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Measuring the risk of a nonlinear portfolio with fat tailed risk factors
through probability conserving transformation

P. DATE AND R. BUSTREO
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This paper presents a new heuristic for fast approximation of VaR (Value-at-Risk) and CVaR (conditional
Value-at-Risk) for financial portfolios where the net worthof portfolio is a nonlinear function of possibly
non-Gaussian risk factors. The proposed method is based on mapping non-normal marginal distribu-
tions into normal distributions via a probability conserving transformation and then using a quadratic,
i.e. Delta-Gamma approximation for the portfolio value. The method is extremely general and can deal
with a wide range of marginal distributions of risk factors,including non-parametric distributions. Its
computational load is comparable with Delta-Gamma-Normalmethod based on Fourier inversion. How-
ever, unlike the Delta-Gamma-Normal method, the proposed heuristic preserves the tail behavior of the
individual risk factors, which may be seen as a significant advantage. We demonstrate the utility of the
new method with comprehensive numerical experiments on simulated as well as real financial data.
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1. Introduction

All financial institutions need to perform effective risk management. Quantitative risk measures have
become crucial management instruments for portfolio managers. Risk managers and market regulators
have to control their risks or to appropriately allocate their capital. Value-at-Risk (VaR) has been chosen
by the Basel Committee on Banking Supervision in Basel II as the standard risk measure for financial
risk managers, see e.g. Basel Committee (2006) and Chen & Gerlach (2011) for details. It measures
the worst expected loss under normal market conditions overa specific time interval at a given con-
fidence interval. It may be seen as the “best of worst cases scenario” and it therefore systematically
underestimates the potential losses associated with the specified level of probability. To define VaR, we
consider a real-valued random variableX on a probability space(Ω ,A ,P) that expresses the random
profit or loss of some asset or portfolio, its cumulative distribution function (cdf)FX (x) = P(X 6 x)
and a confidence levelα ∈ (0,1). Therefore the quantityqα(X ) = inf{x|FX (x)> α} is theα-quantile
of X . Then VaR at levelα is given by:

VaRα =−q1−α(X ). (1.1)

VaR has received criticism by Artzneret al. (1999), Acerbi & Tasche (2001) and Szegö (2005) for not
being a coherent measure of risk. This is because of the fact that it does not generally fulfill the axiom of
sub–additivity, apart from the case of linear portfolios with normally distributed risk factors and similar
special cases. A sub-additive alternative to VaR is the conditional Value-at-Risk (CVaR), defined as the
conditional expectation of loss for losses beyond the VaR level. CVaR and its minimization formula were
first developed in Rockafellar & Uryasev (2000). There, authors demonstrated the numerical efficiency
of their proposed procedure through several case studies, including portfolio optimization and option
hedging. The conditional Value-at-Risk at levelα can be defined as:

CVaRα =−E(X |X 6 q1−α(X )). (1.2)
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Computation of CVaR, in effect, requires computing VaR at several different confidence levels and
hence is typically computationally more intensive.

In general, the computation of VaR or CVaR for a financial portfolio leads to one of the four possible
scenarios:

1. The portfolio is linear in the underlying risk factors andthe distribution of risk factors can be
approximated by a Gaussian distribution. This is a case whenthe portfolio consists of stocks or
stock futures, risk factors are stock returns only and the confidence level isα = 0.95 or lower. For
higherα values, distributional assumption of Gaussianity is inappropriate, as has been proven
time and again in literature. Nevertheless, Gaussian approach remains popular due to its sim-
plicity and is often used as a starting point or as benchmark;see,e.g.Albaneseet al. (2004)
and Alexander (2008).

2. The second scenario is the one which involves a linear portfolio with non-Gaussian risk factors.
This means that the distribution of the portfolio net worth may be different from that of the un-
derlying risk factors. Typically, this scenario requires aMonte Carlo simulation to compute the
quantiles of portfolio value distribution. There are two distinct choices of risk factor distributions
followed in literature; the approach based on extreme valuetheory is followed in Embrechtset
al. (1999) and Gilli & Këllezi (2006), among others. On the other hand, different thick tailed
distributions which do not belong to the class of extreme value distributions have also been used,
including the use of mixture of normals in Zangari (1996) andDuffie & Pan (1997), Student’st as
outlined in Alexander (2008) and the use of mixture of elliptic distributions in Kamdem (2003).
An alternative approach is provided by the copula-based models (see e.g. Nelsen (2006) for an
introduction to copulas) in Rahmanet al. (2011) and in Sak & Haksöz (2011), among others.

3. The third scenario is when the portfolio has Gaussian riskfactors but the portfolio value is a
nonlinear function of risk factors, e.g. due to presence of derivative instruments such as op-
tions. A very common way of dealing with this scenario is using a quadratic (or Delta-Gamma)
approximation to the portfolio value, since quantiles of a quadratic form of jointly Gaussian ran-
dom variables can be efficiently computed using Fourier inversion integral; see,e.g. Glasser-
man (2003) for a detailed treatment. Other approaches include Cornish-Fisher expansion as
discussed in Jaschke (2001) and Zangari (1996), Johnson transformation discussed in Zangari
(1996), Solomon-Stephens approximations discussed in Britten-Jones & Schaefer (1999), saddle
point approximation outlined in Feuerverger & Wong (2000) and other Fourier inversion based
methods described in Albaneseet al. (2004) and Rouvinez (1997). Monte Carlo simulation with
the quadratic approximation of the portfolio value (so-called partial Monte Carlo simulation) is
computationally typically simpler than full Monte Carlo, as the computational load of pricing
nonlinear instruments for given values of risk factors may be far greater than computing quadratic
forms of risk factors; see Pritsker (1996) for an application. Comparisons of accuracy and effi-
ciency among mentioned methodologies are carried out in Mina & Ulmer (1999) and in Castel-
lacci & Siclari (2003). Different methods for dealing with this Gaussian risk factors, nonlinear
portfolio scenarios are compared in Britten-Jones & Schaefer (1999) and in Pichler & Selitsch
(1999).

4. The last and the most general scenario involves a portfolio with nonlinear instruments which de-
pend on non-Gaussian risk factors. Any financial portfoliosinvolving derivative instruments on
stocks (such as hedge funds or absolute return funds) fall under this category. Unlike the normal
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distribution, the quadratic forms of fat-tailed distributions are not amenable to easy evaluation
in general. Apart from full Monte Carlo or partial Monte Carlo simulation (using quadratic ap-
proximation of nonlinear functions), few computationallycheap alternatives currently exist for
this scenario; see Glassermanet al. (2000) and El-Jahelet al. (1999) for some approaches to this
problem.

The financial crisis of 2008 has brought back to researchers and managers the fact that normality as-
sumption for risk factors is not realistic. Gaussian distribution-based models are appealing because of
their simple implementation, but they fail to explain real world risk factor characteristics such as fat-
tailedness and skewness. In Nozariet al. (2010), Sheikh & Qiao (2010) and Stoyanovet al. (2011)
authors highlight the fact that empirical research on financial returns carried out since 1950s leads to the
need to consider several phenomena including fat tails, skewness and serial correlation. Therefore mod-
els that rely on the assumption of normal distributions needto be relaxed in order to identify a potential
much higher level of risk. Parsimonious Gaussian-based models are often employed by practitioners
despite empirical evidence to the contrary. However, especially during periods of high turbulence in
the financial markets, such as the one in the recent crisis, Gaussianity assumption can lead to severe
under-estimation of risk.

