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Abstract 

 

The rapid growth of digital video content in recent years has imposed the need for the 

development of technologies with the capability to produce condensed but semantically rich 

versions of the input video stream in an effective manner. Consequently, the topic of Video 

Summarisation is becoming increasingly popular in multimedia community and numerous 

video abstraction approaches have been proposed accordingly. These recommended 

techniques can be divided into two major categories of automatic and semi-automatic in 

accordance with the required level of human intervention in summarisation process. The 

fully-automated methods mainly adopt the low-level visual, aural and textual features 

alongside the mathematical and statistical algorithms in furtherance to extract the most 

significant segments of original video. However, the effectiveness of this type of techniques 

is restricted by a number of factors such as domain-dependency, computational expenses and 

the inability to understand the semantics of videos from low-level features. The second 

category of techniques however, attempts to alleviate the quality of summaries by involving 

humans in the abstraction process to bridge the semantic gap. Nonetheless, a single user’s 

subjectivity and other external contributing factors such as distraction will potentially 

deteriorate the performance of this group of approaches. Accordingly, in this thesis we have 

focused on the development of three user-centred effective video summarisation techniques 

that could be applied to different video categories and generate satisfactory results. 

According to our first proposed approach, a novel mechanism for a user-centred video 

summarisation has been presented for the scenarios in which multiple actors are employed in 

the video summarisation process in order to minimise the negative effects of sole user 

adoption. Based on our recommended algorithm, the video frames were initially scored by a 

group of video annotators ‘on the fly’. This was followed by averaging these assigned scores 

in order to generate a singular saliency score for each video frame and, finally, the highest 

scored video frames alongside the corresponding audio and textual contents were extracted to 

be included into the final summary. The effectiveness of our approach has been assessed by 

comparing the video summaries generated based on our approach against the results obtained 

from three existing automatic summarisation tools that adopt different modalities for 

abstraction purposes. The experimental results indicated that our proposed method is capable 

of delivering remarkable outcomes in terms of Overall Satisfaction and Precision with an 
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acceptable Recall rate, indicating the usefulness of involving user input in the video 

summarisation process. 

In an attempt to provide a better user experience, we have proposed our personalised video 

summarisation method with an ability to customise the generated summaries in accordance 

with the viewers’ preferences. Accordingly, the end-user’s priority levels towards different 

video scenes were captured and utilised for updating the average scores previously assigned 

by the video annotators. Finally, our earlier proposed summarisation method was adopted to 

extract the most significant audio-visual content of the video. Experimental results indicated 

the capability of this approach to deliver superior outcomes compared with our previously 

proposed method and the three other automatic summarisation tools. 

Finally, we have attempted to reduce the required level of audience involvement for 

personalisation purposes by proposing a new method for producing personalised video 

summaries. Accordingly, SIFT visual features were adopted to identify the video scenes’ 

semantic categories. Fusing this retrieved data with pre-built users’ profiles, personalised 

video abstracts can be created. Experimental results showed the effectiveness of this method 

in delivering superior outcomes comparing to our previously recommended algorithm and the 

three other automatic summarisation techniques. 
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Chapter 1  

  Introduction 

 

 
1.1. Multimedia Content Expansion 

In recent years, the generation and availability of digital videos has been increasing at an 

exponential rate (Money and Agius, 2007). This has been largely due to advent of internet 

and online multimedia technologies. The rapid development of cheap storage media, 

advanced compression methods, higher quality and faster output devices are just a group of 

other influential factors that have played major roles in accelerating this growth. This has 

accordingly led to the arrival of multiple multimedia applications which have affected the 

users’ level of demands. Furthermore, viewers are facing an enormous collection of 

multimedia information that is extremely difficult to manage and extract the required content 

from. As a result, researchers have been inspired to explore the potential techniques to store, 

browse and retrieve different multimedia content such as audio, images and videos in the 

most efficient and profitable ways.  

Thus, this has imposed the need for the development of mechanisms with the capability to 

reflect the most visually, auditory and semantically valuable multimedia content in more 

compact and efficient forms. This can be simply justified in regards to the great amount of 

time and cost that will be saved in the presence of such techniques (Ajmal et al., 2012). 

Considering digital video as the most pertinent media content, a significant amount of 

research has been devoted to the Video Summarisation topic. In a nutshell, this entails the 

production of condensed versions of full length videos through the identification and 

extraction of the most admissible content of input stream.  

The general topic of summarisation or abstraction has been under investigation for quite 

some time since the arrival of Information Retrieval theory. In the mentioned field, the 

textual documents have to be analysed in order to extract the essential segments that represent 
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the entire document concisely at an acceptable level (Manning et al, 2009). This can be 

mapped into the context of video summarisation by considering the original video as the 

entire text document, which should be assessed in order to retrieve the most imperative 

partitions (Li and Merialdo, 2010).  

However, the abstraction of video can be considered as a more complicated task due to its 

multimodal nature. In fact, digital videos are usually composed of a number of different 

media including audio, image and text that should be considered simultaneously for most of 

the content retrieval and summarisation objectives. This can be articulated to the fact that 

each of these mentioned media can be regarded as an important information resource with 

potentially valuable data which can determine the content of any eventual video digest. 

Moreover, the final outcome can be integrated into other video processing-related 

applications such as interactive multimedia browsing and searching systems, which further 

highlights the importance of effective video summaries. 

 

1.2. Video Summarisation 

As will be discussed in the next chapter extensively, video summarisation is the process of 

extracting the most valuable aural, visual and textual content of an input video in order to 

provide end-users with shorter but semantically rich versions of the original stream.  

Generally, video summaries are categorised into two groups, namely, static video abstracts 

and dynamic video skims, based on the nature of extracted content (Truong and Verkatesh, 

2007). The highest quality representative frames solely form the content of the first type, 

while retrieving the highlights from the original sequence is the basis for producing dynamic 

video digests (Money and Agius, 2007). An extended discussion in this regard will be 

provided in the next chapter. 

The algorithms that are being employed for these purposes can be categorised into two major 

groups of automatic and semi-automatic in accordance with the required level of human 

involvement in the abstraction task. There are a number of positive and negative attributes 

that can be associated with each of these categories, which will be explained 

comprehensively in chapter 2. Abstraction methods can also be classified based on the 

modalities that they adopt for the analysis and obtaining the valuable video segments. 
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Furthermore, domain dependency can be considered as another determining factor in 

grouping the video summarisation techniques.  

1.3. Personalisation 

This concept has been vastly adopted in different areas of computer science during recent 

years (Mobasher et al., 2000; Fukumura et al., 2008). This can be substantially articulated to 

the businesses’ demands in capturing and fulfilling their customers’ expectations in order to 

gain an edge in competitive markets. In general, personalisation can be defined as the 

procedure of customising the output data in respect of the audiences’ priorities and 

inclinations in order to meet their requirements (Fukumura et al, 2003). Interactive video 

systems, e-commerce websites and search engines are just some examples of the fields that 

integrate personalisation modules. For instance, users’ online shopping habits and 

information regarding their selected items are obtained and processed in an attempt to tailor 

the content of offers and webpages based on their captured interests (Wong et al, 2005). 

Personalisation in the context of multimedia can be defined as the attempt to tailor and output 

the content in accordance with the viewers’ perceived requirements and interests towards 

different multimedia content. This theory will be analysed in more detail in the following 

chapter. 

 

1.4. Personalised Video Summarisation 

One of the emerging topics in multimedia that has received a great amount of attention by 

researchers in recent years has been personalised video summarisation. This concept was 

formed by fusion of the two earlier discussed research fields. The primary objective in 

producing personalised video abstracts is to address the end-users’ priorities in extracting the 

most important video segments (Takahashi et al., 2005b). Similar to any other multimedia 

tool with a personalisation component, there should be a mechanism in place to understand 

the viewers’ preferences and expectations. These retrieved data should be further 

incorporated into a summarisation module in order to produce satisfactory results. 

Different algorithms and techniques have been proposed by researchers in furtherance to 

produce user-tailored video digests that will be evaluated comprehensively in chapter 2. It 

should be mentioned that analogous to normal video summarisation systems, these techniques 
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can be automatic or semi-automatic in regards to the abstraction phase. In addition, these 

tools can extract the users’ data explicitly or in an implicit manner. 

 

1.5. Research Motivation 

In spite of numerous algorithms suggested by researchers, video summarisation is still a 

challenging topic. In fact, a group of major drawbacks could be associated to the existing 

abstraction tools, which have considerably and negatively affected the effectiveness of these 

methods. Domain-dependency, media-reliance and user’s subjectivity are just a number of 

these issues that will be discussed in detail in the next chapter. Accordingly the main 

motivation for current research is thus the development of an abstraction technique which can 

produce semantically rich video summaries with minimal dependency to a particular domain 

and users’ personal preferences. In response to this motivation, a number of research 

objectives have been defined that we will address in the corresponding chapters of this thesis. 

 

1.6. Research Aim and Objectives 

Accordingly, the main aim of this research has been defined as To develop three effective 

video summarisation techniques that could be applied to different video categories and 

generate satisfactory results in terms of Recall, Precision, Timing and Overall 

Satisfaction. 

This is in response to the remarks from the previous section in regards to a noticeable number 

of shortcomings that have hindered the existing summarisation techniques from achieving 

high-quality results. 

In order to fulfil this aim, as chapter 2 will show, three studies will be carried out in order to 

test if the 4 identified research objectives have been achieved: 

 

Objective 1: To investigate the exiting video summarisation techniques in order to 

identify the limitations and barriers against of this technology. A secondary research into 

the existing literature should be adopted to achieve this objective. 
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Objective 2: To design, develop and evaluate a user-centred video summarisation 

algorithm based on group scoring in accordance to the findings from the previous 

investigation. The accomplishment of this objective will be described in chapter 4.  

Objective 3: To extend the work of previous objective and design, develop and evaluate 

a personalised video summarisation algorithm based on group scoring. The achievement 

of this objective will be discussed in chapter 5. 

Objective 4: To extend the work of previous objective and design, develop and evaluate 

a personalised video summarisation system with reduced end-user involvement. The 

fulfilment of this objective will be described in chapter 6. 

 

1.7. Thesis Outline 

In the preceding sections, the main thrust of this research, which was to propose and evaluate 

a number of video summarisation techniques based on the identified objectives (derived from 

limitations and strengths of the existing models), was discussed. Thereafter, in this section, 

the structure of the research work, as will be carried out in this thesis, is shown. 

 

Chapter 2:  In this chapter some background information in regards to digital video and its 

structural units will be initially provided. This is followed by an overview of a number of 

video processing tasks that are widely adopted in different video abstraction mechanisms. 

Further, the theory of video summarisation and its main components are discussed 

comprehensively. Classifying the existing techniques based on their nature, a number of 

currently proposed abstraction models are categorised and reviewed. Thereafter, the concept 

of personalisation and its applications within the multimedia context will be discussed. 

Moreover, the integration of personalisation modules in video summarisation models in an 

attempt to produce user-tailored summaries is subsequently investigated. Additionally, a 

group of methodologies and metrics that have been utilised by researchers to assess the 

quality of the video summaries are reviewed. Finally, a number of shortcomings in respect of 

the discussed methods are disclosed and the identified research objectives will be accordingly 

pointed out. 

 



                User-Centred Video Abstraction 
 

6 
 

Chapter 3: Primarily, a brief review on different research paradigms and their characteristics 

are carried out in this chapter. The justification behind the adoption of Positivism as the 

chosen research perspective in accordance to its attributes and the nature of our research is 

provided. Later, in response to the required research activities in the course of our work, 

Design Science Research (DSR) will be introduced as the employed methodology for 

conducting the research. Furthermore, the adopted methodologies for performing the 

necessary tasks within each phase of our DSR-based approach will be justified. The rationale 

behind the adoption of Rapid Application Development (RAD) as the software development 

methodology will also be detailed. Finally, the experimental procedure to evaluate the 

effectiveness of our proposed methods will be described extensively. 

 

Chapter 4: Our proposed user-centred video summarisation technique will be described and 

evaluated in this chapter. According to our suggested approach, video frames should be 

scored by a panel of video annotators based on their visual and semantic saliency. Further, 

the assigned scores are averaged in order to produce a singular representative value for each 

frame. Subsequently, the most salient video frames will be transferred into a final video 

digest alongside their articulated audio and textual content. Lastly, an experimental study will 

be carried out to investigate the effectiveness of our approach by comparing the summaries 

generated by our system against the versions produced by other selected automatic tools. 

 

Chapter 5: In this stage, our user-centred personalised video summarisation method will be 

discussed in detail.  In this technique, an approach to capture the viewers’ priorities towards 

existing scenes in a video sequence will be introduced. The obtained information will be 

incorporated into a summarisation module to upgrade the initially achieved saliency scores by 

the frames belonging to the scenes by a higher level of priority. Finally, akin to the 

recommended method in chapter 4, the highest quality video segments containing audio, 

visual and textual content will be extracted and inserted into the final video skims. Similarly 

to chapter 4, a comparative study will be carried out to evaluate the quality of generated 

summaries by our novel system against the ones produced by automatic tools. However, in 

the current research, the created output will be checked against the outcome of our proposed 

algorithm in chapter 4 as well as to investigate the potential improvement caused by 

integrating the personalisation component. 
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 Chapter 6:  A novel personalised video abstraction technique will be proposed in this 

chapter with the primary goal of facilitating the process of understating the users’ priorities. 

In order to do so, Scale Invariant Feature Transform (SIFT) which is the basis for our 

personalisation task, will be reviewed initially. Further, a mechanism for measuring the 

viewers’ interests into 103 high-level visual categories is introduced in an attempt to generate 

the personalised video skims. In addition, the relevancy of each video scene towards each of 

these 103 video categories will be calculated in order to figure out the preference level of a 

particular user towards that scene. Finding out the priority level of a particular end-user 

towards different video segments in an input video stream, the previously assigned scores for 

the frames residing in the scenes with higher degree of importance will be improved upon.  

Finally, analogous to the adopted methods in chapter 4 and 5, the most significant video 

frames (with highest scores) are selected to be inserted into the final summary. Lastly, a 

comparative study will be employed to verify the effectiveness of our approach by testing the 

video digests created by our recent technique against those retrieved from automatic tools and 

our previous method. 

 

Chapter 7: A summary of our research findings are provided in this chapter alongside the 

highlights of the knowledge contributions that have been made by conducting this research. 

In addition, a number of limitations that can be associated with this work will be outlined and 

proposals for future work will be made accordingly. 
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Chapter 2  

Literature Review 

 

 

2. Overview  

This chapter starts off by presenting a brief description regarding digital videos, their 

structural units and a set of prominent related topics. Later, feature retrieval, video 

segmentation and keyframe extraction, which are fundamental concepts in video abstraction 

tasks, will be reviewed. This will be followed by an introduction to Video Summarisation as 

one of the recent trendiest video-processing-related research topics. Further into the chapter, a 

group of different techniques that has been applied to produce video summaries will be 

explained. Having discussed the concept of personalisation in general and specifically in the 

multimedia context, the topic of Personalised Video Summarisation will be then elaborated 

upon. In addition, a number of existing methods that create personalised video abstracts will 

be expounded. These techniques will be analysed in terms of their strengths and shortcomings 

and the research objectives will be clarified accordingly. 

 

2.1. Digital Videos 

Video is a generic term used for a story told with moving images and sound. This media is 

tied an attribute of human perception, namely the persistence of vision. This is our visual 

system’s capability to combine consecutive still images into one fluid moving image (Burg, 

2009). The fast expanding applications of videos have imposed an increasing demand for 

development of technologies and tools with the capability of efficient video processing tasks 

such indexing, browsing and retrieval of video content. In general, any advanced and 

complex video processing operation requires understanding of the structure of video as a pre-

requisite (Zhang et al., 2007). As a result, a brief description of digital video construction 

units will be presented below (Figure 2.1): 
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Figure 2.1.Video structural units (Pan et al., 2009) 

 

A digital video is composed of subsequent frames that are displayed to viewers in fast 

succession to induce the impression of movement. A single frame is equivalent to a still 

image that is composed of hundreds of pixels. A pixel is the smallest addressable element of 

any still picture and contains binary data regarding the colour information of its 

corresponding physical point in a readable format for computers (Graf, 1999). As a result, 

any single frame within a video can be specifically addressed by its frame index and in 

accordance to its temporal location. Moreover, the speed at which these still images are 

displayed is called frame rate (Burg, 2009).  

In higher levels, a video can be described based on two construction units: Shots and Scenes. 

A shot is a sequence of frames that continues for an uninterrupted period of time taken by a 

single camera, representing a continuous action in time and space (Sklar, 1990), while a 

video scene is composed of a sequence of semantically and visually correlated shots. In other 

words, all the constituting shots of a scene share the same content in terms of action, place 

and time (Corridoni and Bimbo, 1998). 

 There are generally two types of transitions between consecutive shots: Abrupt and 

Progressive; an Abrupt shot change is a cut or camera break and happens in one frame, while 

in the case of progressive, the transition occurs gradually and many editorial frames such as 

fading or dissolves are employed (Sorwar et al., 2002).  

In the following sections, primarily, a set of the tightly relevant topics that mainly form the 

fundamental elements of Video Summarisation techniques will be reviewed. 

http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Frame_(film)
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2.1.1. Video Feature Extraction 

In information retrieval theory, feature extraction is a form of diminishing the dimensions of 

textual data. The objective is to transform the input text document into a set of representative 

words (features) in significantly reduced dimensions, while relevant information of the entire 

document could be reflected optimally (Manning et al., 2009). 

In the context of image processing, feature extraction can be defined as the process of 

retrieving basic visual characteristics from an input image without any prior knowledge 

regarding the shapes and subsequently presenting them in an assessable format (Nixon and 

Aguado, 2008). 

In audio analysis, the attributes of a single segment from an audio signal which was portioned 

temporally, can be adopted as the representative features (Wen et al., 2012). Finally, in video 

content analysis, feature extraction is the task of mining and elicitation of expressive data 

from the available information resources inside the video (visual, textual and auditory).  

Since each of these modalities could be considered as a valuable and distinctive data source, 

many researchers have been utilising them for feature extraction solely or collectively (Zhu 

and Zhou, 2003). The core idea of this task is to simplify the selection and classification of 

large data collections across all the noted fields (Choras, 2007). 

In text analysis, the frequency of the words is the key factor in retrieving the representative 

words as the key features (Manning et al., 2009), however, a large set of aural features are 

being employed for audio processing purposes. Energy features (harmonic energy and noise 

energy), spectral shape features (roll-off frequency and Mel-Frequency Cepstral coefficient), 

temporal shape features (zero-crossing rate) and perceptual features (loudness and sharpness) 

are all used for information retrieval purposes (Peeters, 2004).  Considering frames as the 

fundamental element of any video, visual feature extraction has received a higher level of 

attention from the video analysis communities. Visual characteristics in general can be 

computed at three distinct layers (Choras, 2007), including pixel, local (blocks) and global 

level (entire image). Colour, texture and shapes are just a group of these attributes being 

considered at these levels in image processing tasks. It is also necessary to point out that, 

based on their semantic-clarity, visual features can be divided into two groups of high-level 

and low-level. Low-level features can be gained directly from the original images, while 
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high-level features are constructed on the basis of captured low-level components (Saber and 

Teklap, 1998). 

 

2.1.2. Video Segmentation 

As was previously mentioned, a video shot is composed of a set of subsequent visually-

approximate still images that have been taken by a single camera. In addition, a scene is a 

collection of semantically and visually related shots. Thus, as shown in Figure 2.2, shot 

boundary detection, also known as temporal video segmentation, is defined as the process of 

identifying transitions between adjacent video segments (Yuan et al., 2007; Wu and Xu, 

2013). Considerable research has been allocated to this topic recently as it plays a crucial role 

in development of any further video processing tools (Li et al., 2009a).  

 

Figure 2.2.Shot boundary detection (Hari et al., 2013) 

 

Video is constructed of multi-streams of auditory, visual and textual information. Therefore, 

various techniques using these modalities have been recommended in different studies to 

fulfil this objective. However, visual content has been the major resource for this task due to 

its potential to produce better outcomes (Dimitrova et al., 2002). In visually-oriented 

segmentation approaches, the main idea is to extract the features from the video frames and 

classify these images into different shots based on the determined differences of their 
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retrieved features (Wu and Xu, 2013). Pixel values, luminance/colour histograms, edge 

change ratio and motion information are just examples of the low-level visual characteristics 

that are being employed for these purposes (Li et al., 2009a).  

In the most basic methods, the difference in pixel values (in different colour spaces) of two 

consecutive frames is calculated to check their visual dissimilarity. The timestamp for the 

pairs whose visual distinction exceeded a predefined threshold value could be potentially 

identified as a temporal location of a shot change (Boreczky and Rowe, 1996). However, 

these kinds of techniques are mainly used for abrupt change detection. This is due to the 

inefficiencies of these systems to identify progressive changes (Boreczky and Rowe, 1996). 

In a related attempt, the fact that consecutive frames in a short temporal segment of videos 

are often visually correlated has been the fundamental idea of Li et al. (2009). As a result, the 

video was portioned into segments with 21 frames initially and the pixel-wise distance (based 

on luminance component) of the first and last frame of each segment was computed. 

Thereafter, every ten segments were then grouped together to form a unit with a singular 

threshold value, which was measured adaptively in accordance with local and global statistics 

of distance values. Moreover, those segments exceeding the threshold figure were further 

analysed for detection of any possible transition. 

In a more advanced work, SIFT (Scale Invariant Feature Transform) features were the basis 

for detection of progressive shots transitions (Li et al., 2009b). In the first stage, the colour 

histograms of two subsequent frames were compared to remove those that are not clearly shot 

boundaries. Later, the reliability similarity value of two frames were calculated using SIFT 

features. Thus, the number of the common key-points of SIFT between two frames were 

counted to determine the similarity of these two images. This was then utilised to detect 

abrupt shot changes. However, the progressive transitions could be identified by the variance 

transition of the number of the SIFT key-points in a frame. 

The concept of video segmentation is not limited to shot boundary detection however. In fact, 

in accordance to the use case scenario, any number of frames whose total temporal length can 

be potentially longer or shorter than an actual shot could be considered as a video segment. 

As was discussed earlier, a collection of semantically and temporally correlated video shots 

construct a video scene as a higher level and a more meaningful video unit. Thus, scene 

boundary detection has become another prominent area of research in recent years. 
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In related research, auditory and visual features were integrated in video structure parsing 

task (Baek et al., 2005). An SVM (Support Vector Machine) model was applied to classify 

frames into different shots according to their luminance values in the HSV colour-domain. 

Further, a clustering algorithm based on visual and temporal proximity of shots was 

employed to form candidate scenes. These nominated scenes were further corrected based on 

audio analysis. Therefore, scene detection was carried out based on retrieved audio 

information assuming that most of the shots in a single scene should contain same 

background music. 

 In a very similar attempt, an audio segmentation model was developed to categorise the 

audio tracks into speech, music, environmental sound and silence segments for scene 

detection purposes (Jiang et al, 2000). In this work, an expanding window technique was 

used to cluster visually correlated shots into a candidate scene. The audio class change 

detection was performed on audio segments with intervals of one second. Finally, once a shot 

break and an audio break were detected simultaneously within those intervals, the boundary 

of that sequence of shots could be labelled as a scene boundary. 

 

2.1.3. KeyFrame Extraction 

KeyFrames are the semantically and visually valuable video frames that can be used to reflect 

the main elements of the video shots. Therefore, keyframe extraction, which is the procedure 

of identifying the most representative frame-set with the capability to represent the whole 

videos content in a precise and concise way, has been put forward by the research 

community. Most of the earlier methods selected the keyframes randomly or based on a 

certain time intervals. However, the chosen frames based on these types of methods are not 

necessarily capable of representing the video content at an acceptable level (Sun et al., 2008). 

Therefore, several methods have been recently proposed for keyframe extraction tasks, which 

mainly utilise mathematical concepts and low-level visual characteristics of the video frames 

(Liu, et al., 2003).  

The low-level visual features of video frames have been the essential elements in keyframe 

selection tasks. For instance, an alpha-trimmed average histogram can be used to describe the 

colour distribution of an entire shot. Comparing the histogram of each frame of the shot with 

the average histogram, the keyframes can then be identified (Ferman and Tekalp, 2003).  
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In another similar study, three low-level visual features, namely, colour histogram, edge 

direction histogram and wavelet statistics were utilised to form the frames visual difference 

curve. Each two consecutive frames of a video shot were then compared based on the 

mentioned elements solely. The generated figures of their comparisons were further fused 

into a compound value representing the visual dissimilarity of all consecutive frames in a 

particular shot. Finally, the frames that are located in the middle of two local maxima points 

are selected as the representative frames for that particular shot (Ciocca and Schettini, 2006). 

However, most of the colour histogram based approaches do not capture the underlying 

dynamics when the level of camera or object motion is high (Sun et al., 2008). In further 

research entailing a computationally expensive work, the mean and variance of three colour 

components of each frame were analysed and used to detect any sudden or gradual change in 

the frames content (Qiang and Sen, 2006).  

In another attempt, a hierarchical clustering algorithm was adopted to merge similar frames 

into a new category. This was carried out by applying multiple partitional clustering to all 

contributing frames of a video segment. In the final stage, keyframes were chosen as 

centroids of generated optimal clusters. However, there are some drawbacks with this method 

in terms of threshold determination and computation load (Hanjalic and Zhan, 1999).  

In related work, a Perceived Motion Energy (PME) value was computed for each frame and 

the frames at the turning point of the motion acceleration or deceleration were chosen as the 

keyframes. The PME values could be computed by a combination of pre-calculated figures 

for average magnitude of motion vectors in the whole frame and the percentage of dominant 

motion direction (Liu et al., 2003). However, the triangle model for keyframe selection can 

only be applied to the shots with motion patterns, while for the shots with no pattern the first 

frame of the shot simply was chosen as the keyframe. 

 

2.2. Video Summarisation: 

The growing amount of multimedia content has imposed the need for development of 

systems, which are able to summarise videos of different genres in an effective way. This can 

be considered as significantly cost efficient, as they reduce the required space for the storage 

of the videos. Additionally, they have the potential to provide users with a more convenient 

and faster access to the content of the original video. Therefore, the primary objective of 

video abstraction should be regarded as an attempt to provide users with a quick idea about 
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the content of the input video by delivering them with a concise video representation (Furini, 

2010). Consequently, a tremendous amount of research work has been allocated to this topic 

and various abstraction techniques have been developed. Generally, there are two main 

groups of summarisation approaches: in semi-automatic methods, as opposed to full-

automatic ones, human involvement for abstraction purposes at some level is necessary. 

Nevertheless, an effective abstraction model should be able to consider multiple high-level or 

low-level factors such as sound, illumination of the scenes and psychological features of the 

human perceptual system (Iparraguirre and Delrieux, 2013). 

Broadly, two basic types of video summaries exist, namely static keyframes abstracts and 

dynamic video skims (Truong and Verkatesh, 2007; Money and Agius, 2007). The earlier is 

also known as still image abstraction or static storyboard, while the second is also regarded as 

moving image abstraction or dynamic storyboard (Almeida et al., 2012). In the first type 

(Sujatha and Mudenagudi, 2011), the most informative frames are selected as the 

representatives for the whole video, while in video skimming, a short highlight of the original 

video is produced. In other words, video skims are composed of small dynamic partitions of 

audio and video which are semantically, visually and auditory valuable (Gao et al., 2009). 

Nevertheless, both approaches have to preserve the most salient and significant content of the 

videos in order to reflect a comprehensible description of the original video. As opposed to a 

static storyboard, dynamic video summarisation methods are more likely to provide the end-

users with satisfactory results since they often have the capability to combine the auditory 

and moving visual elements. On the other hand, static techniques are more efficient and 

easier to develop (Oh, et al., 2004).  

Generally, video summarisation approaches (as shown in Figure 2.3) comprise three major 

phases: firstly, video segmentation in which a system aims to detect video segment 

boundaries; secondly, feature extraction from the video portions, and, thirdly, selection of the 

most significant partitions using the retrieved features (Ren and Zhu, 2008). 

Various techniques have been applied to distinguish the most significant segments of an input 

video. Mainly, the differentiation of low-level characteristics between adjacent frames or a 

holistic view over the entire video is adopted for this purpose. In both strategies, an 

importance score should be computed for each segment by analysing their various attributes, 

including visual, audio and textual features (Taskiran et al., 2006). These computed scores 
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are then used to rank the segment of videos and to select the most significant ones as a video 

digest.  

 

Figure 2.3. Video summarisation phases (Cahuina and Chavez, 2013) 

 

2.3. Automatic Video Summarisation: 

As a result of advanced audio-visual capturing tools, developing effective techniques to 

generate static and dynamic video skims is becoming increasingly popular (Ngo et al., 2005). 

In order to produce perfect summaries, some content-based summarisation approaches have 

been suggested to extract semantics of the video (Takahashi et al., 2005a). However, 

understanding the semantic content of the video in an acceptable rate is still beyond the 

capabilities of today’s intelligent systems. Therefore, most of the current methods rely on 

low-level feature extraction (Iu et al., 2004), including colour histogram, edge histograms, 

textual and aural features (Guo et al., 2012). 

Sequential clustering algorithms (Li et al., 2003), dynamic programming techniques like 

MINMAX and Iso-content (Datta et al., 2005; Hays and Efros, 2007) and motion patterns (Li 

et al., 2006) are among the approaches that have been employed alongside low-level feature 

extraction methods for video abstraction purposes. As was mentioned earlier, two main 

categories of summarisation approaches are being developed based on the human’s level of 

involvement, namely, automatic and semi-automatic. These will now be further elaborated 

upon. 

(1) 

(2) 

(3) 
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2.3.1. Summarisation Based on Low-Level Features 

In some techniques, low-level visual or aural features alongside mathematical concepts like 

graphs and clustering have been adopted for summarisation purposes. In some works, 

different clustering algorithms were applied to partition the video frames into shots in order 

to produce static or dynamic video summaries. For instance, Yeung and Yeo (1997) proposed 

an approach in which, the shots were clustered based on their temporal adjacency, while 

Uchihashi et al. (1999) adopted YUV colour histograms to cluster the shots using the 

supervised clustering algorithms. In both methods however, representative frames from the 

highest scored segments were chosen using a frame packing algorithm. Additionally, in an 

attempt to use unsupervised clustering techniques, each video frame was labelled by a 

compressed chromaticity signature; a multi-level hierarchical clustering algorithm in 

conjunction with trained Hidden Markov Models were then used on the videos to extract the 

keyframes (Lu et al., 2001). 

In another graph-based method, colour features and texture analysis were the basis for 

generation of static video abstracts. After pre-sampling the video frames to one frame per 

second, the shots boundaries were detected according to the consecutive frames’ pairwise 

distances. As a result, the HSV colour histogram of each frame was computed for this 

purpose. In the next stage, shots with the size of one frame were eliminated as potential noise, 

while for the remaining shots the second frame was selected as the representative keyframe. 

Thereafter, the Discrete Haar Wavelet Transform was applied to the reduced HSV colour 

space of each representative keyframe to retrieve the texture features. Next, a reverse nearest 

neighbour graph was built utilising the Bhattacharya distance between the extracted features 

of the frames. Finally, all the frames that are mutually reachable were portioned into a video 

cluster and the initial frame of each cluster was chosen as delegate for that video segment 

(Mahmoud et al., 2013).  

