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Abstract Applications of regression models for binary response are very com-
mon and models specific to these problems are widely used. Quantile regres-
sion for binary response data has recently attracted attention and regularized
quantile regression methods have been proposed for high dimensional prob-
lems. When the predictors have a natural group structure, such as in the case
of categorical predictors converted into dummy variables, then a group lasso
penalty is used in regularized methods. In this paper, we present a Bayesian
Gibbs sampling procedure to estimate the parameters of a binary quantile
regression model under a group lasso penalty. Simulated and real data show
a good performance of the proposed method in comparison to mean-based
approaches and to quantile-based approaches which do not exploit the group
structure of the predictors.
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1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) and has
since then become the method of choice for regression problems where the
data do not satisfy the normal distributional assumptions underlying tradi-
tional methods or when the data are subject to some form of contamination.
One line of research has extended the original quantile regression model to the
case where the response is binary, as an alternative to traditional mean-based
models, such as logistic and probit regression models. The methods were orig-
inally developed in the frequentist estimation setting by Manski (1975, 1985)
and were subsequently extended also to the Bayesian counterpart (Yu and
Moyeed 2001; Benoit and Poel 2012; Miguéis et al 2012) as a means to avoid
large-sample based asymptotic results for inference and at the same time take
regression parameter uncertainty into account.

In recent years, with the advent of highly dimensional and complex datasets
in many application areas, regularized regression methods have attracted a lot
of attention. These methods impose a penalty on the size of the parameters,
thus making it possible to estimate regression coefficients in the presence of a
large number of variables and a relatively small number of observations. In the
popular lasso regression model, this penalty takes the form of an L1 penalty,
which has the advantage of providing simultaneous parameter estimation and
variable selection (Tibshirani 1996). The original lasso method was extended
in a number of directions, amongst which adaptive lasso (Zou 2006; Alhamzawi
et al 2012) and Cox regularized regression (Tibshirani 1997). In some cases, the
predictors have a natural group structure, such as in the case of a categorial
variable being converted into dummy variables. In these cases, the selection of
groups of variables is of interest, rather than of individual variables. In order
to address this type of problems, Yuan and Lin (2006) developed the group
lasso method and a number of authors have subsequently extended it and
studied its theoretical properties (Bach 2008; Huang and Zhang 2010; Wei and
Huang 2010; Lounici et al 2011; Sharma et al 2013; Simon et al 2013). Given
the merits of the regularized methods just described, regularized methods for
binary response variables have also been developed. In particular, Bae and
Mallick (2004); Genkin et al (2007); Gramacy and Polson (2012) developed
Bayesian logistic regression models under a lasso or ridge penalty, Meier et al
(2008) developed the classical logistic regression model under a group lasso
penalty, and Krishnapuram et al (2005) developed a sparse multinomial logistic
regression model.

The references above refer to the estimation of mean-based regression mod-
els. A small line of research has explored the link between the robust quantile
regression models and the regularized models for high-dimensional data. In
particular, Li and Zhu (2008) have developed quantile regression models un-
der a lasso penalty, the theoretical properties of which are derived in Belloni
and Chernozhukov (2011). Li et al (2010) provide a Bayesian formulation of
the same problem. Finally, Ji et al (2012) have developed a quantile regression
model under an L1 penalty and for a binary response. In this paper, we extend
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the work of Ji et al (2012) on binary quantile regression models with the use of
a group lasso penalty. Our model is derived in the framework of probit binary
regression and offers an alternative to the mean-based logistic regression model
with group lasso penalty (Meier et al 2008), when the response is binary, the
predictors have a natural group structure and quantile estimation is of inter-
est. In section 2 we describe the model, in section 3 we describe the estimation
of the parameters in a Bayesian setting, in section 4 we discuss how the model
is used for prediction, in sections 5 and 6 we compare the performance of the
method with related mean-based and quantile-based regression approaches on
simulated and real data. Finally, in section 7, we draw some conclusions.

