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Measuring therisk of a nonlinear portfolio with fat tailed risk factors
through probability conserving transformation

P. DATE AND R. BUSTREO
Department of Mathematical Sciences, Brunel Universightisige UB8 3PH, UK.

This paper presents a new heuristic for fast approximatiMaR (Value-at-Risk) and CVaR (conditional
Value-at-Risk) for financial portfolios where the net woottportfolio is a nonlinear function of possibly
non-Gaussian risk factors. The proposed method is basedapping non-normal marginal distribu-
tions into normal distributions via a probability consexyitransformation and then using a quadratic,
i.e. Delta-Gamma approximation for the portfolio value.eThethod is extremely general and can deal
with a wide range of marginal distributions of risk factomscluding non-parametric distributions. Its
computational load is comparable with Delta-Gamma-Nommethod based on Fourier inversion. How-
ever, unlike the Delta-Gamma-Normal method, the proposedistic preserves the tail behavior of the
individual risk factors, which may be seen as a significanbathge. We demonstrate the utility of the
new method with comprehensive numerical experiments onlated as well as real financial data.

Keywords Value-at-Risk, Conditional Value-at-Risk, fat tailegtlibutions.

1. Introduction

All financial institutions need to perform effective risk megement. Quantitative risk measures have
become crucial management instruments for portfolio marsadgRisk managers and market regulators
have to control their risks or to appropriately allocaterthapital. Value-at-Risk (VaR) has been chosen
by the Basel Committee on Banking Supervision in Basel |hasstandard risk measure for financial
risk managers, see e.g. Basel Commiittee (2006) and Chen BdheR011) for details. It measures
the worst expected loss under normal market conditions asgecific time interval at a given con-
fidence interval. It may be seen as the “best of worst casesmegoé and it therefore systematically
underestimates the potential losses associated with duifigg level of probability. To define VaR, we
consider a real-valued random variat#é on a probability spac€Q, <7, P) that expresses the random
profit or loss of some asset or portfolio, its cumulative riisition function (cdf)F4 (x) = P(2" < x)

and a confidence level € (0,1). Therefore the quantityy (2°) = inf{x|F2 (x) > a} is thea-quantile

of 2. Then VaR at levetr is given by:

VaRy = —g1-a(Z). (1.1)
VaR has received criticism by Artznet all (1999), Acerbi & Tasche (2001) and Szegd (2005) for not

being a coherent measure of risk. This is because of thetaidit does not generally fulfill the axiom of
sub—additivity, apart from the case of linear portfolioshanormally distributed risk factors and similar
special cases. A sub-additive alternative to VaR is the itiomél Value-at-Risk (CVaR), defined as the
conditional expectation of loss for losses beyond the VaBll&CVaR and its minimization formula were
first developed i Rockafellar & Uryasey (2000). There, awtdemonstrated the numerical efficiency
of their proposed procedure through several case studielsiding portfolio optimization and option
hedging. The conditional Value-at-Risk at leeetan be defined as:

CVaR = ~E(2]2° < i a(2)). (1.2)

(© The authors 2008. Published by Oxford University Press dralbef the Institute of Mathematics and its Applicationdl #ghts reserved.
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Computation of CVaR, in effect, requires computing VaR atesal different confidence levels and
hence is typically computationally more intensive.

In general, the computation of VaR or CVaR for a financial fodid leads to one of the four possible
scenarios:

1. The portfolio is linear in the underlying risk factors aride distribution of risk factors can be
approximated by a Gaussian distribution. This is a case weportfolio consists of stocks or
stock futures, risk factors are stock returns only and timfidence level isr = 0.95 or lower. For
higher a values, distributional assumption of Gaussianity is inappate, as has been proven
time and again in literature. Nevertheless, Gaussian agpreemains popular due to its sim-

plici% and is often used as a starting point or as benchmsetk;e.g./Albaneseet all (2004)

an @8).