However, these clustering-based summarisation methods are not capable of understating the 

semantics of videos, as they cluster the frames solely based on their low-level visual features. 

As a result, there is a high possibility for this type of algorithms to accumulate the 

semantically irrelevant frames into a single group due to their visually similarities. 

In a novel technique, the Bag-of-Importance model alongside Locality-Constrained linear 

Coding (LLC) was adopted for static video summarisation (Lu et al., 2014). In the first step, 

the LLC method was applied to convert the raw visual local descriptors into anchor points in 
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the transformed space. So, the similarity of the features could be computed simply by 

comparing their transformed codes. Later, the contribution level of each individual feature is 

assessed in the context of the video content and an individual frame. In fact, the importance 

of each weight could be computed from its distribution among all the features. Therefore, a 

video could be represented as the Bag-of-Importance which explains the relative frequency of 

transformed features over the entire corpus. Thereafter, the representative score of each frame 

is produced by aggregating the grades of important code-words for all the extracted interest 

points. Following the filtration of the most frequent terms (stop-words), a representative 

curve along the frames is built and the local maxima points are chosen as the final static 

summary. 

In a recent work (Mei et al., 2014), the video summarisation problem was viewed as a sparse 

reconstruction problem in which all the existing frames in the original video could be 

recreated from a subset of them chosen as the keyframes. As a result, a 𝐿2,0norm based sparse 

dictionary selection model was adopted to identify the representative frames. Simultaneous 

Orthogonal Matching Pursuit (SOMP as a typical Greedy Algorithm) (Tropp et al., 2006) was 

applied to solve the 𝐿2,0 norm model. According to a similar work (Liu et al., 2014a), a 

dissimilarity-based sparse modelling method was suggested for generation of static 

summaries of user generated videos. In this work, smart device sensor data was utilised 

instead of frames visual features. Further, in a more recent attempt (Liu et al., 2014b) the 

collaborative sparse coding method alongside information captured by the accelerometer 

sensors embedded in smart phones were retrieved to enhance the performance by constricting 

the effects of the outliers. The larger the acceleration of smart phones, the smaller weight 

values was assigned to the corresponding frames. In spite of some noticeable results, these 

techniques solely rely on the low-level features of the video sequence without considering the 

semantics of the input content. 

In a Genetic-Algorithm (GA) based summarisation technique, video abstraction was defined 

as a search problem in a space of all possible abstractions, where each video abstract could be 

represented as data point or in other words, chromosome (Ashwin-Raju and Velayutham, 

2009). Thus, a GA algorithm started with a population of randomly generated chromosomes 

(a sorted list of randomly selected frame numbers in ascending format). The evolution 

procedure was carried out iteratively by selecting pairs of chromosomes and applying 

crossover and subsequent mutation operations to reproduce the next generation. Finally, the 
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fitness function was utilised to analyse each individual in the population. As a result, a simple 

colour histogram, the Gong colour histogram and colour correlogram measures were adopted 

to formulate the fitness function. In fact, both Euclidean and city-block distance measures 

between all the constituting frames of each chromosome were computed and the GA search 

was defined as a maximisation problem to insert those frames combination in the abstract that 

maximise the distance among them. However, this should be regarded as an extremely 

computationally expensive algorithm. 

In another related attempt, web-images were utilised to facilitate the process of selecting the 

most informative frames from user-generated videos (Khosla et al., 2013). In the first stage, 

web-images related to each object class were clustered into 100 canonical viewpoints by K-

means clustering and their decision boundaries were learned using a multi-class Support 

Vector Machine (SVM) over multiple iterations. Later, additional examples to each identified 

viewpoint were assigned from the collection of training video frames by applying the same 

procedure. Thereafter, for a given test video, each frame was assigned to one of the 

subclasses using the learned classifiers and an average decision score of the positive 

examples was calculated to rank the subclasses. Finally, to generate a summary with the 

length of K, the K frames from the original video that are closest to centroids of the top K 

ranked subclasses were chosen (shown in Figure 2.4). This algorithm managed to achieve 

some impressive results although its performance is tightly linked to the availability of a 

comprehensive collection of training images. 

 

Figure 2.4. Video summarisation based on web-images (Khosla et al., 2013) 
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In another SVM-based work, videos with overlapping views were summarised into 

storyboards (Li et al, 2011a). As a result, a multi-keyframe correlation map was constructed 

to display the videos with overlapping views. Thus, any input video was initially parsed into 

content-approximate shots using the motion activity descriptors alongside optical flow and 

colour features. Discarding the lower-activity video shots, the remaining ones were assessed 

to be represented by a keyframe that had the least mean square difference of features set with 

the other contributing frames of that shot. Therefore, an importance score for each keyframe 

was computed by the fusion of visual features such as luminance, colour, edge, wavelet and 

gradient features and subsequent subtraction of the noise information (computed through 

subtracting Laplacian pyramid). Thereafter, a correlation map among the keyframes was 

created according to their temporal adjacency, visual similarities and their probabilistic 

correlation using the neighbouring frames’ feature values. After the construction of the 

correlation map of keyframes from different views, the support vector machine was adopted 

to classify the event-based multi-keyframe on the map. Later, rough set theory was applied to 

identify the most crucial and significant frames in each identified class. However, the 

effectiveness of this method is tightly linked to availability of overlapping views of the same 

video content. 

A fuzzy rule based approach has been the essence for another recent video abstraction 

research (Kapoor et al, 2013). Primarily, the video was partitioned into 10 frames segments 

and the first frame of each segment was extracted for further processing. Next, each retrieved 

frame was transformed into the CIELab colour space due to its proximity to human visual 

perception. In the next stage, the difference in luminance pixel values of any two subsequent 

selected frames was computed to detect any significant change. However, a dynamic 

membership function (dependent on the mean value of all consecutive segment differences) 

alongside a number of fuzzy rules were adopted to take into account the diversity in type and 

content of the video before the diagnosis of a significant change between two consecutive 

segments. Further, in order to detect the unique frames, a histogram analysis between the 

adjacent segments in the same colour space was performed and the fuzzified output was 

intersected with the results generated from the pixel level analysis to extract the final 

keyframes. 

Heterogeneity Image Patch (HIP) is a recent image feature which was introduced in another 

work as a new concept for video abstraction task. This is a novel mechanism to evaluate the 
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heterogeneity of existing patches inside any photo. As a result, this metric is measured for all 

the frames in a video segment in order to generate the corresponding HIP map for that 

partition. The proposed index could be utilised to select a number of candidate keyframes 

from a large collection of frames using the HIP curve. These nominated frames were further 

filtered out into the final keyframe list by applying a min-max based algorithm to an affinity 

matrix. Additionally, the same method was employed for generating the dynamic video 

digests. In doing so, the video skimming task is mapped into an optimisation context by 

attempting to minimise the HIP-based distance of the retrieved video excerpts with the input 

video (Dang and Radha, 2014). 

In another earlier graph-based attempt (Benini et al., 2007), after segmentation of the input 

videos into story units using a time-constrained clustering algorithm (Yeung and Yeo, 1996), 

each connected sub-graph was considered as a Logical Story Unit (LSU), where each node 

for these sub-graphs represents a cluster of visually and temporally approximate shots and 

their connecting edges show the temporal flow inside the LSU. Considering the role of 

motion activity as a measure of entropy in video segmentation, the motion vector field of all 

frames from the compressed MPEG-stream for each shot had to be calculated. Further, each 

individual visual concept (each node in LSU sub-graphs) can be assumed as a state in Hidden 

Markov Models where the transition states translate the temporal dependencies between the 

shots and available shots are existing observations. Considering the temporal length of each 

LSU in original video, a corresponding time-reduced match is then generated in the video 

skim in an attempt to provide an abstract representation of the whole video. Finally, the 

probability distribution (motion intensity of each shot in each state) and state transition 

probability (relative frequency of transitions between clusters) are adopted in order to identify 

and concatenate all the observed candidate shots and thus generate the summaries. 

The Bag-of-Visual-Words approach was adopted in another attempt to produce static 

summaries (Cahuina and Chavez, 2013). Initially, the original video was temporally 

segmented into shots by detecting any abrupt changes in dissimilarity vectors of any two 

consecutive colour histograms (pre-computed for each frame). Later, the false positives were 

filtered out by comparing each value in the dissimilarity vector against the neighbourhood 

and giving importance to high values that are not around noisy areas. Further, the variance of 

each frame was used to detect and discard the monochrome frames that usually lead to 

dissolve effects. After clustering the identified shots based on their colour histograms 

information and identifying the sample frames, the Bag-of-Word approach was adopted to 
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create a visual word dictionary of detected feature vectors from the detected frames. 

Furthermore, a histogram of visual words was created for each representative frame by 

counting the occurrence of each visual word. Subsequently, the frames were clustered again 

according to their visual words histograms and those closest to the clusters centroids were 

chosen as the keyframes. Finally, in order to remove possible duplicates, a pairwise 

Manhattan distance of any two consecutive frames based on their colour histograms was 

calculated. In spite of some good results, since this algorithm requires multi-level clustering, 

it can be considered as considerably computationally expensive.  

The texture and colour features have been the basis for still image abstraction in another 

recent work (Carvajal et al., 2014). After sub-sampling an input video into one frame per 

second, the colour-homogenous frames (with standard deviation below a threshold) that are 

mainly uninformative were discarded. The local texture information for each available block 

in the remaining frames was retrieved by applying the 2D discrete cosine transform. Later, a 

dictionary of texture features was trained by applying a k-means clustering algorithm on a set 

of training images. Therefore, a multi-dimensional histogram representing the relative 

frequency of each participating local texture feature per frame could be generated. After 

clustering the frames according to their fused texture and HSV colour (hue component) 

histograms, the closest frames to the cluster centroids were selected as the representative 

keyframes. Finally, visually similar frames (comparing the Euclidean difference of all 

keyframes pairwise) were filtered out. However, summarising the videos adopting only 

texture and colour features is not capable of extracting semantically significant content of the 

videos. 

Low-level visual features and information theory were joined in another work for production 

of static video summaries (Jian et al., 2010). As a result, a two dimensional histogram was 

generated for each frame based on colour features in HSV space and on texture 

characteristics. This was utilised to quantify the visual similarity of successive frames. Using 

Mutual Information (MI) theory (which explains the relevance of two event sets), the extent 

of information delivered between two consecutive frames was measured to check their visual 

and semantic similarity. This is due to the essence of information theory which describes the 

information as the main object to study. This information propagation was characterised by 

detection of the change in RGB colour among consecutive frames. As a result, a matrix of 

changes for each colour component was created in which each element retains the probability 

of the change from one gray-scale value to another colour level between two subsequent 
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frames. The values generated from two patterns were fused into a singular inter-frame 

difference figure. Finally, a sliding window with a dynamically adaptive threshold value was 

employed through the statistics of the average inter-frame differences to identify the most 

salient ones. However, the level of transmitted information between two consecutive frames 

is not capable of determining the semantic importance of a particular frame in the context of 

whole video. 

In related research (Iu et al., 2004), video structure analysis and graph optimisation were 

combined to generate the video summaries. Here, the shot boundary detection was carried out 

by measuring the similarity between consecutive slice images. A shot is an uninterrupted 

segment of video frame sequence from a single camera view. Accordingly, video shot groups 

were constructed based on visually similar and temporally adjacent video shots using H-S 

histogram correlation between the shots constituting keyframes. Intersecting the video shot 

groups, the video scene boundaries and skimming time could be determined. A scene is a 

series of coherent shots from a narrative point of view. Further, the video hierarchical 

structure had to be analysed in detail. Considering the different types of scenes (loop or 

progressive) and the desired skimming time, the corresponding summary length for each 

identified video scene is determined. For each scene, a full spatio-temporal graph is 

constructed, whereas the weights on the vertexes show the length of shots and the weights on 

the edges describe the dissimilarity functions between shots. This graph is built based on the 

shots keyframes colour histogram correlation and their temporal adjacency. Finally, in order 

to generate the video summaries, the path with the maximum summation value on the 

vertexes and closest aggregation scores on the edges to the pre-calculated skimming time for 

each scene is captured.  

In another mathematical approach, a hierarchical video structure summarisation using a 

Laplacian Eigenmap was proposed (Jiang et al., 2009). Considering Laplacian Eigenmap as 

an efficient way of information extraction (Belkin and Niyogi, 2001), a reference frame 

subspace approach was applied to select a number of reference frames to measure the  

dissimilarity between any two frames. This is modelled based on the difference of their 

dissimilarity vectors (a vector representing the dissimilarity between an image and all of 

selected reference images) in Laplacian subspace. In the second phase, video structure 

analysis was carried out in three levels as following: scene level, shot level and sub-shot 

level. By using an adaptive threshold, video shot boundaries was determined and the middle 

frame of each shot was chosen as the representative frame. Subsequently, a K-mean 
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clustering algorithm was applied to the identified shots and the keyframe at the cluster centre 

is chosen as the representative scene frame. The sub-shot keyframes can be identified by 

comparing the dissimilarity of all frames within a shot.  

In another clustering-based method (Zemcik et al., 2007), colour histogram and gradient 

distribution were used as the image descriptors for each frame. Each video is divided into two 

second sequences with 1.84s overlap. In the pre-processing stage any video sequence 

containing any unwanted frame (determined based on the set of unwanted descriptors) was 

discarded. Among the remaining shots, the concatenation of mean and standard deviation of 

the feature vector for existing frames in each shot was calculated to subsequently form the 

feature vector for that shot. Principal component analysis was applied to each shot to reduce 

the dimensionality and K-mean clustering algorithm was adopted to cluster the visually 

similar shots. Changing the K, the desired length of the video summary can be determined 

considering the equal length of each video shot. At the end, for each cluster, the nearest video 

shot to the centroid of the cluster was chosen as the representative for that cluster. 

These types of algorithms are capable of considering only visual features of the current 

frames and a group of closest frames in order to estimate the level of attention and perception 

of viewers. Consequently, the computed peak points are at maximum level locally, while the 

corresponding frames might not be the most important in the context of whole video (You et 

al., 2009). 

In a more complicated approach, a combination of graph model and clustering algorithm in 

multi-view video summarisation was adopted, which considers the content correlations 

between dynamic shots within each view and across multiple views. A hyper graph was then 

constructed to represent the different types of correlations (visual similarities, temporal 

adjacency and semantic relationship) between the shots in each view and across the different 

views, where each hyper-edge models a different type of correlation between the shots. The 

hyper-graph model was adopted to eliminate the side effects of inappropriate fusion weights 

selection. This hyper-graph was then transformed into a spatio-temporal graph in the next 

stage where the weights on the edges could be calculated by summing the weights of the 

hyper-edges that those shots belong to. Later a random walk clustering algorithm and multi-

objective optimisation was utilised for summary generation (Guo et al., 2012).  

Based on a collaborative approach, the results from different abstraction techniques were 

merged in furtherance to incorporate their individual strengths in the summary production 
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task (Dumont and Merialdo, 2008). According to this technique, a video sequence was first 

segmented adopting several methods including shot boundary detection based on colour 

histograms and hard cut detection based on SVM (Bailer et al., 2007). In the next phase the 

segmentation results retrieved from different methods were fused together. As a result, a 

clustering algorithm based on boundary time was used to categorise the closest boundaries. 

Further, a time boundary with the highest confidence value was selected for a video segment. 

In the last phase, each summarisation algorithm individually assessed the common segment 

to establish the extent of relevancy and redundancy. Relevant segments were identified using 

two methods: the first measured the visual activity and face detection results, while the 

second divided the original video into one second segments, clustered those segments and 

finally selected the most common partitions with capability to cover the maximum content. In 

order to determine the redundant video segments, colour bars identification, grouping several 

takes of one scene, as well as pattern models were applied. The fusion step then merged the 

different produced lists of relevant and redundant segments in order to produce the final 

selection list (Bailer et al., 2008).  

In another clustering-oriented attempt, the proposed algorithm tried to extract a specific 

number of representative frames to generate the abstract of a particular digital video. As a 

result, a Content Based Adaptive Clustering (CBAC) was employed for this purpose. Unlike 

most of the common existing methods, the shot boundary detection was not carried out in this 

algorithm. Instead, video samples were projected as some points in the multi-dimensional 

characteristic space representing a group of low-level features such as colour, texture, motion 

and shape. The difference in their distances was assessed globally for a selection of 

representative frames. The time-based sequence of the video was mapped to a trajectory of 

points in the feature space. This spatial distribution of the points (video frames) 

corresponding to a video segment could be explained as clusters linked by abrupt or gradual 

changes. Moreover, the trajectory moved around in a small cluster. It is impossible for all the 

frames in a video to be spatially distributed far from each other and therefore to have 

irrelevant content, due to the nature of video in which frames are put together to express 

meaningful information. This characteristic of the distribution of points provides an essential 

basis for this clustering technique. As a result, frames are divided into equal units and then 

the difference between the first and the last frame in the unit had to be calculated in order to 

partition the frames into two different sets based on the level of change (large-change and 

small-change). The frames from large-change clusters were retained, while all those 
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belonging to small-change clusters were omitted except the first and last frames. If the total 

number of remaining frames was enough then these representative frames were put together 

to constitute representative sequences, which could be used for temporal summarisation of 

video. Otherwise, this clustering process should be reiterated several times till the required 

number of frames could be achieved (Sun and Kankanhalli, 2000). 

 

2.3.2. Video Summarisation by Various Modalities 

In most of the methods that were described earlier, some good results were achieved but a 

prefect video summary can only be produced by extraction of semantic content of video. 

Since the previously mentioned methods are highly tied to low-level visual features of videos, 

they are unlikely to fully reflect the semantic content of the videos. Thus, a different research 

strand involves other modalities (in addition to Visual content) in the summarisation process 

as a potential information source. 

2.3.2.1. Audio Data 

Accordingly, Bhatt et al (2009) adopted auditory features solely in an attempt to generate 

dynamic video skims. After portioning the input audio into one second segments and 

removing DC component from all partitions, each section was further divided into frames 

with the length of 320 audio samples (20 msecs). Later, each segment was initially tested for 

silence or environmental noise, speech, music, and music with speech. Primarily, silence 

regions detection was carried out by measuring short time energy of each segment through 

aggregating the sum of squares of the signal samples. Segments with short time energy below 

a predefined threshold were identified as silent segments. Further, non-silent partitions were 

tested for environmental noise using short time entropy and the modified autocorrelation peak 

values. Non-environmental-noise audio segments were further assessed for detection of 

speech only versus non-speech (further to music only and music with speech) sounds using a 

number of auditory features including low short time energy ratio, Mel-Frequency Cepstrum 

Coefficients (MFCC) and variance of log energy. A Gaussian Mixture Model (GMM) and 

Fuzzy decision trees were adopted for training purposes. Finally, based on the identified 

category for each audio segment, video abstracts in accordance to that particular video genre 

were generated. However, the proposed algorithm can potentially fail to include many of the 

visually and semantically rich video content into the final summary due to silence of its 

corresponding video segment. 
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2.3.2.2. Audio-Visual Data 

Audio analysis was the basis for another multi-modal technique in which keyframes were 

selected based on semantic analysis of shots, scenes and frames in a holistic structure (You et 

al., 2009). A video was preliminary segmented into scenes using audio features assuming the 

prolonged consistency of the audio track of a scene in terms of signal characteristics. 

Classification on the non-silent clips of audio was performed to fit each clip in one of five 

existing genres. Later, these scenes were segmented into shots using the luminance 

histogram. All audio clips were weighted based on the class which they belong to, and the 

computed average score of all clips in a scene was measured as the semantic audio 

importance of that scene. All the representative histograms of a scene are then compared in 

order to classify the shots into two groups of related and unrelated shots. A shorter scene with 

more unrelated content is better. The size of a face or text together with its region in the 

frame was adopted to produce the importance index for that frame. Additionally, the number 

of occurrences of detected faces or text in a single scene could generate the text and face 

saliency value for that particular scene. Affective features (pitch, loudness, motion speed and 

luminance) in one scene were measured and then compared to the whole sequence to show 

the level of semantic relevance of that scene in regards to the overall sequence. Shots were 

further semantically measured using the above semantic audio importance and face and text 

importance as well. Hence, other factors including camera motion, object motion, temporal 

motion coherence were all taken into account to build a semantic shot importance model. 

However, the existing video processing techniques for face and text recognition purposes still 

suffer shortcomings in terms of accuracy and scalability, which can directly affect the 

performance of the explained approach. Furthermore, the results produced by this approach 

are highly dependent on the audio-visual quality and noise level. For instance, a noisy audio 

environment or cluttered scenes can undermine the accuracy and performance of face 

recognition systems (Herranz and Martinez, 2008). 

According to another multimodal technique based on audio-visual features, colour, motion 

and MFCC features of the audio signal were all analysed to generate the video abstracts 

(Jiang et al., 2000). Initially, the entire video was segmented into a number of one second 

length temporary partitions and colour histograms were calculated for each frame. The 

produced histograms were then averaged over a segment to produce a reference histogram for 

that partition. Subsequently, motion features were computed for each frame using the SIFT 
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algorithm and the Euclidean distance between these features were used in the computation of 

a singular motion vector for each video segment. For auditory analysis, MFCC features were 

calculated for each video segment. However, considering the vulnerability of this type of 

features against noisy conditions, tensor subspace analysis was adopted to extract audio 

characteristics for one second audio frames. Afterwards, the dynamic time warping algorithm 

was used to calculate the similarity measure between two audio segments. In order to perform 

segmentation, a dissimilarity matrix was computed, in which each element represented the 

pairwise distinction between two segments. The calculated values of colour, motion and 

sound for each segment were further normalised and adaptively weighted in order to be fused 

into a single value. In the final stage, a Fuzzy C-Means clustering algorithm alongside a 

maximum likelihood estimation approach was employed to cluster the video segments in an 

optimal manner. Finally, the video segments closest to the centroids of the clusters were 

extracted to be inserted into video summary. 

2.3.2.3. Audio-Visual-Textual Data 

In another multimodal summarisation technique, the saliency of auditory, visual and textual 

information was analysed separately and then integrated into a multi-modal saliency curve 

(Evangelopoulos et al., 2009; 2013). For audio saliency detection task, the primary objective 

was to build a data-driven and time-dependent function with capability to change in 

accordance to the importance level of auditory sensory information. Therefore, the audio 

frames were decomposed into a set of equally separated frequency bands (frequency 

components) and each band was modelled by an AM-FM signal. Gabor filters were further 

utilised to perform band-pass filtering, while the Teager-Kaiser energy operator and energy 

separation algorithm were all adopted to decompose each signal into instantaneous energy, 

amplitude and frequency signals. However, only one frequency component, which dominates 

the signal spectrum, was employed as a dominant modulation component (the one which 

produced the maximum energy response over the time frame) and provided the basis for 

yielding a feature vector comprising instant amplitude, frequency and source energy 

respectively. Then, each feature was normalised over a long-term window to scalar values 

that sum to one and the results formed a one-dimensional temporal saliency map. For visual 

analysis, the frames pixels were considered as the voxels whose saliency was analysed based 

on their intra-feature, inter-scale and inter-feature interactions. Each frame as a volume was 

decomposed into 3 conspicuity volumes (intensity, colour and orientation), after which each 
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volume was further decomposed into multiple scales representing a Gaussian volume 

pyramid. Intensities were then calculated based on the difference between RGB value of a 

point and the average value of the surrounding region; colour opponent theory was then used 

to generate a colour conspicuity score. Finally, orientation was computed employing 

spatiotemporal steerable filters adjusted to respond to a moving stimulus. Consequently, the 

outcome was a set of updated multi-scale volumes; the saliency for each point is the average 

of all volumes over all features and scales. At the end, a single saliency value for each frame 

was generated by multiplying the normalised feature scores with the calculated saliency value 

from the last step. In order to evaluate the textual content, forced segmentation on the audio 

stream was performed using speech transcripts generated by a Sonic ASR (automatic speech 

recognition) system and phone-based acoustic models as the pre-processing stage. The 

timestamps inside the provided subtitles can present the rough location of the text in an audio 

stream and were useful to start the forced segmentation procedure. Then, time-aligned 

transcripts were analysed using a decision-tree-based probabilistic tagger to carry out part of 

speech (POS) tagging and the highest scored POS tags were assigned respectively to proper 

nouns, common nouns, noun phrases, adjectives, verbs and the remaining parts of speech. 

Therefore, each frame could be scored based on its textual saliency. In the last step, the 

produced outcomes from different modalities were integrated to produce a single, composite 

saliency curve. Thus, an intra-model fusion scheme was adopted in which each individual 

saliency feature was normalised to a value [0,1] and weighted based on its variance. The most 

salient audio and video sub-clips based on a predefined skimming percentage were then 

chosen for inclusion in final summary. The proposed approach can produce some impressive 

results for a number of video categories. However, its performance degrades when the 

fluctuation in aural or visual features remains at a minimum over the course of video.  

 

2.3.3. Domain-specific Video Summarisation 

Another category of video summarisation techniques is that of domain-specific methods with 

capability to generate summaries for particular video genres by utilising the exclusive 

features and attributes available in those categories. These methods are frequently being 

employed in summarisation of sport videos and are mainly based on the fusion of low-level 

and object level features in order to identify the most valuable events (Ekin et al., 2003; 

Zhang and Chang, 2002). 



                User-Centred Video Abstraction 
 

30 
 

In earlier work, the low-level features of the video were analysed for event-detection 

purposes, while more recently studies employ ontology based approaches (Bertini et al., 

2005). Accordingly, a formal ontology reasoning approach was proposed to produce semantic 

abstraction of sport videos (Ouyang and Liu, 2013). As a result, sport videos are annotated 

with ontologies in order to build a three-level hierarchy sports abstraction (keyframe, 

representative shots and video clips). In order to build the required knowledge infrastructure 

for semantic analysis, the sports video model was divided into an upper ontology and a 

domain-specific ontology. While the first one represented the general features of basic sport 

videos, the second was adopted to depict the details of general concepts. An XML scheme 

was utilised for describing and reasoning of the video ontology. An interactive keyframe 

selection technique was adopted to generate static video abstracts. While the semantic 

information of shots and keyframes was obtained directly through the users’ annotations, the 

semantic results for the representative scenes could be gained from the inference engine. This 

proposed algorithm requires a great extent of user involvement which can potentially affect 

its scalability. 

In a proposed approach to summarise documentary movies, the generated summaries were 

represented in the format of a set of contiguous audio-visual segments that were 

homogeneous in a cross media space (Perez-Daniel et al., 2014). Adopting the Data Cube 

concept (Gray et al., 1997), several partitions of the same data set could be generated by 

employing various possible combinations of the audio-visual features space. In order to 

describe the visual features, a number of colour-based MPEG7 features including Scalable 

Colour Descriptor and Colour Structure Descriptor alongside a texture-based (representing a 

pyramid of blocks with the histogram of oriented gradients) feature were adopted. In 

addition, MFCC and chroma vectors were utilised to denote the auditory information.  As a 

result, a consensus clustering algorithm with the capability of incorporating various 

combinations of dimensions of the description space was utilised to build such partitions. A 

consensus clustering is a procedure to merge agreements over several clustering on a similar 

data set with different dimensions. The median frame of each cluster was chosen to be 

inserted into the summary. Despite some considerable outcomes, the practicality of this 

algorithm is linked to the availability of MPEG7 data. Furthermore, presence of aural noise 

can increasingly deteriorate the quality of final summary. 

In contrast to visual methods, there has been an attempt to summarise sport videos using the 

audio features, considering the fact that interesting events can lead to changes in the speech 
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excitement level (Otsuka et al., 2006). Accordingly, the percentage of excited speech in each 

audio segment is calculated alongside its energy level enabling the system to compute the 

importance level of each video segment.  

Interestingly, in a combination model (Taskiran et al., 2006), the textual content of movies 

alongside its audio characteristics were both used for video abstraction. Using a speech 

recognition system, transcripts of the video are retrieved and subsequently an inverted word 

index alongside a phrase glossary index is created. In this system, it is audio pauses instead of 

shot boundaries which are used for segmentation purposes of the video. The importance score 

for each video segment is computed by applying information retrieval techniques. Each video 

segment is considered as a document and term frequencies within segments as well as the 

distribution of pairs of words within it could both potentially determine the importance of 

each segment. However, this type of summarisation technique does not generate satisfactory 

results when speech signals are noisy (Ngo et al., 2005). Moreover, this proposed algorithm is 

not applicable to silent videos. 

As opposed to audio-visual oriented techniques, in a text-based approach sport video events 

are detected by analysing and alignment of webcast text and broadcast video (Xu et al., 

2008). After filtering out the stop words and names of players, a probabilistic latent semantic 

analysis is applied to cluster the webcast text into different categories. Later, words with the 

highest number of occurrence in each category are chosen as keywords to represent the event 

types. Sentences containing these keywords are text events. In order to synchronise the 

webcast text and corresponding event in the video, a conditional random field model 

algorithm is employed to detect the start and end boundary of the event. However, the 

proposed algorithm can only function in presence of webcast data. 

In contrast to the previous method, a visual-oriented approach was proposed for football 

video summarisation using an improved algorithm for the detection of replay shots. Shot 

boundary segmentation was carried out by detection of differences in the dominant colour 

pixel ratios and colour histograms. In the next phase, the shots were fed into the event 

detection engine to be examined for identification of the logos (TV logos are recently being 

adopted as a visual-effect before showing the slow-motion shots), score board, Goal-Mouth 

and shot classification. Finally, a rule-based classifier was used for interesting events 

detection (Eldib et al., 2009). Nonetheless, high quality video summaries could be generated 

adopting this method only in the presence of carefully developed replay shots.  
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In another domain-specific approach, a summarisation method for a basketball game was 

proposed based on monitoring the temporal changes in the score. For this purpose, a 

scoreboard region detection method was used and a text area detection algorithm was applied 

to identify the areas of an image with many vertical strokes. Only the regions which remained 

static for a second were then chosen as candidates for scoreboard (Kim at al., 2005). In the 

next step, a number recognition algorithm was applied to the filtered result in an attempt to 

determine the score regions. Simultaneously, the video shots were classified into play shots 

and non-play shots based on the ratio of dominant coloured pixels. Finally, by defining some 

semantic templates for exciting scenes, the importance score of changing score frames could 

be computed and important shots were included into the video digest. Unsurprisingly, the 

availability of scoreboard in the original video is a prerequisite for good performance of this 

algorithm.  

Motion features at different video levels was the basis for a proposed framework to 

summarise the surveillance videos (Sujatha et al., 2014). Initially, the original video was 

divided into a number of blocks, each containing a non-uniform number of segments. The 

optical flow at frame level was computed and was further propagated to the segments and 

blocks levels. The frame motion was derived from the overall motion of the existing feature 

points in that particular frame. Those are the points where strong derivatives were observed 

in two orthogonal directions.  Later, the motion entropy for each block is obtained by 

computing the probability of possible motion in a segment and therefore, the most salient 

blocks with the highest motion activity can then be extracted for the final summary. 