2 Binary quantile group lasso

Similar to a probit regression model, binary quantile regression models can be
viewed as linear quantile regression models with a latent continuous response
variables, e.g. Ji et al (2012). In particular, let y be the binary response vari-
able, taking values 0 and 1, let x be the vector of p predictors, β the vector
of unknown regression coefficients and (xi, yi), i = 1, . . . , n a sample of n
observations on X and Y . Given a quantile θ, 0 < θ < 1, we consider the
model:

y⋆i = xT
i βθ + ui, i = 1, . . . , n and yi = h(y⋆i ),

where ui are the errors, satisfying P (ui ≤ 0|xi) = θ, and h is a link function.
For binary response data, the link function is given by h(y⋆) = I(y⋆ > 0), with
I the indicator function. In real applications, y is the observed binary response
and the interest is to predict y from knowledge of x. y⋆ is unobserved and used
mainly for modelling purposes. Some examples of y⋆ include the actual birth
weight of babies in a study where the aim is to investigate the factors behind
the birth of premature babies, the credit risk of a customer in a study where
the aim is to discriminate between good and bad customers (Kordas 2002) or
the willingness to participate to work in a study where the factors behind the
decision to work or not are investigated (Kordas 2006).

The attractive property of this latent model is that there is a correspon-
dence between the quantiles of y and the quantiles of y⋆, which are directly
modelled. In particular, using the equivariance properties of quantile functions
(Kordas 2006), it holds that

Qy|x(θ) = Qh(y⋆|x)(θ) = h(Qy⋆|x(θ)),

with Qy|x(θ) denoting the θ conditional quantile of y given x. From this, since
Qy⋆|x(θ) = xTβθ under a linear quantile regression model, it follows that

Qy|x(θ) = h(xTβθ) = I(xTβθ > 0).

So the estimation of the parameters βθ leads to the knowledge about the θ
quantile of y. In the next section, we describe how to estimate βθ under a
group lasso penalty.
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3 Bayesian parameter estimation

In a binary quantile regression model, the parameter βθ is found by the fol-
lowing minimization problem (Manski 1985):

min
||β||=1

n∑
i=1

ρθ(yi − h(xT
i β)), (1)

where ρθ is the check function defined by

ρθ(t) =

{
θt if t ≥ 0,

−(1− θt) if t ≤ 0

or equivalently ρθ(t) =
|t|+ (2θ − 1)t

2
. The restriction on ||β|| = 1 is motivated

by the fact that the scale of the parameter is not identifiable, being y⋆ a
latent variable. Yu and Moyeed (2001) have shown how minimizing (1) is
equivalent to maximising the likelihood function, under the assumption that
the error comes from an asymmetric Laplace distribution with density given
by fθ(u) = θ(1 − θ) exp(−ρθ(u)). That is, minimising (1) is equivalent to
maximising the likelihood

f(y|x, β, θ) = θn(1− θ)n exp
(
−

n∑
i=1

ρθ(yi − h(xT
i β))

)
. (2)

This fact has created a straightforward working model for Bayesian inference
quantile regression.

When the predictors have a natural group structure, the methodology
above can be extended to the use of a group lasso penalty. In particular, sup-
pose that the predictors are grouped into G groups and βg is the vector of co-
efficients of the gth group of predictors. We denote with xig the ith observation
of the predictors in group g. Let β = (βT

1 , . . . , β
T
G)

T and xi = (xT
i1, . . . , x

T
iG)

T ,
i = 1, . . . , n. Under a group lasso constraint, the minimization in (1) becomes

min
||β||=1

n∑
i=1

ρθ(yi − h(xT
i β)) + λ

G∑
g=1

||βg||Hg , (3)

where λ is a non-negative regularization parameter, controlling the sparsity
of the solution, and ||βg||Hg = (βT

g Hgβg)
1/2 with Hg = dgIdg and dg the

dimension of the vector βg. The choice of dg in Hg has been suggested by
Yuan and Lin (2006) to ensure that the penalty term is of the order of the
variables in the group. Under an appropriate choice of prior distribution, the
minimization problem in (3) can be shown to be equivalent to a maximum a
posteriori solution. In particular, a Laplace prior on βg is chosen, that is

π(βg|λ) = Cdg

√
det(Hg)λ

dg exp(−λ||βg||Hg ), (4)
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where Cdg = 2−(dg+1)/2(2π)−(dg−1)/2/Γ ((dg+1)/2) and Γ is the gamma func-
tion. Then, using the same asymmetric Laplace distribution for the residuals
u, the minimization in (3) is equivalent to the maximum of the posterior dis-
tribution

f(β|y, x, λ, θ) ∝ exp
(
−

n∑
i=1

ρθ(yi − h(xT
i β))− λ

G∑
g=1

||βg||Hg

)
,

under the constraint that ||β|| = 1.