2. The second scenario is the one which involves a lineafghortvith non-Gaussian risk factors.
This means that the distribution of the portfolio net worthynbe different from that of the un-
derlying risk factors. Typically, this scenario requireMante Carlo simulation to compute the
guantiles of portfolio value distribution. There are twatdict choices of risk factor distributions
followed in literature; the approach based on extreme viiaery is followed in Embrechtst
al. (1999) and Gilli & Kéllezi (2006), among others. On the athand, different thick tailed
distributions which do not belong to the class of extremeealistributions have also been used,
including the use of mixture of normalslin Zangari (1996) @udfie & Pan (1997), Studentisas
outlined in Alexandérl (2008) and the use of mixture of eititistributions ima
An alternative approach is provided by the copula-basedetsq@ee e.d Nelgle@%) for an
introduction to copulas) in Rahma all (2011) and in Sak & Haksbz (2011), among others.

3. The third scenario is when the portfolio has Gaussian féskors but the portfolio value is a
nonlinear function of risk factors, e.g. due to presenceafvdtive instruments such as op-
tions. A very common way of dealing with this scenario is gsinquadratic (or Delta-Gamma)
approximation to the portfolio value, since quantiles oluadyatic form of jointly Gaussian ran-
dom variables can be efficiently computed using Fourierrsiea integral; seee.q.Glasser-
man (2008) for a detailed treatment. Other approachesdec{Tornish-Fisher expansion as
discussed ifh_Jaschke (2001) and Zandari (1996), Johnsesfdranation discussed [n Zangari

), Solomon-Stephens approximations discussed fteBrlones & Schaefer (1999), saddle
point approximation outlined in_Feuerverger & Wo 000Y ather Fourier inversion based
methods described in Albaneseall (2004) an inez (1997). Monte Carlo simulation with
the quadratic approximation of the portfolio value (soladlpartial Monte Carlo simulation) is
computationally typically simpler than full Monte Carlos ¢he computational load of pricing
nonlinear instruments for given values of risk factors maydr greater than computing quadratic
forms of risk factors; seEgETslk 96) for an applicati€omparisons of accuracy and effi-
ciency among mentioned methodologies are carried aut imMitimer (1999) and in Castel-
lacci & Siclar?@%). Different methods for dealing withi$ Gaussian risk factors, nonlinear
portfolio scenarios are compared.in Britten-Jones & Saaf999) and in Pichler & Selitsch
(1999).

4. The last and the most general scenario involves a partfath nonlinear instruments which de-
pend on non-Gaussian risk factors. Any financial portfoll®lving derivative instruments on
stocks (such as hedge funds or absolute return funds) fdérnhis category. Unlike the normal
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distribution, the quadratic forms of fat-tailed distrilmris are not amenable to easy evaluation
in general. Apart from full Monte Carlo or partial Monte Gadimulation (using quadratic ap-
proximation of nonlinear functions), few computationatlyeap alternatives currently exist for

this scenario; sde Glassernetrall (2000) and El-Jaheit all (1999) for some approaches to this

problem.

The financial crisis of 2008 has brought back to researcheisy@anagers the fact that normality as-
sumption for risk factors is not realistic. Gaussian duttion-based models are appealing because of
their simple implementation, but they fail to explain reaind risk factor characteristics such as fat-
tailedness and skewness. |In Nozetrial. (2010), Sheikh & Qidol (2010) and Stoyanewall (2011)
authors highlight the fact that empirical research on firelmeturns carried out since 1950s leads to the
need to consider several phenomena including fat tailsyrs&es and serial correlation. Therefore mod-
els that rely on the assumption of normal distributions rtedzk relaxed in order to identify a potential
much higher level of risk. Parsimonious Gaussian-basedelsate often employed by practitioners
despite empirical evidence to the contrary. However, dafieduring periods of high turbulence in
the financial markets, such as the one in the recent crisigssEmity assumption can lead to severe
under-estimation of risk.