 

2.3.4. Online Summarisation methods 

As opposed to most of the summarisation methods which operate in an offline manner, only a 

limited number of studies have explored the topic of online video summarisation. This is a 

result of difficulties in producing summaries in real-time based on impartial information 

(Almeida et al., 2013; Zeng et al., 2011). However, in many applications, such as video 

sensor networks, capturing the entire video before summary generation is inefficient due to 

the limitations in terms of time and memory resources (Ou, 2014). As a result, in some recent 

methods, the summarisation engine operates directly with the video stream in real time 

without a need to assess the entire video sequence. 
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For instance, in related research, online videos were summarised progressively as they are 

recorded (Ou et al., 2014). In the first stage, the MPEG-7 colour layout descriptor as a feature 

was extracted for each input frame. Later, the extracted feature was clustered using an online 

GMM based clustering (Stauffer and Grimson, 1999). After the clustering, the decision 

regarding the inclusion or discarding the input frames were made based on the frame 

corresponding cluster weight. As a result, the frames belonging to the cluster with large 

weights (more frequent content) and small variance (lower activity level in that cluster) were 

filtered out (as shown in Figure 2.6). 

 

Figure 2.5. Online video summarisation using GMM (adopted from Ou et al., 2014) 

 

Other of this type of methods is the work of Valdes and Martinez (2008), who employed a 

decision tree as the basis for the generation of online video summaries. Firstly, the original 

videos were divided into equal-length shots. Later, a binary decision tree whose nodes 

represent the shot condition (inclusion or exclusion) and each branch explains a result of 

summarisation was developed. This was a binary tree which models all the possible video 

summaries that could be generated from an original video considered as collection of n basic 

units. Thereafter, a score demonstrating the quality of the video summary is calculated. In 

order to minimise computation costs, splitting the trees into partial sub-trees was undertaken 

and the score for each branch was computed considering three major weighted factors: shot 

continuity, activity and redundancy. Finally, online tree pruning using a time sliding window 

was performed so as to generate the real-time abstracts. 

Tracking the local features among the consecutive video frames was used in another 

technique to summarise the videos in real time (Iparraguirre and Delrieux, 2013). Here, the 
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number of similar Speeded Up Robust Features (SURF) visual features between any two 

consecutive frames was defined as a Common Feature Number (CFN). In order to identify 

any potential keyframe, this absolute value was compared against the average of 10 prior 

CFNs to calculate their change ratio. Any value above a pre-set threshold will nominate the 

second frame of the pair as a candidate keyframe. The nominated keyframe later was checked 

against the last detected keyframe in a similar way, for noise amount evaluation. Finally, in 

order to produce a video skim, after detection of a keyframe, the 30 following frames were 

also added to the final abstract. However, such an algorithm can only evaluate the saliency of 

video segments locally. 

 

2.4. Semi-Automatic Video Summarisation: 

As was explained earlier, these types of techniques require human intervention at some stage. 

This will result in bridging the semantic gap between the low-level features and the human’s 

perceived responses (Han et al., 2014). Thus, the probability of generating semantically 

stronger video abstracts will be boosted. Here, the user’s spontaneous behaviour while 

viewing the videos is captured in order to generate video summaries. These systems can thus 

potentially determine the importance level of different shots by measuring camera motion 

level plus movement of eyes and facial expressions of users, while they are interacting with 

the video segments (Yoshitaka and Sawada, 2012).  

Users’ high level collaborative activities such as textual tags can also be used to generate 

video digests. For instance, user-created video bookmarks can be employed for video 

abstraction (Chung et al., 2011). The proposed model system consists of two correlated 

modules: a bookmark server and a bookmark analyser (video summary generator). The 

database (bookmark server) contained several queues, each of them maintaining the different 

bookmarks created for the same video. As time goes forward, this database keeps on growing 

till it stabilises. At this point, the bookmark analyser attempts to construct a bookmark 

histogram by dividing a video into a number of equal time intervals and trying to assign each 

of those weighted bookmarks to one of the existing bins (weights for older bookmarks are 

decreased exponentially). These histograms are then smoothed using Gaussian filters and 

their peaks are identified. In the last stage, homogeneous (location and visual) peaks are 

merged to generate the final summary. However, this type of method is extremely costly and 

time consuming. 
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In another related work (Ngo et al., 2005) a video is initially partitioned into shots and a 

similarity graph produced where the weights of the edges connecting the shots reflect the 

visual similarity and temporal distance of constituting frames. Later, a normalised cut 

algorithm is used recursively to decompose these shots into sub-graphs (clusters). As a result, 

the scene boundaries are determined by segmenting a graph into sub-graphs, each correlating 

to a scene. Omitting the edges along the shortest path (using Dijkstra’s algorithm) from the 

cluster containing the first shot in a video to the cluster that contains its last shot, these sub-

graphs could be identified. In the next phase, the motion attention mode is employed to 

measure the attention level of users when watching the videos. The prior probability and 

attention value for each cluster is computed to define the quality of the scenes. 

In the Click2SMRY framework, crowdsourcing was adopted as the basis for video 

summarisation (Wu et al., 2011). Here, each video was partitioned into equally-sized sub-

segments (5 seconds each) and thereafter video workers were asked to identify potential 

video highlights by holding the SPACE key on the keyboard while they were watching the 

original videos. Therefore, each click was assigned to one corresponding sub-segment. 

Finally, based on the required length of summary, a number of these sub-segments with the 

highest selection rates by different workers was extracted to be inserted into the final 

summary. However, segmentation of a video shot solely based on the time element can 

increase the possibility of generating false results. This is due to the inability of this method 

to address the dramatic change in the visual and semantic content within each sub-segment. 

In a very recent study, the two fields of brain imaging and visual attention modelling were 

utilised to produce semantically rich video abstracts (Han et al., 2014) as shown in Figure 

2.5. Accordingly, the Functional Magnetic Resonance Imaging (FMRI) technique was 

adopted to identify and monitor the main brain areas involved in visual information 

perception and cognition called Regions of Interests (RoIs). Then, the attentional engagement 

of brain to different video content stimuli for generation of benchmark attention curve was 

measured (using a spectral graph representing RoIs interactions). As a result, an fMRI-driven 

visual attention model with the capability to optimise the low-level features combination 

under the supervision of a smaller training FMRI data was presented. The optimised 

attentional model could increase the correlations between the low-level visual features and 

brain responses. Once the FMRI-driven attention model was learned at the training stage, the 

identified patterns could be generalised for summarising any new input video at the 

application stage. 
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Figure 2.6. Video summarisation using FMRI method (adopted from Han et al., 2014) 

 

2.4. Multimedia Personalisation 

Personalisation has been an area of research interest in the computer science community 

during recent years. Capturing the user’s interests and modifying the output in a way that 

meets the user’s requirements in the best possible way is the main objective of 

personalisation systems. Personalisation has been adopted in different areas of computer 

science including information retrieval systems, video portal systems and e-commerce 

websites. In all mentioned areas, the personalisation module within the system tries to acquire 

useful information regarding users and usage environment. For instance, Fukumura et al. 

(2003) detailed how a personalised website could be developed that presents the digital 

content based on the user’s browsing history. In this system, it is assumed that a website 

consists of three components: 1) Content 2) Container 3) Relationship; therefore, the 

browsing history of a user is a sequence of components that a visitor had followed earlier. A 

component extraction algorithm was then used in later stages to choose the most valuable 

elements for the presentation.  

A user’s generated sessions can also be used for personalising the output (Mobasher et al., 

2000). The offline component of the system carried out on two tasks. In the data preparation 
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phase, a session file of viewed pages by each user containing attributes about each page-view 

was generated. Subsequently, the output was fed into a data mining algorithm for pattern 

discovery purposes. In the last phase, the recommendation engine considers the conjunction 

of active server sessions and discovered patterns to construct the personalised content.  

Unsurprisingly, the core idea of personalisation in the context of multimedia is similar. In 

fact, the most effective and impressive approach to provide users with a fast and convenient 

access to any multimedia content is to integrate their preferences and the characteristics of the 

environment around them into their queries (Caschera and  D'Ulizia, 2007). Generally, these 

features can be divided into five categories (Skondras et al., 2011): a) users’ general 

information; b) users’ preferences, representing the user browsing, filtering and search habits; 

c) usage history, describing a user’s interaction with digital items; d) presentation 

preferences, showing their favourite multimedia presentation means; and e) accessibility 

characteristics, concerning the end-users with audio and visual limitations. 

Personalising multimedia content is an extensive process, which in most cases is achieved in 

three consecutive steps: semantic and structural information extraction from the available 

resources (including the original files or supplemented metadata); creating profiles for end-

users automatically or manually according to their priorities; filtering the content based on 

user’s profiles to fit user’s preferences. These will now be looked at in more detail. 

 

2.4.1. Information Extraction and Representation 

Information extraction and semantic annotation of media content can be done both manually 

and automatically. Multimedia documents can be enriched and annotated with metadata 

expressing the (i) semantic and (ii) affective/emotional/rhetoric content of any multimedia 

document (Ren and Zhu, 2008).  While semantic annotations determine the conceptual 

content of a document, the affective annotations are applied to express their perspective. For 

instance, a multimedia document can represent an attitude or a bias in their content by virtue 

of language, movement, juxtaposition, colour, rhythm, etc. Affective annotations provide 

information like “video sequence with dramatic presentation”, “expresses negative opinion 

vehemently”, “evocative music sequence”, “visually stimulating picture” (Ren and Zhu, 

2008). There are a number of different elements that exists in a multimedia content and 

should be extracted and be presented in a content model. The most important items which 

should be included in the content model are: objects in the media stream and their clear 
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properties; the spatial relationship between those objects; Events in the video segments 

involving those objects and, lastly, the temporal relationship between those video segments 

(Angelides, 2008). 

In many systems a manual scheme to enrich the media with metadata using different tools 

and standards is being adopted. For instance, in a multimedia content sharing system the 

MPEG-7 and MPEG-21 standards could be used to represent the content framework. The 

i2CAT Machine Project was the continuance of a project called Integrated Project in which 

the main objective was to define an advanced environment for sharing media content. The 

MM&P (Metadata Management and Personalisation) module embedded in this system was 

responsible for storing and handling the metadata. In this module, the DI (Digital Item) 

structure was created by utilising MPEG-21. The DI was the main element which was 

defined by the MPEG-21 standard to project the structure of content and bind descriptions to 

them. A DI structure comprises three types of elements, namely, container, items and 

components. These DI elements were bound to thumbnail, semantic (title, creators, genre, 

etc.) and technical (bit rate and file format) descriptions, which were defined by the MPEG-7 

standard to constitute the machine project metadata (Rovira et al., 2007). However annotating 

media content manually can be extremely time-consuming. 

 

2.4.2. Profiling 

Creating a user profile is an approach to capture the users’ evolving information needs. User 

preferences can be captured implicitly or explicitly for creation of their profiles. The profiling 

of viewers is continuously carried out by the systems and is usually created based on all 

available user interactions, such as user selected media streams, navigation patterns and 

social networking (Malheiro et al, 2011). However, there are potential drawbacks to a user’s 

profile identification, such as the variety in the users’ interests, which can lead to a sparse 

data representation that should be addressed. 

Until now, a number of methods for creating user profiles have been suggested by 

researchers. In general, in most of these techniques, a model to translate the users’ implicit 

information resources to their unique profiles was suggested. In one related work, a general 

profiling model for personalisation of multimedia content was used, in which the user 

profiles, context profiles and their combination were all employed in an attempt to make the 

original user query more precise and to produce a better outcome. In this method, spatial, 
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temporal, semantic and structural characteristics were utilised to describe user, context and 

multimedia data. Therefore, user profiles, context profiles and data profiles were built using 

the available descriptions. These profiles were further applied to filter a user query in order to 

narrow the results to those which optimally meet the users’ expectations (Caschera, M.C. and  

D'Ulizia, 2007).  

Several user and context adoption methods have also been presented in the existing literature. 

For instance, ontology-oriented techniques can be adopted to model a user profile (Beckett, 

2001). One of these is UBIcomp, which uses ontologies to represent contextual data in 

regards to users (Christopoulou et al., 2005). While in an ontology-based project called Smart 

Push, professional editors were asked to enrich user’s information with semantic metadata 

(Jokela et al. 1999). In similar work, user profiles were created by developing knowledge 

graphs to model the correlation between various concepts in the Linked Open Data Cloud 

where concepts with similar semantic context are connected to each other (Hanckok and 

Walker, 1992). Based on another related attempt, user profiles were designed to store the 

users’ personal and semantic data alongside their tag cloud, resulting from their social 

interactions on the web or from previous selections of video streams (Malheiro et al., 2011). 

 In another implicit data extraction method, relevance feedback was used as the essence for 

creating user profiles (Hopfgartner et al, 2010). When a particular user interacts with a result, 

he/she leaves a semantic finger print that represents the extent that the corresponding content 

is interesting to him/her. The described system applied a weighted story vector approach to 

acquire this finger print and to update the weight of that story. As each news story includes 

one or more broad categories, which are identified beforehand, a user’s interest in those 

categories can be measured by combining the acquired weights of the different stories 

belonging to that category over various user iterations. By performing hierarchical clustering 

and extracting transcripts from clustered stories and utilising information retrieval techniques, 

sub-categories can then be generated.  

The user profiling task can also be carried out in both explicit and implicit manners within the 

same solution. For instance, the goal of the EignNews system (Daneshi et al., 2013) was to 

provide end-users with a personalised playlist of news videos. Accordingly, explicit 

preferences, personal information, as well as implicit preferences were gathered and fused 

into a singular value to clarify the end-users’ priorities towards different news stories. 
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Previously assigned scores by each end-user to a list of pre-defined news categories and their 

viewing history of other related news videos were then used to form such a priority grade. 

Data representation of created profiles is another essential topic that should be taken into 

consideration. For instance, in a p2p personalisation system, a user-profile was viewed as a 

mapping of users and multimedia tags to a set of interest weights (Nalin et al., 2011).  In this 

work, the interest weight of a multimedia tag was expressed in a numerical value format 

reflecting the user’s level of interest in that particular item. These could then be integrated 

into the user profiles which are mainly represented as a vector of keywords and weights. 

These vector-style profiles have the potential to be represented in a Bag-of-Word format in 

order to calculate peer-users’ similarities. As a result, selection of an appropriate data 

representation model for generated profiles can facilitate further operations such as filtering, 

which we now proceed to describe. 

 

2.4.3. Filtering: 

To date, a group of different methods has been employed for content filtering purposes. In 

content-based filtering, recommendations will be made to users based on the content 

similarity to (implicitly or explicitly) the obtained user’s profile and previous 

recommendations as shown in Figure 2.7.  

 

 

Figure 2.7. Content filtering personalisation (adopted from Malheiro et al., 2011) 

  

This contrasts with manual rule-based systems, where rules derived from user demographics 

and static profiles (collected through a registration process), determine the content for the 

users. Furthermore, in collaborative filtering a user is assigned to a group in which other 
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members’ content ratings (concerning their profiles) are used to retrieve filtered contents 

(Mobasher et al., 2000). Additionally, in collaborative tagging, users are also allowed to 

enrich contents by means of tags and to share such descriptions. The structures captured from 

these data sources can then be utilised for recommendation improvement (Malheiro et al, 

2011). 

In many systems, relevance feedback approaches are currently being used as a method to 

filter multimedia content according to users’ interests. For instance, a group of candidate 

images could be presented to users who are then asked whether the shown images are 

relevant or irrelevant. The main concept is to develop an interactive system with the 

capability to save and process the user’s interactions with the system’s recommendations. As 

a result, the decision making process can be adjusted dynamically rather than using a set of 

pre-defined formulas (Patrikakis et al., 2011). 

A different approach is that taken in a multimedia retrieval system called PIDALION, in 

which the user’s querying and clicking behaviours were analysed to generate feedback. By 

keeping track of their choices and applying them to future searches, the users could find their 

content of interest easily. This system tried to monitor the user’s behaviours from four 

perspectives: category with the highest rate of appearance; initial search criteria that mainly 

characterise the validated results; precision results, and proximity to the initial search criteria 

(Markaki, 2009). The results derived from the analysis of this information will lead the 

system to filter the content for a specific user. This method can, however, face lots of 

difficulties due to the reluctance of users to provide enough feedback.  

 

2.4.4. Personalised Content Evaluation 

In order to evaluate the effectiveness of a personalised multimedia content, two different 

approaches can be applied. In system-centred approaches, the results are compared to a list of 

analysed documents and precision and recall rate are accordingly computed. However, this 

method is not suitable for the systems that are focused around the users (Vorhees, 2004). 

Accordingly, in a user-centred approach, the satisfaction level of the user is measured in an 

interactive way. However, user satisfaction can be also biased. In addition, it can be 

impractical to test all the variables involved in an interaction (Hopfgartner et al., 2010). As a 

result, a mechanism should be adopted to reduce the effect of users’ subjectivity. 
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 In the next section, the concept of personalised video summarisation with the primary 

objective to incorporate the end-users’ priorities in video summary generation task will be 

investigated.  

2.5. Personalised video summarisation 

A personalised video summarisation system is designed to generate a shorter version of a 

video based on the user’s preferences and interests, while maintaining the significant 

semantic content of the original video stream (Takahashi et al., 2005b).  

Generating useful metadata, extracting the most valuable user preferences and applying them 

to generate video abstracts to address the users’ needs should be regarded as an important 

research area. Furthermore, exploiting appropriate summarisation techniques, which can 

produce effective summaries based on the learned user’s profiles, is another challenging 

research topic.  

The major components of a personalised video abstraction system are illustrated in Figure 

2.8. As was mentioned earlier, the personalisation module is responsible for extracting the 

users’ preferences and generating the required metadata, while the summarisation component 

should effectively incorporate the captured data in the video abstraction task in an attempt to 

maximise the viewers’ satisfaction level. 

 

 

Figure 2.8. Personalised video summarisation modules (Lie and Hsu, 2010) 
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Designing an effective personalised summarisation system is tightly linked to the adoption of 

required descriptions for each video segment. Generally, there are two broad types of 

personalised summarisation algorithms. The first type requires the users to interact with the 

system directly to train it with their preferences and interests. For instance, the content 

provider component in this type of systems provides users with the facilities to annotate and 

enrich the multimedia content. These annotations can be utilised in later stages in order to 

validate or improve the metadata, which is provided automatically by the system. These user- 

made descriptions can also be used alongside other audio, visual or textual feature extraction 

techniques to compensate their inefficiencies in terms of semantic analysis. However, manual 

annotation should be regarded as time-consuming task due to the explosive growth of video 

archives. In addition, in an interactive system, users are involved with some technical details, 

which may be undesirable for them (Ferman and Tekalp, 2003). Consequently, many systems 

employ automatic video semantic annotation to foster personalised video summarisation and 

retrieval (Otsuka et al., 2006).  

As was discussed earlier, efficiently capturing user interests plays an important role in 

designing any kind of personalisation system. Since the personalisation methods currently 

being applied in online applications are mostly text-based, these approaches are not effective 

enough to be directly applied for multimedia environments. Therefore, several new 

approaches have been proposed to understand and apply the viewers’ preferences. For 

example, in a system called P-BNN (Personal Broadcast Navigator News) user interests can 

be inferred both implicitly and explicitly. Accordingly, the keywords that are used by a user 

to retrieve a video can be captured as a user profile. Moreover, this system is capable to 

acquire other user priorities during the keyword expansion process (Maybury et al., 2004).   

The application of personalisation methods in video summarisation approaches was 

employed in order to generate a personalised abstract of broadcasted American football video 

(Babaguchi et al., 2004). Here, important events were initially detected in the video stream by 

matching the textual captions appearing in a video frame with the descriptions of game-stats 

or employing the webcast text, in which highlights of the game were described. 

Consequently, any significant event could be extracted based on these comparisons. All the 

retrieved events were then analysed in accordance to their importance level and users’ level 

of interests and preferences towards them. The most salient video shots were selected and 

concatenated as the video highlights. The quality of the generated videos was further 
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improved by enriching the visual highlight shots with their corresponding audio-textual 

content from the original video stream. For personalisation purposes in the mentioned 

approach, a profile was adopted to collect the personal preferences and interests of different 

viewers. To this end, the following group of elements were included in the user profiles: 

favourite teams; favourite players; favourite event category. Additionally, other user’s 

required specifications for generating the abstract, such as their required summary length 

were collected as well. This method aims to personalise the summary content by employing 

the information provided in these acquired user profiles. In the next section, a group of 

personalised video summarisation techniques are discussed. 

 

2.5.1. Personalised Video Summarisation Techniques 

In this section a group of personalised approaches that are currently being applied to generate 

video abstracts are discussed. As was mentioned earlier, in some personalisation systems, 

users are employed to enrich multimedia content in an attempt to capture their preferences 

directly.  

Accordingly, in a personalised content selection system for news video (Merialdo et al., 

1999), a video was segmented assuming that a unique scene is the whole presentation of a 

piece of news. A module converts the closed-caption into a subtitle text and assigns each 

piece of news to one or more categories; thereafter, multiple keyframes are extracted from 

each scene. In the next step, a face recognition algorithm is applied to each extracted 

keyframe and recognised faces alongside the person’s name are stored. In addition, an 

enrichment module provides users with interaction facilities like making hand-writing 

strokes, spoken commentaries and assigning tags to selected frames. These tags could be 

utilised to learn a user’s preferences towards different elements in input videos. Thus, a 

personalised video summarisation or content selection system can be developed. A main 

drawback of the mentioned algorithm is domain-dependency, however. 

Human involvement in the abstract generation process of the following systems does not 

include content enrichment and annotation. In one study (Hopfgartner et al., 2010), shot 

boundaries were detected using colour histograms and a set of keyframes were chosen based 

on proximity to the average colour histogram for its corresponding shot. The video was 

segmented into stories by applying a Semantic Latent Dirichlet Allocation approach to the 

text stream of the video. In the next step, named entities in the transcripts are chosen as the 
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representatives of the story content using OpenCalais (a toolkit to distinguish the semantic 

category of a text). Afterwards, these identified entities were put into their context in Linked 

Open Data Cloud (SKOS) data models so their semantic categories were elaborated. The 

user’s interactions with the interface could then assist the system to identify the topics of 

interests. Performing user profiling, a user’s categories and subcategories of interests can 

accordingly be recognised. The main downside of the above system is that the quality of the 

video abstract is highly dependent on the availability of knowledge in the SKOS database 

regarding the various concepts. 

In related research, a video portal system called VIPP (video portal with personalisation) was 

designed to deal with sport videos containing semantic metadata. Viewer operations such as 

video browsing (video segment selection, playback, fast-forward, and rewind) and retrieval 

(by text or presentation of highlight scenes) were analysed and associated directly with 

keywords in the metadata. This was followed by updating of the importance weight of those 

keywords for that particular user. These weighted keywords could then be adopted for 

creating and updating the user profiles. The sum of the weights of keywords of interest in 

each profile was calculated as the fitness value of each video segment for that specific user. 

Finally, a personalised video digest could be generated considering temporal order, attributes 

and fitness values of the video segments (Babaguchi et al., 2003). 

A system with three-tier server-middleware-client architecture was developed to address the 

issue of personalisation and summarisation under a heterogeneous usage environment (Tseng 

and Lin, 2002). The client tier provided a user with facilities to specify his/her requests and 

usage environment. These user requests can include information regarding preference topics, 

some keywords and time constraints. Furthermore, the client tier could receive and deliver 

the customised content to the end-user. In the server, each content source was associated with 

a set of corresponding MPEG-7 descriptions, which was created by IBM’s VideoAnnEx 

annotation tool and a group of content adoptability declarations. The personalisation engine 

in the middleware then matches user requests with the media descriptions and consequently 

selected the optimal set of contents to generate the summary. The adoption engine then 

retrieves the content for the user based on the adoptability declarations. 

In another study employing MPEG-7 metadata, user profiling alongside a supervised learning 

algorithm were the basis for generation of the personalised content. In the first stage, a video 

operator annotated the equally segmented video segments with a number of high-level 
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semantic features. Learning the user’s preferences was carried out in two stages of training 

and classification. During the training phase, users were asked to watch the videos and label 

the interesting events. The high-level features belonging to that specific time window were 

extracted to produce a training set for a particular user. The training set was then utilised by a 

supervised learning algorithm to train a binary classifier that can detect the highlight 

preferences for a specific user. This learned classifier was applied to any new input video 

during the classification stage to classify each video segment to a relevant or irrelevant group 

for that specific user (Jaimes et al., 2002). 

In a proposed method to generate the personalised summaries of life-log in office 

environment, the input videos from multiple views were segmented into a single event 

sequence. The users had to input their degrees of interest in each event, person and objects to 

assist the system in retrieving the target video. Therefore, the optimal event sequence was 

constructed accordingly by selection of the best candidate views.  Subsequently, summaries 

of the event sequence were generated by considering the user-entered degrees of interests into 

contributing elements. The domain knowledge of the existing elements in the office 

environment and rules obtained from questionnaires were used to facilitate view selection. A 

fuzzy rule-based system to approximate the human decision-making process was applied for 

summary production purposes (Park and Cho, 2011). 

Crowd intelligence can also be used to verify the identified video highlights. Initially, a 

multimedia content analysis module is responsible for generating a list of highlight 

candidates, called best educated guess (BEG), of a football video (Smits and Handjalic, 

2010). The BEGs were selected based on the temporal variation of user’s excitement level 

using the concept of arousal. Affective low-level features including motion activity, sound 

energy, motion entropy, zero crossing rate and shot change rate were all analysed 

individually and collectively to identify potentially exciting scenes. In the next step, the BEG 

set was refined by the users’ collaborative tagging. By analysing the tags assigned by a 

specific user during enrichment of a video content and validation of the candidate highlights, 

user-tailored summaries could accordingly be generated. 

In related work, human physiological responses such as respiration rate and blood volume 

pulse were monitored in order to measure changes in the user’s affective state. Video 

segments, which elicit significant physiological responses in the users, are more likely to be 

interesting to a specific user and to be therefore included in in the summary. The temporal 



                User-Centred Video Abstraction 
 

47 
 

location of the corresponding video segment should then be identified in order to produce 

personalised affective video abstracts (Money and Agius, 2009). However, external factors 

such as distraction can affect the outcomes negatively. 

More recently, sketches have been the basis for generating personalised video summaries 

(Zhang et al., 2013). Using an interactive selection method (users can select the chosen 

subject in any frame), similar keyframes were extracted from the video. For identification of 

the keyframes with identical content to the query frame, the keyframes were segmented and 

the similarities between the corresponding segments and their neighbours segments were 

measured. Later, the F-DOG method was applied to the selected keyframes in order to 

generate the sketches (Kang et al., 2007). After elimination of the abundant points and 

smoothing the hard boundaries, the Camsift method was utilised to track the objects and 

identify the motion path, followed by construction of a similarity graph to represent the 

attributes of each sketch alongside the visual and temporal proximity to the other sketches.  

For sketch video summarisation in regards to a specific object, the weights of 0 or 1 were 

assigned to the nodes and edges based on the inclusion of that chosen object. Further, using a 

minimum weight vertex algorithm, specific sketches based on the weight of each node were 

obtained. To finalise the layout of the chosen sketches, an energy function was defined 

considering the five factors of temporal sequence, length of shot, balanced distribution of 

sketches on the canvas, continuity of the motion track and overlapping sketches. So, a 

dynamic programming was used in the final stage to acquire the minimal value of energy 

function. 

In an integrated personalised summarisation and retrieval system, the users’ relevance 

feedback was captured to produce the final storyboard summary (Shafeian and Bhanu, 2012). 

The process was initiated by the users’ submitted video query. As a result, a list of the most 

similar videos to the textual query (known as top videos) was returned. In order to produce 

the personalised summaries, the similarity scores for all the frames in a top video to the query 

were computed. Thereafter, all the frames belonging to the top videos were clustered based 

on their visual features from potentially different videos alongside their similarity scores. The 

similarity scores for the frames were computed by comparing their visual features in the HSV 

colour space. Next, the clusters and their constituting frames were sorted in a descending 

format according to their weights respectively. As a result, a list of ranked frames from all top 

videos was generated. In the next step, a factor graph was generated for each top movie in 

which the nodes represent the frames and the edges show the visual affinity of the 
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corresponding frames. Applying the Affinity Propagation (AP) algorithm (Frey and Dueck, 

2003) to the constructed graph, the exemplars (keyframes) were extracted to be inserted into 

the storyboard summary of each top video. Finally, for personalisation purposes, the 

generated summaries were presented to the end-users according to their relevancy to the 

query. Their relativity was measured in accordance to their visual features (HSV colour 

space) and virtual features similarities. The second criterion was generated during the online 

stage and in regards to the users’ given relevance feedbacks.  

In a resource-allocation-based framework, playback speed and perceptual comfort have been 

the key elements for generation of personalised summaries (Chen et al., 2014). First, a shot-

boundary detector divided the original video into short clips, followed by grouping these 

identified clips into video segments. Later, a number of candidate sub-summaries were 

generated for each segment by assigning different combinations of playback speeds (from a 

set of discrete options) to each of a set of contributing clips. The benefit for each sub-

summary was computed by calculation of the base benefits of the corresponding clips and 

extra gain through satisfying specific preferences (inclusion of the user’s favourite object, 

time duration and story continuity). Information regarding the still content of the scenes (to 

evaluate the relevance of video clip) and information associated with scene activities (to 

assess visual comfort) were adopted to determine the base benefit for each clip. Finally, the 

duration resource was allocated between available sub-summaries using Lagrangian 

relaxation and Convex-hull optimisation methods (Everett, 1963). Adopting these methods, a 

convex hull for each segment was constructed based on the benefit and cost (length of sub-

summary) of all candidate sub-summaries of that segment. All the points from all of the 

convex-hulls were sorted in decreasing order of the increment of benefit per unit of length. 

Finally, the ordered points were collected until the summary length exceeded the time 

constraint. 

In another attempt (Hari et al., 2013), human face features were adopted for identifying the 

keyframes and generation of personalised movie abstracts. In the initial phase, the shot 

boundaries were detected using the Mutual Information model. In the next step, face 

detection was carried out on all existing frames using Successive Mean Quantization 

Transform (SMQT) features and a Sparse Network of Winnows classifier. As a result, a set of 

face and non-face sample images was adopted for SMQT feature extraction and training the 

system. Subsequently, for any input video, the existing faces were detected adopting the 

retrieved features and the previously trained model. For personalisation purposes, the end-
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users were provided with a list of detected faces to select their favourite ones. Furthermore, a 

face recognition algorithm for identifying the matching faces from the identified collection 

using eigenfaces was adopted. Finally, the shots containing the users’ selected faces were 

included into final digest. However, the effectiveness of this algorithm is bound to limited 

video categories.  

In a semi-automatic, manifold embedding based approach (Han et al., 2011), human subjects 

were asked to choose their preferred keyframes in an input video sequence so as to overcome 

the barriers against detection of semantically rich video frames. Then, the visual summaries 

were constructed based on the inter-frame visual similarity to the pre-selected keyframes. 

Firstly, a graph based visual saliency algorithm (Harel et al., 2007) was used to assign a 

weight for each pixel within a frame. Next, the bidirectional similarity between all pairs of 

frames within a same fixed time window was calculated. The figures were generated by 

measuring the Sum Squared Distance of two patches and their saliency weights. Later, the 

distance matrix was projected into the Euclidean space using a manifold learning technique. 