3.1 Gibbs sampling procedure

We extend the Gibbs sampling procedure of Ji et al (2012) to the case of a
group lasso penalty. As a first step we rewrite the prior of βg using the equality
(Andrews and Mallows 1974)

a

2
exp(−a|z|) =

∫ ∞

0

1√
2πs

exp
(−z2

2s

)a2
2

exp
(
− a

2
s
)
ds,

which holds for any a ≥ 0. In particular, we take a = λ and z = ||βg||Hg =

(βT
g Hgβg)

1/2. Then the prior in (4) can be rewritten as

π(βg|λ) = Cdg

√
det(Hg)λ

dg exp(−λ||βg||Hg ) (5)

=
(λ2/2)(dg+1)/2

Γ ((dg + 1)/2)

∫ ∞

0

exp
(
− 1

2β
T
g (sgH

−1
g )−1βg

)
s

dg−1

2
g exp

(
−λ2

2 sg

)
√
det(2πsgH

−1
g )

dsg.

As a second step, we use the fact that an asymmetric Laplace distributed
random variable can be written as a mixture of a N(0, 1) distributed random
variable and an exponentially distributed random variable with rate parameter
θ(1 − θ) (Alhamzawi and Yu 2013; Kozumi and Kobayashi 2011; Lum and
Gelfand 2012). This allows to rewrite the likelihood (2) as:

f(y|x, β, θ) ∝ exp
(
−

n∑
i=1

ρθ(ui)
)
= exp

(
−

n∑
i=1

|ui|+ (2θ − 1)ui

2

)
=

n∏
i=1

∫ ∞

0

1√
4πvi

exp
(
− (ui − ξvi)

2

4vi
− ζvi

)
dvi

with ui = yi − h(xT
i β), ξ = (1− 2θ) and ζ = θ(1− θ).
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From this, we can derive the following conditional distributions:

f(β|y, x, λ, θ) ∝
n∏

i=1

∫ ∞

0

1√
4πvi

exp
(
− (ui − ξvi)

2

4vi
− ζvi

)
dvi

G∏
g=1

exp
(
− λ||βg||Hg

)

f(β|y, x, v, λ, θ) ∝ exp
(
−

n∑
i=1

(ui − ξvi)
2

4vi
−

G∑
g=1

λ||βg||Hg

)
f(βg|y, x, v, β−g, λ, θ) ∝ exp

(
−

n∑
i=1

(ui − ξvi)
2

4vi
− λ||βg||Hg

)
.

If we write ỹig = yi − h(
∑G

k=1,k ̸=g x
T
ikβk) − ξvi, then using (5), we can write

the conditional distribution of βg as

f(βg|y, x, v, β−g, λ, θ) ∝ exp
(
−

n∑
i=1

(ỹig − h(xT
igβg))

2

4vi
− 1

2
βT
g (sgH

−1
g )−1βg

)
.

The derivations above lead to the following Gibbs sampling procedure for
the quantile θ:

1. Sample y⋆ from a truncated Normal distribution:

y⋆i |yi, xi, β, vi∼
{
N(xT

i β + ξvi, 2vi)I(y
⋆
i > 0) if yi = 1,

N(xT
i β + ξvi, 2vi)I(y

⋆
i < 0) if yi = 0.

2. Sample v−1
i , given y⋆i , xi and β, from an inverse Gaussian distribution with

mean and shape parameters given by, respectively,

µ =

√
1

(y⋆i − xT
i β)

2
and η =

1

2
.

3. Sample sg, given βg and λ, from an inverse Gaussian distribution with
mean and shape parameters given by, respectively,

µ =

√
λ2

βT
g Hgβg

and η = λ2.

4. Sample βg, given y⋆, x, β−g, sg, v, from a multivariate normal distribution
with mean and covariance given by

µg = ΣgxgV (y⋆ − (1− 2θ)v − xT
−gβ−g) and Σg = (xgV xT

g + s−1
g Hg)

−1,

respectively, where V = diag
( 1

2vi

)
, i = 1, . . . , n, and xg is the dg × n

matrix of observations for group g.
5. Sample λ2, given sg, from a Gamma distribution with shape and rate

parameters given by

α =
p+G

2
+ b1 and β =

G∑
g=1

sg
2

+ b2

respectively, with b1 and b2 two non-negative constants which we set equal
to 0.1.
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4 Class prediction