The focus of this paper is to provide a heuristic to calcul&® and CVaR for the last scenario
mentioned above, i.e. for nonlinear portfolios with norrmal risk factors. The proposed heuristic is
computationally cheaper than a full or partial Monte Carithat tailed distributions, yet has a potential
to be far more accurate than normal distribution-basediatiain. The novelty of our heuristic lies in
offering an alternative with a potentially intermediatedeof complexity and accuracy between the two
extremes: between carrying out a full Monte Carlo simulatiy sampling from fat tailed distributions
followed by multiple pricing function evaluations on onendeand evaluating a single, one dimensional
integral assuming a normal distribution and a quadratic@pmation of the portfolio value on the other
hand. Our approach rests on transforming the problem with@aussian marginals into Gaussian ones
via a probability conserving transformation, as used im8tieet all (2000). Unlike mean-variance
based Gaussian approximation of marginal densities, pitityaconserving transformation retains the
tail behavior which is crucial in the computation of risk rseees. This transformation is then followed
by construction of a joint Gaussian density and constraatica quadratic form in the jointly Gaussian
transformed variables. One can then use the Delta-Gammadlmethod for nonlinear portfolios with
Gaussian risk factors for the computation of risk measuFesther, one can re-use the existing code
for the fast Fourier transform (FFT) based evaluation of R\aing Delta-Gamma-Normal method, by
using the proposed heuristic of transforming the risk fectoto Gaussian factors.

The rest of the paper is structured as follows. Sedflon bkskes the notation used and outlines
the Delta-Gamma-Normal model for ease of reference. Sg@tintroduces the probability conserving
transformation which is used later on in this work. Secfibdescribes the proposed method, which
we refer to adDelta-Gamma-Qfor non-normal risk factors and nonlinear portfolios. &=t illus-
trates this method with extensive simulation experimeritls monlinear portfolios. Sectidd 6 presents
backtesting with real option price data and discusses oadii@ntages in computational terms of Delta-
Gamma-Q over partial Monte Carlo and finally secfidn 7 cotetuthe article with comments on future
research directions.

2. The Delta-Gamma-Nor mal mode

Let us recall the model developed in Glasserman (2003) fioipedation of Value-at-Risk with normally
distributed stock returns, but a portfolio which dependslimearly on stock prices. We introduce the
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following notation:

- = vector ofm market prices and rates;
At = risk-measurement horizon;
A = change in¥ over intervalAt;
(.7 ,t) = portfolio value at tim& and market prices”;
% =loss over intervalit = —AN =M (S,t) — (Y + At + At);
Fo(x) = P(Z < x), the distribution ofZ.

The time intervalAt is typically very short, while the numben of risk factors could reach thousands.
Throughout this paper, we use 1 day as our time interval formding VaR, although it is straightfor-
ward to generalize the results to other time horizons. Afpletthat includes options depends nonlin-
early on the underlying asset prices and many fixed-incomargies have a nonlinear dependence on
interest rates. The change in portfolio valuél (., t) is defined ad1(.” + A.7  t + At) — 1(.7,1).
Some nonlinearity can be captured using Taylor expansitihtbe quadratic term:

1
AM (1) z@At—l—éTAY—i—EAYTFAY, (2.1)
where the vectod.# denotes the change of the underlying value, while the S@iﬁl‘%

, the vec-
& ) 2 7 e . . .
toro = % and the matrix” = 2 g(;;’” represent the sensitivities of an instrument at im@iven

the portfoliol‘l, all the sensitivitie®, & andl” are assumed to be given exogenously for the purpose of
this paper. For individual derivative instruments such gisoms, & values are provided by commercial
economic data providers such as Bloomberg. Depending onatuge of derivative instruments in the
portfolio, these sensitivity values may be found using aetaof methods from market data and from
commonly used risk neutral models, including finite diffezes, implied volatilities, Malliavin calculus
(for use of Malliavin calculus in computing sensitivitiebagrtain exotic options, see e.g. Montero &
Kohatsu-Higal(2003)), etc; see, e.g. Glassefman (2003Haid2006). Sensitivitiesd and ™ are
regularly computed for hedging purposes by single tradagkd and can be combined (at the end of the
day, for example). This leads to a quadratic approximatio’o AssumingA.¥ ~ .47(0,%), then

we can write:

AY =CZ with CCT =53,

whereZ ~ .#(0,1) andC is a square root ok . Square root matrices are not unique and the exact
choice ofC is decided as follows. We can re-wrife (2.1) in termsz6f