Thereafter, each frame was assigned a weight based on the features in the embedded 

manifold and the user’s chosen keyframes. Lastly, the key-segments were identified by 

agglomerative clustering followed by application of a 0-1 knapsack algorithm to the 

generated clusters.    

In another closely related study, the behaviour of viewers is the determining factor in 

selection of the personalised content (Yoshitaka and Sawada, 2012). The attention level of 

users was measured, while they were watching the videos by monitoring their operations on 

the remote controller of the video player and also their eye movements. The video segments 

which were replayed or played back were labelled as salient to be included into the final 

summary. Additionally, eye movement data of the users were stored as a sequence of 

coordinate data of gazing points with a capture rate of 60 samples per second. Finally, the 

segments of the video, which comprised eye fixations, were chosen to be incorporated into 

the personalised summary. In such a system the way that human behaves in viewing a raw 

video can be a clue for the selection process. However there are limitations in the accuracy of 

the eye and face tracking technique (Peng et al., 2009). 

Table 2.1 compares the discussed summarisation techniques from different categories based 

on their performance and some of their identified shortcomings. 
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Category Sample Techniques Observations/Remarks 

Low-Level 

Features 

Based Methods 

(Mahmoud et al., 

2013);(Khosla et al., 

2013); (Carvajala et al., 

2014) 

-Average results 

-Incapability to understand the semantic of 

videos  

-Computationally expensive 

Multi-Modality 

Methods 

(Evangelopoulos et 

al.,2103);(Jiang et al., 

2009);(Bhatt et al., 2009) 

-Good results in presence of required 

information resources 

- Dependent on availability of the 

information resource 

-Noise sensitivity 

Domain-

Specific 

Methods 

(Daniel et al., 

2014);(Taskiran et al., 

2006);(Eldib et al., 2009) 

-Some acceptable results for specified 

categories 

-Not generalizable methods 

- Dependent on availability of the 

information resource 

-Noise sensitivity 

Semi-Automatic 

Methods 

(Yoshitaka and Sawada, 

2012);(Wu et al., 

2011);(Chung et al., 

2012) 

-Good results in controlled conditions 

-User’s subjectivity 

-External Factors (distraction) 

-High expense 

Online 

Summarisation 

Methods 

(Valdes and 

Matninez,2008);(Ou et 

al., 2014);(Ipparraguirre 

and Delrieeux, 2013) 

-Average results 

-No semantic analysis 

-Local summarisation 

Personalised 

Methods 

(Chen et al., 

2014);(Hari et al., 

2014);(Han et al., 2011) 

-Some satisfactory results 

-Great extent of users involvement- 

-Incapable of semantic analysis 

Table 2.1. Comparison of summarisation techniques from different categories 
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2.6. Evaluation Methods in Video Summarisation 

It is absolutely essential to devise a feasible scheme that can appropriately evaluate the 

effectiveness of a video summarisation technique. However, evaluation of the quality of 

automatically generated video summaries can be considered a complicated task due to 

difficulties in deriving objective quantitative measures for summary quality (Taskiran et al., 

2006). Nevertheless, numerous automatic, semi-automatic and manual methodologies have 

been designed for video summarisation performance analysis purposes. In general, precision 

and recall and are the two major determining factors in establishment of degree of 

effectiveness of a summarisation tool (Li et al., 2011b). In information retrieval, the precision 

rate explains the capability of a system in terms of identification and returning the most 

relevant and important documents in regards to a user’s query, while the recall rate 

demonstrates the ability of a system to reflect a wider range of documents (Manning et al., 

2009). These concepts can be easily propagated to the area of video summarisation to assess 

the quality of produced summaries. The entire documents collection is equivalent to the input 

video in the context of video abstraction, while the identified video segments play the role of 

each single document. Moreover, the duration of the summary and rhythm (tempo) of the 

generated abstracts are yet other criteria which have been considered by other researchers 

(Liu et al., 2008). In the next section, a group of suggested models for video summarisation 

evaluation will be reviewed briefly.  

 

2.6.1. Evaluation Methods 

As was mentioned above, there is no standard evaluation model for video summarisation 

available yet. However, various automatic, semi-automatic and manual evaluation 

methodologies have been presented. In manual models the main idea is to determine to what 

extent the machine-generated recounting summaries can potentially capture information from 

a multimedia content in comparison to the human-generated ones (Metze et al., 2013). 

Creating a ground-truth list of significant video segments and manually counting the number 

of similar shots in both the list and in the summary is the most common technique in this 

category of evaluation methods. A related approach entails providing a list of important 

topics and textual descriptions of important scenes to the assessors who are then asked to 

rank the summaries based on these measures (Cunha et al., 2012). Based on another similar 

method, the temporal location of each extracted keyframe was compared to the temporal 
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location of user-extracted keyframes and those with a lower difference than a pre-defined 

threshold were selected as the true detection. Afterwards an F-score (combinational metric 

composing of recall and precision) value was computed for each generated summary (Lu et 

al., 2014).   

In a questionnaire-based approach, the quality of the summaries were analysed based on the 

Quality of Perception metric (Gulliver and Ghinea, 2006), which are broadly adopted in 

assessing the effectiveness of multimedia fields, namely, Information assimilation and 

satisfaction. The first one measures the extent that the users assimilate the information from 

the summaries, while the later denotes the effectiveness of an approach to satisfy the users’ 

expectations. Accordingly, a questionnaire was designed to test the quality of summaries 

from these two perspectives (Ghinea et al, 2014). 

In semi-automatic approaches, the evaluation was carried out by comparing the user 

generated summary with ones generated automatically. In one proposed method, the 

keyframes were extracted from both versions of the summaries and their visual similarities 

were measured in the HSV colour space. Finally, the ratio of matched frames to the number 

of keyframes from the user-generated summaries could be an indicative for the efficiency of 

the system (Cahuina and Chavez, 2013). 

In automatic approaches, on the other hand, the certain indices inside the generated summary 

were assessed against a pre-defined threshold to measure the suitability of produced abstracts. 

For instance, Mutual Information and face detection ratio were utilised in one study to 

analyse the quality of the summaries (Hari et al., 2013). Based on another automated 

approach, annotations were adopted for the purpose of automatic evaluation using the notion 

of average precision. In general, this procedure was initiated by generating multiple 

summaries of a single video using crowdsourcing provided by Amazon Mechanical Turk, and 

subsequently comparing those summary versions against the ones produced by applying 

various algorithms. As a result, a group of precision-recall curves were constructed that could 

be employed for comparison of algorithms against one another (Khosla et al, 2013). In 

another related system, which functions on surveillance videos, the condensed ratio of 

produced abstracts (an indicator for the amount and type of motion activities) was used to 

analyse the efficiency of method (Sujatha et al., 2014). The error rate, defined as the ratio of 

selected outliers (set of frames with motion blur) to the chosen keyframes, was used in 

another methodology to evaluate the quality of the summaries (Liu et al., 2014b). 
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In a combinational model, two multimedia experts were asked to extract the most important 

video segments in their opinion, while a third person was responsible for intersecting the 

chosen segments by the other two so as to identify overlapping partitions. Afterwards, 

another summary version was generated automatically based on subsampling. Finally, a 

group of individuals were recruited to compare the summary generated by their system with 

the other two versions generated later by assigning satisfaction scores (Wu et al., 2011).  

 

2.7. Summary and Discussion 

This chapter initially provided some background information in the area of digital video and 

video processing.  This was followed by an introduction to the video summarisation concept 

and a comprehensive review of existing methods available for video abstract generation. 

According to the literature, video summarisation is a process of identification and selection of 

the most significant and valuable auditory, visual and semantic segments of the original 

video.  In general, most of the discussed methods are composed of three major phases: input 

video segmentation, feature extraction and selection of the most attractive segments 

(according to their corresponding low-level or high-level extracted features).  

It should be reminded that all of these approaches were either fully-automated or in many 

cases human intervention was necessary. In automatic methods, low-level visual, aural or 

textual features alongside complicated mathematical concepts are mainly adopted for the 

selection procedure, while in semi-automatic models, due to presence of the human factor, 

higher level attributes are considered.  

Notwithstanding some acceptable results, automatic methodologies mainly suffer two major 

issues: they are either domain-specific or largely sensitive to changing conditions. Due to the 

domain-dependency, a summarisation methodology could only be utilised for a sole video 

category and cannot be generalised for other genres. Vulnerability to changing conditions can 

be defined as the incapability to cope with diversity in local or environmental factors such as 

modified lighting condition, external noise, etc. As a result, a slight transition in any of these 

conditions can potentially deteriorate the outcome significantly. This is due to the direct 

effect of these changes on low-level features and the inability of these algorithms to address 

such situations. 
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In addition, methods utilising complicated statistical and mathematical concepts are often 

quite time-consuming and computationally expensive. Methods involving graphs, clustering 

and statistical classification models are usually very costly to be applied to large volumes of 

low-level multimedia data. Moreover, it should also be mentioned that these models can only 

achieve successful results under certain restrictive conditions. 

Another major downside in regards to the explained methods is their ineffectiveness and 

incompetence in understanding the semantics of video segments. As it is almost far beyond 

today’s technologies to interpret low-level features into high level semantically meaningful 

concepts, it is quite impractical for these systems to compare different video segments based 

on their semantic and contextual values. Furthermore, the lack of potential to contrast the 

importance of video partitions in the context of whole video is another drawback that should 

be regarded in relation to these methods. This is due to the nature of these methodologies 

which mainly concentrate on low-level characteristics of temporally approximate (neighbour) 

video segments. 

The second group of summarisation tools reviewed were those with human involvement to 

bridge the semantic gap between low-level features and perceived high-level conceptual 

categories. In most of the approaches belonging to this category, a user was solely employed 

to explicitly or implicitly determine the importance of different video partitions. Adopting a 

single user for this purpose can be considered problematic as well. The personal inclinations 

and preferences of different people can be dramatically different. As a result, this subjectivity 

will have a direct influence on their content selection, which can be potentially negative. In 

addition, some external factors such as distraction or noise can significantly undermine the 

quality of the eventual product. 

In the second section of this chapter we focused on the topic of personalisation in multimedia. 

This was defined as the procedure of integrating the end-users’ preferences and priorities in 

multimedia content presentation. As was discussed, the main objective is to understand  end-

users’ characteristics and interests in order to tailor the final product in a format to meet the 

identified expectations.  

The concept of personalised video summarisation was discussed accordingly in the following 

section. This was defined as the task of integrating end-users’ interests and preferences into 

the video summarisation process. Therefore, a scheme should be devised with the ability to 

discover users’ priorities towards different video segments or existing aural, visual and 
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textual objects in the videos. Thereafter, these elaborated elements should be combined with 

video summarisation techniques in order to generate personalised abstracts. 

A group of developed personalised summarisation techniques was explained afterwards. 

These abstraction techniques are either automatic or semi-automatic. Users’ information 

extraction in both of these methodologies was performed either explicitly or implicitly. The 

basic idea for these systems is the fact that superior video summaries can be delivered to end-

users only when their expectations have been considered.  

However, all the fully-automated video summarisation methods still suffer from the 

shortcomings previously mentioned in this section in terms of cost and semantic importance 

detection, notwithstanding the fact that the personalisation process has improved their results 

significantly. On the other hand, most the developed semi-automatic approaches require 

considerable end-user involvement for understanding their priorities, which can be very 

inconvenient and time-consuming. This can potentially reduce the likelihood of their optimal 

participation in their interests’ retrieval process. Finally, a collection of evaluation methods 

that has been devised by researchers to analyse their developed summarisation tools was 

described. Moreover, a number of criteria that should be considered for evaluation purposes 

were mentioned.  

 

2.8. Problem Statement: 

As explained previously, the existing automatic video summarisation techniques are suffering 

a number of issues such as domain-dependency, noise sensitivity and high computation 

expenses. On the other hand, the semi-automatic approaches involve human in abstraction 

process to overcome these issues, however, sole user subjectivity or distraction can 

potentially deteriorate the final summaries. Accordingly, a number of research objectives are 

identified and explained in the next section in furtherance to address the discussed research 

gaps. 

 

2.9. Research Objectives: 

Our initial research objective is the investigation of the existing video summarisation 

approaches in order to identify their shortcomings and strengths. This objective was 

addressed in this chapter. 
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Having described the shortcomings of the existing automatic video summarisation 

techniques, our second research objective can be described as to design, develop and 

evaluate a user-centred video summarisation algorithm based on group scoring in 

accordance to the findings from the previous investigation. In the proposed approach, the 

negative effects of employing sole user such as subjectivity should be minimised. Our 

proposed method will be explained comprehensively in chapter 4. 

Considering the varieties in preferences and inclinations of the users who are going to watch 

the generated summaries, a mechanism should be devised with capability to distinguish the 

end-users’ priorities towards different video segments with potentially distinct auditory, 

visual and semantic content. As a result the third research objective is defined as to extend 

the work of previous objective and design, develop and evaluate a personalised video 

summarisation algorithm based on group scoring, which will be explained in chapter 5. 

The fourth research objective subsequently is defined as to extend the work of previous 

objective and design, develop and evaluate a personalised video summarisation system 

with reduced end-user involvement. The recommendation of an approach to personalise the 

video summaries through creating more generic user profiles that can be applied effectively 

to any input video in an attempt to provide users with a better and more satisfactory 

experience will be discussed in chapter 6.  

In the next chapter, the methodology that has been adopted throughout this research will be 

explained. Furthermore, the way that this identified research objectives are correlated with 

the chosen methodology will be discussed. 
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Chapter 3  

Research Methodology 

 

 

3. Overview 

In the previous chapter, the four main objectives of our study were identified. In this chapter 

the adopted methodology of this research that is used throughout our work to achieve the 

identified objectives from previous chapter will be explained and justified. 

Initially, the concept of positivism as our chosen research paradigm and its major 

assumptions are explained. In the next section, the use of the Design Science Methodology 

(DSR) throughout our research, according to its attributes and definitions, is justified. Later, 

the employed approaches to carry out our research in its different phases are discussed and 

finally a list of tools and materials that is used during our study is explained and justified. The 

Figure 3.1 demonstrates our adopted DSR methodology and the methods employed at each 

stage within the process. 

 

 

Figure 3.1. Adopted methodologies in course of research 

Awareness/Suggestion 

(Secondary Research) 

(1) 

Development 

(RAD Methodology) 

(2) 

Evaluation/Conclusion 

(Experimental Research) 

(3) 

(DSR) 



                User-Centred Video Abstraction 
 

58 
 

3.1. Research Definition 

The word research has been defined as “The systematic investigation into and study of 

materials and sources in order to establish facts and reach new conclusions” (Oxford 

Dictionary, 2013). It also has been described as a set of activities to figure out a phenomenon 

(Kuhn, 1996). In spite of various identified applications for research, expanding and 

improvement of knowledge should be regarded as the primary objective. In other terms, 

generating the new knowledge that is generally applicable should be considered as the main 

goal in a research activity (Dawson, 2002). The research methodology then, explains the 

ways that a research project should be undertaken optimally or, in other words, the best 

applicable practices to a specific issue (Howell, 2013). However, a research method is a 

collection of activities that a research community accepts as suitable for production of their 

knowledge. It should be added that a research method also has the responsibility to maximise 

the validity and accuracy of the conducted research (Vaishanvi and Kuechler, 2009). 

 

3.2. Research Perspective 

The term paradigm is used to demonstrate a shared conceptual framework by a community of 

researchers. In other words, it describes a research culture with a set of beliefs, values, and 

assumptions that a group of researchers has in common in regards to the nature and conduct 

of research (Kuhn, 1996). Thus, these similar elements can be used in order to elaborate the 

required activities in the course of a research. In general, a paradigm can be demonstrated 

from four philosophical views of ontological, epistemological, methodological and 

axiological. (Mingers, 2001; Vaishnavi & Kuechler, 2009). These worldviews can be defined 

as below: 

Ontology (nature of reality): investigates the nature or form of the research area in 

accordance to its reality and possibility. 

Epistemology (nature of Knowledge): explains the relationship between the knowers 

(Researcher) and what can be known in which way. 

Methodology (theory of reasoning): examines the possible ways that a researcher can choose 

in order to obtain the knowledge. 
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Axiological (ethics): defines the value extent of a given subject and effects of such values on 

conduct of research. 

There are four research paradigms, namely positivist, interpretive, critical and research design 

,the latest of which is becoming popular in information systems (Fallman, 2003; Stolterman, 

2008). In the positivist research paradigm, the assumption and hypotheses should be 

supported by data collection. On the other hand, the basis of the interpretive paradigm is on 

the fact that there is no single reality and therefore, data collection should be used for 

retrieving knowledge. Similarly, the critical research paradigm assumes that reality is 

constructed socially; however such construction is affected by a number of power relations 

between people. Finally, design science is associated with human-made artefacts in terms of 

construction and evaluation in order to enhance system elements (Myers, 1997; Vaishnavi 

and Kuechler, 2009). The philosophical assumptions of these four paradigms are illustrated in 

Table 3.1. 

 

Table 3.1. Different research paradigms from philosophical point of views (Vaishnavi & 

Kuechler, 2009) 
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In the context of our research, positivism is adopted for the following reasons. Initially, from 

an ontological point of view, our research topic is development of the most effective and 

efficient video summarisation technique which should be considered as a sole reality in this 

world, thus it can be obviously associated to the positivist philosophy. In addition, a new 

technique will be proposed based on the existing scientific facts, which through subsequent 

experiments could be converted into knowledge.  This is totally compatible with the positivist 

epistemology. Moreover, from a methodological point of view, the effectiveness and 

efficiency of our proposed novel video summarisation approaches will be validated based on 

the experimental studies that are carried out in the evaluation phase. Finally, a quantitative 

user-based evaluation study will be performed to demonstrate the value level of our recently 

proposed summarisation methods (axiology), which again conforms to the positivist 

paradigm. 

 

3.3. Research Type 

Generally, a group of underlying attributes and characteristics is tied to the positivist 

paradigm from a methodological perspective, as described below (Mertens, 1998; Kane and 

O’Reily, 2001): 

1- Only the facts that are observable and provable should be considered as science. 

2- The existing relations in both natural and social worlds can be examined using 

experimental studies. 

3- There should be a value-free method to investigate the world. 

As was discussed earlier, the chosen philosophy for this research in accordance to their 

compatible natures is positivist. In addition, the essence of this paradigm consists in the 

interpretation of the results based on the evidence that has been collected and assessed in a 

systematic manner. The main aim of this research is to propose an effective video 

summarisation technique. As a result, three subsequent research questions could be formed:  

RQ1) what is the best technique to generate video summaries in order to minimise the 

shortcomings of the other techniques?  

RQ2) what is the best way to develop (implement) the proposed techniques?  

RQ3) are the developed tools effective enough?  
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The first research question corresponds to the first identified research objective, while the 

second and third questions should be addressed in achieving the second, third and fourth 

research objectives.  

Accordingly, three approaches for generation of video summaries alongside a set of variables 

including Recall, Precision, Timing and Overall Satisfaction associated with the effectiveness 

of our generated video abstracts will be recommended. These variables should be empirically 

observable and will be explained comprehensively in the following sections. Since our work 

deals with three characteristically varied research questions then, there is a necessity for 

adoption of a research strategy that can potentially address all of them.  

In dealing with the first question, an exploratory research will be employed to develop the 

best potential summarisation techniques on the basis of the existing literatures. This is due to 

the nature of exploratory research, which investigates a problem that has not been clearly 

defined (Shields and Rangarjan, 2013). Thus, within an exploratory research, the research 

questions that have not been answered previously are examined. In addition, in most cases, 

this type of research will assist researchers in formulating more relevant hypotheses and 

further investigations. 

In order to tackle the second research question, a mechanism should be proposed in order to 

design and develop the recommended techniques into the form of the actual software 

products (in context of this research) a priori to the final experiments. In fact, these artefacts 

will produce the independent variables which will be studied later during the experimental 

phase. The main objective of a design theory is to support the achievement of goals. These 

theories are a mixture of natural, social and mathematical sciences with the aim to put the 

explanatory, predictive or normative theories into practice (Walls et al., 1992). The adopted 

methodology for design and development of these artefacts (software products) will be 

explained in section 3.5. 

Furthermore, in order to address the third research question, the developed techniques from 

the last stage of research should be empirically investigated. Therefore, a confirmatory type 

of research should be adopted at this stage for verification purposes. Confirmatory studies try 

to acknowledge a pre-specified relationship as opposed to exploratory ones in which potential 

correlations could be extracted (Boudreau et al., 2001). In fact, this type of studies 

concentrates less on elaboration of theories or mechanisms; instead they tend to verify the 

validity of extracted hypotheses (Jenkins, 1985). Finally, deductions can be made by 
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evaluating a large number of observations in order to generalise a theory and form a universal 

law. The adopted hypotheses in the course of research will be explained in section 3.7.4.2. 

 

3.4. Research Method 

Further to our earlier discussion in this chapter, three naturally distinct research types were 

identified for this study that should be addressed at different stages. Therefore, as mentioned 

in the last section, a research method should be employed with the capability to address all of 

these distinct research types. As a result, the Design Science Research (DSR) methodology 

was utilised to carry out this research according to its attributes. A brief review of this 

methodology alongside the rationale behind its adoption is carried out further in the next two 

sections. 

 

3.4.1. Design Science Research Methodology 

Generally, Design Science is an outcome-based methodology, which is mainly being adopted 

for research in the information systems arena. In fact, the general objective of design-science 

research is to devise innovative and purposeful artefacts for a specific problem domain. The 

artefacts should be designed, implemented and evaluated in an effective manner in order to 

provide the solutions to unsolved problems or enhance a phenomenon or service (utility). The 

mentioned fact represents this methodology as an adoptable approach for the positivist 

philosophy since truth and utility can be regarded as two sides of the same coin (Hevner et 

al., 2004). In DSR, the word “purposeful” reflects the idea that the developed artefacts should 

be able to deliver useful and efficient services since they are supposed to upgrade the existing 

practices, or to recommend better solutions (Kuechler & Vaishnavi, 2008). The different 

phases that a Design Science researcher has to go through in order to produce knowledge are 

illustrated in Figure 3.2 in the next page. In this figure, the correlations between each stage of 

this methodology and our developed research questions (RQs) alongside the corresponding 

required research type are shown. 
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       Figure 3.2. The different stages in DSR methodology (Vaishanvi  and Keuchler, 2004) 

 

In the Awareness stage, the opportunity for innovation in a related field is identified using 

multiple sources, such as new developments in industry, and the outcome is produced in the 

form of a proposal. Subsequently, the Suggestion phase will result in development of a 

tentative design (model) in accordance to the identified requirements. Later, in the 

Development stage, the devised tentative design from the previous level will be developed 

into actual artefacts. This will be followed by a comprehensive Evaluation of the developed 

artefacts in the next step to investigate its generalisability. Finally, the Conclusions are drawn 

according to the artefacts’ behaviours in order to make contributions to knowledge or, indeed, 

to develop new proposals. 

 

3.4.2 Why Design Science Research? 

Further to our discussion in section 3.3 the main objective for our research was identified as 

proposing effective video summarisation techniques. Since we are trying to propose new 

video abstraction approaches with the potential to produce higher quality video summaries 

compared to the existing tools, therefore, this can be regarded as an attempt to develop the 

artefacts to improve the current solutions to an existing problem. This is in exact 

compatibility to the application scenarios that have been denoted for this methodology. 

RQ3: 

Confirmatory 

Study 

RQ1: 

Exploratory 

Study 

RQ2: Developmental 

study 
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In addition, in section 3.3 a number of research questions were extracted in relation to our 

primary objectives, each of which should be addressed by a different type of research activity 

as was accordingly described. Exploration, development and confirmation were outlined as 

these activities that should be carried out subsequently. Further, each of these identified 

research types and their corresponding objectives can be associated with at least one of the 

phases described for DSR methodology. The required exploratory research to develop the 

abstraction techniques can be covered in the two initial stages, while implementation of the 

software products should be carried out in the development phase. Finally, our confirmatory 

study to investigate the effectiveness of our proposed methods prior to knowledge generation 

will be performed in the evaluation and conclusion steps respectively. This can be used as 

another justification for the utilisation of this methodology. 

Moreover, since different iterations in the DSR methodology will result in identification of 

potential gaps and development of new theories, this framework can be considered as being 

consistent with our research objectives. The identified research objectives mentioned in 

section 2.9 were formed in accordance to these cycles. In particular, the experimental results 

and derived conclusions from the initial summarisation technique could reveal the 

opportunity for proposing a new approach in which end-users’ preferences are addressed. 

As was explained earlier, different stages of our methodology should be addressed by distinct 

research types. An exploratory research is required for the initial two stages in order to form 

the tentative designs (techniques/RQ1), while a developmental study is required for 

implementation of artefacts (summarisation tools/RQ2), and eventually a confirmatory study 

is necessary for investigation purposes (tools evaluation/RQ3). The adopted methodology for 

each of these research types will be described in following sections. 

 

3.5. Methodology for Proposal and Tentative Design 

As previously mentioned, our first research question is to identify the best potential video 

summarisation technique, which is answered through an exploratory study. Having said that, 

a secondary research based on a comprehensive study of the existing literature and related 

work should be carried out in order to identify a knowledge gap in the video summarisation 

field and to form the observable approaches on that basis. These methods will all be 

described in detail in the upcoming chapters. 
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3.6. Artefacts Design and Development 

Design can be defined as a process to create new artefacts. According to another definition, 

design consists of a collection of instructions that should be applied for producing things 

(Hevner and Chatterjee, 2010). On the basis of existence of the required knowledge a priori, a 

design can be categorised as routine or innovative. As opposed to an innovative design, the 

required knowledge for producing the artefacts is available in a routine design. However, 

innovative designs are mainly adopted to fill a knowledge gap or to improve the existing 

condition by conducting researches (Vaishanvi and Keuchler, 2009). A design activity can 

also be explained in accordance to its distinctive scientific nature. As opposed to natural 

science in which a body of knowledge regarding the relations and interactions between some 

class of objects and phenomenon should be explained, the design science is a body of 

knowledge in regards to creation of artefacts and objects (Simon, 1996). In this section of our 

study, designing the software products that can represent our methods in an appropriate 

manner is the main objective. In the context of this work, the artefacts are the software 

products that supposedly deliver the functionalities of our proposed approaches. In fact, these 

artefacts (independent variables for our experimental research) are responsible for generation 

of the video summaries in accordance to their fundamental models. 

In Information Systems (IS), the importance of an appropriate design has been widely 

discussed. The applicability of design has been directly linked to the relevance of IS research 

(Glass, 1999; Winograd, 1996). In the system design stage, the primary goal is to choose the 

best options among the possible candidates in order to limit the resources and utility (Hervner 

and Chatterjee, 2010). These previously mentioned artefacts can be developed based on 

various software development methodologies which should be justifiable in regards to the 

main objectives and characteristics of the project. 

 

3.6.1. Software Development Methodology 

A software development methodology is defined as a set of procedures, techniques, tools and 

documentation assets with the aim to assist the software developers in their attempts to design 

and implement a new information system (Avison and Fitzgerald, 2006). 

The success rate of a software development project can be potentially boosted if the adopted 

methodology is chosen in accordance to the nature and characteristics of the project. In fact, 

various attributes of a project in terms of technical, organisational and available resources 
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should be considered in advance of the selection of a particular framework (Geambasu et al., 

2011). Two main categories of approaches for a software development process could be 

considered based on the extent that their development phases are separated, namely, 

Traditional and Agile (Boehm & Turner, 2004; Nilsson, 2005). In traditional models such as 

Waterfall, the project is divided into sequential phases and a final deliverable can be prepared 

at the end of each phase, while in Agile ones such as Spiral, the final product will be ready 

after a number of iterations (Thayer and Boehm, 1986). In addition, there are methodologies 

that combine some essential elements from both categories. The most well-known one is 

arguably Rapid Application Development (RAD) (Geambasu et al., 2011). 

Rapid Application Development is a software methodology that has been developed on the 

basis of prototyping approaches with the objective to produce faster and cheaper software 

products (Martin, 1991). This is the framework that has been employed for the design and 

development of artefacts in the development phase of our adopted DSR methodology. Some 

of the characteristics of this software development methodology alongside the justification 

beyond selection of this framework are explained further. In Figure 3.3 the correlation 

between different stages in RAD methodology is illustrated. 

 

 

Figure 3.3. The proposed model for RAD (Martin, 1991) 
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In the initial step, which is Requirements Planning, the key requirements of a system 

alongside the existing constraints are elaborated. Further, in the User-Design and 

Construction phase the users are engaged with the aim to design and develop the final tool, 

which fulfils the end-users’ requirements optimally. Finally, in the Cutover stage, the testing 

and training procedures are carried out in a compressed manner in order to shorten the 

development temporal length (Martin, 1991). 

In fact, RAD can be considered as a structured methodology which is mainly adopted by 

small-teams with more limited financial and temporal resources. This approach to software 

development concentrates more on the development phase rather than planning using 

evolutionary and participative prototyping mechanisms. In addition, this framework has been 

regarded as an appropriate option for the user-interface based software products that require a 

high level of human interaction (Martin, 1991; Mortimer, 1995). Moreover, this framework 

divides the eventual system into smaller segments. Thus, it can appropriately address any 

potential changes in initial requirements (Geambasu et al., 2011). 

In the context of our research, the main objective of this phase is the development of a tool in 

the quickest available way so that it has the capability to reflect different elements of our 

proposed approach for video summarisation in an optimal manner. As a result, this 

methodology is well-suited for our research objectives due to fact that it emphasises more on 

development of artefacts rather than on the creation of detailed planning or design 

documents. In fact, the implementation of the artefacts in the fastest way as a prerequisite to 

our experimental studies in the evaluation stage should be regarded as the primary goal of 

development phase. Furthermore, our proposed summarisation approaches, as will be 

discussed in later chapters, are all user-centred and require a high level of human 

involvement. Therefore, this methodology can be described as the best choice since software 

products with a large amount of human interaction are considered as the main use case 

scenarios for this framework. Finally, since our recommended methods are evolving in the 

course of the research, the applied methodology should be capable of addressing these 

changes in the most efficient way. In fact, during each cycle of the DSR approach, which is 

initiated based on a newly identified knowledge gap, a novel technique will be presented in 

our work, which will impose new requirements that should be dealt with optimally. This has 

been denoted as one of the main attributes of the RAD methodology. In the next section, the 

methodologies used to carry out our confirmatory research to support our recommended 

techniques will be explained. 



                User-Centred Video Abstraction 
 

68 
 

3.7. Methodology for Evaluation and Conclusion 

Further to our earlier discussions, a positivist paradigm is adopted for the entire research and 

this perspective is fundamentally associated with generating knowledge through testing and 

supporting the theories. Therefore, in this section the adopted methodology for our evaluation 

and conclusion phases of the DSR approach is explained in more detail. Generally, in this 

stage, the hypotheses formed based on our recommended theoretical methods have to be 

empirically studied in a confirmatory style. In doing so, a mechanism should be applied to 

measure the effectiveness of our nominated approaches. However, assessing the quality of a 

summarisation technique is characteristically a complicated task. Nonetheless, a number of 

parameters that potentially have the capacity to reflect the effectiveness of our methods could 

be identified and examined instead. These criteria are all products of our initial exploratory 

studies and are extracted from secondary research. Therefore, a research method with the 

capability to assess and verify the validity of our introduced methods should be employed. 

