indispensable to obtain good
randomness quality in these CA. The structural complexity of
the evolved three CA is similar.

Fig. 7. Bits 33–39 in the expanded chromosome.

Compared with 50-cell 1-D NCA, the randomness of the
evolved 10 5 2-D CA is better because 50-cell 1-D NCA could
not pass DIEHARD without any spacing. According to the
work of Tomassini et al. [14], an evolved 8 8 2-D CA could
pass DIEHARD without any spacing while the randomness
of their 2-D CA with smaller size is not known yet. We may
conclude that our 2-D CA could be as good as the conventional
2-D CA at least. But the structural complexity of our 2-D CA is
lower than that of the conventional 2-D CA with the same size.

C. Discussion on Evolution Results

In this section, we evolve transition rule and output method
along with our 2-D CA structures to find whether output method
5 and rule 150 are the best choice as indicated in Section II. The
chromosome shown in Fig. 5 is expanded with seven additional
bits. Fig. 7 shows the expanded part of the chromosome. Bits
33–36 represent the output method 0–9. Bits 37–39 represent the
eight rules. The evolution algorithm is the same as Algorithm 1.
All the evolution parameters are the same too.

Evolving 10 5 2-D CA for 1000 steps, we find that all
the chromosomes in the last population use rule 150. Most
of the chromosomes use output method 5, while a few use
output method 6. The randomness of these few chromosomes
is further tested with DIEHARD under output method 5 and
6. Their DIEHARD test results are the same under the two
output methods although they obtain better ENT test results
under output method 6. In addition, we evolve output method
and transition rule along with the structures of these 8 6 2-D
CA. Similar results are obtained for 8 6 2-D CA. Rule 150 is
used by all the chromosomes in the last generation and output
method 5 is used by most of them. The evolution results on
these 10 5 and 8 6 CA confirm our previous suggestion that
output method 5 and rule 150 are the best choice for 10 5 CA
or CA under similar array settings.

Referring to the structures of three evolved 10 5 CA
presented in the last section, we can see that their complexity
is close. It is possible to find some other 10 5 CA with less
complex structures to pass DIEHARD by increasing evolution
effort. Fig. 8 shows the number of chromosomes passing
DIEHARD during the evolution process.

Using DIEHARD to test the chromosomes every ten evolu-
tion steps, we can see that the number of chromosomes passing
DIEHARD increases. However, after approximately 150 time
steps, i.e., from time steps 250 to 400, the number of chromo-
somes that can pass DIEHARD keeps unchanged. Given that our
main objective is to find a structure that can pass DIEHARD, we
are contented with getting a satisfactory result at lesser evolution
time. This is because the evolution process is time-consuming
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Fig. 8. Number of chromosomes passing DIEHARD at different evolution
steps.

and there is no guarantee that CA with simpler structures could
be found in the end.

IV. REFINEMENT PROCEDURE TO REDUCE THE COST OF

2-D CA WITH ASYMMETRIC NEIGHBORSHIP

Since we know that 10 5 CA with asymmetric neighborship
could pass DIEHARD we explore whether the cost of CA could
be reduced while maintaining the randomness quality instead
of going on with the evolution. Here, we try to reduce the cost
by decreasing the number of cells in the evolved 10 5 CA.
The evolved 10 5 CA-1 (chromosome 1) is used as the basic
structure in this section.

There is no doubt that the good performance of 2-D CA
mainly comes from the versatile interconnections among
corner cells/horizontal cells and their neighbors. Hence, it is
natural to keep these neighbor connections unchanged during
our exploration. We keep the number and location of corner
cells and vertical boundary cells fixed while reducing the
number of horizontal cells in the evolved CA. First, we test the
randomness of 9 5 CA by deleting one horizontal cell in each
row. The ENT/DIEHARD test results are shown in Table V. It
shows that the randomness of 9 5 CA drops dramatically. It
could only pass 16 tests in DIEHARD.

Because the randomness of 9 5 2-D CA is unsatisfactory, the
procedure goes back to 10 5 CA by reducing the number of
horizontal cells in the evolved 10 5 CA one by one. The differ-
ence between the evolved 10 5 CA and 49-cell 2-D CA is that
there is one horizontal cell less in the latter. Table V shows the
ENT and DIEHARD test results on 49-cell 2-D CA. The results
show that 49-cell 2-D CA could perform as well as 10 5 CA
and the location of the deleted horizontal cell may not affect the
randomness.

Next, we test 48-cell 2-D CA by having two horizontal cells
deleted from the 10 5 CA. The randomness test results are
shown in Table V too. It shows that 48-cell 2-D CA may pass
DIEHARD and the performance depends on the location of
the two horizontal cells deleted. If the two horizontal cells

TABLE V
RANDOMNESS OF 10 � 5, 49-CELL, 48-CELL, 47-CELL CA

WITH ASYMMETRIC NEIGHBORSHIP

deleted are in the same row, the 48-cell 2-D CA could not
pass DIEHARD. If the two horizontal cells deleted are located
in different rows, the 48-cell 2-D CA could pass DIEHARD.
Table V also shows the randomness of some 47-cell 2-D
CA with three horizontal cells deleted. None of the tested
47-cell CA could pass DIEHARD no matter where the deleted
horizontal cells are located. Because the searching process is
not complete, we could not exclude the possibility that some
47-cell 2-D CA could pass DIEHARD. However, it would be
straightforward to carry on the refinement procedure.

V. CONCLUSION

In this paper, we have introduced a variation of CA—2-D CA
with an array structure and discussed the asymmetric neigh-
borship in them. The array setting, rule selection and output
method of such CA have been studied and some suggestions
given. The structures of CA with asymmetric neighborship were
evolved using MOGA. The evolved 10 5 CA could generate
good random number sequences that pass DIEHARD. Com-
pared with 1-D NCA and normal 2-D CA in similar size, our
2-D CA could perform better or as well. Further, we explored
the possibility to reduce the number of horizontal cells in the
evolved CA with asymmetric neighborship. We found that two
horizontal cells could be deleted from the evolved 10 5 2-D CA
without degrading the randomness quality when the two hori-
zontal cells are not deleted from the same row.

APPENDIX

CONSISTENT VERSUS INCONSISTENT NEIGHBORSHIP

Recall the difference between consistent and inconsistent
neighborship by citing examples for each in Fig. 9. Note that
cells 1–3 are vertical boundary cells in the first column and
cells 4–6 are vertical boundary cells in the last column of 2-D
CA. Genetic algorithm was used to derive the neighborship of
vertical boundary cells that will give the best ENT results for a
10 5 2-D CA. Corner cells and horizontal cells are uniform
cells and use their two directly connected cells as neighbors.
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Fig. 9. Vertical boundary cell neighborship connection. (a) Consistent
neighborship. (b) Inconsistent neighborship. An arrow pointing from cell A to
cell B means cell A is a neighbor of cell B.

TABLE VI
CONSISTENT VERSUS INCONSISTENT NEIGHBORSHIP

TABLE VII
BASIC VERSUS ENHANCED MODEL

Using ENT test to evaluate the performance, it is shown in
Table VI that consistent neighborship outperforms consistent
one.

BASIC VERSUS ENHANCED MODEL

Configuration 1 with inconsistent neighborship is used to
compare the performance of enhanced model with the basic
model. To describe the enhanced model, the basic model is
modified such that the corner cells will have diagonal cells
directly connected to it. The diagonal cells are used as neigh-
bors. All other parameters including neighborship of vertical
boundary cells remain the same. Under the DIEHARD test

using ten initial seeds, it can be seen from Table VII that the
enhanced model outperforms the basic model.
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