The estimation of the regression coefficients indicates the most influential vari-
ables for the prediction of the binary outcome y. As with any classification
problem, the main interest is in the prediction of y from a new instance x for
which the binary outcome, or class, is unknown. In this section, we describe
how the method that we propose is used to this purpose. The classification
of an instance x is based on the estimated probability P (y = 1|x). For our
model:

P (y = 1|x, β, θ) = P (y⋆ > 0|x, β, θ) = P (xTβθ + u > 0|x, β, θ)
= P (u > −xTβθ|x, β, θ) = 1− P (u < −xTβθ|x, β, θ)
= 1− ΦALD(−xTβθ|x, β, θ),

where ΦALD is the cdf of an asymmetric Laplace distribution. Using the esti-
mated βθ from the binary quantile regression model in the formula above, we
get a natural estimate of the posterior probability of x belonging to class 1.
Since P (u < 0|x) = θ, it follows that (Kordas 2006):

xTβθ
>
=
<

0 ⇔ P (y = 1|x, β, θ) >
=
<

1− θ.

So there is a direct link before the estimated βθ and the probability that
P (y = 1|x) = 1 − θ. In general, we can expect the error to have a median
around 0, which motivates the choice of θ = 0.5.

In Kordas (2006), a second approach is also considered, where P (y = 1|x, β)
is computed as an average over different quantiles θ. In particular, it holds that

P (y = 1|x, β) =
∫ 1

0

I(xTβθ > 0)dθ.

This probability can be estimated using a grid of values θ1, . . . , θm and then
taking

P (y = 1|x, β) ≈ 1

m

m∑
k=1

P (y = 1|x, β̂θk),

with β̂θk the estimate of β for quantile θk.

As a final step in predicting y, we set a threshold t and classify a new
object x to class 1 if

P (y = 1|x) > t.

The threshold t is normally chosen according to the relative misclassification
costs for class 0 and 1 and corresponds to the case t = 0.5 for equal misclassi-
fication costs (Hand and Vinciotti 2003).
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5 Simulation study

In this section, we investigate the performance of our method with a simulation
study. As typical for these applications, we simulate the data from

y⋆i = xT
i βθ + ui, i = 1, . . . , n and yi = h(y⋆i ),

with β chosen to have a group structure and with different choices of the error
distribution. Similar to Yu et al (2013), we consider the following distributions
for the error:

– Normal: N(0, 1)
– t-distribution with 1 degree of freedom (Cauchy): t1
– Laplace distribution with location 0 and scale 10

– Skewed (skew): 1
5 N

(
− 22

25 , 1
)
+ 1

5 N
(
− 49

125 ,
(

3
2

)2)
+ 3

5N
(

29
250 ,

(
5
9

)2)
– Kurtotic (kur): 2

3 N(0, 1) + 1
3 N

(
0,
(

1
10

)2)
– Bimodal (bim): 1

2 N
(
− 1,

(
2
3

)2)
+ 1

2 N
(
1,
(

2
3

)2)
– Bimodal, with separate modes (bim-sep): 1

2N
(
− 3

2 ,
(

1
2

)2)
+ 1

2N
(

3
2 ,
(

1
2

)2)
– Skewed Bimodal (skew-bim): 3

4 N
(
− 43

100 , 1
)
+ 1

4 N
(

107
100 ,

(
1
3

)2)
– Trimodal (tri): 9

20 N
(
− 6

5 ,
(

3
5

)2)
+ 9

20 N
(

6
5 ,
(

3
5

)2)
+ 1

10N
(
0,
(

1
4

)2)
.

These distributions were chosen to have a median close to or equal to zero.
Figure 1 shows a plot of the density functions for the different cases considered.
For the simulation, we set the sample size to n = 50.

For the β vector, we consider the case of a large number of predictors, i.e.
p ≫ n. Similar to Li et al (2010), we create a group structure by simulating
10 groups, each consisting of 10 covariates. The 100 variables are assumed to
follow a multivariate normal distribution N(0, Σ), with Σ having a diagonal
block structure. Each block corresponds to one group and is defined by the
matrix r|i−k|, i = 1, . . . , 10, k = 1, . . . , 10. For the correlation r, we experiment
both with r = 0.95 (well-defined group structure) and r = 0.5. For the β values,
we consider two cases:

1. The values for the first three groups are given by

(0.5, 1, 1.5, 2, 2.5, 2, 2, 2, 2, 2), (2, 2, 1, 1, 1, 1, 3, 3, 3, 3), (1, 1, 1, 2, 2, 2, 3, 3, 3, 3)

and they are set to zero for all other groups.
2. βj = 0.85 for all j.