Thus, experimental research, which characteristically has the ability to distinguish any 

significant differences between controlled conditions (Gulliver, 2004) should be highlighted 

as the right research method for this part of study. Experimental research forms part of so 

called Fixed Research Design, which will be discussed in the next section. 

3.7.1. Fixed Research Design 

Before we carry on with our adopted experimental methodology, some of the essential 

concepts in designing an experiment will be elaborated. To this end, there are some variable-

based aspects that should be considered in any experiment (Kirk, 1995): 

1. Manipulation: in any experiment there should be at least one independent variable 

which is manipulated by the researcher. 

2. Measurement: There is at least one criterion in each experiment that should be 

measured and it is called the dependent variable. 

3. Control: There is a possibility for the existence of other influential factors (apart from 

independent variables) that can affect the experimental subject’s behaviour and they 

are known as extraneous variables. 

In our study, as it will later be explained, the independent variables to be studied are a set of 

video summarisation techniques and our dependent variables are a set of indices (Recall, 

Precision, Time and Satisfaction) that indicate the quality level of the generated summaries. 
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However, in our work, a number extraneous variables including noise and lighting conditions 

that can potentially be a decisive factor in formation of those outcome variables will be 

controlled in a laboratory-style condition to minimise their influence. 

In general, a fixed design research can be categorised from the manipulation point of view 

into Experimental Research and Correlational Research. In correlational research, there is no 

manipulation of independent variables and the main objective is to investigate the 

correlations between two or more variables. However, in an experimental research the 

independent variables should be modified to monitor the possible consequences on the 

outcome variables (Creswell, 2008). 

In the context of this work, different video summarisation approach as the independent 

variables should be tested in order to observe their impacts on our selected dependent 

variables. As a result, our research in nature is experimental rather than correlational. 

 

3.7.2. Validity and Generalisability 

Based on positivism’s underlying attributes, the results of an experimental study are 

considered internally valid as long as a set of pre-specified conditions are met; however, 

external validity cannot be guaranteed. In other words, using the laws of cause and effect, 

generalisation is possible as long as the pre-determined conditions are met (Kane and 

O’Reily, 2001). On the other hand, external validity demonstrates the level that our research 

results can be generalised to other samples and conditions. It can be concluded that the more 

internally valid an experiment is, the less it can be validated externally. In fact, the results 

retrieved from one experiment can never be generalised universally regardless of its quality. 

As a result, the major objective should be set to test and support the proposed theory instead 

of attempting to get generalisable results (Leary, 1995). Nonetheless, in our study, we try to 

improve the external validity through the use of multiple viewing devices and probability 

sampling of the participants in order to make more generalisable findings. Presenting the 

video summaries retrieved from different techniques (independent variables) from a number 

of genres using various devices and selecting the participants randomly from different 

demographical categories can potentially boost the external validity of our experimental 

results. 
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3.7.3. Experimental Research 

Experimental techniques can be categorised into two groups: structured or non-structured 

based on their level of pre-elected experimental factors. In structured experiments, the 

changes in a collection of pre-defined experimental elements are measured consistently using 

questionnaires, as opposed to unstructured ones in which open interviews or participant 

observations are utilised for conclusion purposes. In our work, structured experiments have 

been adopted using a questionnaire to assess the effectiveness of our approaches and tools 

suggested for video abstraction purposes. 

In addition, different techniques can be used for performing the experimental research, such 

as field studies, case studies, simulations, laboratory studies and field experiments. However, 

the most prominent methods, in which the potential influence of any change of independent 

variable on the dependent variables is monitored appropriately, should be regarded as being 

either a field study or a laboratory study. In laboratory studies, the experiments are carried 

out in an artificial environment which is created by researchers in order to control different 

types of variables and tasks strictly (Boudreau et al., 2001). Although, the field experiments 

provide the researchers with the opportunity to investigate phenomena in a more realistic 

environment, there are external metrics, involved in this type of study, playing key roles in 

determining the final outcome, which should be measured and monitored. 

As was discussed earlier, the external validity and as a result, the generalisability of an 

experimental research can be improved if the outcomes are observed and investigated in 

natural occurring system. However, as mentioned previously, adopting a field study 

necessitates observing and measuring other participating external variables (such as level of 

noise, etc.), which is not the purpose of this study.  

Therefore, our experiments are carried out in a more controlled laboratory-style condition. 

Consequently, a number of vacant rooms (except one participant and an observer) with 

similar lighting conditions and minimised external auditory noises are adopted for our 

studies. However, different experimental devices are used for the experiments as will be 

discussed later, in order to produce realistic and more generalisable results.  
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3.7.4. Experimental Methodology 

In accordance to the recommended techniques (each corresponding to one of the research 

objectives identified in chapter 2, three experiments will be carried out to observe their 

effectiveness. In this section, the general experimental design specifications that are common 

to all three studies will be discussed. Later, more detailed experimental designs that are 

devised specifically for each proposed approach will be explained in the evaluation section of 

each chapter. However, we first introduce the video clips that are used in the course of our 

studies in the next section. 

 

3.7.4.1. Participants Recruitment 

The participants for our research will be recruited based on the convenience sampling 

technique, in which the samples are drawn from the population with highest level of 

accessibility and availability. Their participation is not incentivised by any mean and they are 

fully informed in regards to ethical aspects of the experiments. 

 

3.7.4.2. Experimental Videos 

In our experiments, we used a total of six videos each belonging to one of the six different 

video categories namely, Music Video, Sport, Movie, Advertisement, News and Documentary. 

All the videos were digitised in MP4 format with a resolution of 640*360 pixels, a 25 

frames/seconds play rate and bit rate of 2193 Kbit/second. The original length of each clip 

was two minutes, whereas the summarised versions were in the region of 30 seconds (the 

exact summary time depends on the adopted summarisation technique). The main 

justification for the temporal length of chosen summaries is due to the limitations of a user’s 

memory. In fact, the probability of the human’s brain tendency to forget the information that 

was shown to it at the early stages of the clip will be largely increased if the duration of the 

video is considerably more than 30 seconds (Aldridge et al., 1995). In addition, the longer the 

video is, the probability of some negative external factors on participants (such as 

distraction), which can potentially deteriorate the final outcome, will be boosted. 

Furthermore, the videos are selected from the mentioned categories in order to measure the 

effectiveness of different summarisation techniques on different genres, as the task of video 

abstraction can be very domain-specific. Additionally, selecting the videos from a broader 
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spectrum of infotainment is likely to make our experimental task more interesting to the 

participants, since it covers a wider range of interests and inclinations. It should be mentioned 

that there are numerous video clips that mainly belong to a particular genre; however, they 

also incorporate scenes that can also be related visually and semantically to other categories. 

As a result, selection of an input video from this cross-domains category of videos can be 

essential. Moreover, there is a probability that the input video for an abstraction task had been 

previously summarised either automatically or manually. Therefore, assessing the 

effectiveness of our approach on summarising the previously skimmed video clips should be 

considered important as well. Further, the initial videos that have been adopted for our 

experimental research are described. 

 

Music Video: This shows the Linkin-Park music band playing and singing. Whilst the band 

appears in some scenes, in others the story line of a girl being ignored by her peers is 

developed. A number of landmarks and buildings are also displayed. There are both visually 

(such as landmarks) and auditory valuable (singing parts) information in this video clip. 

Sport: This comprises the highlights of a football match from the French league. This clip 

contains goal scoring scenes as well as some other critical moments of the match. These are 

shown from a variety of viewing angles, both at normal playback speed and slow motion. 

Documentary: This is a National Geographic clip of an eagle hunting a sea snake to feed its 

eaglets. Some critical scenes are shown at slow motion speed as well from different camera 

angles. There is valuable auditory information in the clip as well, which is not covered 

visually, since the narrator provides some information regarding the eagles’ general hunting 

habits. 

Movie: This is a two minute trailer for the Avengers Assemble movie. This clip includes 

some action scenes alongside a number of dialogues between the actors. Valuable textual 

information regarding the name of the movie and the producers is also given. 

Advertisement: This is a cross-domain commercial video for Pepsi in which two groups of 

well-known football players in a western-movie style clip play football over of a can of soda. 

There is minimal aural information present in the clip. 
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News: This is a news video clip regarding an European Parliament MP who has recently 

resigned; in it, he is supporting his successor, who is under attack in the media because of his 

book about aliens. The most important information source for this video can be found in its 

aural and textual content; visual data play a less important informational role in this particular 

video. Table 3.2 shows a sample frame from each of the experimental videos. 

 

   

Music Video clip Movie clip News clip 

   

Sport clip Advertisement clip Documentary clip 

Table 3.2. Experimental videos from 6 different categories 
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3.7.4.3. Experimental Procedure 

As was noted in section 3.3, confirmatory research will be undertaken to investigate the third 

research question of our study, which targets the effectiveness of our proposed summarisation 

techniques. Since confirmatory research necessitates the formulation of hypotheses, four 

hypotheses underpinning this stage of our study were formed as follows: 

H1- Our technique will generate video summaries at an acceptable Recall rate. 

H2- Our technique will generate video summaries at a high Precision rate. 

H3- Our technique will generate summaries by strictly meeting the Time constraints. 

H4- Our technique will generate summaries with the highest Overall Satisfaction. 

Acceptable: Our technique will have a higher score than the average of mean scores obtained 

by the other techniques for at least half of the video categories. Additionally, for the genres in 

which our approach does not manage to exceed, the difference between scores achieved by 

our technique and average of those obtained by the other tools, should not exceed 1.5 units. 

High: The mean score achieved by our approach will be higher than the average of scores 

gained by other summarisation methods for all video categories. In addition, for at least one 

genre, our method has to receive the highest score in comparison to other techniques. 

Strictly: The generated summaries should be exactly 30 seconds. 

Highest: Our summarisation technique should achieve the highest scores for all the video 

categories in comparison to other available approaches. 

Each of these hypotheses will form the metrics indicating the dependent variables which will 

assist us in observing the consequences of changes on independent variables. In the context 

of our research, the independent variables are different video summarisation techniques that 

are employed to generate different summary versions of the experimental videos. These 

approaches will be explained in detail in the next chapter. However, in this section, the four 

identified dependent variables namely, Recall, Precision, Time and Overall Satisfaction will 

be detailed. Participants express their opinions on each of the mentioned criteria on a scale of 

0 (lowest level of interest) to 10 (highest level of interest) based on their perceived 

experiences. Further, each of these variables will be elaborated upon. 
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Recall measures the extent to which the generated summaries reflect all the existing scenes 

from the original videos. 

Precision evaluates the ability of the generated summaries to include the most important 

scenes of the initial videos into the summaries. 

Timing explains the level of temporal proximity of the built abstracts to the required summary 

length. 

Overall Satisfaction score represents the extent to which the end users are satisfied with the 

summaries from different points of views, namely visual and aural coherency, continuity and 

adjustability. 

The experiments involved a group of participants who firstly watched the six previously 

described multimedia video clips. This is done in order to familiarise the participants with the 

content of the experimental material. In the next step, after displaying each original video clip 

once more, a number of 30 seconds summary versions, which are generated using our 

proposed technique alongside other abstraction tools, are presented to the users in a 

randomised order to minimise any potential order effects. It should be reminded that 

participants have no prior knowledge regarding the adopted tool for each summary version. 

This is in an attempt to reduce any user bias towards a specific abstraction tool. 

Presenting all the generated summary versions for an input video, the users are then asked to 

complete a questionnaire relating the previously discussed metrics in respect of measuring the 

effectiveness of a video abstract. Each statement in the questionnaire corresponds directly to 

one of the dependent variables. It should be reminded that prior to start of the experiments, 

each of these four questions are explained in detail to the participants in order to ensure that 

they fully understand the basis for the scoring mechanism. Further, the users are asked to 

score each of these four questions on a scale of 0 to 10 according to their perceived audio-

visual content of the summaries. A score of zero signifies total disagreement, while a score of 

10 shows total agreement with the statement.  This questionnaire is shown in the Table 3.3 

below. It should be mentioned that the same questionnaire will be adopted for carrying out all 

three investigative studies in the course of our research. 
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Participant No: Video Category: Agreement 

score 

1- The video summary covers appropriately all the existing scenes of the 

original video clip. (Recall) 

 

2- The video summary successfully extracts the most semantically 

important segments of the original video. (Precision) 

 

3- The generated video summary is exactly 30 seconds and the time 

constraint is met. (Timing) 

 

4- I am satisfied with generated video summaries. (Overall Satisfaction)  

Table 3.3. Questionnaire used for measuring the opinions of participants towards the generated 

summaries 

 

3.7.4.4. Analysis of Results 

An average score is generated for each dependent variable of each video summary which 

reflects the mean opinion of all the participants. Thereafter, these mean scores can be utilised 

to compare the effectiveness of different abstraction tools (including ours) from four different 

perspectives. 

Our proposed method can be described as effective if all of the initially formed hypotheses 

are addressed properly based on our statistical analysis. In response to the first hypothesis, we 

expect that the average assigned scores from the Recall point of view achieves acceptable 

results in accordance to its provided definition. 

In relation to the second hypothesis, the generated summaries should be scored highly in 

terms of Precision. This can is due to the personalisation concept, which will be described 

comprehensively in chapter 5. As has been discussed when reviewing in information retrieval 

theories, there is always a trade-off between the Precision and Recall rates. This is because of 

the fact that the more precise the returned results, the less capable of covering the broader 

spectrum of data they are (Manning et al, 2009). Thus, we attempt to create a balance 

between these two indices. 
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As regards the third hypothesis, we expect that our proposed approach achieves the maximum 

score (10) across all video categories. This will reflect the fact that the pre-specified time 

constraint (30 seconds) for the generated summaries is met strictly. 

Finally, in regards to the last and the most important hypothesis, our method should be 

capable of achieving the highest scores from the Overall Satisfaction point of view across all 

six video genres. This metric is tied to the users’ perceived experience and their satisfaction 

levels from a number of angles, as previously mentioned.  

 

3.7.4.5. Statistical Significance 

The assigned scores by different participants should be averaged for comparison purposes as 

was noted, but their statistical significance should be checked further. The independent 

samples t-test is used in our study in order to check if there are significant statistical 

differences between the measured metrics associated with each of those four independent 

variables pairwise. This tool is an appropriate mechanism to compare the achieved means for 

two groups of data for statistical purposes. As a result, we have adopted t-test analysis in all 

three studies to compare the mean opinions of participants in regards to different versions of 

a video summary. In our statistical analysis the results could be considered significant if 

p<0.05. It should be added that these mean scores are used in order to reflect the opinions of 

the whole sampled population.   

 

3.8. Summary 

In this chapter we firstly described the various paradigms that are being employed by 

different researchers. Initially, the concept of positivism as our chosen research paradigm and 

its major assumptions which justify its adoption were discussed. Further, in response to the 

identified research objectives in chapter 2, three research questions were formed. Since these 

extracted research problems were characteristically different, three distinct research types had 

to be chosen to address them. As a result, the use of Design Science Methodology capable of 

potentially covering all the undertaken research-based activities was justified. Later, in 

respect to the different phases of DSR methodology, a number of research methodologies 

were proposed and justified. 
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Secondary research was suggested to identify the knowledge gap and to develop a new 

technique for video summarisation purposes. Moreover, the Rapid Application Development 

methodology was adopted to design and develop the previously formed approaches into 

actual artefacts. Finally, experimental research was utilised to measure the effectiveness of 

our algorithms. 
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Chapter 4  

Video Summarisation Based on Group Scoring 

 

4. Overview 

In this chapter, we address the first research objective of our research. To this end, initially, a 

brief review of video summarisation and some of the related abstraction techniques discussed 

earlier in chapter 2 are provided. This is followed by introduction of our user-centred video 

abstraction approach. Involvement of more than one video operator should be regarded as the 

main use case of this algorithm. The summarisation task will be performed in three steps as 

will be detailed later. An experimental study, as described in section 4.3, is then carried out in 

order to evaluate the effectiveness of the proposed tool. As a result, the video summaries 

from different categories generated using our summarisation tool are compared against the 

results produced by a number of automatic summarisation systems that adopt different 

approaches for abstraction. Lastly, conclusions are drawn in in section 4.4.  

 

4.1. Video Summarisation 

As was extensively discussed in chapter 2, in dynamic video summarisation (skimming), the 

most significant video segments are identified and extracted in order to produce shorter 

versions of an input video. Therefore, each original video should be segmented into a number 

of structural partitions, which can be as short as a frame or as long as a video scene. 

Thereafter, these constructional units should be compared against each other using available 

information sources. The required data for this comparison task could be obtained directly 

from their low or high level audio, visual and textual content or can be provided as metadata 

through human involvement.   

According to our earlier discussion in that chapter, a number of automatic and semi-

automatic video summarisation tools have been suggested by researchers in recent years to 

address this task. However, development of a technique with ability to produce effective 

summaries with a high level of users’ satisfaction is still an unsolved problem. Thus, we 
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further investigated and highlighted some of the issues in regard to these existing systems and 

subsequently proposed our user-centred abstraction approach in response to the second 

research objective, namely “To design, develop and evaluate a user-centred video 

summarisation algorithm based on group scoring”.  

  

4.2. Proposed Video Summarisation Technique 

In our work, a human-based group-based approach has been adopted to find the most 

valuable video segments to be included into a final summary. The Figure 4.1 illustrates the 

steps that should be taken based on our proposed approach to generate user-centered video 

summaries.  

 

Figure 4.1. Chart describing the stages in our proposed summarisation approach 

 

Considering the shortcomings of the existing fully-automatic summarisation techniques to 

detect semantic concepts to a satisfactory level and their drawbacks in terms of domain 

dependencies, user-based methods should be regarded as the best available option for 
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determining the most salient video segments. This is due to the human’s capabilities to 

determine semantically meaningful video content. Furthermore, the human brain has the 

ability to assess and compare the quality of each section of the video in the context of the 

whole video, as opposed to most of the automatic abstraction systems reviewed in chapter 2.  

However, the personal inclinations and preferences of different people can be dramatically 

different, which will have a direct influence on their content selection. Therefore, adopting a 

group of operators can increasingly reduce the effect of subjectivity of sole actors and it will 

smooth the final video summary towards more satisfactory results for a wider range of 

audiences. Moreover, there are a number of scenarios in which more than one operator is 

required and engaged in the video abstraction process. In order to create a sole video abstract, 

the video summaries generated by each of these operators should be compared to each other 

and a third party has to select the overlapping segments, which can be a very time-consuming 

procedure.  

For instance, in the “Match of the Day” TV show in which highlights of the English Premier 

League football matches are shown, football pundits extract the most interesting scenes of a 

football match and include them into a summary. However, each of these pundits can produce 

their own version of summaries based on their personal interests and perceived significance 

of different sections of the video. Generating a single final summary, in which the views and 

choices of different experts have been contemplated and reflected aggregately, is another 

application of this method.  

Accordingly, our three-step multi-annotators video summarisation method is proposed to 

address the mentioned issues. Initially, the video frames are labeled with the scores 

representing their saliency from a particular video operator’s (annotator) point of view. Then, 

the assigned scores to each video frame by different annotators are averaged in order to 

produce a singular value for that frame as a saliency score. Lastly, the video segments with 

the highest saliency scores are extracted to be placed into a video skim in respect of a pre-set 

summary time constraint. Each of these stages is described in detail in the following sections. 

 

4.2.1. Frames Scoring 

In our approach, a group of short videos from different categories were presented to different 

operators. In the first instance, the operators watch the videos with the sole purpose of 
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familiarising themselves with the subject matter and do not score them. In the next step, the 

same individuals are asked to score those videos whilst watching them. To do this, they 

indicate the scores using a slider with the value range of 0 to 10. The operators score the 

video frames based on their personal interests and the perceived significance of the content 

they were watching. Figure 4.2 shows the interface of the scoring process of the video 

frames.  

This group was also advised to consider the different available modalities (audio, visual and 

textual) for scoring purposes. Therefore, per each N available frames in the original video 

there will be N assigned scores between 0-10 per each operator. Thus, the most satisfying 

frames will be scored with 10 and the least important sections are graded 0.  𝐹𝑟𝑎𝑚𝑒𝑆𝑐𝑜𝑟𝑒𝑁𝑀 

represents the value allocated to the 𝑁𝑡ℎframe of the video by the 𝑀𝑡ℎ scorer. As opposed to 

the Click2SMRY framework (Wu et al., 2011) in which the video sub-shots had to be 

categorised as either highlights or non-highlights, in our proposed approach, the panel of 

scorers is able to express their perceived importance level of each video frame. 

 

 

Figure 4.2. Video Frame Scoring 



                User-Centred Video Abstraction 
 

83 
 

4.2.2. Frames Saliency Detection 

 In the next step, the scores generated by all operators for all frames are averaged and a single 

value is computed for each sole frame inside the original video. This represents the overall 

perceived quality of that particular frame across all M operators. 𝐴𝑣𝑔𝐹𝑟𝑎𝑚𝑒𝑁 is therefore 

computed as: 

𝐴𝑣𝑔𝐹𝑟𝑎𝑚𝑒𝑁 =
∑ 𝐹𝑟𝑎𝑚𝑒𝑆𝑐𝑜𝑟𝑒𝑁𝑀

𝑀
𝑁=1

𝑀
 

The averaging process is thus employed to smooth the frame scores towards a less biased 

result by reducing the effect of dramatic differences in assigned scores to a particular frame. 

 

4.2.3. Summary Generation 

The target video summary time and the video frames frequency scale (number of frames in 1 

second) are the elements to determine the number of extracted frames. 𝑅𝑒𝑞𝑁𝑂 calculates the 

required number of frames for extraction ( according to equation 4.2) while 𝑇𝑎𝑟𝑉𝑖𝑑𝑇𝑖𝑚𝑒 

shows the required video summary time.     

𝑅𝑒𝑞𝑁𝑂 = TarVidTime( seconds) × FramesFrequencyScale 

In the final stage, the highest scored frames alongside the audio and textual content are 

selected and inserted into the final video digest. Thus, all frames are sorted based on their  

 ReqNO  values. Considering the required number of frames, those highest scored frames will 

be selected to be added to a final list and to be sorted based on their time order in the original 

video. So, if K represents the frame number in the original video, L is a list of chosen frames 

while 𝑆𝑜𝑟𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠 is a collection to keep the chosen frames in ascending format 

according to their temporal locations and 𝑇𝐹𝑗 represents the time-related position of frame 𝐹𝑗 

in original video. 

𝐿 = {FK│0 < 𝐾 < 𝑅𝑒𝑞𝑁𝑂 &𝐴𝑣𝑔𝐹𝑟𝑎 ≥ 𝐴𝑣𝑔𝐹𝑟𝑎𝑚e
⋃ L′(i)

N−ReqNo
i=1

} 

𝑆𝑜𝑟𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠 = {𝐹𝑗│ 0 < 𝑗 < 𝑅𝑒𝑞𝑁𝑜 &  𝑇𝐹𝑗
> 𝑇𝐹𝑗−1

} 

Using this sorted list, the temporally corresponding audio and text segments with those 

elected frames are copied from the original tracks into the video summary. Considering that 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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semantically and temporally approximate frames are mainly given similar scores, the number 

of sudden cuts in the generated summary drops significantly. As a result, more meaningful 

and comprehensible auditory and visual contents could be included in the final digest. 

The algorithm that has been adopted for selection of the highest quality video segments is 

illustrated further in pseudo-code style (Figure 4.3) in the next page. In this approach, the 

original time-related locations for all the frames in 𝑆𝑜𝑟𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠 are retrieved in the first 

place. As a result, the timestamps for those frames in the input video, which should be 

transferred to the summary, are obtained. However, the algorithm initially checks if there are 

any temporally adjacent frames in the 𝑆𝑜𝑟𝑡𝑒𝑑𝐹𝑟𝑎𝑚𝑒𝑠 list. Therefore, for those neighbour 

frames the timestamps (Start and Finish time) of the corresponding transferable content from 

the original video will be expanded from the first to the last frame of the group. Thus, the 

entire audio, visual and textual content (instead of the sole frame) from the original video in 

accordance to identified timestamps are copied into the abstract. This results in generation of 

video summaries with more coherent and continuous visual content in parallel to high quality 

adjacent aural data.  In addition, the summary generation task will be accelerated noticeably 

by reducing the number of insertion tasks. 
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Create a new movie // to insert our extracted content inside 

Create a new Audio Track // to insert the auditory content inside 

Add the new Audio Track to new movie 

Input a new Frame to List-of-Frames 

Sort List-of-Frames // based on average scores 

Set Required-frames-ratio to Required Summary length divided by Total Video length 

Set Required-Frames-No to Total number of frames multiplication by Required-frames-ratio 

  Do while counter is less than Required-Frames-No  

  Input the next frame from sorted List-of-Frames into Final-Frame-List 

  Increment counter 

  End Do; 

Sort Final-Frame-List // based on temporal location 

  Do while there is still frame in Final-Frame-List 

  Input a frame from Sorted Final-Frame-List 

  Set timestamp1 to the current frame’s temporal location in original video 

    Do while distance of the Frame with the former is less or equal to frames’ time interval 

    Input the next Frame 

    End Do; 

  Set timestamp2 to the last extracted frame’s temporal location in original video 

  Insert the segments of the input video from timestamp1 to timestamp2 into new video 

  Copy Audio track of the input video from timestamp1 to timestamp2 into new audio track 

  End Do; 

Convert the new movie into a file 

 

 

 

Figure 4.3. The algorithm for selection of highest quality video 
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4.3. Experimental Evaluation 

In this section, the experimental methodology which was adopted to assess the effectiveness 

of our recommended video skimming tool in response to the formed hypotheses is explained. 

The experimental procedure is composed of two distinct phases with two completely separate 

groups of participants. In the first stage, the summary for each input video clip is generated 

based on our suggested approach. This is followed by a comparison-based method to check 

the quality of the produced abstracts employing our tool against those generated by some 

other systems. 

 

4.3.1. Generating the Summaries 

 A group of short videos (two minutes each) from six different video categories comprising, 

Movie, Sport, Documentary, Advertisement, Music and News genres were utilised to assess 

the quality of the proposed method. These are the videos that were previously discussed 

content-wise in chapter 3. 10 operators with different demographic details (six males and four 

females between the ages of 27 and 60 years old) were asked to watch each of these six 

videos first and to score each frame of the videos based on their personal interests and 

preferences. User-assigned scores for each frame were then averaged and a 30 seconds video 

summary was generated by aggregating the top-scoring frames of the respective video. In 

Table 4.1, sample frames from each of the video clips alongside the corresponding assigned 

scores, assigned by the first three operators, are presented. 

  

DOC 

 

MOV 

 

ADV 

 

NEWS 

 

MUS 

 

SPO 

 

 

  

   

User1 8 7 5 4 6 9 

User2 3 2 9 1 6 7 

User3 7 7 5 5 4 8 

Table 4.1. Assigned scores to sample frames by 3 users 
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4.3.2. Evaluation of Generated Summaries 

To measure the quality of the generated summaries, a comparison method has been adopted. 

So, our generated summaries were compared against the abstraction results of the same 

videos, which were built by three automatic video summarisation systems. These systems 

perform the video abstraction task by analysing different modalities and employing different 

algorithms. 

In the first technique (You et al., 2009), summarisation is based on audio-visual analysis. 

Shots are semantically measured using semantic audio importance analysis. This is 

complemented by face and text importance detection. Hence, other factors including camera 

motion, object motion and temporal motion coherence are also taken into account to build a 

semantic shot importance model.  

In the second method (Evangelopoulos et al., 2013), the saliency of auditory, visual and 

textual information is analysed separately and integrated into a multi-modal saliency curve. 

Then, the most salient audio and video sub-clips based on a predefined skimming percentage 

are chosen for inclusion in the final summary.  

However, in the third system (Boem et al., 2013), low-level visual features are adopted solely 

for abstraction purposes. The similarity between adjacent frames, face region, and frame 

saliency are computed to analyse the spatiotemporal saliency in a video clip. The spatial 

saliency is calculated based on ltti saliency and local entropy of the video and face detection 

measurement using the Viola Jones algorithm. 

In order to assess the video summaries employing the mentioned techniques, all 6 input 

videos were submitted to the developers of these three techniques. They were asked to 

generate and return a 30 seconds video summary for each of the submitted videos using their 

developed tools. Subsequently, four summary versions for each input video were generated 

including the digests that were produced based on our tool. 

The four created summaries of each of these six video categories were represented to 20 end 

users (10 Female and 10 Male between the ages of 25 and 55 years old). These users were 

different to the initial 10 operators used to create the user-centric summaries and had no prior 

knowledge regarding any of the systems, which had produced the summaries. After watching 

the original video and the summaries (the summaries were presented in a randomised order to 
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participants, to avoid order effects), they are asked to score each of these abstracts from four 

different perspectives consisting of Recall (Re), Precision (Pe), Timing (Ti) and Overall 

Satisfaction (OS) by scoring a corresponding statement in the questionnaires as detailed in 

Table 3.3. 

The given scores for each of these measures are averaged over 20 users and the final figures 

for each of the video categories are used for comparison purposes. Table 4.2 illustrates the 

average results achieved by each tool across different categories (alongside the standard 

deviation). SM1, SM2, SM3 and SM4 show the results generated by, respectively, the first, 

second, third summarisation methods, as well as our proposed algorithm. 

 

    SM1 SM2 SM3 SM4 

Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS 

DOC 

8.1 

(1.0) 

7.5 

(1.3) 

9.3 

(0.7) 

4.1 

(0.8) 

7 

(1.0) 

6.5 

(1.0) 

8.1 

(0.7) 

5.7 

(1.4) 

6.3 

(1.3) 

6 

(1.6) 

6.7 

(0.9) 

4.8 

(1.1) 

6 

(1.2) 

6.9 

(1.2) 

10 

(0) 

7 

(0.7) 

MOV 

8.2 

(1.3) 

8.7 

(0.9) 

9.2 

(0.6) 

4.4 

(1.1) 

7.5 

(1.3) 

7.2 

(1.0) 

7.7 

(0.7) 

6.1 

(1.5) 

4.3 

(1.0) 

4.1 

(1.2) 

6.2 

(1.1) 

4.5 

(1.3) 

7.1 

(1.4) 

7.1 

(1.6) 

10 

(0) 

7.3 

(1.2) 

ADV 

7.6 

(1.6) 

7.6 

(1.3) 

9.3 

(0.9) 

4.2 

(1.4) 

6.6 

(1.2) 

5.9 

(1.3) 

8.2 

(0.6) 

6.1 

(1.8) 

7.4 

(1.3) 

7 

(1.1) 

6.3 

(1.1) 

5.1 

(1.6) 

7.6 

(1.3) 

8.6 

(0.7) 

10 

(0) 

8.4 

(0.8) 

NEW 

7.3 

(1.5) 

7.1 

(1.5) 

9.1 

(0.7) 

2.1 

(1.1) 

6.5 

(1.0) 

6.2 

(0.8) 

7.6 

(0.7) 

3.8 

(1.2) 

6.1 

(1.3) 

5.2 

(1.5) 

6.4 

(0.7) 

2.4 

(1.5) 

5.9 

(1.0) 

6.9 

(1.2) 

10 

(0) 

6.3 

(1.6) 

MUS 

7.1 

(0.9) 

7.6 

(1.5) 

8.6 

(0.8) 

2.7 

(1.0) 

6.7 

(1.0) 

6.4 

(1.2) 

7.4 

(0.9) 

5.3 

(1.6) 

6 

(1.4) 

6.1 

(1.6) 

5.8 

(1.0) 

3.5 

(1.1) 

6.4 

(1.0) 

6.8 

(1.1) 

10 

(0) 

6.4 

(1.7) 

SPO 7.7 

(1.4) 

6.7 

(2.1) 

8.6 

(1.3) 

3 

(0.9) 

6.1 

(1.1) 

5.8 

(1.6) 

7.9 

(0.8) 

5.2 

(1.8) 

4.5 

(1.0) 

3.5 

(1.2) 

6 

(0.9) 

3.4 

(1.4) 

6.7 

(1.3) 

7 

(1.1) 

10 

(0) 

6.8 

(1.0) 

Table 4.2. Average assigned scores to each summary from 4 perspectives 

 

Generally, Recall, Precision and Timing rates for the first system across all six categories 

have been high. However, the Overall Satisfaction has been the lowest between all six 

videos. It could be due to the nature of this method, in which the audio and video are 

summarised separately. However, the extracted static keyframes are concatenated in a slide-

show style and will only be combined with the summarised audio later. The second method 
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achieves some good results for particular categories including for the Movie and Music 

Video; however the performance was considerably domain-dependent. The results generated 

by our proposed method scored the highest marks in terms of Overall Satisfaction and Timing 

in all six categories in spite of some average Recall results for a number of categories. A 

more detailed investigation of these measures is provided in the next section. 