The focus of this paper is to provide a heuristic to calculateVaR and CVaR for the last scenario
mentioned above, i.e. for nonlinear portfolios with non-normal risk factors. The proposed heuristic is
computationally cheaper than a full or partial Monte Carlo with fat tailed distributions, yet has a potential
to be far more accurate than normal distribution-based evaluation. The novelty of our heuristic lies in
offering an alternative with a potentially intermediate level of complexity and accuracy between the two
extremes: between carrying out a full Monte Carlo simulation by sampling from fat tailed distributions
followed by multiple pricing function evaluations on one hand and evaluating a single, one dimensional
integral assuming a normal distribution and a quadratic approximation of the portfolio value on the other
hand. Our approach rests on transforming the problem with non-Gaussian marginals into Gaussian ones
via a probability conserving transformation, as used in Sornetteet al. (2000). Unlike mean-variance
based Gaussian approximation of marginal densities, probability conserving transformation retains the
tail behavior which is crucial in the computation of risk measures. This transformation is then followed
by construction of a joint Gaussian density and construction of a quadratic form in the jointly Gaussian
transformed variables. One can then use the Delta-Gamma-Normal method for nonlinear portfolios with
Gaussian risk factors for the computation of risk measures.Further, one can re-use the existing code
for the fast Fourier transform (FFT) based evaluation of CVaR using Delta-Gamma-Normal method, by
using the proposed heuristic of transforming the risk factors into Gaussian factors.

The rest of the paper is structured as follows. Section 2 establishes the notation used and outlines
the Delta-Gamma-Normal model for ease of reference. Section 3 introduces the probability conserving
transformation which is used later on in this work. Section 4describes the proposed method, which
we refer to asDelta-Gamma-Q, for non-normal risk factors and nonlinear portfolios. Section 5 illus-
trates this method with extensive simulation experiments with nonlinear portfolios. Section 6 presents
backtesting with real option price data and discusses on theadvantages in computational terms of Delta-
Gamma-Q over partial Monte Carlo and finally section 7 concludes the article with comments on future
research directions.

2. The Delta-Gamma-Normal model

Let us recall the model developed in Glasserman (2003) for computation of Value-at-Risk with normally
distributed stock returns, but a portfolio which depends nonlinearly on stock prices. We introduce the
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following notation:

S = vector ofm market prices and rates;

∆ t = risk-measurement horizon;

∆S = change inS over interval∆ t;

Π(S , t) = portfolio value at timet and market pricesS ;

L = loss over interval∆ t =−∆Π = Π(S , t)−Π(S +∆S , t +∆ t);

FL (x) = P(L < x), the distribution ofL .

The time interval∆ t is typically very short, while the numberm of risk factors could reach thousands.
Throughout this paper, we use 1 day as our time interval for computing VaR, although it is straightfor-
ward to generalize the results to other time horizons. A portfolio that includes options depends nonlin-
early on the underlying asset prices and many fixed-income securities have a nonlinear dependence on
interest rates. The change in portfolio value∆Π(S , t) is defined asΠ(S +∆S , t +∆ t)−Π(S , t).
Some nonlinearity can be captured using Taylor expansion until the quadratic term:

∆Π(S , t)≈Θ∆ t + δ T∆S +
1
2

∆S TΓ ∆S , (2.1)

where the vector∆S denotes the change of the underlying value, while the scalarΘ = ∂Π(S ,t)
∂ t , the vec-

tor δ = ∂Π(S ,t)
∂S and the matrixΓ = ∂ 2Π(S ,t)

∂S 2 represent the sensitivities of an instrument at timet. Given
the portfolioΠ , all the sensitivitiesΘ , δ andΓ are assumed to be given exogenously for the purpose of
this paper. For individual derivative instruments such as options,δ values are provided by commercial
economic data providers such as Bloomberg. Depending on thenature of derivative instruments in the
portfolio, these sensitivity values may be found using a variety of methods from market data and from
commonly used risk neutral models, including finite differences, implied volatilities, Malliavin calculus
(for use of Malliavin calculus in computing sensitivities of certain exotic options, see e.g. Montero &
Kohatsu-Higa (2003)), etc; see, e.g. Glasserman (2003) andHull (2006). Sensitivitiesδ andΓ are
regularly computed for hedging purposes by single trading desks and can be combined (at the end of the
day, for example). This leads to a quadratic approximation of L . Assuming∆S ∼ N (0,ΣS ), then
we can write:

∆S =CZ with CCT = ΣS ,

whereZ ∼ N (0, I) andC is a square root ofΣS . Square root matrices are not unique and the exact
choice ofC is decided as follows. We can re-write (2.1) in terms ofZ :

L ≈ a− (CTδ )TZ − 1
2
Z T(CTΓC)Z , (2.2)

with a = −Θ∆ t deterministic. As shown in Glasserman (2003), a correct choice of C allows us to
expressL as:

L ≈ a+bTZ +Z TΛZ = a+
m

∑
i=1

(biZi +λiZ
2

i )≡ Q. (2.3)

whereb=−CTδ , λi are themdiagonal values of the matrixΛ =− 1
2CTΓC andC is a square root ofΣS

such asC= ĈU, whereĈ is the Cholesky factor ofΣS andU is the matrix of normalized eigenvectors
of − 1

2ĈTΓĈ. Since we approximatedP(L > x)≈ P(Q > x), now we have to derive the distribution of
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Q. It turns out that this can be determined by characteristic function of a quadratic form of Gaussian
distribution, which has a closed form. In particular, the characteristic function ofQ as expressed by
(2.3) is

ϕQ(t) = E[ejtQ ] = eψ( jt ) = ejta
m

∏
i=1

1
√

1−2 jλit
exp

(

− 1
2

m

∑
i=1

b2
i t

2

1−2 jλit

)

, (2.4)

where j =
√
−1. Using inversion integral (see,e.g. Paolella (2007)), one can retrieve the probability

distribution function (pdf) or cdf of a continuous random variable. The characteristic function inver-
sion using the FFT algorithm given the continuous random variableQ, with pdf fQ and characteristic
functionϕQ, for l ,u∈ R andN ∈ N, can be carried out - as proposed by Paolella (2007) - recognizing
that:

ϕQ(t) =
∫ ∞

−∞
fQ(q)ejtqdq≈

∫ u

l
fQ(q)ejtqdq≈

N−1

∑
k=0

fQ(qk)∆qejtqk , (2.5)

whereqk = l + k∆q, with k = 0,1, . . . ,N−1 and∆q= (u− l)/N. Creating a suitable grid ofr-values
one can compute the quantities:

q(n)≈ 1
N

ϕQ(rn)e
− jrnl , (2.6)

and then using FFT to obtain an approximation to pdffQ(qk) at discrete pointsqk. Now, using the for-
mulae (1.1) and (1.2) (with an approximation of the expectation integral by an appropriate summation),
one can obtain VaR and CVaR. Note that there are two reasons for truncating Taylor’s series after two
terms. The first reason is the computational simplicity of computing quantiles of a quadratic form of
a normal distribution (as outlined above). Secondly, widely reported empirical experience supports the
use of second order approximation as adequate reflection of changes in portfolio value, especially over
short time horizons as considered in this paper.

In Glassermanet al. (2000), the authors relax the assumption that the risk factors are normally
distributed and demonstrate that the result can be extendedto risk factors which have a multivariatet
distribution. In this paper, we go a lot further in generalizing Delta-Gamma-Normal method by using
possibly non-parametric distributions. The key to our method is a probability conserving transformation,
which is described next.