1
fzaf(CTé)TffifT(CTFC)f, (2.2)

with a = —©@At deterministic. As shown in_Glasserman (2003), a correctoghof C allows us to
express? as:

m
Latb' 2+ ZXNY =a+ Z(u%mizz)ze@. (2.3)
i=

whereb = —CT 3, A; are themdiagonal values of the matrix = — %CTFC andC is a square root af
such aC :ACU, whereC is the Cholesky factor af » andU is the matrix of normalized eigenvectors
of —%CTFC. Since we approximate(.Z > x) ~ P(2 > x), now we have to derive the distribution of
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2. It turns out that this can be determined by characteristiction of a quadratic form of Gaussian
distribution, which has a closed form. In particular, thamcteristic function of2 as expressed by

2Z3)is
$o(t) = E[elt2] = ¥ — gta i 1 ol s b2t2 2.4)
S a B iEl\/lej/\it P 2i;1—2j/\it ’ '

wherej = v/—1. Using inversion integral (see,g.mmﬂ), one can retrieve the probability
distribution function (pdf) or cdf of a continuous randonrigale. The characteristic function inver-
sion using the FFT algorithm given the continuous randornatiée 2, with pdf f» and characteristic
functiong g, forl,ue R andN € N, can be carried out - as proposel@ZOO?) - rezimgni
that:

0 . u . N—1 .
0200= [ _fo@edax [ fo(@eidas 3 fo(aiaae™, @25)
- 2

whereqx = | + kAq, with k=10,1,...,N—1 andAq = (u—1)/N. Creating a suitable grid afvalues
one can compute the quantities:

q(n) ~ %tﬁg(rn)e’””', (2.6)

and then using FFT to obtain an approximation to ffgx) at discrete pointgk. Now, using the for-
mulae [I.1) and(1]2) (with an approximation of the expémteintegral by an appropriate summation),
one can obtain VaR and CVaR. Note that there are two reasotmifwating Taylor’s series after two
terms. The first reason is the computational simplicity ahpating quantiles of a quadratic form of
a normal distribution (as outlined above). Secondly, wideported empirical experience supports the
use of second order approximation as adequate reflectiomamiges in portfolio value, especially over
short time horizons as considered in this paper.

In |Glassermaret all (2000), the authors relax the assumption that the risk facice normally
distributed and demonstrate that the result can be exteiodesk factors which have a multivariate
distribution. In this paper, we go a lot further in generaligDelta-Gamma-Normal method by using
possibly non-parametric distributions. The key to our rodtis a probability conserving transformation,
which is described next.

3. Probability conserving transfor mation

The idea of probability conserving transformation has bhesed in the context of analysis of portfolio
strategies in_Sornettet all (2000). We employ this idea in the current context of risk patation.
Suppose that we have a set of dependent random varigBle®>, - - - , Zn, with arbitrary marginal cdfs
F,i=12---,m For eachZ;, sample9<§'), j=1,2,--- ,ndrawn fromF(x) are available. In the
present contextZ” might represent a vector of asset returns or any other riorfe. Denoting the
standard normal cdf bgp(y), define a function ofZ; by

W(2i) = @R (20),
E” = Lp(xgi)). If we envisagey%i) to be a sample of a random varial®with standard normal
distribution, then itis clear thap(y%i)) =K (xﬁ”). Y is the so-calleghrobability conserving transforma-

and lety

tion. We can then find the sample covariance matri@oﬁsingy(-”. We don’t knowa priori the joint
distribution of the vector of transformed vector-valueddam variable%’. However we can introduce
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an approximation using a standard result from informatie@oty @b@l)): conditioned only on the
knowledge of the covariance matrix, the best represemtafia multivariate distribution is the Gaussian
distribution, in the sense that it maximizes entropy, sge@over & Thomds (1991) for details. There-
fore, conditioned on the sole knowledge of the covarianceirma,,, the best approximated parametric
representation of the multivariate distribution#fis given by:

fo (y) = : exp( - }yTZgyly) :
| (2m™2,/de(Zy) 2

Unlike a mean-variance based normal approximation of aivawiate density, the proposed approxima-
tion heuristic preserves the fat-tailed nature of the aagvector of risk factors?”. We use this method
in the context of the VaR computation as follows.