4.3.3. Results 

The research question that we are trying to deal with in this stage is to understand if our 

proposed method is effective enough or not? In response to this question, four hypotheses 

were formed relating to the measured metrics through questionnaires namely: 

1- Our proposed method will generate the video summaries at an acceptable Recall rate. 

2- Our proposed method will generate the video summaries at a high Precision rate. 

3- Our proposed method will generate summaries by strictly meeting the Time constraints. 

4- Our proposed method will generate the summaries with the highest Overall Satisfaction. 

In this section we assess whether or not the hypotheses have been verified as a result of the 

experiment undertaken. 

 

4.3.3.1. Recall 

In this section we check the acceptability of Recall rate that has been achieved by our 

summarisation tool. As noted in the last chapter, we expect that the achieved scores by our 

system from this point of view to exceed the average scores of the other three tools in a 

number of categories. The comparison of our achieved results with the average scores of the 

other systems across six categories is displayed in Figure 4.4. 

As shown in the chart, our approach managed to exceed the average score of the other three 

systems across three video categories namely, Movie, Advertisement and Documentary. In 

addition, the achieved score for Advertisement category is the highest among all the produced 

summaries (Figure 4.4). 
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Figure 4.4. Comparison of our results against the other 3 tools for the Recall metric 

  

Although in the other three categories we did not manage to better the average score, 

however, the differences between SM5 and average of the other three tools for these genres 

are significantly less than 1.5 units. Therefore, in response to the previously defined 

hypothesis, it can be claimed that our technique is capable of producing video summaries 

with acceptable Recall rate and the first hypothesis (H1) is verified. From this point of view, 

the first summarisation technique has achieved the best results compared to the other tools; 

this that can be attributed to the nature of its generated summaries. Since static keyframes 

were extracted from the original videos and were displayed in a slideshow style, a wider 

range of video segments could be covered therefore. However, this will impose a negative 

effect on overall quality of the video skims as will be discussed later. In contrast, the third 

system, which utilises the visual characteristics solely for generation of dynamic video skims, 

has been assigned the lowest grades in this respect.  

 

Statistical Significance Analysis 

The scores which were given to our video summaries from the Recall point of view is 

compared pairwise with the grades set achieved by any other tool to check if their population 

means are different. The significance level (p value) that is adopted to investigate the null 

hypothesis is set to p=0.05. Therefore, the achieved scores by any two tools are significantly 

different from each other if p<0.05. 
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 A t-test analysis was adopted to investigate the statistical significance (p<0.05) of mean 

scores achieved by SM4 relative to the average marks obtained by the other three methods for 

Recall metric. The cells containing the significant values are shaded in Table 4.3. The scores 

assigned to the first summarization method are significantly better than the marks earned by 

ours statistically in all categories except Advertisement. In fact, our proposed technique did 

not manage to gain significant difference comparing to the other three tools (at the same 

time) for any of the categories. Nevertheless, our tool managed to achieve higher marks in 

comparison to average scores of the other three tools and subsequently the first hypothesis 

(H1) is verified. 

 

 SM4-SM1 (Re) SM4-SM2 (Re) SM4-SM3 (Re) 

 
t p t p t p 

DOC -7.18 <0.05 -4.78 <0.05 -0.87 >0.05 

MOV -2.62 <0.05 -0.84 >0.05 9.45 <0.05 

ADV 0 >0.05 3.44 <0.05 0.63 >0.05 

NEW -3.55 <0.05 -1.98 <0.05 -0.86 >0.05 

MUS -5.55 <0.05 -1.45 >0.05 1.22 >0.05 

SPO -2.16 <0.05 1.57 >0.05 5.80 <0.05 

 

 

4.3.3.2. Precision  

Measuring the effectiveness of our approach from the Precision angle is the aim of this 

segment. Achieving higher scores than the other tools’ average marks in all genres alongside 

attaining the highest grade in a number of categories were defined as the indicator for a high 

Precision rate. 

Table 4.3. Investigation of the statistical difference between the results 

obtained by our method and the other 3 systems from the Recall perspective 
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Figure 4.5. Comparison of our results against the other 3 tools for the Precision metric 

 

As is depicted in Figure 4.5, our summarisation method managed to exceed the average 

scores achieved by the other three tools across all six video categories. In addition, the 

abstracts generated for Advertisement and Sport clips received the highest scores from the 

Precision perspective based on same table. 

Since Precision is defined as a scale representing the percentage of essential retrieved video 

segments, it is conceptually closet to the main objectives of video summarisation tasks, in 

contrast to Recall rate. Consequently, in our work, a higher priority has been considered for 

this metric in comparison to the earlier index. The higher Precision scores in our system can 

be justified in accordance to the nature of our method. Since the highest quality frames 

(semantically and visually) are likely to receive the higher grades by the annotators, the 

probability to reflect the most significant visual contents will be boosted.  

In addition, the availability of audio and textual data during the scoring process will assist the 

annotators in measuring the importance of a particular video partition. Similar to Recall, the 

first abstraction technique managed to receive some good results in this respect by scoring the 

highest in four video categories namely, Documentary, Movie, News and Music videos. This 

can be identically associated with the characteristic noted in the last section for this 

abstraction method. In fact, extracted keyframes from different segments of the video will 
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substantially increase the probability to reflect the most valuable visual content of the input 

clip.  On the other hand, the third system has been marked the lowest for this metric akin to 

the Recall metric. Concluding, we can say that as far as H2 is concerned, SM4 delivered 

video summaries with high Precision and the H2 is verified. 

 

Statistical Significance Analysis 

A t-test analysis was adopted to investigate the statistical significance (p<0.05) of the mean 

scores achieved by SM4 pairwise compared with the average marks achieved by the other 

three approaches. The marks assigned to the summaries generated by our tool are 

significantly different to those produced by the third summaristion method for all the video 

categories from Precision perspective. In addition, SM1 achieved higher mean score with 

significant difference only for Documentary category for this metric. Although SM4 managed 

to obtain the highest grades for two video categories (Sport and Advertisement), only the 

results for the Advertisement video are statistically significant (Table 4.4). Nonetheless, H2 is 

verified. 

 

 SM4-SM1 (Pe) SM4-SM2 (Pe) SM4-SM3 (Pe) 

 
t p t p t p 

DOC -2.29 <0.05 1.37 >0.05 2.90 <0.05 

MOV -1.72 =0.05 -0.31 >0.05 8.05 <0.05 

ADV 2.93 <0.05 7.91 <0.05 5.11 <0.05 

NEW -0.54 >0.05 -2.00 <0.05 4.01 <0.05 

MUS -1.61 >0.05 1.37 >0.05 2.23 <0.05 

SPO 0.40 >0.05 3.06 <0.05 8.23 <0.05 

 

 

4.3.3.3 Timing 

Here, we investigate whether the generated summaries by our proposed method meet the time 

constraint strictly or not? Further, we analyse how effective our system has been from this 

Table 4.4. Investigation of the statistical difference between the results obtained 

by our method and the other 3 systems from the Precision perspective 
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point of view compared with the other techniques. The temporal length for our produced 

video abstracts should be exactly 30 seconds in order to satisfy the related hypothesis. Thus, 

the highest possible score (10) should be achieved by our summaries across all experimental 

video clips. The position of our approach from this angle against the other methods is 

demonstrated in following chart. The green bars show the highest score achieved by any of 

the three existing tools.  

 

Figure 4.6. Comparison of our results against the other 3 tools for the Timing metric 

 

Our video abstraction tool is the only one with the capability to generate the summaries that 

are rigorously meeting the pre-specified time constraint. The third and second tools have been 

graded the lowest respectively. Their produced abstracts exceeded the required summary 

length for each clip by at least three seconds, that is an extra 10 % of total demanded length. 

In fact, this will help the summaries to gain better Recall and Precision marks since they can 

potentially reflect more of the input video content. However, this is in total contrast with the 

fundamental parameters that have been defined for an effective video summarisation 

approach. Thus, the third hypothesis (H3) is verified. 
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4.3.3.4. Overall Satisfaction 

This measure can be considered as the most important element in the determination of a 

video summary’s effectiveness. This is due to the fact that it covers a broad spectrum of 

characteristics that can be attributed to a high quality video summary. As was noted before, 

continuity, connectivity and adjustability of audio and visual content alongside the clarity and 

informativeness of the presented subjects are all contributing factors, which can improve the 

end-user’s perceived experience of the final video digest. In addition, this metric can express 

the effectiveness of our approach in respect of the other discussed elements as well. This can 

be justified based on the fact that a satisfactory video summary should be able to cover the 

different segments of the original video at an acceptable rate, while the most crucial ones are 

reflected at a high percentage. This should be done while respecting the predefined summary 

time constraint.  

 

Figure 4.7. Comparison of our results against the other 3 tools for the Satisfaction metric 

 

As a result, in this work, more emphasis is allocated to achieving high Overall Satisfaction 

scores of the created video skims. Further to our earlier discussion in section 4.3, we expect 

our recommended technique to obtain the highest results for all six experimental materials. 
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The significant difference between the results generated based on our technique and the 

highest score of those produced by the others (which is clarified in Figure 4.7) can potentially 

reflect the effectiveness of the suggested algorithm from this point of view. Based on Figure 

4.7, our summaries have the highest rankings in all six categories and the nearest scores from 

this perspective have been achieved by the second summarisation tool, in which the video 

skims are produced based on aural, visual and textual data. On the other hand, the lowest 

grades have been assigned to the first abstraction tool, which despite attaining the highest 

scores in terms of Recall and Precision, the lack of audio data and its slideshow style have 

noticeably negatively affected participants’ perceived quality. 

In regards to our summary versions, a number of factors could be considered that can 

potentially justify these highest achieved scores. Initially, there is a good balance between 

Recall and Precision rates in the built abstracts, while the temporal limit is addressed 

properly. In addition, since temporally approximate frames are allocated similar scores then 

the contents can be represented in a more continuous manner.Another influential factor, 

which should be regarded, is the audio quality of our summaries which is much higher than 

the other three tools in terms of adjustability to visual content and its clarity. Eventually SM4 

by achieving the highest scores in terms of Overall Satisfaction across all six video categories 

verified the fourth hypothesis (H4). In the next section, the statistical validity of the users’ 

perceived quality of our technique will be validated. 

 

Statistical Significance Analysis 

Our method managed to achieve the highest scores for all the video categories from the users’ 

Overall Satisfaction aspect (as the most important metric). Therefore, a mechanism should be 

employed to check the statistical validity of its assigned marks. In order to check the 

statistical significance between the grades achieved by our system and the other three tools 

from Overall Satisfaction perspective, t-test analysis was undertaken. The results from this 

test (Table 4.5) show that there are statistically significant differences between user ratings 

given to the summaries created by SM4 (our user-centric summarisation tool presented in this 

paper) and those created by the three other automatic summarisation tools from users’ 

perceived overall quality of the video (i.e. Overall Satisfaction). The significance of these 

differences between the grades achieved by our tool and those gained by SM1 and SM3 are 

noticeable considering the generated t-values. In addition, among all the categories, News 

assigned scores from this perspective has the highest significant difference. 
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 SM4-SM1 (OS) SM4-SM2 (OS) SM4-SM3 (OS) 

 
t p t p t p 

DOC 10.72 <0.05 4.95 <0.05 7.78 <0.05 

MOV 7.02 <0.05 2.53 <0.05 9.22 <0.05 

ADV 11.15 <0.05 5.51 <0.05 9.26 <0.05 

NEW 14.63 <0.05 9.56 <0.05 15.58 <0.05 

MUS 7.24 <0.05 3.94 <0.05 6.46 <0.05 

SPO 11.10 <0.05 5.05 <0.05 12.49 <0.05 

 

 

4.4. Conclusion 

In this chapter, a number of existing summarisation methods was reviewed and a novel, user-

centric technique for video summarisation was proposed. Thus, in our work, a group of 

operators are employed to score the video scenes as they are watching the videos. This 

scoring procedure is based on the available information from different modalities. In the next 

step, their scores are combined to come up with a single value for each video frame. This is 

the score which represents the saliency of a particular video frame in the context of the whole 

video. The highest scored frames alongside the associated audio and textual data (while 

meeting the 30 seconds time constraint) are extracted to be inserted into the final summary.  

Our recommended method was evaluated by employing 20 end-users to compare its 

generated results against the summaries created by three existing automatic summarisation 

systems. The experimental results indicated that the proposed approach is capable of 

delivering superior outcomes in terms of Overall Satisfaction and Precision with an 

acceptable Recall rate, indicating the usefulness of involving user input in the video 

summarisation process. Finally, we also identify the production of personalised summaries as 

part of our future endeavours. In fact, with incorporation of the end-users’ priorities towards 

different video segments, more satisfactory video summaries with higher precision can be 

generated. This will be explained comprehensively in the next chapter. 

Table 4.5. Investigation of the statistical difference between the results obtained 
by our method and the other 3 systems from the Overall Satisfaction perspective 
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Chapter 5  

Personalised Video Summarisation Based on 

Group Scoring 

 

5. Overview 

In this chapter, we address the second research objective identified in chapter 2. Firstly, we 

concisely review the concept of personalised video summarisation in section 5.1 then explain 

how the user-centred approach introduced in the last chapter will be the basis for generation 

of personalised video summaries. Accordingly, the summarisation task will be achieved 

through a number of consecutive stages described in section 5.3. Later, in section 5.4, the 

procedure to understand the end-users preferences towards the different video scenes is 

explained. Afterwards, the frames scores for different video segments will be updated based 

on the captured end-users’ priorities towards these video partitions. Eventually, based on the 

pre-defined skimming time, the highest scored video frames will be extracted and included 

into the personalised video summaries in accordance to the approach demonstrated in the 

previous chapter. In order to evaluate the effectiveness of our proposed method, we employ 

the same methodology used in chapter 4. However, we will compare video summaries 

generated by our recent system against the results produced by our previous method (SM4) in 

addition to the summaries from the other three automatic tools. 

 

5.1. Personalised Video Summarisation 

The concept of personalisation in the context of video summarisation was defined as a 

process to incorporate end-users’ personal interests and inclinations into the summary 

generation task, according to our earlier discussion in chapter 2. 

As we highlighted on a number of occasions before, one of the major components in any 

video summarisation model is the segmentation of the input video into structural units. 

Further to our extensive discussions in chapter 2, different approaches have been employed 
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by researchers in an attempt to personalise the video summaries’ content. However, in all of 

them, a mechanism has been applied in order to understand the users’ priorities towards the 

identified video segments. The required information for these purposes can be extracted from 

the users explicitly or in an implicit manner. These retrieved data could be applied to initial 

video summaries to customise the results in accordance to the audiences’ preferences. In spite 

of numerous models that have been suggested for this research topic, establishing a technique 

in which viewers’ priorities are effectively integrated in the generated video summaries is 

still a challenging topic. thus, we further introduce our user-based personalised video 

abstraction technique in respect of the third research objective elaborated in chapter 2, 

namely, “to extend the work of previous objective and design, develop and evaluate a 

personalised video summarisation algorithm based on group scoring’’. 

 

5.2. Personalised Video Summarisation by Group Scoring 

In the previous chapter, we described an approach to video summarisation based on a group 

scoring method, in which original video frames are scored by a number of video scorers and 

the assigned scores averaged to produce a singular value for each frame. A group of frames 

with the highest average scores are then chosen to be inserted into the final summary. In this 

approach, the required number of video annotators could be varied based on the different use-

case scenarios. The proposed method was evaluated in an experimental study and showed the 

capability to yield promising results (vis. a vis. machine-generated approaches) in six 

different video categories. However, the generated summaries for all of the end-users were 

identical and their individual preferences were not considered in the summarisation process. 

Accordingly, in this chapter, we try to develop an approach to personalise the final 

summaries to the individual end-user’s expectations, and thus to produce a better user 

experience. The new recommended video abstraction method is composed of three major 

phases which will be explained comprehensively in their corresponding sections of the 

chapter. Firstly, the video segments are enriched by video annotators through annotations and 

scoring. Later, a mechanism will be adopted to capture the end-users’ priorities towards the 

identified video partitions. Finally, the video summaries will be generated in respect to the 

updated frame scores. The diagram representing the different stages in our novel approach is 

shown in Figure 5.1. 
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Figure 5.1. chart describing the stages in our personalised video summarisation approach 
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5.2.1. Video Segments Enrichment 

In this stage, a semi-automatic procedure is applied for enrichment and scoring purposes. In 

the first step, the original videos are segmented into a number of scenes (group of 

semantically and visually similar frames). Later, each scene is enriched with a group of audio 

and visual tags and the appointment of a representative keyframe. The following section 

reveals the approach that is used for the video segmentation task. 

 

5.2.1.1. Scene Boundary Detection 

AVcutty (avycutty.de 2014), as a typical scene boundary detection tool, has been adopted to 

determine the timestamps for each contributing scene. It should be reminded that each scene 

in the context of a complete video plays the same role as a paragraph in a whole text. 

Therefore, there should be a semantic and visual correlation and cohesion between the 

constituting frames of a particular scene.  The mentioned tool utilises the colour and motion 

features of the video frames for scene change detection purposes. The required minimum 

time length for each scene will be set to three seconds. Thus, any identified video scene with 

shorter length will be added to the next scene.  This facilitates scoring and annotating of the 

original video by reducing the number of unnecessary pauses during the enrichment process, 

which is defined in the next section. 

 

5.2.1.2. Video Scenes Annotation and Scoring 

In this stage, video operators are asked to score and enrich the video segments based on the 

auditory, visual and textual content of the video. The video annotators score video frames ‘on 

the fly’ in a 0-10 range using the slider tool (similar to the approach in chapter 4). Using the 

identified timestamps for the scene boundaries, the videos will be paused automatically at the 

end of each scene and the video annotators immediately will be prompted to annotate the 

video scene using the provided graphical user interface (while the scoring process is stopped). 

The user interface that will be employed for this purpose is shown in Figure 5.2. The video 

scorers can optionally enrich the video scenes while the videos are halted, by assigning audio 

and visual tags to each scene. These tags could contain information regarding the significant 

events, objects and any activities in the corresponding video segment. The video scorers have 

the possibility to choose the previously assigned tags (by former scorers) or to add new ones 

based on their personal perceptions and priorities to the scenes. Once the annotation process 
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for one scene is finished, the scorers will then be engaged in scoring the video frames for the 

following scene using the slider tool. By re-starting the video, the initial frames from the 

upcoming scene are likely to be scored with unwanted grades. This is due to a predictable 

minor delay from the time, in which video annotators have to observe and evaluate the 

contextual significance of the opening frames (of the following scene), till the point they can 

actually start scoring. Therefore, to minimise the negative effect of this lag, a new pre-

computed value was dynamically calculated and assigned to the slider tool each time that a 

scene starts. In order to produce this value, a score was computed for each scene, by 

averaging the previously assigned scores from the former annotators to the whole frames of 

that particular scene. Any recent assigned scores from new scorers will update these 

computed average scores. 

 

 

Figure 5.2. The adopted tool for annotating the video scenes 

 

5.2.1.3. Scenes Key-Frames Selection 

During the scene enrichment stage, the annotators are also presented with a set of three 

candidate keyframes at the end of each scene. The video annotators are asked to elect the one 

that they personally perceive as having the highest quality to represent and summarise the            
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semantic and visual content of that scene. For extraction of these three nominated keyframes, 

each video scene has to be fragmented into three temporally equal shots in the first place;  

each shot will be represented by a keyframe (to improve the coverage rate of any visual 

content changes in whole scene). In order to select a keyframe for each of these three 

identified video shots, two criteria should be considered. First, the frame has the highest 

assigned score between all the existing frames of that shot. Second, the candidate frame is 

temporally located in the middle of each shot. Therefore, between all the previously highest 

scored frames of each shot, the frame which is temporally closer to the centre of that shot will 

be introduced as a potential keyframe for that video shot (to increase the likelihood of 

extracting more visually significant and stable frames ). These three nominee frames from 

each scene are then compared against each other from two different perspectives. First, their 

visual content attractiveness and richness should be considered. Second, their capabilities to 

reflect the semantic concepts of the corresponding video scene have to be taken into account. 

Finally, for each scene, the candidate frame that has the highest selection rate awarded by the 

different annotators (video operators) will be selected as the representative keyframe. In 

Figure 5.3, the graphical interface that will be used by the video scorers for audio-visual tags 

assignment and keyframes extraction is illustrated.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Interface for tags assignment and key-frame extraction 
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5.2.2. Capturing the Users’ Priorities 

In the section we propose an approach, which provides the foundation for personalising our 

video summaries. As a result, in this phase a mechanism, which is responsible for capturing 

an end-user’s priorities towards different video partitions in a particular video, is introduced. 

Therefore, prior to the generation of the final video abstracts, the end-users will be provided 

with visual and textual information regarding the content of the existing video scenes. The 

primary goal here is to prioritise the video segments based on user-obtained preferences and 

priorities. 

Accordingly, in our method, we try to provide the audience with a concise overview of all the 

contributing scenes of a video in order to produce the user-tailored summaries. Therefore, in 

the first stage, a list of representative keyframes with their associated visual and audio tags is 

presented to the end users. Here, each of the displayed representative frames corresponds to a 

single video scene (these are the delegate keyframes chosen by most of the video operators in 

the previous stage), while attached auditory and visual information to each keyframe 

correspond to the mostly verified tags for that scene by the different video scorers (one audio 

content tag and one visual content tag per each scene). Therefore, an overview of various 

audio, visual and textual contents of a clip that occur in the different video segments can be 

presented to the viewers in prior to the generation of any video digest. As a result, users will 

have the option to check and select their favourite segments in a fast way without the need to 

watch the entire video.  

End users will be asked to express their level of interest in each video scene, based on the 

displayed video frames and the corresponding tags, using the provided slider tool (Figure 

5.4). The representative keyframes alongside the explanatory associated tags can potentially 

inform the audience in regards to the semantic, aural and visual content of each participating 

video scene. Thereafter, the end-users are provided with a facility to choose three different 

priority levels in respect of each scene. Level 0 has been considered for the scenes with the 

lowest level of significance to them, while level 1 is awarded to scenes with medium 

importance that are preferred to be included into final abstract. Level 2 designates the scenes 

that users found the most attractive and they feel should be definitely included into their 

version of the video summary. In the next section, the mechanism adopted to assimilate these 

extracted data in the summarisation task will be clarified. 
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Figure 5.4. A GUI for understanding the users’ priorities towards scenes 

 

5.2.3. Updating the Frame Scores 

In this phase, the initial generated average scores of the frames, assigned by the video scorers 

are updated based on the personal interests of each end-user, as captured in the last stage. 

This is the saliency score, which was computed for each video frame in accordance to the 

approach introduced in the previous chapter. Therefore, based on the user-selected priority 

level for each scene, the primary average scores are updated accordingly. 

The scores of frames belonging to scenes with a level 0 of interest will not be altered at all 

since they correspond to scenes with the least degree of significance for that particular 

viewer. However, for scenes with a level 1 of priority, the grades for the frames, whose 

primary assigned scores are the highest among the frames of that scene, will be increased by 

20 percent (to a maximum value of 12). This is done in order to potentially escalate the 

probability of incorporation of the highest quality frames of those scenes into the eventual 

video digest.  

The updated mark for the frames belonging to the scenes with the highest level of priority 

(i.e. level 2) for a particular end-user will be recalculated in a different format. The grades for 
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the frames who were scored the highest in each scene, will be upgraded to the maximum 

possible value (12). This would considerably increase the chance of definite inclusion of the 

highest quality segments of those particular scenes in the final summary. However, the marks 

for the frames of these scenes, whose scores are not the highest but nonetheless manage to 

exceed the respective scene’s average scores, will be boosted by 20 percent as well (to a 

maximum of 12). The scores for the remaining frames of these scenes will remain unchanged. 

The algorithms that have been adopted for updating the frame scores are shown in Figures 

5.5.a and 5.5.b. As will be revealed in the next section, the highest scored video frames are 

selected for insertion into the final summary. 

Do For total number of identified scenes 

Input the next scene’s time boundary 

Set the current scene’s Average-Score to Zero 

Set the current scene’s Highest-Score to Zero 

Set current scene’s Total-Score to Zero 

   Do while the frame belongs to the current scene’s time boundary 

   Input next frame 

   Add the frame’s score to the current scene’s Total-Score 

   Increment the counter 

         Do if the frame’s score is larger than the scene Highest-Score 

         Set Highest-Score to the current frame’s score 

         End Do; 

    Set the current scene’s Average-Score to Total-Scores divided by counter 

    Store the current scene’s Average-Score in database 

    Store the current scene’s Highest-Score in database 

    End Do; 

Set counter to Zero 

End Do; 

 
Figure 5.5.a. Pre-processing stage prior to upgrading the frames’ score for a user 
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Input the user’s priority list for a particular clip 

Input List-of-Frames 

  Do for all the frames existing in List-of-Frames 

    Do if the frame belongs to the scene with priority level 2 

      Do if the frame’s score is equal to its corresponding scene’s Highest-Score 

      Set frame’s score to 12 // maximum possible score 

      End Do; 

      Do Else if the frame’s score is larger than its corresponding scene’s Average-Score 

      Upgrade the frame’s score by 20% 

      End Do; 

      Do Else 

      Do not alter the frame’s score 

      End Do; 

    End Do; 

    Do Else if the frame belongs to the scene with priority level 1 

      Do if the frame’s scene is equal to its corresponding scene’s Highest-Score 

      Upgrade the frame’s score by 20% 

      End Do; 

      Do Else 

      Do not alter the frame’s score//only upgrades the frames with highest score in that scene 

    End Do; 

    Do Else// if the frame belongs to priority level ‘0’ 

    Do not alter the frame’s score 

 

 

 

Figure 5.5.b.The algorithm for updating the frames score based on priority level 
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5.2.4. Generating the Personalised Summary 

In the final step, the personalised video summaries are produced based on the updated frame 

scores. In accordance to the summarisation method based on group scoring described in 

chapter 4, the video summaries will be generated on the basis of the most visually and 

semantically salient frames. As a result, considering the required number of frames which can 

be established based on the pre-specified summary time, the highest scored frames alongside 

the corresponding audio and textual content will be selected to be included into the final list. 

Later, the contributing segments will be sorted in respect of their temporal locations in the 

input video clip. 

Considering the fact that the frames belonging to more popular scenes (for a particular 

audience) can potentially achieve better scores, we can expect that more personally 

satisfactory outcomes can be obtained using our technique. In addition, as was mentioned in 

the last chapter, since the semantically and temporally close video frames are usually scored 

similarly, the consistency and continuity level in the generated abstracts could be improved 

noticeably. 

In the next section, we undertake another experimental study to evaluate the effectiveness of 

our recent video summarisation approach. As will be discussed later, we have compared our 

new method against our previous one in addition to the other three automatic summarisation 

tools. 

 

5.3. Experimental Evaluation 

In this section, the experimental procedure followed to evaluate the effectiveness of our 

currently proposed video abstraction technique will be explained. Similar to the previous 

chapter, the evaluation process is composed of two distinct phases with two different groups 

of participants, namely video annotators and end-users. Video annotators are responsible for 

scoring and enriching the video segments, while end-users are those for whom we attempt to 

generate personalised abstracts in accordance to their expectations.  Each of these two phases 

will be discussed comprehensively in the following sections. 
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5.3.1. Video Segments Enrichment and Scoring 

Akin to our work in chapter 4, 10 operators with different demographic details (5 males and 5 

females between the ages of 25 and 55 years old) were adopted to score and enrich the video 

frames based on the procedure introduced in section 5.2.1. The experimental videos are 

identical to those, which were discussed in chapter 3. The video operators’ assigned scores 

were averaged and a singular value was produced for each frame. In addition, a representative 

keyframe alongside the informative audio-visual tags will be chosen for each video scene 

based on the annotators’ selections. 

 

5.3.2. Users’ Priorities Extraction  

In order to assess the quality of our personalised video summarisation approach, the 

generated results have been compared against the video abstracts produced by four other 

systems. However, prior to summarisation of the input videos, the end-users’ priorities 

towards the identified scenes in each of those six videos should be captured. As a result 30 

users from different demographic backgrounds (18 males and 12 females with age ranging 

between 24 and 58 years old) are recruited to express their level of interests towards the 

scenes in each input video. As a result, their priorities towards exiting video scenes will be 

captured according to the method explained in section 5.2 and video summaries accordingly 

generated for each of those six video clips. 

 

5.3.3. Evaluation of Generated Summary 

The same videos were skimmed by four other abstraction tools: three of them summarise the 

videos automatically by applying statistical and mathematical algorithms, while the fourth 

tool functions semi-automatically based on human involvement (our proposed tool in the last 

chapter). The six original video clips alongside their five summary versions created by five 

existing tools (including the personalised summaries generated for each specific user using 

our proposed technique) were presented to the same 30 end-users that we previously 

employed for personalisation purposes. 

 These five summaries from each category were shown to the users in a random order so as to 

minimise order effects. Moreover, no information regarding the underlying summarisation 

tools, which was employed to generate the video summaries, was revealed to participants. 
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After watching the original video and the summaries the users were asked to score each of the 

generated abstracts awarding marks between 0 (worst video summary possible) to 10 (best 

video summary possible), from 4 different perspectives consisting of Recall (Re), Precision 

(Pe), Timing (Ti) and Overall Satisfaction (OS), analogously to the adopted mechanism in 

chapter 4. The given scores for each of these measures were averaged over 30 users and their 

mean values (alongside their standard variation) for each of the video categories are given in 

Table 5.1. SM1, SM2, SM3, SM4 and SM5 indicate the average achieved scores by, 

respectively, the first, second, third, fourth and our currently proposed summarisation 

methods. 