We compare our method, Bayesian binary quantile regression with group
Lasso penalty (BBQ.grplasso), with a frequentist mean-based logistic regres-
sion model under a lasso penalty (R package glmnet (Friedman et al 2010)), a
frequentist mean-based logistic regression model under a group lasso penalty
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Fig. 1 Density functions of the errors considered in the simulation study.

(R package grpreg (Breheny and Huang 2014)) and a Bayesian binary quan-
tile regression with a lasso penalty (R package bayesQR (Benoit and Poel
2012)). For grpreg and glmnet, the penalty parameter λ is selected using
5-fold cross-validation. For the Bayesian quantile methods and their Gibbs
sampling procedures, we use 13000 iterations with the first 3000 iterations
kept as burn-in. Furthermore, in the quantile methods, we use two methods
to make class predictions, as described in Section 4: in the first case, we use
the median (θ = 0.5); in the second case we take an average of three quantiles,
which we set as θ = 0.25, 0.5, 0.75.

Tables 1 and 2 report the Area Under the Curve (AUC) values for the
different methods and the different error distributions, with the AUC values
averaged over 40 iterations and computed on a test set of the same size as the
training set. In Table 1, we consider the first scenario for the β values and we
set r = 0.5, whereas in Table 2 we consider the case of all βs equal to 0.85
and r = 0.95. Similar results were obtained in the other cases. No significant
differences were found between the two approaches for prediction used for the
Bayesian methods, namely that based on θ = 0.5 and that based on the average
of three quantiles. Tables 1 and 2 show how the BBQ.grplasso proposed in
this paper significantly outperforms the other methods in all cases considered.
Furthermore, the results show how grpreg is the worst performing method
in all cases, surprisingly performing worse than glmnet, which is of a same
nature but does not exploit the group structure of the predictors. The main
competitor to BBQ.grplasso seems to be bayesQR which in fact differs with
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Table 1 AUC values, averaged over 40 iterations (with standard deviations in brackets) for
the case: n=50, p=100, r=0.5 and β values as in case (1). BBQ.grplasso: Bayesian binary
quantile regression model proposed in this paper (based on θ = 0.5 (median) and an average
of the θ = 0.25, 0.5, 0.75 quantiles); grpreg: frequentist mean-based logistic regression model
with group lasso penalty, glmnet: frequentist mean-based logistic regression model under a
group lasso penalty; bayesQR: Bayesian binary quantile regression with a lasso penalty (based
on θ = 0.5 (median) and an average of the θ = 0.25, 0.5, 0.75 quantiles).

BBQ.grplasso BBQ.grplasso grpreg glmnet bayesQR bayesQR

(θ = 0.5) (θ = 0.25, 0.5, 0.75) (θ = 0.5) (θ = 0.25, 0.5, 0.75)

N(0,1) 0.879 0.88 0.773 0.804 0.83 0.838
(0.055) (0.053) (0.103) (0.078) (0.066) (0.068)

t1 0.838 0.838 0.725 0.765 0.787 0.797
(0.06) (0.06) (0.116) (0.116) (0.066) (0.068)

Laplace 0.766 0.764 0.64 0.718 0.722 0.727
(0.089) (0.089) (0.125) (0.113) (0.087) (0.089)

skew 0.885 0.886 0.792 0.811 0.832 0.837
(0.043) (0.043) (0.087) (0.086) (0.049) (0.051)

kur 0.89 0.888 0.775 0.816 0.843 0.846
(0.049) (0.05) (0.112) (0.082) (0.058) (0.052)

bim 0.898 0.898 0.782 0.789 0.853 0.857
(0.05) (0.05) (0.098) (0.117) (0.066) (0.065)

bim-sep 0.881 0.881 0.784 0.819 0.826 0.829
(0.053) (0.053) (0.096) (0.078) (0.066) (0.072)

skew-bim 0.885 0.886 0.797 0.814 0.838 0.848
(0.054) (0.055) (0.099) (0.09) (0.067) (0.066)

tri 0.879 0.879 0.774 0.822 0.82 0.829
(0.053) (0.054) (0.117) (0.074) (0.064) (0.061)

the proposed method only in the use of the lasso penalty in contrast to the
group lasso penalty. The tables also show how the superiority of the Bayesian
methods version the frequentist methods is particularly pronounced for the
case of non-sparse coefficients (Table 2). This is well known in the literature,
as Bayesian regularized methods do not return exact zeros for the parameter
estimates.