3. Probability conserving transformation

The idea of probability conserving transformation has beenused in the context of analysis of portfolio
strategies in Sornetteet al. (2000). We employ this idea in the current context of risk computation.
Suppose that we have a set of dependent random variablesX1,X2, · · · ,Xm with arbitrary marginal cdfs

Fi , i = 1,2, · · · ,m. For eachXi , samplesx(i)j , j = 1,2, · · · ,n drawn fromFi(x) are available. In the
present context,X might represent a vector of asset returns or any other risk factors. Denoting the
standard normal cdf byΦ(y), define a function ofXi by

ψ(Xi) := Φ−1Fi(Xi),

and lety(i)j = ψ(x(i)j ). If we envisagey(i)j to be a sample of a random variableYi with standard normal

distribution, then it is clear thatΦ(y(i)j ) = Fi(x
(i)
j ). ψ is the so-calledprobability conserving transforma-

tion. We can then find the sample covariance matrix ofY usingy(i)j . We don’t knowa priori the joint
distribution of the vector of transformed vector-valued random variable,Y . However we can introduce
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an approximation using a standard result from information theory (Rao (2001)): conditioned only on the
knowledge of the covariance matrix, the best representation of a multivariate distribution is the Gaussian
distribution, in the sense that it maximizes entropy, see e.g. Cover & Thomas (1991) for details. There-
fore, conditioned on the sole knowledge of the covariance matrix ΣY , the best approximated parametric
representation of the multivariate distribution ofY is given by:

fY (y) =
1

(2π)m/2
√

det(ΣY )
exp

(

− 1
2

y⊤Σ−1
Y y

)

.

Unlike a mean-variance based normal approximation of a multivariate density, the proposed approxima-
tion heuristic preserves the fat-tailed nature of the original vector of risk factorsX . We use this method
in the context of the VaR computation as follows.

If Fi(x
(i)
j ) are not normal or ifXi are not jointly normal, the VaR computation cannot be reduced to a

computation of a one dimensional integral as outlined in theprevious section, even after Delta-Gamma
approximation of the nonlinearity. To remedy this, we carryout a nonlinear transformation to normal
distributions, as proposed in Sornetteet al. (2000): letφ be the standard normal pdf andΦ be the
standard normal cdf. Letf (u) be a density,F(u) be its corresponding cdf and define the function

Φ(w) = F(u) i.e.
1√
2π

∫ w

0
e−

z2
2 dz=

∫ u

0
f (z)dz,

where the random variableW ∼ N (0,1) by construction. It is therefore possible to map each valuex j

into a new variabley j :

y j = ψ(x j) = Φ−1(F(x j)) =
√

2 erf−1(2F(x j )−1),

where the error function operator, erf, is defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt.

Referring back to notation introduced previously in this section since historic data is available (i.e.

x(i)j , with i = 1,2, . . . ,m and j = 1,2, . . . ,n wherem is the number of factors andn is the number of

data available for each factor), it is possible to computey(i)j for all i and j. The covariance matrix of

the vector variableY is defined asΣY = E(yyT), where each element
[

ΣY

]

ab is obtained by sample
average approximation:

[

ΣY

]

ab =
1
n

n

∑
l=1

y(a)l y(b)l .

We need to findδ andΓ in terms of the transformed variables, which will require finding the derivative
dxi
dyi

. HavingΦ(Yi) = Fi(Xi), we can writeXi = F−1
i (Φ(Yi)), whereYi is a standard normal random

variable andXi is a random variable with cdfFi. SinceΦ andFi are both continuous with densitiesφ
and fi , respectively, it follows that the functionalXi = F−1

i (Φ(Yi)) is continuously differentiable such
that:

dxi

dyi
=

φ(yi)

fi(F−1
i (Φ(yi)))

. (3.1)
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Now, remembering thatΦ(Yi) = Fi(Xi), equation (3.1) can be simplified as:

dxi

dyi
=

φ(yi)

fi(xi)
. (3.2)

Nonparametric estimation allows to achieve maximum flexibility in obtaining quantitiesFi(x
(i)
j ) and

fi(x
(i)
j ); for a detailed treatment of non-parametric estimation of statistical distributions, see Bowman &

Azzalini (1997) and Fan & Gijbels (1996).

4. Delta-Gamma-Q for assets with non-normal returns

Here, we bring together the material in the last two sectionsto propose a procedure for risk computation
for a nonlinear portfolio with possibly non-Gaussian risk factors. Given a series of changes in risk
factors (e.g. asset prices)∆Si , we start by computing their probability conserving transformation∆Yi :

∆Yi = Φ−1(Fi(∆Si)), i = 1,2, . . . ,m. (4.1)

Each∆Yi ∼ N (0,1), and the vector∆Y ∼ N (0,ΣY ), with diag(ΣY ) = (1,1, . . . ,1). We empha-
size the fact that the matrixΣY is generally not an identity matrix and depends on sample correlations
between the elements of∆Y . Since∆Yi have been represented jointly normal, VaR and CVaR compu-
tations can be estimated using an adapted version of (2.1):

∆Π(S , t)≈ΘY ∆ t + δ T
Y ∆Y +

1
2

∆Y TΓY ∆Y , (4.2)

with ∆Y derived from∆X using (4.1). Equation (4.2) can be converted to an one-dimensional integral
only provided we can find sensitivitiesδY andΓY . Now, note that:

Θ =ΘY , (4.3)

[

δY

]

i =
∂Π
∂Yi

=
∂Π
∂Si

dSi

dYi
=
[

δ
]

i

dSi

dYi
, and (4.4)

[

ΓY

]

i j
=

∂
∂Y j

( ∂Π
∂Yi

)

=
∂

∂S j

( ∂Π
∂Si

dSi

dYi

)dSi

dY j
=
[

Γ
]

i j

(dSi

dYi

)(dSi

dY j

)

, (4.5)

whereδ andΓ are sensitivities under normal conditions, while the derivativesdSk/dYk are computed
using formula (3.1). Equation (4.2) has got the same structure as of equation (2.1). Hence we can apply
the characteristic function inversion using the fast Fourier transform to find approximate VaR and CVaR
of the portfolio using Delta-Gamma approximation. We will call this new method as Delta-Gamma-Q
method for assets with non-normal returns. We summarize thesteps for computation of VaR and CVaR
using Delta-Gamma-Q method below:

• Find option sensitivitiesδ , Γ andΘ assuming normality for risk-factors;

• Apply nonparametric estimation to the distribution of the relevant risk-factorsS ;

• Map ∆S into ∆Y through probability conserving transformation;

• Determine the covariance matrixΣY ;
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• Find for each risk-factor the coefficient that expresses itsnon-normality by applying equation
(3.1) and by averaging values;

• Evaluate the coefficientsδY andΓY using equations (4.4) and (4.5) respectively;

• Calculate characteristic function coefficientsaY =−ΘY ∆ t, bY =−CT
Y δY andΛY =− 1

2CT
Y ΓY CY ,

whereCY is a square root ofΣY as described in Section 2;

• Compute VaR and CVaR, either by evaluating the integral in equation (2.5) directly with appro-
priate limits or by using FFT.

To re-emphasize the point of this exercise, we are trying to re-gain the simplicity of computing the
quantiles of a quadratic form for a Gaussian distribution, while still preserving the tail information in the
marginal risk factor distributions. Note, in particular, thatΣY is not an approximation to the covariance
matrix of ∆S as this isnot a mean-variance based approximation. Approximating a distribution by a
normal distribution via probability preserving transformation can lead to far better quantile estimates
than a mean-variance based approximation, as the experiments in the subsequent sections show.

Note that our VaR evaluation is static, i.e. we are computingVaR over a single time-step. As such,
we are using non-parametric distribution to model the risk factors and will then map them into normally
distributed risk factors. The underlying stochastic process which generates the said non-parametric
distribution is of no direct relevance in our current framework. Linking the evolution through time of
the risk factors (e.g. as a Lévy process) to the evolution ofquantiles of their multivariate nonlinear
function (such as the portfolio net worth) is an interestingtopic which is outside the scope of this paper
and is a topic of current research.