 

 SM1 SM2 SM3 SM4 SM5 

Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS 

MOV 
7.8 

(1.7) 

7.6 

(1.1) 

9.1 

(1.0) 

4.1 

(1.5) 

7.0 

(1.2) 

7.5 

(1.1) 

7.8 

(0.8) 

6.3 

(1.7) 

4.3 

(1.1) 

4.4 

(1.3) 

6.5 

(1.2) 

4.0 

(1.8) 

7.1 

(1.3) 

6.8 

(1.7) 

10 

(0) 

7.2 

(1.4) 

6.5 

(1.4) 

8.3 

(1.1) 

10 

(0) 

7.9 

(0.9) 

ADV 
7.5 

(1.9) 

7.7 

(1.0) 

9.0 

(0.9) 

3.9 

(1.7) 

6.0 

(1.4) 

5.6 

(1.5) 

7.2 

(1.2) 

5.4 

(2.0) 

6.8 

(1.5) 

6.5 

(1.5) 

6.3 

(1.2) 

4.1 

(1.4) 

7.1 

(1.2) 

8.2 

(1.1) 

10 

(0) 

7.8 

(0.9) 

7.5 

(1.1) 

8.7 

(0.8) 

10 

(0) 

8.3 

(0.9) 

DOC 
7.7 

(1.3) 

7.1 

(1.4) 

9.1 

(0.7) 

4.3 

(1.2) 

7.3 

(1.1) 

6.9 

(1,2) 

7.9 

(0.8) 

5.8 

(1.7) 

5.1 

(1.5) 

6.1 

(1.5) 

6.7 

(0.8) 

4.5 

(1.1) 

6.7 

(1,2) 

7.1 

(1.0) 

10 

(0) 

7.2 

(0.8) 

6.8 

(1.5) 

7.9 

(1.0) 

10 

(0) 

8.0 

(1.0) 

NEW 
6.4 

(1.7) 

6.7 

(1.4) 

8.6 

(1.0) 

2.0 

(1.1) 

6.1 

(1.4) 

5.8 

(1.2) 

7.7 

(1.0) 

3.4 

(1.4) 

5.3 

(1.6) 

5.1 

(1.7) 

5.9 

(0.8) 

1.9 

(1.3) 

6.4 

(1.1) 

6.7 

(1,3) 

10 

(0) 

6.1 

(1.5) 

6.6 

(1.5) 

7.5 

(1.3) 

10 

(0) 

7.1 

(1.3) 

SPO 
6.9 

(2.4) 

6.0 

(1.5) 

8.3 

(1.5) 

3.4 

(0.8) 

5.8 

(1.2) 

5.8 

(1.4) 

7.8 

(1.0) 

5.4 

(1.9) 

4.5 

(1.3) 

3.8 

(1.1) 

5.7 

(0.9) 

4.1 

(1.5) 

6.9 

(1.3) 

7.4 

(1.1) 

10 

(0) 

6.9 

(1.2) 

6.5 

(1.5) 

7.8 

(1.0) 

10 

(0) 

7.4 

(1.2) 

MUS 
7.7 

(1.0) 

6.8 

(1.4) 

8.5 

(1.2) 

3.1 

(1.4) 

6.8 

(1.2) 

6.4 

(1.2) 

7.9 

(0.9) 

5.4 

(1.7) 

5.8 

(1.7) 

5.7 

(1.7) 

6.2 

(1.1) 

3.5 

(1.3) 

6.5 

(1.3) 

6.8 

(1.1) 

10 

(0) 

6.3 

(1.5) 

6.2 

(1.3) 

7.6 

(1.5) 

10 

(0) 

7.2 

(1.5) 

Table 5.1. Average assigned scores to each summary from 4 perspectives 

 

Our proposed method has been scored highest from the Precision and Overall satisfaction 

point of views across all six existing categories. High Precision scores can justify the 

effectiveness of our method in producing personalised result, as it can indicate that the video 

segments with higher priorities to each individual end-user have been identified and inserted 

into the final digest. In addition, our current technique managed to deliver the best quality 

video digest among all six categories based on the average Overall Satisfaction marks. 

Generally, the SM1 tool generates some good results in terms of Recall and Precision, 

however, the nature of this method leads to lower grades in terms of Overall Satisfaction. The 

results from our previous technique enjoyed acceptable user ratings over six different 
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categories. However, lower scores for Precision and Overall Satisfaction can be attributed to 

the inability of this method (SM4) to actually generate personalised content. 

 

5.3.4. Results 

In this section we are seeking to assess the effectiveness of our proposed approach in 

response to the four previously identified hypotheses.  

 

5.3.4.1. Recall 

Based on the pre-specified hypothesis in chapter 2, the Recall ratio for generated video 

summaries based on our recently suggested approach should exceed the average scores 

achieved by the other four techniques for at least three categories, while the distance for  

 

 

Figure 5.6. Comparison of our results against the other 4 tools for the Recall metric 
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the remaining video genres (those for which SM5 has lower grades in comparison to average 

of the other four tools) should be less than 1.5 unit. As is depicted in Figure 5.6, the video 

summaries deliver good results in terms of the Recall metric. In fact, in five out of six 

existing categories the achieved scores by SM5 are higher or equal to the average of mean 

grades gained by the other four versions, while it managed to obtain the highest grade 

amongst all 5 summary versions for News video clip. Moreover, the difference of grades 

achieved by SM5 for Sport video is only 0.5 units below the average marks obtained by the 

other four approaches. Therefore, the Acceptability of Recall rate across all six video 

categories can be acknowledged and subsequently the first hypothesis (H1) is verified.  

 

Statistical Significance Analysis 

 In order to validate the statistical significance (p<0.05) of the assigned scores for our new 

proposed tool from this perspective a t-test analysis has been adopted. The Recall indicator 

was compared pairwise between the scores gained by our method and the achieved grades by 

the other four systems and the results are displayed in Tables 5.2. Akin to our previous 

method, our personalised summarisation method could not gain statistically significant better 

results for any of the categories in comparison to the other four tools (simultaneously). 

Nonetheless, the results have improved significantly against SM3 by producing statistically 

significant better results for four out of six categories. 

 

 SM5-SM1 (Re) SM5-SM2 (Re) SM5-SM3 (Re) SM5-SM4(Re) 

 
t p t p t p t p 

SPO -0.75 >0.05 2.61 <0.05 9.42 <0.05 -2.16 <0.05 

DOC -2.39 <0.05 -1.45 >0.05 2.89 <0.05 0.39 >0.05 

NEW 0.42 >0.05 1.38 >0.05 3.26 <0.05 0.79 >0.05 

ADV -0.15 >0.05 5.11 <0.05 1.85 <0.05 -1 >0.05 

MUS -4.02 <0.05 -1.76 <0.05 1.29 >0.05 -1.07 >0.05 

MOV -1.88 <0.05 6.22 <0.05 -1.28 >0.05 -3.66 <0.05 

Table 5.2. Investigation of the statistical difference between the results obtained by our 

approach and the other 3 systems from the Recall perspective 
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In addition, as opposed to our previous approach, the generated summaries by SM5 are 

statistically significant better for three of the video categories in comparison to SM2 (Sport, 

Advertisement and Movie). Although SM5 managed to obtain higher score comparing to the 

other three tools for News video, the difference is not statistically significant. 

5.3.4.2. Precision  

Assessing the quality of the generated abstracts from the Precision criterion is the goal of this 

section. As was argued in the last chapter, the concept of personalisation is tightly correlated 

with the primary objectives of video summarisation. In the context of our new work, this 

metric plays an even more fundamental role since it is directly linked to personalisation. 

Further to our earlier discussions, Precision can be defined as the capability of the abstraction 

tool to extract the highest quality video segments. However, due to viewer subjectivity, the 

most significant parts of a particular video clip can be dramatically different for two different 

end-users. Therefore, a high Precision score should be regarded as an indicator of the ability 

of a tool to incorporate its audience’s preferences and therefore can potentially justify the 

effectiveness of an approach in terms of personalisation.  

 

 

Figure 5.7. Comparison of our results against the other four tools for the Precision metric 
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In Figure 5.7, the scores achieved by our recent summarisation tool were compared to the 

highest scores obtained by any of the other four summary versions, which are displayed in 

green bars. As can be observed, our technique managed to receive the best grades across all 

six video categories from this point of view. This can be directly related to the inclusion of a 

personalisation mechanism into our recent summarisation tool.  In fact, this can be further 

acknowledged by comparing the results achieved by our recent method against those 

delivered by the previous one. This chart therefore, can clearly confirm the effectiveness of 

our suggested video summarisation tool from the Precision perspective. Achieving the 

highest scores by SM5 among all the approaches for this index across all the video categories 

verified the second hypothesis (H2). 

 

Statistical Significance Analysis 

 In order to validate the statistical significance of the assigned scores for our new proposed 

tool from this perspective a t-test analysis has been adopted. The Precision as the main 

indicator of the effectiveness of the personalisation module were compared pairwise for the 

grades obtained by SM5 against and the other four systems and the results are displayed in 

Tables 5.3. The outcome of this test highlights statistically significant differences (at the 

p<0.05 level) between the scores obtained by SM5 (our new tool) and the other four 

summarisation systems concerning Precision.  

 

 SM5-SM1 (PR) SM5-SM2 (PR) SM5-SM3 (PR) SM5-SM4(PR) 

 
T P T P T P T P 

SPO 3.23 <0.05 7.68 <0.05 13.88 <0.05 2.3 <0.05 

DOC 2.11 <0.05 3.68 <0.05 5.57 <0.05 3.15 <0.05 

NEW 2.06 <0.05 4.96 <0.05 6.39 <0.05 3.31 <0.05 

ADV 4.25 <0.05 10.84 <0.05 6.89 <0.05 2.46 <0.05 

MUS 2.10 <0.05 3.19 <0.05 5.4 <0.05 4.32 <0.05 

MOV 2.15 <0.05 2.14 <0.05 12.64 <0.05 4.96 <0.05 

Table 5.3. Investigation of the statistical difference between the results obtained by our 

approach and the other 3 systems from the Precision perspective 
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5.3.4.3. Timing 

Based on the set hypotheses in chapter 3, the generated results should meet the temporal 

requirement strictly. Our second set of experiments showed again that only our 

recommended methods are capable of addressing this constraint. The time lengths of the 

generated summaries from both of our techniques were 30 seconds and consequently received 

the highest possible scores.  

 

 

Figure 5.8. Comparison of our results against the other four tools for the Timing metric 

 

As illustrated in Figure 5.8, the Timing scores for both of our recent summaries and the 

highest achieved scores from the other tools are equal. Nonetheless, the third hypothesis (H3) 

can be verified as well since the maximum possible score is obtained. 

 

5.3.4.4 Overall Satisfaction 

The analysis of the effectiveness of our proposed approach from the most important and 

comprehensive parameter is the objective of this section. Based on the results depicted in 

Figure 5.9, our recent approach managed to be rated the best for all six video clips from this 

aspect. Considering the essential role that this metric has in the formation of the overall 
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perceived quality of a video summary, the improved scores in comparison to our earlier 

technique from this angle (which was ranked the top based on the first set of experiments) 

can be justified based on the higher Precision scores that our recent method could deliver. 

 

Figure 5.9. Comparison of our results against the other four tools for the Satisfaction metric 

 

In addition, our second summarisation technique is built on the basis of the fundamental 

concepts of our first algorithm. Therefore, the main characteristics of the approved earlier 

method such as continuity and audio-visual clarity of the contents are inherited in the latter. 

To sum up, the fourth hypothesis (H4) is thus validated since the highest scores were 

achieved by our new method from the Overall Satisfaction point of view. 

 

Statistical Significance Analysis 

 In order to determine the statistical significance of the assigned scores for our current 

proposed tool from the user’s perceived quality perspective, a t-test analysis has been 

pursued. The Overall Satisfaction as the main indicator for quality of video summaries was 

compared pairwise between the scores achieved by SM5 and each of the other four systems, 

and the results are displayed in Table 5.4. The outcome of this test highlights statistically 

significant differences (at the p=0.05 level) between the scored obtained by SM5 (our new 

tool) and the other four summarisation systems for this measure across all six video genres.  
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 SM5-SM1 (OS) SM5-SM2 (OS) SMS-SM3 (OS) SM5-SM4(OS) 

 
T P T P T P T P 

SPO 12.87 <0.05 6.02 <0.05 15.14 <0.05 2.34 <0.05 

DOC 15.0 <0.05 5.93 <0.05 13.25 <0.05 3.37 <0.05 

NEW 16.5 <0.05 11.48 <0.05 14.98 <0.05 4.11 <0.05 

ADV 11.67 <0.05 8.02 <0.05 12.5 <0.05 2.64 <0.05 

MUS 9.91 <0.05 6.22 <0.05 12.51 <0.05 3.88 <0.05 

MOV 11.03 <0.05 4.05 <0.05 10.14 <0.05 2.91 <0.05 

Table 5.4. Investigation of the statistical difference between the results obtained by our 

technique and the other 3 systems from the Overall Satisfaction perspective 

 

5.4. Conclusion 

In this chapter, a new method for producing personalised video summaries has been 

proposed. User priorities towards different video scenes were captured by providing the 

audience with an overview of the content of each partition. Afterwards, the retrieved data was 

utilised for updating the average scores previously assigned by the video annotators. Finally, 

our summarisation approach introduced in the last chapter was adopted to extract the most 

significant audio-visual content of the video. In order to assess the effectiveness of our 

developed tool a comparative study was adopted. Experimental results indicate the capability 

of this approach to deliver superior outcomes compared with our previously proposed method 

and the three other automatic summarisation tools. However, this algorithm demands a high-

level of participant intervention since users have to go through all the existing video scenes 

and express their level of interests towards each. Therefore, proposing a method which 

requires less end-user involvement is a topic for our future work and will be addressed 

accordingly in the next chapter. 

 

 

 



                User-Centred Video Abstraction 
 

118 
 

 

Chapter 6  

Personalised Video Summarisation Based on 

SIFT Features 

 

6. Overview 

In this chapter, we address the third research objective by proposing an approach for 

generating personalised video abstracts. Initially, the concept of Scale Invariant Feature 

Transform (SIFT), which is the basis for our technique, is briefly reviewed in section 6.1. Our 

proposed method for summarising the videos in accordance to user-created profiles will then 

be explained in section 6.2. In the first stage, video frames are scored by a group of video 

annotators (operators) according to the audio, visual and textual content of the video similar 

to our two former summarisation approaches. Then, as will be discussed in section 6.2.2, a 

matrix that contains the relevancy scores of each video scene into a number of pre-defined 

categories is computed using the SIFT features of the representative keyframes. In the next 

phase, the end-user’s interest levels towards those high-level visual concepts (categories) are 

captured in the form of a vector. As a result of combining these two groups of data, the user’s 

priorities in respect of different video segments can be determined. In the next stage, the 

initial averaged scores of the frames are updated based on the identified end-user’s interest 

level into the corresponding video segments utilising the algorithm elaborated upon later in 

the chapter. Eventually, the highest scored video frames alongside the auditory and textual 

content are inserted into the final digest. Akin to our two former studies, the effectiveness of 

this approach has been evaluated through an experimental study, which compared the video 

summaries generated by this system against the results produced by a number of automatic 

and semi-automatic summarisation tools that use different modalities for abstraction. The 

results of this experimental research will be discussed in section 6.3 and finally the 

conclusion are presented in section 6.4. 
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6.1. SIFT 

The Scale Invariant Feature Transform (SIFT) is an algorithm which is increasingly being 

adopted by Computer Vision researchers due to its capability to detect and describe local 

features of images, which can be further employed for identifying objects and identical 

photos. This approach is used to transform images into a large set of feature vectors for the 

identified ‘interesting points’. These vectors are all invariant to scaling, rotation and 

illumination with a high level of robustness to local geometric distortion (Lowe, 2004).  

There are a number of competing methods for SIFT, which are employed by researchers for 

invariant object recognition purposes. Rotation Invariant Feature Transform (RIFT) 

(Lazebnik et al., 2004), Generalized Robust Invariant Feature (GRIF) (Kim et al., 2006) and 

Speeded Up Robust Features (SURF) (Bay et al., 2006) are all prominent competitors of the 

SIFT method. However, an extensive study attempted to measure the effectiveness of these 

approaches against SIFT and SIFT-based methods (Mikolajczyk and Schmid, 2005). The 

evaluation results confirmed that SIFT-based descriptors have the highest level of robustness 

and distinctiveness and therefore are the best options for feature-matching tasks. For instance, 

imposing an affine transformation of 50 degrees, the SIFT-based identified features showed 

the highest rate of matching accuracies among all the descriptors. In addition, the tested 

descriptors demonstrated the highest level of distinctiveness for SIFT-based features. 

Furthermore, these descriptors had the best performance on both textured and structured 

scenes between all the options. These SIFT-like methods were also recognised as the most 

robust when imposing blur to the images and changing the illumination conditions. As will be 

discussed in section 6.4, we are employing this technique to compare the representative 

frames from the input video clips with our large training images in order to determine their 

high-level conceptual categories. In the next section, our novel algorithm for producing the 

personalised video summaries is explained. 

 

6.2. Personalised Video Summarisation 

In the previous chapter, an algorithm was introduced with the capability to include end-user’s 

priorities towards different video scenes in the video summarisation task. The proposed 

approach’s effectiveness was acknowledged by comparing the summary versions that were 

generated by that tool against the video abstracts produced by four other summarisation 

methods. In spite of promising results in terms of Overall Satisfaction and Precision, the 
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previously suggested approach requires a high-level of end-user involvement. In this section, 

we propose a new personalised video summarisation technique with the ability to function 

based on users’ pre-built profiles. This approach is composed of three major phases which are 

now described in detail. Figure 6.1 represents the different stages in our novel personalised 

approach. 

 

Figure 6.1. chart describing the stages in our novel personalised video summarisation approach 
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6.2.1. Video Enrichment 

In this phase, video frames will be scored by operators and a representative keyframe will be 

chosen for each scene. 

 

6.2.1.1. Video Scene Detection 

Similar to our previous algorithm, AVCutty (www.avycutty.com, 2014) is used as a typical 

scene boundary detection tool in order to detect the time boundaries for each video scene. 

The minimum temporal length for each video scene is selected as three seconds in an attempt 

to reduce the number of pauses and interruptions for the keyframe selection task. Therefore, 

any identified video scene with shorter length will be added to the next scene.   

 

6.2.1.2. Video Scenes Enrichment 

According to our adopted approaches in the former two chapters, video annotators (operators) 

are responsible to score the video frames based on their personal interests and the perceived 

significance of the content they are watching. The scoring procedure is very similar to the one 

used in chapter 5; however, video operators are not required to annotate the identified scenes 

with audio-visual tags anymore. In fact, in our current approach, using the identified 

timestamps for the scene boundaries, the videos will be paused automatically at the end of 

each scene and video scorers immediately will be prompted to select one of the three 

candidate keyframes of each scene (based on the approach introduced in chapter 5) as the 

potential representative keyframe. They do this using the provided graphical user interface, 

while the scoring process is stopped. Therefore, per each N available frames in the original 

video there will be N assigned scores between 0-10 per each operator. The most satisfying 

frames will be scored with 10 and the least important sections are graded 0.  The assigned 

scores of each frame by different operators will be averaged in the next step in accordance to 

our mentioned method in chapter 4. Therefore, a singular value will be produced for each 

frame inside the original video. The averaging process is thus employed to smooth the frame 

scores towards a less biased result, by reducing the effect of dramatic differences in assigned 

scores to a particular frame. In addition, based on our suggested method in chapter 5, for each 

http://www.avycutty.com/
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video scene, the frame that has the highest selection rate by different operators will be 

selected as the representative keyframe for that particular scene. 

6.2.2. Personalisation 

In this segment, a novel mechanism for incorporation of the viewers’ preferences in summary 

generation is proposed. At the first step, it is attempted to measure the relevancy level of each 

video scene to a group of pre-defined high-level visual concepts. In addition, the end-users’ 

priorities and preferences into any of those concepts can be extracted directly. Combining 

these two sets of data can assist in determining a particular end-user level of interest into a 

specific video scene. The 5-step personalisation procedure is explained below. In the next 

section, the algorithm and training images that are adopted for determination of visual 

concepts correlation in regards to each keyframe is elaborated upon. 

 

6.2.2.1 Clustering Training Images 

117743 images of the Image-net database (www.image-net.org) are adopted as a training 

collection to perform high-level visual category detection task. This large-scale database is 

specifically designed as a resource for researchers in multimedia content browsing and 

retrieving fields. In this collection, an average of 1000 quality-controlled photos for each 

meaningful concept (described by multiple words belonging to a common “synonym set”) is 

provided from numerous angles. In context of our work, these images are categorised into 

seven major groups and a total of 103 high-level visual concepts (Table 6.1). In order to 

facilitate the process of concept detection, the images belonging to each category are 

clustered into 10 sub-categories based on their visual similarities. The similarity metric that is 

adopted for this purpose is their colour features in RGB space. As a result, the K-mean 

clustering algorithm is adopted to cluster the photos inside each category based on their 

retrieved RGB color histograms. Finally, the list of corresponding clusters for each training 

image alongside the set of cluster centroids is generated for each category. 

http://www.image-net.org/


                User-Centred Video Abstraction 
 

123 
 

 

Table 6.1. List of high-level visual categories adopted for our personalisation module 

 

6.2.2.2. Scenes Conceptual Category Relevancy 

The diagram for measuring the relevancy score of each video scene is illustrated in Figure 

6.2. At this stage, the dependency level of each detected video scene to each of those 103 

visual categories is measured and expressed in the form of a 103-length vector. Firstly, each 

video scene is associated with a keyframe that has the highest potential to represent that 

particular video segment visually and semantically. Therefore, in accordance to the procedure 

explained in the last chapter, the candidate frame that has the highest selection rate (among 

the three possible candidates) for each scene will be elected as the representative keyframe 

for that particular video segment. Thereafter, assessing the visual similarity between the 

chosen frames and training images from those 103 pre-defined categories will be the basis for 

this purpose. The process to calculate their visual proximity is carried out in two stages. 

Initially, for each representative keyframe, the most visually similar sub-category will be 

identified among 10 candidates of each category. This is achieved by computing colour 

histograms in the RGB space for each representative keyframe in the first place. In the next 

stage, these computed histograms are compared against the generated list of cluster centroids  
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Figure 6.2. Chart describing the stages for calculation of relevancy score of a scene to each of 

103 high-level visual categories 
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sets of data. Accordingly, an analogy value is computed for each pair (the keyframe and one 

of the selected training images), as shall now be described. 

If Frᵢ and 𝐼𝑚𝑗  denote the 𝑖𝑡ℎ frame (𝑖𝑡ℎ scene) and the 𝑗𝑡ℎ Image of a chosen sub-category 

respectively, the visual similarity ratio between them is calculated based on the equation 

below. It should be mentioned that SIFT (Frᵢ) represents the set of identified SIFT features 

for the 𝑖𝑡ℎ frame. 

𝑉𝑆𝑖𝑚( 𝐹𝑟ᵢ , 𝐼𝑚𝑗) =
⎸𝑆𝐼𝐹𝑇(𝐹𝑟ᵢ)∩𝑆𝐼𝐹𝑇(𝐼𝑚𝑗)⎸

⎸𝑆𝐼𝐹𝑇(𝐹𝑟ᵢ)∪𝑆𝐼𝐹𝑇(𝐼𝑚𝑗)⎸
 

Consequently, in order to calculate the relevancy degree of a video scene to one of the pre-

defined high- level concepts, the visual similarity value between the representative keyframe 

of that scene and all of the images belonging to the chosen sub-category (cluster) should be 

computed pairwise. Hence, the maximum generated similarity value will be assigned to the 

dependency score of the scene to that particular visual concept as shown in equation (6.2). 

Thus, if the chosen cluster (sub-category) in category r has n images then the dependency 

score is calculated as below: 

𝑉𝑆𝑖𝑚( 𝑆𝑐ᵢ , 𝐶𝑎𝑡ᵣ) = 𝑀𝑎𝑥𝑗=1
𝑛 {  

⎸𝑆𝐼𝐹𝑇(𝐹𝑟ᵢ)∩𝑆𝐼𝐹𝑇(𝐼𝑚𝑗)⎸

⎸𝑆𝐼𝐹𝑇(𝐹𝑟ᵢ)∪𝑆𝐼𝐹𝑇(𝐼𝑚𝑗)⎸
} 

Eventually, the dependency scores between each scene and all of the 103 visual concepts are 

computed based on the mentioned technique. As a result, a dependency matrix D is 

generated, which has 103 columns (one column per high-level concept) and m rows (m is the 

number of identified scenes in a movie), as shown in equation 6.2. Each row represents the 

conceptual category relevancy of a particular scene to all of the predefined conceptual 

categories in a format of a vector (𝐶𝑎𝑡1,, 𝐶𝑎𝑡22, … , 𝐶𝑎𝑡103) . The algorithm for calculation of 

the matrix D=[
1 ⋯ 103
⋮ ⋱ ⋮

𝑚1 ⋯ 𝑚103

] for each movie is given in Figure 6.3. In the next section, we 

try to create profiles for the end-users in order to retain their level of interest in any of those 

103 high-level visual categories. 

 

 

 

(6.1) 

(6.2) 
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Do for all 103 High-level visual categories 

Set Highest-Visual-Similarity score to zero    

  Do for all 10 clusters inside each category 

  Input the next cluster centroid// corresponding to the next sub-category 

  Compute the Euclidean distance between the key-frame histogram and cluster centroid 

  Insert Computed distance value into array’s index associated with the sub-category number 

  End Do; 

Set Chosen-Cluster-Number to array’s index with the minimum value 

Set Identified-SIFT-No1 to SIFT( Input Key-frame)// this functions calculate the number of 

identified //SIFT features for a particular image 

  Do for all the images belonging to the sub-category number of Chosen-Cluster-Number 

  Input next Image// next image from training set 

  Set Identified-SIFT-No2 to SIFT( Image)  

  Set Number-of-Shared-Features to Match ( Input Key-frame, Image)// this function counts             

//the number of identical SIFT features exist in both of the images 

  Set Total-Identified-Features to Summation(Identified-SIFT-No1, Identified-SIFT-No2) 

  Set Visual-Similarity to Number-of-Shared-Features divided by Total-Identified-Features 

    Do if Visual-Similarity is larger than Highest-Similarity-Score 

    Set Highest-Similarity-Score to Visual-Similarity 

    End Do; 

    Do else; 

    Keep the current value for Highest-Similarity-Score 

    End Do; 

  End Do; 

  Print the Highest-Similarity-Score for that input Key-frame as its relevancy score 

End Do; 

 
 Figure 6.3. Algorithm for computing the relevancy score of an input keyframe to any of the 

103 high level visual categories 
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6.2.2.3. User Profiling 

At this stage, in order to generate the customised summaries, user profiles should be created. 

These profiles contain information regarding the end-users’ level of interest in any of those 

103 high-level visual categories mentioned earlier. Per sub-category, one representative 

image is selected randomly from the training images database. Thereafter, each category is 

represented by 10 attached images (one from each sub-category) and end-users are asked to 

express their level of interest in any of these categories by scoring the displayed 

representative images in accordance to Figure 6.4. The users are required to score each 

category on a scale from 0 to 10 based on their preferences and priorities toward the viewed 

visual concept using the provided graphical user interface. The captured data can be stored in 

a form of a vector ranging from 1 to 103 as well, where each element of the vector is used to 

represent an end-user’s priority level in regards to one of the high-level concepts. Moreover, 

these generated vectors can be utilised in the following stage for understanding a particular 

user level of interest in regards to a video scene.  

 

 

Figure 6.4. Representative images from 10 sub-categories of SKY 
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6.2.2.4. Determining Users’ Priorities towards Scenes 

According to the method explained in section 6.2.2.2, a relevancy matrix is built for each 

movie where each row of data demonstrates the dependency level of a video scene to one of 

the 103 pre-defined concepts. In order to discover the priorities of the users regarding 

different scenes, as was mentioned earlier, firstly, each row should be extracted in the form of 

a vector. This retrieved data should be combined with the obtained user profiles in the next 

step to develop the required input for tailoring the video abstracts. This data fusion can be 

achieved by producing the dot product of a scene dependency vector and a user’s profile 

vector as shown in equation (6.3). 

Accordingly, If 𝑺⃗⃗  and 𝑼⃗⃗  denote the vectors built from the scenes dependency scores and 

users’ profile respectively then, 𝑺𝑺𝒏 computes the relevancy grade of the 𝒏𝒕𝒉 scene of  a 

movie for a specific user profile:  

𝑆𝑆𝑛 = 𝑆 . 𝑈⃗⃗  

 

Using the mentioned method, a singular value is computed for each scene which translates 

the priorities that a user has towards that video segment in comparison to the others. Finally, 

per user and movie, a border is constituted, whose length is equal to the number of identified 

video scenes. The elements of this border (calculated dot products) can be used for 

prioritising the video scenes. 

 

6.2.2.5 Prioritising the Video Scenes 

At this stage, the priority levels are assigned to video scenes based on their achieved scores. 

The higher the score is, the more the viewer is interested in a specific video scene. Thus, the 

generated results in the previous stage are sorted in a descending manner. The scenes whose 

grades are located in the first quarter of the sorted list are given priority level two, while those 

in the second quarter are attributed the priority level one; the rest of the scenes are all marked 

as level 0 (the lowest degree of importance). 

 

 

(6.3) 
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6.2.2.6. Updating the Initial Frame Scores 

In this phase, the primary generated average scores of the frames, assigned by the video 

scorers and averaged over the number of operators are updated on the basis of the approach 

introduced in chapter 5. Thus, based on the computed priority level for each video segment 

for a particular user, the primary average scores are updated. The scores of frames belonging 

to the scenes with level 0 of interest will not be altered at all. However, in the scenes with a 

level one priority (those scenes located in the second quarter of scenes’ relevancy scores list), 

the grades for the frames whose primary assigned scores are the highest among the frames of 

that scene will be increased by 20 percent (up to a maximum value of 12).  

This will potentially increase their probability of inclusion of the most significant video 

frames belonging to those scenes into the final video abstract. As a result, it will affect 

positively on the Recall and Precision of the generated abstracts. The updated grade for the 

frames belonging to the scenes with the highest level of priority for a particular end-user will 

be recalculated in a different format. These are the scenes whose dependency scores are 

among the first quarter of the computed relevancy scores list. The grades for the frames, 

which initially were scored the highest in each scene, will be upgraded to the maximum 

possible value (12). In fact, this would escalate the chance of definite inclusion of the highest 

quality segments of those particular scenes (with level two priority) in the final summary.  

However, the marks for the frames of those scenes whose scores are not the highest but 

nonetheless manage to exceed the respective scene’s average scores will be boosted by 20 

percent as well (to a maximum of 12). 

 

6.2.2.7. Generating the Personalised Summaries 

In the final step, the personalised video summaries are produced based on the updated frames 

scores in the last stage. In keeping with the summarisation method based on group scoring, 

which has been discussed extensively in previous chapters, the highest scored frames 

alongside the audio and textual content are selected and inserted into the final video digest. In 

next section we undertake an experimental evaluation to compare the quality of generated 

summaries based on our recent approach against those produced by three automatic tools and 

our recommended summarisation technique described in chapter 5. 
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6.3. Experimental Evaluation 

The confirmatory research adopted for this stage will be discussed comprehensively in this 

section. Accordingly, the experimental procedure will be carried out in two different stages 

analogous to the two former chapters. In the first phase, video annotators score the frames 

and select the representative keyframe based on the process explained in section 5.2. 