Figure 2 confirms the results of the tables by showing the average ROC
curve of the methods considered for two cases of error distributions. The figures
show how the BBQ.grplasso outperforms the frequentist mean-based methods
for all classification thresholds and has bayesQR as its main competitor.

6 Real application

In this section, we investigate the performance of the new method on five real
applications:

– Birth weight dataset: This dataset is available in the R package grpreg
and was used in Yuan and Lin (2006). The data record the birth weights of
189 babies, together with eight predictors. Among the predictors, two are
continuous (mother’s age and weight) and six are categorical (mother’s
race, smoking status during pregnancy, number of previous premature
labours, history of hypertension, presence of uterine irritability, number
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Table 2 AUC values, averaged over 40 iterations (with standard deviations in brackets) for
the case: n=50, p=100, r=0.95 and β values as in case (2). BBQ.grplasso: Bayesian binary
quantile regression model proposed in this paper (based on θ = 0.5 (median) and an average
of the θ = 0.25, 0.5, 0.75 quantiles); grpreg: frequentist mean-based logistic regression model
with group lasso penalty, glmnet: frequentist mean-based logistic regression model under a
group lasso penalty; bayesQR: Bayesian binary quantile regression with a lasso penalty (based
on θ = 0.5 (median) and an average of the θ = 0.25, 0.5, 0.75 quantiles).

BBQ.grplasso BBQ.grplasso grpreg glmnet bayesQR bayesQR

(θ = 0.5) (θ = 0.25, 0.5, 0.75) (θ = 0.5) (θ = 0.25, 0.5, 0.75)

N(0,1) 0.962 0.962 0.606 0.895 0.928 0.943
(0.026) (0.027) (0.104) (0.046) (0.042) (0.046)

t1 0.943 0.943 0.572 0.878 0.911 0.923
(0.033) (0.033) (0.096) (0.07) (0.048) (0.044)

Laplace 0.872 0.872 0.57 0.784 0.834 0.848
(0.048) (0.048) (0.08) (0.1) (0.047) (0.047)

skew 0.96 0.958 0.602 0.888 0.925 0.944
(0.025) (0.026) (0.104) (0.063) (0.038) (0.039)

kur 0.954 0.955 0.646 0.876 0.917 0.941
(0.03) (0.031) (0.1) (0.087) (0.043) (0.037)

bim 0.963 0.962 0.561 0.901 0.924 0.94
(0.033) (0.034) (0.086) (0.067) (0.045) (0.048)

bim-sep 0.967 0.966 0.609 0.899 0.935 0.948
(0.029) (0.028) (0.119) (0.068) (0.036) (0.041)

skew-bim 0.969 0.968 0.592 0.912 0.935 0.951
(0.019) (0.02) (0.107) (0.048) (0.033) (0.025)

tri 0.96 0.959 0.601 0.89 0.928 0.94
(0.036) (0.036) (0.101) (0.071) (0.047) (0.042)

t1 Error: r=0.5, case (1)
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Fig. 2 Average ROC curves (over 40 iterations) of Bayesian binary quantile regression with
group lasso (BBQ.grplasso, θ = 0.5), compared with grpreg, glmnet and bayesQR, under a
t1 (left) and a Laplace (right) error distribution.
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of physician visits). Through the use of orthogonal polynomials and dum-
mmy variables, the data is converted into 17 predictors. The goal of this
study is to identify the risk factors associated with giving birth to a low
birth weight baby (defined as weighing less than 2500g).

– Colon dataset: This dataset is available in the R package gglasso and
was used by Yang and Zou (2013). The data report the expression level of
20 genes from 62 colon tissue samples, of which 40 are cancerous and 22
normal. In Yang and Zou (2013), the 20 expression profiles are expanded
using 5 basis B-splines, creating a dataset with 100 predictors and a group
structure.