We now demonstrate the method using a simulated portfolio first in the next section, followed by a
backtesting experiment with real data in section 6.

5. Simulation experiments

We first evaluate the Delta-Gamma-Q model for assets with non-normal returns considering a simple
hypothetical portfolioπ , in order to gain some insight in the performance of the proposed heuristic as
compared to the performance of standard methods such as the Delta-Gamma Monte Carlo (also called
partial Monte Carlo). The hypothetical portfolio is made upof one share each ofm correlated fat-
tailed stocksS1,S2, . . . ,Sm and m European call optionsC1,C2, . . . ,Cm havingS1,S2, . . . ,Sm as
underlying assets, respectively. Therefore the portfoliovalue isΠ = ∑m

i=1(Si +Ci). Each European call
option has payoff (or value of the call option at expiry) given by:

max(Si(T)−Ki,0) i = 1,2, . . . ,m. (5.1)

Si(T) is the price of thei-th underlying stock at timeT (maturity), andKi is thei-th option strike price.
StocksSi have been simulated using:

Si(t) = Si(0)e(µi−σ2
i /2)t+

√
tvi i = 1,2, . . . ,m,

wherev= [v1,v2, . . . ,vm]
T is obtained by first generatingw∼ [w1,w2, . . . ,wm]

T , then given the correla-
tion matrixH, we setv=CTw, whereC is the Cholesky factor decomposition ofH. w is chosen to have
a fat-tailed distribution, the exact choice of which is discussed later in this section. The computation of
each option value has been obtained using Black-Scholes formulae:

C (S ,K,σ , r,T − t) = S Φ(d1)−KΦ(d2)e
−r(T−t), (5.2)
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where

d1 =
ln(S /K)+ (r + 1

2σ2)(T − t)

σ
√

T − t
, d2 =

ln(S /K)+ (r − 1
2σ2)(T − t)

σ
√

T − t
,

whereT represents the maturity,T − t is the time to maturity andr is the interest rate and

Φ(x) =
1√
2π

∫ x

−∞
e−

1
2y2

dy.

Note that these formulae will not be valid unlessw above is normally distributed, i.e. unless the under-
lying continuous time process is geometric Brownian motion. However, option prices and sensitivities
are often computed under assumption that Black-Scholes formula holds true, irrespective of evidence to
the contrary, see e.g. Shaoet al. (2006). Sensitivities of interest for a European call option C such as
Delta, Gamma and Theta are given by:

δC =
∂C

∂S
= Φ(d1), ΓC =

∂ 2C

∂S 2 =
φ(d1)

S σ
√

T − t
,

ΘC =
∂C

∂ t
=−

[

S σφ(d1)

2
√

T − t
+ rKΦ(d2)e

−r(T−t)
]

, (5.3)

whereφ(x) = 1√
2π e−x2/2. In keeping with the standard market practice, we will use formulae (5.1)-(5.3)

for prices and sensitivities in our computation. However, we assume that thereal stock price dynamics
are driven by fat tailed distributions rather than normal ones. The actual distributions ofwi and the
parameters used are described later in this section. While using the formulae above is mathematically
inconsistent with having non-Gaussian risk factors, note that it is standard market practice to use Black-
Scholes formulae despite its lack of mathematical justification. As an example, Black-Scholes pricing
formula is commonly used to construct an implied volatilitysurface for options on the same underlying
asset with various strikes and maturities. This surface would be reduced to a single point if the assump-
tions behind the formula were to be true. Further, implied volatilities are often used for the measurement
of risk using partial Monte Carlo for option portfolios. Ourchoice of using these expressions forδC ,ΓC

is thus in line with the reality of the market and it also allows us to make a ‘like-for-like’ comparison
between various partial Monte Carlo methods, as we will see next.

Numerical experiments involved comparisons of five different methods:

• Empirical methodis a Monte Carlo assessment of the chosen assets. Possibleh day ahead portfo-
lio values are obtained by simulatingM trajectories for themstocks and adding their correspond-
ing European call values, computed through (5.2). The simulation is performed with distribution
of risk factors specified later in this section. The loss and profit distribution is achieved subtracting
the stocks’ initial values and the fair price of the call options from the simulated portfolio values;

• Delta-Gamma-dP method, also referred to as partial Monte Carlo earlier, is a computation ac-
cording to formula (2.1). This involves simulatingM trials for eachSi , where∆Si are obtained
deductingSi(0) from the corresponding stock priceSi while δ andΓ are the ones provided in
section 2;

• Delta-Gamma-Q methodinvolves nonparametric estimation of pdf and cdf ofm risk factors.
Nonparametric estimation is able to capture the features ofrisk factors such as skewness and
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fat-tailedness. The probability conserving transformation (4.1) on each∆Si provides cdf and pdf
values to apply formula (4.2). Coefficients [δY ] i in (4.4) are computed approximately as [δY ] i ≈
E[dSi/dYi][δ ] i , while elements[ΓY ]i j are computed approximately as

[ΓY ]i j ≈ E[dSi/dYi]E[dS j/dY j ][Γ ]i j ,

where coefficientsdSk/dYk are calculated using formula (3.2). The approximationE[dSi/dYi ]
is introduced to decrease the computational burden of the algorithm and, simultaneously, to
achieve VaR values close to those obtained through full Monte Carlo simulation. Being∆Yi ∼
N (0,1)we are in a framework similar to the one described by (2.2), itis therefore possible to find
coefficientsaY , bY andλY ’s. Using these coefficients one can invert the related characteristic
function via FFT;

• Delta-Gamma-dP Normal methodapplies formula (2.1), i.e. assumingSi andCi to be jointly
normally distributed and ignoring the functional dependence betweenSi andCi ;

• Delta-Gamma-Q Normal methodapplies formula (2.4), i.e. uses a quadratic approximationas-
suming normal risk factors as in Delta-Gamma-dP above, but computes VaR using an inversion
integral.

The last two models use normal factors with mean and variancethat match sampling the mean and the
variance of changes in the respective risk factor. This methodology allows a fair comparison between
the first batch of three models considered and the last two. Making this assumption can be interpreted as
follows: provided that a portfolio evolves as described by the empirical model, what would be the VaR
and CVaR that one would compute by employing the Delta-Gamma-Q model or a Delta-Gamma-Normal
model?

Probability distributions of risk factors for empirical and Delta-Gamma-dP have to be assessed. This
can be done using either parametric (making use of a preselected model fitted on the already available
dataset) or nonparametric estimation. Once the probability distribution is estimated, Monte Carlo sim-
ulation can be used to find VaR and CVaR for empirical as well asDelta-Gamma-dP methods. For
Delta-Gamma-dP normal and Delta-Gamma-Q-normal, VaR and CVaR are obtained by using formulae
(1.1) and (1.2) for normal distribution and given confidencelevel.

Once VaR is computed using different methods, we wish to compare their accuracy. Confidence
intervals and/or standard error estimates are usually usedto perform this task. The author in Pritsker
(1996) stated “This is typically not done for Delta and Delta-Gamma based estimates of VaR since there
is no natural method for computing a standard error or constructing a confidence interval.” about this
issue. One can use the empirical distribution from a Monte Carlo simulation to obtain confidence inter-
vals for VaR estimates (95% confidence are typically calculated, but this can be easily generalized). The
nonparametric confidence intervals, based on finite sample theory, are easy to compute and are valid for
any continuous distribution of the random variableL . Varying the sample size,M, of the Monte Carlo
simulation changes the width of the confidence interval, according to the accuracy of VaR needed. Table
1 displays the index of ordered statistics to build 95% confidence intervals for 95% and 99% VaR for a
different number of draws. Confidence intervals for CVaR canalso be obtained using formula (1.2) and
table 1, but are not reported here.
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Table 1. 95% confidence intervals for Monte Carlo 95% and 99% VaR.