Afterwards, the participants are used for profile creation tasks based on the suggested 

algorithm in this chapter. In addition, the same group of participants is required for 

generation of video abstracts based on the suggested technique in chapter 5. This is due to our 

desire to compare the results from our new technique against those from the previous one. 

The experimental process is explained thoroughly below. 

 

6.3.1. Frames Scoring and Scenes Enrichment 

Six short videos (two minutes each) belonging to a different video genre (Movie, Sport, 

Documentary, Advertisement, Music and News) identical to those used in the two preceding 

chapters were utilised for the evaluation purpose of our proposed method. In the initial phase, 

10 operators (video annotators) with different demographic details (five females and five 

males within an age range of 25-45 years old) were asked to watch each video and score the 

frames using the provided slider tool. In addition, at the same time, they are also asked to 

annotate the video segments and to choose the representative keyframe of each scene based 

on the method proposed in previous chapter. Here however, the video operators are not 

required to annotate the scenes with audio-visual tags, since, we are comparing the results 

from this technique against the former one; the annotators are asked to score and annotate the 

videos only once to avoid repetition. This is due to the fact that, the single output from this 

stage can be effectively utilised for both summarisation approaches. The assigned scores for 

each frame were then averaged to generate a singular value for that frame according to the 

method detailed in chapter 4. 

 

6.3.2. Users’ Profiling and Priorities Extraction 

In this stage, we try to discover the priorities of 30 end-users (15 females and 15 males within 

an age range of 24-60 years old) towards the different scenes of each video using the 

proposed method described in chapter 5. It should be reminded that these participants are 

different to those who annotated the original videos. Based on the previous method, the users 
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have to express their level of interest to each video scene explicitly for personalisation 

purposes and the video summaries are generated accordingly. 

Later, the same group of participants is employed for profiling purposes. In accordance to the 

method explained in section 5.2, they are asked to express their level of interests to those 

representative images (from the image database) from the high level categories by scoring 

them. Therefore, by applying this technique a generic profile is built for each end-user based 

on his/her degree of interest in each high-level visual category. Summary versions for the 

same video clips are then generated employing our novel summarisation technique. 

 

6.3.3. Evaluation of Generated Summaries 

In order to evaluate the effectiveness of our personalised video summarisation approach, the 

generated summaries using the method described in this paper have been compared against 

the abstracts generated based on four other approaches. Three of these tools summarise the 

videos automatically (as explained extensively in chapter 4) by applying statistical and 

mathematical algorithms, while the fourth tool is based on our former semi-automatic 

personalised video summarisation approach (proposed in chapter 5). The six original videos 

alongside their five summary versions created by the five existing tools (including the 

personalised summaries generated for each specific user using the currently proposed 

technique) were presented to the same 30 end-users on the basis of whose inputs their 

personalised summaries were created.  

After watching the original video and the summaries, users were asked to score each of the 

generated abstracts awarding marks between 0 (worst video summary possible) to 10 (best 

video summary possible), from four different perspectives consisting of Recall (Re), 

Precision (Pe), Timing (Ti) and Overall Satisfaction (OS).These measures were described in 

detail in chapter 4. The given scores for each of these measures were averaged over the30 

users and their mean values for each of the video categories are given in Table 6.1. SM1, 

SM2, SM3, SM5 and SM6 indicate the average achieved scores (alongside the standard 

deviation) by, respectively, the first, second, third, fourth and our recently proposed video 

abstraction methods. 
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Our current technique (SM6 in Table 6.2) has the highest scores from the Overall Satisfaction 

point of view across all six video categories, while the quality of its generated summaries is 

still significantly better than those produced with automatic tools.  

 

 SM1 SM2 SM3 SM5 SM6 

Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS Re Pe Ti OS 

MOV 
7.1 

(1.5) 

6.2 

(1.5) 

8.2 

(1.0) 

4.2 

(1.9) 

6.2 

(1.4) 

6.3 

(1.5) 

6.7 

(1,2) 

6.2 

(1.5) 

3.7 

(1.1) 

3.9 

(1.6) 

5.5 

(1.2) 

4.4 

(1.4) 

6.3 

(1.2) 

6.4 

(1.3) 

10 

(0) 

6.3 

(1.4) 

7.1 

(0.9) 

6.8 

(1.1) 

10 

(0) 

7.1 

(1.1) 

ADV 
7.0 

(1.7) 

6.9 

(1.5) 

8.4 

(1.8) 

3.8 

(1.4) 

5.5 

(1.5) 

5.6 

(1.2) 

6.9 

(0.9) 

6.1 

(1.4) 

6.2 

(1.3) 

6.2 

(1.4) 

6.0 

(1.0) 

4.6 

(1.2) 

6.4 

(0.9) 

7.0 

(1.0) 

10 

(0) 

7.1 

(0.8) 

7.6 

(0.9) 

7.6 

(0.9) 

10 

(0) 

7.6 

(0.9) 

DOC 
7.2 

(1.1) 

6.2 

(1.3) 

8.3 

(1,1) 

3.8 

(1.3) 

6.2 

(1.0) 

6.0 

(1.1) 

7.5 

(1.0) 

5.2 

(1.4) 

5.1 

(1.3) 

5.6 

(1.7) 

6.5 

(1.0) 

4.4 

(1.4) 

6.3 

(1.2) 

6.4 

(1.1) 

10 

(0) 

6.4 

(0.8) 

6.7 

(1.3) 

6.9 

(1.3) 

10 

(0) 

7.0 

(1.3) 

NEW 
6.0 

(2.0) 

6.2 

(1.9) 

8.6 

(1.1) 

2.0 

(1.1) 

5.7 

(1.6) 

5.6 

(1.1) 

6.7 

(1.2) 

3.3 

(1.9) 

4.9 

(1.3) 

4.9 

(1.7) 

5.7 

(1.2) 

2.4 

(1.9) 

5.5 

(1.3) 

6.5 

(1.2) 

10 

(0) 

5.7 

(1.5) 

6.8 

(1.0) 

6.2 

(1.1) 

10 

(0) 

6.6 

(1.0) 

SPO 
6.6 

(1.7) 

6.4 

(2.0) 

8.1 

(1.4) 

2.9 

(1.3) 

5.0 

(1.5) 

5.4 

(1.6) 

7.1 

(1.0) 

5.2 

(1.8) 

3.7 

(1.3) 

3.5 

(1.3) 

6.0 

(1.0) 

3.3 

(1.8) 

6.3 

(1.1) 

6.5 

(0.9) 

10 

(0) 

6.5 

(1.1) 

7.3 

(0,9) 

6.3 

(1.1) 

10 

(0) 

7.0 

(0.8) 

MUS 
7.4 

(1.1) 

6.8 

(1.9) 

7.9 

(1.3) 

2.9 

(1.1) 

6.1 

(1.3) 

6.3 

(1.0) 

6.8 

(0.9) 

5.2 

(1.8) 

5.3 

(1.5) 

5.6 

(1.4) 

5.6 

(1.0) 

3.5 

(1.3) 

6.5 

(1.2) 

7.3 

(1.1) 

10 

(0) 

6.3 

(1.3) 

7.3 

(1.0) 

7.0 

(0.9) 

10 

(0) 

7.1 

(1.2) 

Table 6.2. Average assigned scores to each summary from 4 perspectives 

 

In addition, SM6 was ranked the highest in terms of Precision (corresponding to the 

effectiveness of an approach in regard to generation of personalised results) on three 

categories while it only came second to our previous method (SM5) in respect of the other 

three (Sport, News and Music). Moreover, the achieved scores for Recall among all six 

categories have improved significantly in comparison to our previous algorithm.   

 

6.3.4. Results 

In this segment, similar to two previous chapters, we try to analyse the effectiveness of our 

proposed video summarisation approach from the four identified hypotheses in chapter 3. It 

should be mentioned again that the generated summaries should have an Acceptable Recall 

rate, while their Precisions achieve a High ratio. In addition, while the Time constraint 

should be met Strictly, the Overall Satisfaction has to be rated as the Highest among all the 

available versions. We start our analysis by evaluating the Recall rate in the next section. 
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6.3.4.1. Recall 

In this section, the effectiveness of this approach in regards to the Recall metric is assessed. 

We expect that our summaries achieve better scores than the average of scores assigned to the 

other four tools for at least half of the categories, while the difference in scores for those with 

lower grade is less than one unit. 

 

 

Figure 6.5. Comparison of our results against the other 4 tools for the Recall metric 

 

As is shown in Figure 6.5, the Recall score has improved significantly for our novel video 

summarisation approach comparing to the last two techniques. This algorithm managed to 

exceed the average scores achieved by the other four tools across all the video categories. In 

addition, for three video categories (Movies, Advertisement and Music Video) the highest 

scores for this metric obtained by our latest technique. Thus, the corresponding hypothesis 

(H1) is confirmed. The justification for this growth can be attributed to the employed 

mechanism for updating the frame scores in our recent method. Since frames scores (a group 

of them) for half of the video scenes will be upgraded automatically, the possibility of 

different video scenes to have representative segments into the final summary will be boosted 

noticeably. Therefore, more segments of the video can be potentially covered in the final 

summary. 
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On the other hand, based on our last technique, scores will be updated for the frames that 

belong to those segments in which the end-users have explicitly expressed their interest in. 

The less the viewers are interested in various video scenes, the less frames scores will be 

altered. Therefore, fewer video scenes will have delegate frames into the final summary. 

 

Statistical Significance Analysis 

According to Table 6.3, there is a significant statistical (p<0.05) difference between the 

results achieved by our algorithms and those obtained by the other tools for three video 

categories (Sport, News and Documentary) in regards to this index. Among these three 

categories, the generated t-values for Sport video are considerable. The assigned scores for 

the other three categories exceeded the average mean marks obtained by the other four 

approaches although in some cases the pairwise differences between our latest approach and 

SM1 are not statistically significant. Nevertheless, our tool managed to achieve higher marks 

in comparison to average scores of other three tools and subsequently the first hypothesis 

(H1) is verified.  

 

 SM6-SM1 (Re) SM6-SM2 (Re) SM6-SM3 (Re) SM6-SM5(Re) 

 
t p t p t p t p 

DOC 3.63 <0.05 2.05 <0.05 5.16 <0.05 1.81 <0.05 

MOV 0.23 >0.05 3.17 <0.05 14.38 <0.05 3.39 <0.05 

ADV 1.63 >0.05 6.83 <0.05 3.89 <0.05 5.68 <0.05 

NEW 2.10 <0.05 4.22 <0.05 7.30 <0.05 5.74 <0.05 

MUS -0.12 >0.05 3.92 <0.05 6.21 <0.05 3.18 <0.05 

SPO 2.34 <0.05 7.13 <0.05 14.20 <0.05 4.50 <0.05 

Table 6.3. Investigation of the statistical difference between the results obtained by our method 

and the other 3 systems from Recall perspective 

 

6.3.4.2. Precision 

In this section, we assess the quality of generated summaries by our latest algorithm from the 

Precision point of view, i.e. how effective our technique is in extracting the most significant 
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video segments in regards to a specific audience. The chart below compares the results 

received by the current method’s (SM6) generated summaries against the highest grades 

achieved by the other four tools across the six video genres. 

 

 

Figure 6.6. Comparison of our results against the other 4 tools for the Precision metric 

 

Based on Figure 6.6, our novel method obtained the highest scores in three out of six video 

genres, whilst in the other three categories the obtained scores are higher than the average 

grades of the other four systems. Our recommended algorithm in chapter 5 (SM5) attained 

better results in terms of this metric for the News, Sport and Music Video categories. This can 

be justified in accordance to the nature of these two types of video.  

The first one is due to inability of our system to distinguish the end-users’ priorities towards 

the different events in a context of a sport match. Additionally, the lack of a mechanism to 

incorporate auditory information (essential for the News and Music videos) for 

personalisation purposes has reduced the Precision scores for News genre.  However, since 

the video annotators in the first stage have scored the video frames using all available 

modalities (audio, visual and textual) then it minimises the risk of missing the most valuable 

segments in the final summary. Moreover one should also bear in mind, the significant 
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amount of reduced time and cost using the generic user profiles (instead of employing 

viewers to score scenes) for personalisation. Nonetheless, the proposed method has addressed 

the articulated hypothesis by gaining high results in this respect. 

 

Statistical Significance Analysis 

As it illustrated in Table 6.4, there is a significant statistical (p<0.05) difference between the 

results achieved by our latest techniques in comparison to those generated by the other four 

tools for the first three video categories namely, Movie, Advertisement and Documentary.. 

Therefore, our latest algorithm produced the highest quality summaries from this perspective 

for the mentioned categories. Although our previous approach produced better results for the 

other three categories, the differences are not statistically significant. In fact, no other 

summarisation method managed to produce results with higher average mean with 

statistically significant difference. Finally, the gained marks for the latest algorithm 

comparing (SM6) to the average grades achieved by the other four tools is higher for the 

other three genres. Consequently, the second hypothesis (H2) is verified. 

 

 SM6-SM1 (Pr) SM6-SM2 (Pr) SM6-SM3 (Pr) SM6-SM5(Pr) 

 
t p t p t p t p 

DOC 2.52 <0.05 2.84 <0.05 4.33 <0.05 2.10 <0.05 

MOV 2.07 <0.05 1.77 <0.05 11.37 <0.05 1.81 <0.05 

ADV 2.14 <0.05 6.67 <0.05 4.52 <0.05 2.37 <0.05 

NEW 0.37 >0.05 1.83 <0.05 4.12 <0.05 -0.94 >0.05 

MUS -1.54 >0.05 3.19 <0.05 4.79 <0.05 -0.89 >0.05 

SPO -0.17 >0.05 2.26 <0.05 9.15 <0.05 -0.86 >0.05 

Table 6.4. Investigation of the statistical difference between the results obtained by our method 
and the other 4 systems from the Precision perspective 

 

6.3.4.3. Time 

Just like our two former techniques, this method has also produced the summaries that fulfill 

the pre-determined Time constraint Strictly. As can be seen on Figure 6.7, the only other 

system that could respect this requirement is our previously suggested approach (SM5). 
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Figure 6.7. Comparison of our results against the other 4 tools for the Timing metric 

 

Accordingly, by receiving the highest possible mark from this perspective, the hypothesis 

(H3) is verified. 

 

6.3.4.4. Overall Satisfaction 

The most important measure for assessing the effectiveness of a video summarisation 

technique will be investigated in this section. Figure 6.8 exhibits the overall perceived quality 

(i.e. Overall Satisfaction metric) of the generated summaries by the current approach against 

the other methods.  

As can be seen, the highest results for this index have been obtained by our novel algorithm 

(SM6). In addition, the highest scores achieved by the other four tools all belong to SM5 (our 

previous technique), as is shown. This can be explained based on the fact that the 

combinational scores of Recall and Precision are more balanced in our more recent attempt. 

In spite of lower results for a number of video categories comparing to the last approach, the 

capability of the new technique to cover larger segments of the video affected the participants 

positively in terms of their overall perceived quality of the video. Moreover, another 

influential factor in achievement of better outcomes can be due to the fact that the audiences’ 

level of participation has been reduced significantly in the current algorithm.  
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Figure 6.8. Comparison of our results against the other 4 tools for the Satisfaction metric 

 

Statistical significance Analysis 

We further analysed our results through a t-test. The Overall Satisfaction results as the main 

indicator were compared pairwise against the achieved scores of the other four systems and 

the results are displayed in Table 6.5. The outcome of this test highlights statistically 

significant differences (at the p=0.05 level) between the scores obtained by SM6 (our new 

tool) and the other four summarisation systems for the mentioned measure across all 

categories. The level of differences for a number of categories including Music and News 

videos are considerable. In addition, the least level of significance differences can be 

associated to the comparison of the results generated from SM6 and SM5 (our recent and 

previous summarisation methods respectively). Finally, our technique generates the highest 

quality video summaries in this regards and accordingly the fourth hypothesis (H4) can be 

verified.   
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 SM6-SM1 (OS) SM6-SM2 (OS) SM6-SM3 (OS) SM6-SM5(OS) 

 
t p t p t p t p 

DOC 11.3 <0.05 5.26 <0.05 8.45 <0.05 2.13 <0.05 

MOV 7.06 <0.05 2.52 <0.05 9.57 <0.05 2.94 <0.05 

ADV 11.20 <0.05 4.15 <0.05 10.51 <0.05 2.63 <0.05 

NEW 19.92 <0.05 14.38 <0.05 14.15 <0.05 4.30 <0.05 

MUS 11.89 <0.05 5.74 <0.05 11.60 <0.05 3.51 <0.05 

SPO 13.80 <0.05 4.46 <0.05 10.36 <0.05 2.10 <0.05 

Table 6.5. Investigation of the statistical difference between the results obtained by our method 

and the other four systems from the Overall Satisfaction perspective 

 

6.4. Conclusion 

In this chapter, a new method for producing personalised video summaries has been 

proposed. Accordingly, SIFT visual features were adopted to identify the video scenes’ 

semantic categories. Fusing this retrieved data with pre-built users’ profiles, personalised 

video abstracts can be created. Experimental results indicate the effectiveness of this 

approach in delivering superior outcomes comparing to our previously proposed method and 

three other automatic summarisation tools. 
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Chapter 7  

Conclusion and Future work 

 

 
7. Overview 

Video Summarisation is one of the most challenging topics in the multimedia domain that has 

received a great extent of coverage by researchers during recent years. Providing viewers 

with concise though rich versions of an input video sequence through identification and 

extraction of the most valuable segments is the primary objective of this research area. 

However, the difficulty of bridging the existing gap between low-level textual, visual and 

aural features of video streams and high-level semantically meaningful concepts is one of the 

major contributing factors in delaying the introduction of a definitive abstraction technique.  

The previous chapters of this work in response to our established research aim have inspected 

the research carried out in relation to video summarisation in order to determine the 

shortcomings of the existing methods and accordingly proposed and investigated three 

summarisation algorithms to address these pinpointed limitations. In this chapter, we finalise 

our research by providing a summary of our recommended techniques, the experimental 

findings, the subsequent knowledge contributions and some proposal for future work based 

on identified limitations of our research. 

 

7.1. Research Domain 

This research has focused on design and development of video summarisation algorithms 

with the capability to enhance the users’ experience and perceived quality of the abstracts in 

comparison to previously proposed techniques. Although various abstraction methods have 

been suggested by researchers in recent years, a review of the existing studies highlighted 

that the primary focus has been allocated to the fully-automatic techniques, which do not 

require human’s intervention. The foundation of these approaches is to understand the most 

semantically important video units through analysing the low-level visual, textual and aural 
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characteristics. However, as was extensively discussed in chapter 2, mapping these features 

into high-level semantics and concepts is still a pretty much challenging exercise with limited 

success. On the other hand, the performance of human-centred propounded models has been 

negatively affected by the subjectivity of the users and other external factors such as 

distraction. In light of this, we attempted to address the shortcomings in this field by 

answering the following research questions: 

RQ1- What approach should be proposed to reduce the limitation of the existing techniques? 

RQ2- What is the best way to develop the proposed approach? 

RQ3- Is the proposed approach effective enough? 

 

Accordingly, the research aim was defined as: To develop three effective video 

summarisation techniques that could be applied to different video categories and 

generate satisfactory results in terms of Recall, Precision, Timing and Overall 

Satisfaction. In order to achieve this research aim, four research objectives were defined and 

achieved, which are listed below. 

 

Objective 1: To investigate the exiting video summarisation techniques in order to 

identify the limitations and barriers against of this technology. This objective was 

addressed in chapter 2 and the shortcomings and limitations of the existing methods were 

revealed by studying the existing literature. 

Objective 2: To design, develop and evaluate a user-centred video summarisation 

algorithm based on group scoring in accordance to the findings from the previous 

investigation: This objective was covered in chapter 4. 

Objective 3: To extend the work of previous objective and design, develop and evaluate 

a personalised video summarisation algorithm based on group scoring: This objective 

was met in chapter 5 by proposing and analysing a novel mechanism to understand and 

incorporate the viewers’ priorities towards different video scenes in prior to abstracting the 

video. 

Objective 4: To extend the work of previous objective and design, develop and evaluate 

a personalised video summarisation system with reduced end-user involvement: This 
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objective was accomplished in chapter 6 with presenting a profile-based personalisation 

module according to SIFT visual features. 

 

Accordingly, the chapters of this thesis were designed respectively to address the 

accomplishment of the identified research objectives. The overview of the former six 

chapters is provided in the next section. 

 

7.2. Summary of Findings 

 

 In chapter 2, a group of existing abstraction methods were assessed and classified 

from different perspectives.. The inability to understand the semantics of video 

content, domain-dependency, sensitivity to changing conditions and complexity 

(computational expense) of fully automatic methods were established as the major 

barriers against the adoption of techniques with no human involvement. In addition, 

user subjectivity and other external factors such as distraction were identified as the 

limitations of user-centred approaches. Later, a review of the most common 

evaluation methodologies adopted by researchers to measure the quality of generated 

summaries revealed Recall and Precision as the two mainly employed metrics. The 

review also highlighted that user perceived quality of video is the most important 

metric to determine the effectiveness of a multimedia content, which not properly 

recognised by earlier studies of video abstraction. Accordingly, in our work, we also 

employed Overall Satisfaction metric as a success index for our proposed video 

summarisation algorithms. 

 

 A novel user-centred video summarisation approach was proposed chapter 4 based on 

group scoring. A panel of video scorers was recruited to grade video frames as they 

watch on the fly based on the significance of available modalities. In order to 

downgrade the negative effects of the subjectivity of the users, their assigned marks 

were averaged and a singular saliency score was computed for each video frame. 

Eventually, the highest scored segments of the video alongside the visual, textual and 

aural content in respect of a pre-specified time constraint were copied into the video 

digest. The proposed algorithm was later evaluated by comparing the video digests 

produced by our method against the summary versions of the same input videos 
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generated by three different automatic systems that utilise different modalities and 

mathematical algorithms for abstraction purposes. In accordance to pre-established 

hypotheses, our method managed to deliver superior outcomes in comparison to the 

other three tools. Achieving the highest scores from the participants’ perceived quality 

(Overall Satisfaction) perspective across all the experimental videos was the major 

element in confirming the effectiveness of our approach. Obtaining acceptable results 

in comparison to the other system in terms of Recall and Precision confirmed the 

strength of our system. 

 

 In chapter 5, a personalised video summarisation approach on the basis of our 

previously recommended group scoring method was introduced. The original video 

was primarily segmented into video scenes according to the visual similarity of 

neighbouring frames. In our new approach, the panel of video annotators had to 

enrich the video segments by selecting a keyframe (among the three choices for each 

scene) and annotating each scene with audio and visual tags in addition to scoring the 

frames (similar to our earlier method). Prior to summarisation of a video, the end-

users were provided with a list of representative keyframes, each corresponding to 

one scene and their associated tags. These are the frames and tags that had the highest 

selection rate by the video operators. Furthermore, the viewers were asked to express 

their level of interest in each scene based on the provided information on a scale of 

zero to two. As a result, the saliency scores for each frame, based on the users’ 

priorities and their membership to different scenes were updated and users-tailored 

summaries were accordingly generated. Finally, the generated summaries based on 

our personalised method were evaluated in comparison with the outputs from three 

automatic tools as well as those produced by our former summarisation technique. 

The results managed to confirm our study’s hypotheses in regards to the effectiveness 

of our recommended algorithm. Achieving the highest scores in terms of Overall 

Satisfaction and Precision were the two most important criteria that acknowledged the 

quality of video digests. Incorporating the personalisation module and the consequent 

improvement of the summaries in comparison to our previous approach were 

confirmed as well. 
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 A new algorithm with the primary objective of streamlining the process of extraction 

and integrating the audience’s priorities was proposed in chapter 6. Initially, a group 

of training images from 103 high-level visual concepts were obtained. The 

representative keyframe from each video scene was selected in accordance to our past 

method and was compared against each of the 103 high-level concepts in order to 

measure their visual similarity. The results of these comparisons were captured in the 

form of a vector, whose constituent elements represented the relevancy of the 

keyframe to a particular concept. Later, user profiles were built by displaying the 

users’ representative images from our training collection and asking them to score 

each category based on their level of interest. As a result, any user profile thus built 

could be represented as a 103-sized vector as well. Finally, the inner product of these 

two arrays could generate a priority value indicating the preference level of a 

particular user for a specific scene. These produced values were further adopted to 

accordingly update the saliency scores of video frames and thus generate the final 

summaries. The effectiveness of our recent approach was validated by evaluation of 

the video summaries retrieved by our novel method against those achieved from the 

other tools as well as our previous personalised system. The users’ perceived quality 

of abstracts across all experimental videos had the best scores for our latest proposed 

technique. In addition, the Precision marks were highest for three genres, while it 

only came second to our previous technique in respect of the other three. 

Additionally, there was a significant improvement in terms of Recall scores compared 

to our earlier algorithm. 

 

7.3. Research Contributions 

The research aim and objectives developed in our first two chapters provided the foundation 

for our knowledge contributions of the study described in this thesis. A summary of research 

contributions will be discussed in this section. 

 

 Video Summarisation Based on Group Scoring: As opposed to earlier user-

centred approaches, our proposed techniques adopt multiple users to minimise the 

negative effects of a single user’s employment such as subjectivity and distraction. 

Accordingly, a novel domain-independent technique for summarising videos was 

proposed in the fourth chapter. Here, a number of scenarios in which more than one 
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operator is required and engaged in the video abstraction process. In the most closely 

related work to ours, the Click2Summary framework (Wu et al., 2011), a video 

abstraction model based on crowdsourcing was proposed in which the input video 

sequence was primarily segmented into five seconds shots and those segments with 

highest selection rate by operators were inserted into video digests. However, 

segmentation of a video shot based solely on the time element can increase the 

possibility of generating false results. This is due to the inability of this method to 

address the dramatic change in the visual and semantic content within each sub-

segment. In addition, this method is not capable to produce video summaries at 

different levels incorporating timing requirements. This can be attributed to the fact 

that there is a binary label assigned by operators for each shot; therefore many shots 

with average quality (that should be included considering the time constraint and 

context of video) could be missed. These shortcomings were all addressed in our 

proposed approach by providing video workers with facilities to assign scores (rather 

than binary labelling) to the frames (rather than temporally segmented shots) and 

extraction of highest scored frames. In addition, our method is more practical 

compared to the previously recommended fully-automatic approaches, given their 

significant computational expense and time overhead.  

 

 Novel Evaluation Methodology: In this work, a novel method to assess the 

effectiveness of video summaries was introduced. As opposed to earlier 

methodologies, a combinational framework was devised and utilised in our research 

to evaluate the capability of our proposed summarisation approaches based on 

statistical metrics (Recall and Precision) alongside the users’ perceived quality of 

summaries (Overall Satisfaction) as the most important indicator to represent the 

quality of a multimedia content. Earlier work either concentrated on mathematical 

concepts or took into account the users’ perceived experience. Later, a comparison-

based technique was developed to assess the quality of summaries generated based on 

different modalities. This was carried out by feeding the input clip to summarisation 

tools that were employing visual, visual-aural and visual-aural-textual characteristics 

to skim the videos. To the best of our knowledge, this approach had never been used 

for evaluation purposes of video abstraction techniques.  
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 Personalised User-Centred Video Summarisation: In chapter 5, a new 

mechanism was introduced to understand users’ priorities towards different video 

scenes and customising the final summaries based on the retrieved data. As a result, 

viewers were provided with a list of keyframes and associated audio-visual tags 

corresponding to the content of each scene. Therefore, the audience could potentially 

comprehend the subject matter of each scene in a fast manner prior to expressing their 

level of interest into that particular segment. Moreover, the approach employed for 

extraction of the representative keyframe for each scene should be considered as 

another contribution. In order to do so, each video scene was initially segmented into 

three shots of equal temporal length. The highest scored video frame closest to the 

centre of each shot was nominated to represent that scene. Finally, the keyframe that 

had the highest selection rate by different video operators between the three available 

choices during the annotation process was chosen as the representative keyframe for 

that scene. In addition, the proposed method for updating the particular frames 

residing in scenes with higher level of importance is novel. 

 

 Personalised Video Summarisation Using SIFT: In chapter 6, a novel 

mechanism was proposed to tailor the video summaries in accordance with end-users’ 

interests. SIFT features of the representative keyframe for each scene were used as the basis 

for the personalisation module. Thus, the number of common SIFT features between a 

keyframe and training images was used as a metric to show the relevancy of that scene to a 

particular high-level concept. Hence, each video scene (keyframe) could be represented as a 

vector, whose element represented the dependency level of that scene to a particular high-

level concept based on the SIFT similarity measure. Furthermore, a unique mechanism was 

adopted in order to create the profiles for the users and to fuse those profiles into the 

summarisation modules for generating the final summaries. Thereafter, the dot product of the 

border representing the users’ interest into the high-level concepts and the array indicating 

the relevancy of each video scene into the same categories was employed as a metric to 

assess the priority level of each scene for a particular user. To the best of our knowledge, the 

proposed algorithm for personalising the video summaries based on SIFT features has not 

been previously adopted. 
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7.4. Research Limitations and Future Work 

In this section some directions for future research in order to reduce the limitations and 

assumptions corresponding to our research will be briefly discussed. 

In spite of some promising results achieved by our proposed video summarisation models, the 

extra cost of human involvement can be considered rather high, as video operators still have 

to be actively engaged in the frame scoring process. Therefore, devising a scheme in which 

the saliency scores for the frames can be calculated based on a video operator’s perceived 

interest without requiring him/her to directly mark the video segments could be regarded as 

an interesting topic for future research. 

Based on our second approach, the end-users’ priorities towards different video scenes were 

obtained in order to customise the final summary in respect to each user’s interests. However, 

the audience has to go through the list of representative keyframes and corresponding tags 

manually in order to prioritise the scenes. Thus, gathering information historically regarding 

users during different iterations in an attempt to minimise their level of direct intervention 

can be considered as another topic for additional study in the future. Moreover, extracting the 

audio-visual information of the scenes in a more convenient fashion than direct annotation 

should be explored in later work. 

In chapter 6, user profiles were formed based on their assigned scores to each high-level 

visual concept. As a result, the personalisation of video abstracts was carried out by 

considering solely visual information (no audio-textual data), which can deteriorate the 

effectiveness of our personalised video summarisation approach. Accordingly, creating 

profiles for the viewers based on different information resources (audio, visual and textual) 

and trying to integrate them with different modalities retrieved data from input video 

sequence is another direction for future research.  

Last but not least, our recommended techniques were evaluated against a group of automatic 

summarisation systems in order to measure their effectiveness. Comparing our methods 

against the additional techniques, which involve humans in the abstraction task, can be 

considered as more generalisable comparison that can be addressed in future work. However, 

the reluctance of other researchers to either provide us with their developed tools or to 

summarise our videos using their systems themselves directly should be mentioned as a 
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major barrier. Moreover, using experimental videos of varied length for our evaluation 

purposes can also further increase the applicability of our research. All our valuable 

directions for future endeavours. 
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