If F.(xg')) are not normal or ifZ; are not jointly normal, the VaR computation cannot be reduoea
computation of a one dimensional integral as outlined inpife¥ious section, even after Delta-Gamma
approximation of the nonlinearity. To remedy this, we carag a nonlinear transformation to normal
distributions, as proposed in_Sornegteall (2000): letg be the standard normal pdf amd be the
standard normal cdf. Ldt(u) be a densityl- (u) be its corresponding cdf and define the function

oW —FU) e \/iz_n/oweédz:/ouf(z)dz,

where the random variab#” ~ .47(0,1) by construction. It is therefore possible to map each vajue
into a new variablg;:

yj = W(x) = @ (F(x)) = V2 erf 1(2F (x)) — 1),

where the error function operator, erf, is defined as:

2 (%
erf(x):WT/0 e dt.

Referring back to notation introduced previously in thistg® since historic data is available (i.e.
xg'), withi=12... mandj=1,2,....,n wheremis the number of factors andis the number of

data available for each factor), it is possible to comm%i?efor all i andj. The covariance matrix of

the vector variable? is defined as, = E(yy'), where each elementy | ap IS Obtained by sample
average approximation:

13 (@b
2 == Oy
(2] ap ”|:§ I

We need to findd andl™ in terms of the transformed variables, which will requireifirg the derivative
g_Q- Having ®(%) = F(2;), we can writeZ; = F,1(®(%)), where% is a standard normal random
variable andZ; is a random variable with cdf. Since® andF are both continuous with densitigs
and f;, respectively, it follows that the functiona; = F,~(®(%)) is continuously differentiable such
that:

dx o)

dy @) o0
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Now, remembering thab (%) = F(.2i), equation[(311) can be simplified as:

dy  fi(x)’

dx  o(y) (3.2)

(M)
_ i
fi (xg')); for a detailed treatment of non-parametric estimatiortatisical distributions, see Bowman &

Azzalini (1997) and Fan & Gijbels (1996).

Nonparametric estimation allows to achieve maximum flditybin obtaining quantities5(x;’) and

4. Delta-Gamma-Q for assets with non-normal returns

Here, we bring together the material in the last two sectiompsopose a procedure for risk computation
for a nonlinear portfolio with possibly non-Gaussian rigictors. Given a series of changes in risk
factors (e.g. asset priced)¥;, we start by computing their probability conserving tramsfationA %:

A% = o YR (AA)), i=1,2,....,m (4.1)

EachA% ~ .4/(0,1), and the vectoA% ~ .47(0,%y ), with diag 2% ) = (1,1,...,1). We empha-
size the fact that the matriX, is generally not an identity matrix and depends on samplestaiions
between the elements 4f7. SinceA%; have been represented jointly normal, VaR and CVaR compu-
tations can be estimated using an adapted versidn df (2.1):

1
ATI(S 1) = Oy At+ 8y AY + SAY Ty A, (4.2)

with A% derived fromA 2" using [4.1). Equatioh(4l.2) can be converted to an one-difoeal integral
only provided we can find sensitiviti€s, andl» . Now, note that:

© =0y, (4.3)
[@L:j—;:;’—;i—é:[ LZ—‘;, and (4.4)
0], 55 (55) - (G5 S -TLED (&) @

whered andl™ are sensitivities under normal conditions, while the detiesd.”/d% are computed
using formula[(311). Equatiofi(4.2) has got the same stra@s of equatiori(21.1). Hence we can apply
the characteristic function inversion using the fast Feuriansform to find approximate VaR and CVaR
of the portfolio using Delta-Gamma approximation. We walldhis new method as Delta-Gamma-Q
method for assets with non-normal returns. We summarizsttpes for computation of VaR and CVaR
using Delta-Gamma-Q method below:

e Find option sensitivitie®, I and® assuming normality for risk-factors;
e Apply nonparametric estimation to the distribution of tkeéewant risk-factors”;
e MapA.¥ into A% through probability conserving transformation;

e Determine the covariance matibg ;
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e Find for each risk-factor the coefficient that expressesds-normality by applying equation
(3.1) and by averaging values;

¢ Evaluate the coefficient®, andly using equation$ (4.4) and (%.5) respectively;

e Calculate characteristic function coefficieats = —0 At, by = —CJ, 85 andAy = —3C, [ Cy,
whereCy is a square root af, as described in Sectignh 2;

e Compute VaR and CVaR, either by evaluating the integral inatign [Z.5) directly with appro-
priate limits or by using FFT.