– Labor force participation dataset: This dataset is available in the
R package AER and was used by Liu et al (2013). The data come from
the panel study of income dynamics in 1976 and contain 753 observations
on women’s labour supply and 18 variables. The response variable, wife’s
participation in work, is a binary variable and the predictors have a group
structure, as defined in (Liu et al 2013). The aim of this analysis is to assess
if there is a relation between several social factors (wife’s age, husband’s
wage, wife’s father education etc.) and wife’s participation in work.

– Splice site detection dataset: This dataset is available in the R package
grplasso and is a random sample of the data used in (Meier et al 2008).
It contains information on 200 true human donor splice sites and 200 false
splice sites. For each site, the data report the last three bases of the exon
and the third to sixth bases of the intron. Thus, the data contain 7 cat-
egorical predictors, with values A,C, G and T. These are converted into
dummy variables, creating a natural group structure.

– Cleveland heart dataset: This dataset is available from the UCI machine
learning repository. The data report information on 297 patients, 160 of
whom have been diagnosed with heart disease and the remaining 137 have
not been diagnosed with heart disease. The goal of the study is to predict
heart disease from 13 predictors, related to patients’ characteristics (age,
sex,etc) and clinical information (blood pressure, cholesterol level, etc).
Four of the predictors are categorical and have been converted into dummy
variables, creating a group structure.

Table 3 reports the AUC values of 5-fold cross validation ROC curves,
averaged over 30 iterations. As before, we compare the binary quantile re-
gression method presented in this paper, BBQ.grplasso, with grpreg, glmnet
and BayesQR. The results show how BBQ.grplasso is superior to BayesQR on
all datasets, it outperforms the frequentist methods in the Birth and Colon
datasets, but has comparable performances on the remaining datasets. Com-
bined with the simulation study, this is probably a reflection of high levels of
sparsity in the underlying model.



Quantile Regression with Group Lasso for Classification 13

Table 3 AUC values, averaged over 30 iterations (with standard deviations in brackets) on
the real data. BBQ.grplasso: Bayesian binary quantile regression model proposed in this pa-
per (based on θ = 0.5 (median) and an average of the θ = 0.25, 0.5, 0.75 quantiles); grpreg:
frequentist mean-based logistic regression model with group lasso penalty, glmnet: frequen-
tist mean-based logistic regression model under a group lasso penalty; bayesQR: Bayesian
binary quantile regression with a lasso penalty (based on θ = 0.5 (median) and an average
of the θ = 0.25, 0.5, 0.75 quantiles).

Dataset BBQ.grplasso BBQ.grplasso grpreg glmnet bayesQR bayesQR

(θ = 0.5) (θ = 0.25, 0.5, 0.75) (θ = 0.5) (θ = 0.25, 0.5, 0.75)

Birth 0.593 0.595 0.573 0.577 0.563 0.589
(0.027) (0.027) (0.038) (0.04) (0.029) (0.029)

Colon 0.662 0.662 0.649 0.631 0.626 0.638
(0.06) (0.059) (0.072) (0.07) (0.064) (0.059)

Labor 0.696 0.696 0.695 0.699 0.508 0.563
(0.016) (0.015) (0.018) (0.024) (0.011) (0.049)

Splice 0.697 0.696 0.695 0.693 0.669 0.687
(0.017) (0.019) (0.021) (0.019) (0.019) (0.022)

Heart 0.666 0.666 0.665 0.665 0.512 0.592
(0.025) (0.025) (0.027) (0.025) (0.017) (0.038)

7 Conclusion

In this paper, we present a novel method for binary regression problems where
the predictors have a natural group structure, such as in the case of categor-
ical variables. In contrast to existing methods for group-typed variables, we
model the quantiles of the response variable, in order to account for possible
departures from normality in the latent variable. In particular, we focus on
class prediction and show how the probability of a new object x belonging to
class 1, p(1|x), is directly linked to the quantile of the latent variable, since
P (1|x) = P (y⋆ > 0|x). This motivates the use of quantile-based regression for
probit regression models.

We compare our method with a frequentist mean-based logistic regres-
sion model, under a lasso and a group lasso penalty, and with a Bayesian
quantile-based regression model under a lasso penalty, on simulated and real
data. The simulation shows a number of scenarios where the method out-
performs the mean-based and quantile-based approaches. The R code of the
method described in this paper is available from http://people.brunel.ac.

uk/~mastvvv/Software. Future research will consider an extension of this
method to include a variable selection prior, similarly to the method of Al-
hamzawi and Yu (2013) for Bayesian quantile regression.
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