Number of Draws
95% VaR 99% VaR

Lower Bound Upper Bound Lower Bound Upper Bound
500 15 35 1 10

1,000 37 64 4 17
10,000 457 544 81 120
50,000 2,404 2,597 456 545
100,000 4,865 5,136 938 1,063

Our experiment considered a portfolio made up of fifty stocksand fifty European call options. Stock
prices were generated usingwi distributed as Student’st with different degrees of freedomνi , ranging
from 4 to 10. The values chosen for the simulation include: the time horizon ish= 1 day, the number of
simulations required isM = 104, the interest rater = 0.05, the maturitiesTi = 1 year, fori = 1,2, . . . ,50.
The correlation matricesH are randomly generated. Strike pricesKi and initial valuesSi(0) were
chosen such that some of the options were in the money, some were at the money and some were out of
the money. The parameters used in our simulation are in the range reported in table 2. The full table of
values is omitted for brevity.

Table 2. Parameters range.

Value Min Max
Ki 2 99
µi -4.3 4.1

Si(0) 12 123
νi 4 10

The proposed method provides a new covariance matrix which better reflects non-normality in risk factor
distributions. Computations of 95% and 99% VaR and CVaR havebeen obtained keeping constant all
the values except from the correlation matrixH which is allowed to vary and reported in tables 3–4:

Table 3. Values of 95% and 99% VaR for the four experiments reported, with confidence intervals in brackets.
Experiment 1 2 3 4
95% VaR
Empirical 90.4 72.6 82.1 160.1

(87.9,93.3) (71.1,74.7) (79.4,84.5) (151.8,167.7)
∆ -Γ -dP 92.3 74.1 82.5 162.6

(89.4,94.7) (71.7,76.3) (79.2,85.4) (153.2,168.4)
∆ -Γ -Q 91.0 71.9 81.9 164.1
∆ -Γ -dP Normal 84.6 90.2 86.1 102.5

(81.6,87.5) (87.4,92.8) (83.8,89.9) (96.4,107.8)
∆ -Γ -Q Normal 84.0 91.0 85.4 104.4
99% VaR
Empirical 131.5 108.0 117.8 246.9

(127.3,135.0) (103.8,111.6) (110.8,124.3) (237.2,254.5)
∆ -Γ -dP 136.0 109.1 119.8 244.9

(131.9,140.9) (106.6,112.6) (115.2,124.6) (238.1,253.2)
∆ -Γ -Q 135.4 109.4 118.2 250.0
∆ -Γ -dPNormal 127.4 135.6 126.8 152.0

(122.2,131.6) (132.2,140.8) (121.5,132.1) (146.5,157.7)
∆ -Γ -Q Normal 127.1 137.4 125.9 155.7
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Table 4. Values of 95% and 99% CVaR obtained by varying the correlation matrix.

Experiment 1 2 3 4
95% CVaR
Empirical 115.9 94.2 103.7 212.8
∆ -Γ -dP 118.4 95.5 105.5 212.7
∆ -Γ -Q 115.2 94.9 105.8 217.7
∆ -Γ -dP Normal 110.0 117.5 110.8 132.4
∆ -Γ -Q Normal 110.8 119.1 111.2 134.8
99% CVaR
Empirical 150.9 127.5 132.9 292.5
∆ -Γ -dP 155.6 125.3 141.0 288.5
∆ -Γ -Q 153.4 127.0 131.5 285.7
∆ -Γ -dPNormal 147.2 155.2 143.9 176.9
∆ -Γ -Q Normal 145.8 157.9 142.5 180.4

Confidence intervals for full and partial Monte Carlo methods are obtained using values in correspon-
dence of 10,000 draws in table 1, while interval estimates are unavailable for Delta-Gamma-Q since
it is a deterministic computation. The results indicate that, with varying covariance matrixH, while
Delta-Gamma-dP and Delta-Gamma-Q provide a reasonably good approximation to the empirical value
of VaR and CVaR, the two remaining models (based on normalityassumption) do not provide a consis-
tent estimation of VaR and CVaR. In particular, using the empirical VaR estimations as references, we
can state that:

• in the first experiment 95% and 99% VaR are underestimated of about 7% and 3%, respectively
and 95% and 99% CVaR are underestimated of about 5% and 3%, respectively;

• in the second experiment 95% and 99% VaR are overestimated ofabout 25% and 26%, respec-
tively and 95% and 99% CVaR are overestimated of about 25% and23%, respectively;

• in the third experiment 95% and 99% VaR are overestimated of about 4% and 7%, respectively
and 95% and 99% VaR are both overestimated of about 7%;

• in the fourth experiment 95% and 99% VaR are underestimated of about 35% and 37%, respec-
tively and 95% and 99% CVaR are underestimated of about 37% and 38%, respectively.

VaR and CVaR computed under the assumption of normal distributed risk factors are, according to
expectations, unreliable. Results for varying parametersother thanH are qualitatively similar. Port-
folio composition changes such as the number of stocks included, the number and/or kind of (puts or
calls) options included also lead to similar qualitative conclusions. Finally, the proposed methodology
is quite general and works when few risk factors are normallydistributed and/or present a certain de-
gree of skewness. This was verified in simulation experiments with few normal and centered skew-t
distributions (see e.g. Azzalini & Capitanio (2003) for details about skew-t distributions) with a skew-
ness absolute value greater than one components. Results inall these cases (varying other parameters,
changing portfolio composition and changing distributional assumptions) do not add any additional in-
formation and are hence omitted for brevity. We express hereafter some considerations about accuracy
and computational time of the simulation for the three methods used for computation of VaR and CVaR
in our article: full Monte Carlo, partial Monte Carlo and Delta-Gamma-Q method. A fair comparison
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involves that all three methods require a nonparametric estimation. Let us recall thatm is the num-
ber of risky factors andM is the number of simulations required. The empirical methodor full Monte
Carlo method is generally thought to give the most accurate estimates of VaR for large sample sizes
but it tends to be very time consuming, specially when the analytical solutions for some assets are not
available. Furthermore, closed-form pricing formulae arenot often available and options often need to
be priced (and the sensitivities need to be computed) numerically, e.g. by solving a partial differential
equation. In these cases, the time required will be several orders of magnitude higher, especially for
Monte Carlo method. The Delta-Gamma method or partial MonteCarlo produces estimates less accu-
rate than full Monte Carlo but is less expensive in terms of time. As reported in Mina & Ulmer (1999),
the partial Monte Carlo requiresO(Mm2) operations while the full Monte Carlo requires additional time
to assess all of the positionsM times. The Delta-Gamma-Q method demonstrates an accuracy which
is comparable to the one of partial Monte Carlo and requiresO(m3) operations. Therefore, compar-
ing computational costs it emerges that partial Monte Carlois slower than the Delta-Gamma-Q method
unlessm is very large depending on the VaR confidence levelα (e.g., about 1,000 for 95% VaR and
about 5,000 for 99% VaR, as chosen in Mina & Ulmer (1999)). Speed performances of a typical port-
folio made up ofm stocks andm European call options withm= 1,2,3,4,5,10,20,30,40,50 for the
empirical,∆ -Γ -dP and∆ -Γ -Q has been measured using an Intel dual core i3 clocked at 2.66 GHz, with
3GB RAM and using MATLAB 7.9. Any computation includes estimation of 95% and 99% VaR and
CVaR. The computational times (expressed in seconds) of theempirical,∆ -Γ -dP and∆ -Γ -Q methods
are reported in table 5:

Table 5. Net computational times for the computation of VaR and CVaR for the portfolio made up ofm stocks andm European
call options, withm= 1,2,3,4,5,10,20,30,40,50.

m Empirical ∆ -Γ -dP ∆ -Γ -Q
1 0.090184 0.084911 0.025212
2 0.137924 0.103209 0.040598
3 0.158297 0.113802 0.043022
4 0.207286 0.137386 0.048445
5 0.233043 0.164483 0.051230
10 0.621080 0.206162 0.067723
20 0.832268 0.301063 0.163616
30 1.018157 0.373982 0.231480
40 1.288235 0.479643 0.288678
50 1.466571 0.563397 0.332650

The computational times in table 5 refer to computations with 10,000 simulations and do not include
the time for nonparametric estimation of the risk factors. We set the full Monte Carlo method as the
reference in terms of values and computational times. It canbe noticed that both partial Monte Carlo
and Delta-Gamma-Q are quantitatively comparable to the reference, as shown in tables 3-4. Further-
more, our method requires a lower amount of time than the other two methods considered for all the
included values ofm. As envisaged in the study of computation costs the Delta-Gamma-Q method for
the computation of results is the quickest, since it exploits the computational speed of the FFT algorithm.
Larger scale computational tests tend to be portfolio-specific. However, the qualitative conclusion that
Delta-Gamma-Q method is comparable in its speed to Delta-Gamma-Normal method, but outperforms
it in accuracy for non-normal risk factors, holds true.
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6. Empirical tests

Having seen the performance of our method with a simulated portfolio with up to 50 assets, we now
move to demonstrating it with a real financial portfolio and comparing it with Delta-Gamma-Normal
method in computing VaR and CVaR. This section is divided into five subsections. Subsection 6.1
introduces the data employed and presents some of their descriptive statistics. The portfolio analyzed
is constituted of four European options on FTSE100 index (which represents our single risk factor). A
representative real portfolio with a relatively small number of assets is chosen for demonstration since it
is easier to visualize data and report results with a small number of assets; it is also easy to reproduce our
experiments based on the information provided here, if desired. Subsection 6.2 illustrates the choice and
the features of the portfolio tested, while section 6.3 includes details on the backtesting tools used. These
include tests for unconditional as well as conditional coverage in predicting tail losses. Subsections 6.4
and 6.5 respectively report the results of backtesting using Delta-Gamma-Normal approach and the
approach presented in this paper.

6.1 Data

For computing the VaR estimates and for backtesting, we use two sets of data:

1. A set of 501 daily closing prices for each of the four included European options on the underlying
index FTSE100, according to the portfolio composition specified in tables 7–8;

2. A set of daily closing FTSE100 values which is used for estimating the parameters related to
non-normality as described in section 3.

All the data has been retrieved from Datastream. The portfolio analyzed includes observations from
10/07/2009 to 10/06/2011. The whole set of daily portfolio variations has been split in two 250-
units subsets: an in-sample subset that covers observations from 13/07/2009 to 25/06/2010, and an
out-of-sample subset that covers observations from 28/06/2010 to 10/06/2011. Summary statistics on
FTSE100 daily returnsRt for the considered period are reported in table 6:

Table 6. Summary statistics of the FTSE100 returns for the period 10/07/2009−10/06/2011.

Statistic Value
Mean 0.0722%
Standard Deviation 1.0349%
Minimum -3.1815%
Maximum 5.1610%
Skewness 0.0072
Kurtosis 4.3989

The empirical distribution of daily returns is leptokurtic(i.e., its kurtosis exceeds the value 3), that
indicates fat-tailedness, and slightly skewed. The Lilliefors test, used to test the null hypothesis that
data come from a normal distribution when the sample is small(see e.g. Lilliefors (1967) for details),
also rejects normality at both 5% and 1% significance level for the considered series. Figure 1 represents
the returns histogram for FTSE100 for the considered period.
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FIG. 1. FTSE100 returns histogram for the period 10/07/2009−10/06/2011.

6.2 Test portfolio

The portfolio tested includes four European options on the same underlying: the index FTSE100. Its
composition is changed periodically to mirror the variations occurring in a typical, actively traded op-
tions portfolio. To be specific, the portfolio is made up of two pairs of options, each pair consisting
of a call option and one put option having common strike priceK and maturityT. The daily portfolio

πt is made up ofC (1)
t , P

(1)
t , C

(2)
t andP

(2)
t , with t = 1,2, . . . ,501. Therefore the daily portfolio val-

uesΠt are computed asΠt = C
(1)
t +P

(1)
t +C

(2)
t +P

(2)
t and the daily changes in portfolio values are

computed as∆Πt−1 = Πt −Πt−1 for t = 2,3, . . . ,501. We decided to change the portfolio composition
over time, including options having different characteristics (strike prices and maturities), to highlight
that the method does not depend on specific features of the portfolio. As mentioned earlier, nonlinear
portfolios are rarely static over a long period of time. To generate a large enough data sample, with the
same underlying risk factor for backtesting, it makes senseto use a portfolio of options which evolves
over time. The whole length of time under test is split in six different length intervals. Intervals with
different lengths provide again a more general framework. At every change of interval one of the two
call-put pairs is dropped and is alternately replaced by another call-put pair of options, with both the
call and the put having the same strike price and maturity. Table 7 displays the portfolio composition
chosen, whereas figure 2 provides a graphical representation of the portfolio composition as a function
of time.
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FIG. 2. Graphical representation of portfolio composition in time. Options are included in the portfolio in correspondence of the
relative thick segment.

Note that most options have a life which is shorter than what one needs for a reasonably large backtest-
ing data sample, which makes the proposed changes in portfolio over time (keeping the risk factor the
same) a sensible alternative for backtesting VaR methodologies.

Table 7. Portfolio composition in the different intervals.

Interval from to Length C
(1)
t P

(1)
t C

(2)
t P

(2)
t

1 10/07/2009 10/11/2009 88 C (a) P(a) C (b) P(b)

2 11/11/2009 26/02/2010 78 C (a) P(a) C (c) P(c)

3 01/03/2010 30/07/2010 110 C (d) P(d) C (c) P(c)

4 02/08/2010 30/11/2010 87 C (d) P(d) C (e) P(e)

5 01/12/2010 15/03/2011 75 C ( f ) P( f ) C (e) P(e)

6 16/03/2011 10/06/2011 63 C ( f ) P( f ) C (g) P(g)

Strike prices and maturities of each pair of optionsC (l),P(l), l ∈ {a,b,c,d,e, f ,g} are reported in
table 8:

Table 8. Considered strike prices and maturities.

Asset Label a b c d e f g
Strike Price 3,800 2,000 3,000 4,800 3,700 5,400 2,600
Maturity 18/06/10 18/06/10 17/09/10 17/12/10 18/03/11 17/06/11 17/06/11

6.3 Backtesting: methodology

Backtesting is a statistical tool to verify whether a model is adequate for its purpose. In the case of VaR
models, it consists in checking that actual losses are in line with projected ones. It is crucial to check if
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predicted values of measure of risk are reliable. If that is not the case one should reassess assumptions,
include a different - and valid - set of parameters or providean improved modeling methodology. In
this section we are backtesting VaR computations. Several authors recommend backtesting VaR models
including Jorion (2007), Kupiec (1995) and Christoffersen(2003). The most common method to test a
VaR model has been suggested in Kupiec (1995), where the author developed a 95% confidence region
for the unconditional coverage test. The unconditional coverage test is the standard tool for backtesting
models and is also recommended by Basel II (see, e.g. Chen & Gerlach (2011)), therefore we decided
to employ it throughout this paper. According to this procedure, a model is correctly calibrated when
the number of exceptions (i.e. portfolio losses exceeding VaR) is in line with the confidence level. If
backtesting reveals too many exceptions then the risk is underestimated by the current model, hence one
could reserve an insufficient required capital and suffer critical losses under extreme market movements.
On the other hand too few exceptions signals an overestimated risk and that would lead to an inefficient
allocation of capital. This situation is also not ideal for institutions that look for maximizing profits.
Let’s defineIt as:

It =

{

0 if Lt 6VaRα ,t|t−1
1 if Lt >VaRα ,t|t−1

whereLt andVaRα ,t|t−1 represent respectively the loss at timet and theα confidence level VaR com-
puted at timet given the information at timet − 1. Therefore the number of exceptions is given by
X = ∑N

t=1It , whereN is the total number of observations. Since each daily outcome could lead to an
exception or not, the random variableX follows a binomial distribution:

fX (x) =

(

N
x

)

px(1− p)N−x,

wherep= 1−α, andα is the level for the selected VaR. Let us consider the number of exceptions in
the sample, ˜x, and define the failure rate as ˜x/N. Null and alternative hypothesis are inKupiec’s test
(Kupiec (1995)) are as follows:

{

H0 : p= x̃
N

H1 : p 6= x̃
N

so we test whether the observed failure rate differs significantly from the given confidence levelp. The
test statistic used is:

LRuc =−2ln

(

(1− p)N−x̃px̃

[

1− x̃
N

]N−x̃( x̃
N

)x̃

)

∼ χ2
1 . (6.1)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis ifLRuc > 3.841.
Table 9 displays 95% confidence regions of non rejection for the Kupiec’s test:

Table 9. Non rejection regions for Kupiec’s test.

α N=250 N=500 N=1,000
95% 76 x̃6 19 176 x̃6 35 386 x̃6 64
99% 16 x̃6 6 26 x̃6 9 56 x̃6 16

The unconditional coverage test, on its own, focusses on thenumber of exceptions, but it does not
consider whether they are clustered. Since large losses bunched in a small amount of time are more likely
to cause disastrous events than single exceptions showing up occasionally (see Campbell (2005) for
further details), it is crucial that the VaR model satisfies the independence property. The independence
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test, developed in Christoffersen (2003), is capable of rejecting a VaR with clustered exceptions. Let us
define the indicator variable:

Jt =

{

1 if an exception occurs
0 otherwise

and then define the transition probabilitiesπi j = P(Jt = i andJt+1 = j). As an example,π01 provides
the probability of having an exception tomorrow given that today there were no exception. The first-
order Markov sequence with transition probability matrix is given by:

Π =

[

π00 π01

π10 π11

]

=

[

1−π01 π01

1−π11 π11

]

.

If the exceptions sequence is independent over time then theprobability of an exception tomorrow does
not depend on today’s outcome, i.e.π01 = π11 = π . In this case null and alternative hypothesis are:

{

H0 : π01 = π11

H1 : π01 6= π11

To test it we use the following likelihood ratio test:

LRind =−2ln

(

(1− π̂)N00+N10π̂N01+N11

(1− π̂01)N00π̂N01
01 (1− π̂11)N10π̂N11

11

)

∼ χ2
1, (6.2)

whereπ̂ = N01+N11
N00+N01+N10+N11

, π̂01 =
N01

N00+N01
andπ̂11 =

N11
N10+N11

. Ni j represents the number of days when
statej follows statei, andi, j can only assume values 0 and 1. Since we are interested in understanding
whether simultaneously the number of exceptions is correctand VaR exceptions are independent, we
can test jointly this two features using the conditional coverage test:

LRcc = LRuc+LRind ∼ χ2
2. (6.3)

Using a 95% confidence interval this likelihood ratio test rejects the null hypothesis ifLRcc > 5.991.
Hence, the 95% level critical values forLRuc, LRind andLRcc are 3.841, 3.841 and 5.991 respectively.
Computation of statisticsLRuc andLRind as respectively specified in (6.1) and (6.2) provides the tool
to accept or reject the model specification. In the followingsections 6.4 and 6.5, the daily estimates
of 95% and 99% VaR are calculated using Delta-Gamma-Normal method and Delta-Gamma-Q method
for an asset with non-normal returns, respectively, and then are compared to actual losses. The series
of actual daily portfolio losses are computed asLt =−∆Πt , for t = 1,2, . . . ,500. As mentioned earlier
in section 5, we focus on the point estimates as interval estimates are unavailable for Delta-Gamma-Q.
However, the point estimates for both in-sample and out-of-sample VaR are computed for 95% as well as
99% confidence level, and are validated using unconditionalas well as conditional coverage tests. The
consistency of qualitative aspects of our conclusions across all these tests as well as across simulation
experiments in the previous section gives us some confidencein the validity of our point estimate-based
results. The results of using our method are detailed in section 6.5, although we start with the description
of results using the traditional Delta-Gamma-Normal heuristic next.

6.4 Applying the Delta-Gamma-Normal method: results

The first experiment consists in computing 95% and 99% VaR of the considered portfolio using Delta-
Gamma-Normal model and assessing its reliability through unconditional and conditional tests. The
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descriptive statistics of∆S are gathered in table 10.

Table 10. Descriptive statistics of the∆S .

Statistic In-sample Out-of-sample
Mean 3.6772 2.8773
Standard Deviation 57.6257 53.3055
Minimum -170.8800 -157.4600
Maximum 264.4000 141.4700
Skewness -0.1112 -0.0386
Kurtosis 4.6705 3.3710

A glance at the statistics reported in table 10 suggests that∆S has a different type of distribution in
the two different subsets: the in-sample subset appears notnormally distributed and its Lilliefors test
rejects at levels 5% and 1% that∆S comes from a distribution in the normal family, while for the
out-of-sample subset, the Lilliefors test does not reject at levels 5% and 1% that∆S comes from a
distribution in the normal family.

SensitivitiesΘ (i)
t , δ (i)

t andΓ (i)
t , with i ∈ {C (1),P(1),C (2),P(2)}, according to the portfolio com-

position reported in table 7 are computed for both the in-sample data and out-of-sample data using steps
(1) and (2) from the procedure described in subsection 6.5.Θt , δt andΓt are derived summing up the
correspondent sensitivities of the options included at time t. The Delta-Gamma-Normal approximation
becomes therefore:

∆Πt =Θt∆ t + δt∆S +
1
2

Γt∆S 2. (6.4)

Assuming that∆S ∼ N (0,σ2), it is possible to use the transformation∆S = σZ , whereZ ∼
N (0,1). The equation (6.4) can be rewritten as:

∆Πt =Θt∆ t + δtσZ +
1
2

Γtσ2Z 2. (6.5)

For each of the subsets one can utilize the standard deviation of ∆S and perform the partial Monte
Carlo Delta-Gamma-Normal VaR. The time horizonh is set to 1 day. Conditional and unconditional
tests are reported in table 11:

Table 11. Summary of test results for the Delta-Gamma-Normal model.

Subset α x̃ N00 N01 N10 N11 LRuc LRind LRcc

In-sample
95% 14 222 13 13 2 0.1827 1.1758 1.3385
99% 10 230 10 10 0 12.9555 0.8336 13.7891

Out-of-sample
95% 15 222 13 14 1 0.4961 0.0326 0.5286
99% 4 242 4 4 0 0.7691 0.1301 0.8992

Statistics for the in-sample subset show that the 95% VaR estimate is acceptable being all the values
LRuc, LRind andLRcc below the respective critical values. Instead, the large number of failures and
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relative statistics suggest that the estimation using the Delta-Gamma-Normal method for the 99% VaR
is not appropriate. This result confirms the insight that just using the standard deviation of a risk factor,
neglecting its fat-tailed behavior could lead to an acceptable VaR for relative low levels ofα (up to
95%), but could fail to provide suitable VaR for higher values of α, underestimating its actual value.
This might explain a fraction of what has happened during therecent financial crisis: managers, having
relied on Gaussian-based models and ignoring the non-normality of risk factors, obtained VaR values
that were (even catastrophically) wrong. The statisticsLRuc, LRind andLRcc for the out-of-sample subset
are all below the respective critical values for both theα levels considered. This is not surprising since
the out-of-sample dataset is close to being normal; also seetable 10.

6.5 Applying the Delta-Gamma-Q method: results

The second experiment involves two phases:

• Calibrate the parameters of the Delta-Gamma-Q model for a non-normal factor using in-sample
data;

• Assessing the model validity through conditional and unconditional tests using out-of-sample
data.

Daily 1-day horizonVaRt|t−1 estimates are obtained using the appropriate option pricesoccurred on
dayt −1. The first 250-unit subset of losses, covering the period from 13/07/2009 to 25/06/2010, is
used for parameter calibration while the second subset of losses, covering the period from 28/06/2010
to 10/06/2011 is used for model validation using the parameterD = E[dS /dY ] estimated in the in-
sample subset. The following part describes how the estimatesVaRt|t−1 are computed. The payoff an
European call option is given by (5.1), while the payoff for an European put option is given by:

max(K −S (T),0). (6.6)

The calibration step itself requires the following steps for each time interval considered:

1. finding the implied risk-free rates which are needed in finding δ andΓ ;

2. determining sensitivitiesδ ,Γ andΘ ;

3. working out coefficients that capture the index FTSE100 non-normality;

4. calculating coefficientsδY ,ΓY andΘY ;

5. deriving coefficientsaY ,bY andλY .

Given that daily implied volatilities of the call and the putoption in each pair,σC andσP , are also
available data, one can estimate the risk-free rate for eachpair of options by minimizing the quantity:

[

(

Ci −C (S ,K,σC , r,T − t)
)2
+
(

Pi −P(S ,K,σP , r,T − t)
)2
]

, i = 1,2,

wherer is the only unknown, since option valuesCi andPi , index valueS , strike priceK and time
to maturityT − t are all known. The functionC (·) refers to the Black-Scholes formulae to compute
European call option prices and is provided by (5.2), while the functionP(·) refers to the Black-Scholes
formulae to compute European put option and is given by:

P(S ,K,σ , r,T − t) = Ke−r(T−t)Φ(−d2)−S Φ(−d1), (6.7)
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whered1 andd2 are the ones expressed in (5.2). Functional dependence of variables ont is suppressed
for notational brevity. Therefore two risk-free ratesr1 andr2 are obtained for the two call-put option
pairs. This minimization was carried out in MATLAB 7.9 usingan inbuilt routine fminbnd, which uses
golden section search and parabolic interpolation. Sensitivities Delta, Gamma and Theta for European
call options can be calculated using (5.3), while corresponding sensitivities for European put options are
given by:

δP =
∂P

∂S
= Φ(d1)−1, ΓP =

∂ 2P

∂S 2 =
φ(d1)

S σ
√

T − t
,

ΘP =
∂P

∂ t
=−S σφ(d1)

2
√

T − t
+ rKΦ(−d2)e

−r(T−t). (6.8)

Having two pairs of options in our test portfolio as described in section 6.2 we obtain two sets of
sensitivities applying the appropriate risk-free rate to the corresponding pair of options.

A crucial role is played by the coefficientD=E[dS /dY ] which is able to encapsulate the possible
non-normality of the risk factorS . Its value for the computation ofVaRt would be computed using a
sample average over a “window” of FTSE100 data of lengthn. Using trial and error in the in-sample
subset we found that a suitable width for this risk factor window n̄ is 150. We used three 150 wide
rolling windows for the in-sample subset: the first from 10/07/2009 to 04/02/2010, the second from
18/09/2009 to 15/04/2010, the third from 27/11/2009 to 25/06/2010. The valueD has been com-
puted for each rolling window using formula (3.1) and their average value was used to verify whether
the model is valid using the conditional and unconditional coverage tests for the in-sample subset. This
simple moving average heuristic with overlapping windows provides a smoothing effect. For assess-
ment of out-of-sample data,D is computed using a single window of width 150 from 27/11/2009 to
25/06/2010 (i.e., the in-sample data immediately prior to the start of out-of-sample data set). The as-
sessment of modeling for out-of-sample data is done using a window of width 150 from 27/11/2009 to
25/06/2010, for the computation of the valueD needed for the conditional and unconditional coverage
tests.

CoefficientsaY ,bY andλY are calculated using formulae as reported in Section 4. Results for the
in-sample Delta-Gamma-Q and for the out-of-sample Delta-Gamma-Q are shown in table 12.

Table 12. Summary of test results for the Delta-Gamma-Q modeling of real data.

Subset α x̃ N00 N01 N10 N11 LRuc LRind LRcc

In-sample
95% 14 223 13 13 1 0.1827 0.0620 0.2447
99% 5 240 5 5 0 1.9568 0.2041 2.1609

Out-of-sample
95% 14 223 14 13 0 0.1827 1.5400 1.7226
99% 2 246 2 2 0 0.1084 0.0323 0.1407

Results, computed using formulae mentioned earlier in thissection, show that all tests for both 95% VaR
and 99% VaR are below the respective critical values, therefore cannot be rejected. The proposed model
hence seems to provide acceptable VaR estimates in both the sub-samples considered and for both the
confidence intervals, in contrast with Delta-Gamma-Normalmethod outlined in subsection 6.4 earlier.
The results using 5-day time horizon were found to be consistent with these findings and are omitted for
brevity.
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7. Conclusions and future research directions

Computing measures of risk such as VaR and CVaR involves a trade-off between accuracy and computa-
tional complexity. The method developed in this article, Delta-Gamma-Q for assets with possibly non-
normal returns, allows us to compute VaR and CVaR through a combination of Delta-Gamma-Normal
model in Glasserman (2003) and probability conserving transformation in Sornetteet al. (2000). In this
method, the marginal distributions of risk factors are mapped through nonlinear changes of variables
onto Gaussian distributions. A new covariance matrix can therefore be computed and it redefines the
dependence among transformed risk factors. Delta-Gamma coefficients obtained under normal con-
ditions are multiplied by factors that take in account the shape of risk factors and then fast Fourier
transform allows us to perform a quick computation of VaR andCVaR values. Using comprehensive
numerical experiments based on both simulated as well as real data, we have demonstrated that using
Delta-Gamma-Normal method for non-normal risk factors leads to misleading results while our method
corrects the bias to a significant extent. The numerical results are shown to be consistent across a range
of parameter values, across two different confidence levelsand across two different time horizons. The
method presented here highlights that using methods that donot recognize the lack of normality can
lead to rather biased estimates of both VaR and CVaR, especially in nonlinear portfolios. The method
presented features a good degree of flexibility since the useof nonparametric estimation can capture
the distribution characteristics of risk factors to be analyzed and the computational effort is lower than
partial Monte Carlo simulation.

This paper focusses only on dealing with possible skewness and fat tails of the portfolio distribution.
As mentioned in section 4, it would be interesting to see if the proposed framework can be extended to
prediction of VaR in a dynamic setting, perhaps including phenomena such as autoregressive behavior
and clustering of volatility. Further, the current work is limited to analysis of a given (or fixed) port-
folio. The use of probability conserving transformation and the subsequent transformed correlations in
selecting a portfolio which optimizes risk/return characteristics also indicates a potentially interesting
direction for future research.
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