To re-emphasize the point of this exercise, we are tryingetgain the simplicity of computing the
guantiles of a quadratic form for a Gaussian distributiomil@wstill preserving the tail information in the
marginal risk factor distributions. Note, in particuldrat>, is notan approximation to the covariance
matrix of A.# as this isnot a mean-variance based approximation. Approximating ailoligion by a
normal distribution via probability preserving transfation can lead to far better quantile estimates
than a mean-variance based approximation, as the expesiimeghe subsequent sections show.

Note that our VaR evaluation is static, i.e. we are computaig over a single time-step. As such,
we are using non-parametric distribution to model the réggktdrs and will then map them into normally
distributed risk factors. The underlying stochastic pescerhich generates the said non-parametric
distribution is of no direct relevance in our current franeekv Linking the evolution through time of
the risk factors (e.g. as a Lévy process) to the evolutioguzntiles of their multivariate nonlinear
function (such as the portfolio net worth) is an interestimgjc which is outside the scope of this paper
and is a topic of current research.

We now demonstrate the method using a simulated portfosbifirthe next section, followed by a
backtesting experiment with real data in secfibn 6.

5. Simulation experiments

We first evaluate the Delta-Gamma-Q model for assets withnaymal returns considering a simple
hypothetical portfolior, in order to gain some insight in the performance of the psepdheuristic as
compared to the performance of standard methods such asttee®amma Monte Carlo (also called
partial Monte Carlo). The hypothetical portfolio is made afpone share each aoh correlated fat-
tailed stocks¥1,.7%,...,.m andm European call option%1,%>,...,%m having.71,.%,...,.%m as
underlying assets, respectively. Therefore the portfa@iae isf'T = 3", (/i + %i). Each European call
option has payoff (or value of the call option at expiry) givey:

max A (T) —K;,0) i=12,....,m (5.1)

(T) is the price of thé-th underlying stock at tim& (maturity), andK; is thei-th option strike price.
Stocks.#; have been simulated using:

At) = AO)eH-o/2H 12 m

wherev = [vq,Vo,...,Vm|" is obtained by first generating~ [wi,Wo, ..., wm|", then given the correla-
tion matrixH, we setv = CTw, whereC is the Cholesky factor decompositiontdf w is chosen to have

a fat-tailed distribution, the exact choice of which is dissed later in this section. The computation of
each option value has been obtained using Black-Scholesifae:

€ (S K, o, T —t)=.2D(d)) — KD(dp)e TV, (5.2)
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where
g In(.7 /K) + (r + 202)(T —t) 4o In(.7 /K) + (r — 202)(T —t)
1= ovT —t ’ 2= ovT —t ’

whereT represents the maturity,—t is the time to maturity andis the interest rate and

1 X
d(x) = E[me*%fdy

Note that these formulae will not be valid unleggabove is normally distributed, i.e. unless the under-
lying continuous time process is geometric Brownian matidawever, option prices and sensitivities
are often computed under assumption that Black-Scholesilarholds true, irrespective of evidence to
the contrary, see e.m ). Sensitivities of interest for a European call optio such as
Delta, Gamma and Theta are given by:

0¢ 0°¢ @(dp)
= — = [ = =
5’6 0.7 ¢(dl)a ¢ 0y2 YUﬂ’
0% [FLop(d) —r(T—t)
Op=— = {72 — +rK @(dp)e : (5.3)

where@(x) = ﬁe‘xz/ 2 In keeping with the standard market practice, we will usenidae [5.1){(5.3)
for prices and sensitivities in our computation. However,agsume that theal stock price dynamics
are driven by fat tailed distributions rather than normatégnThe actual distributions ef; and the
parameters used are described later in this section. Whiihg the formulae above is mathematically
inconsistent with having non-Gaussian risk factors, no&t it is standard market practice to use Black-
Scholes formulae despite its lack of mathematical justificeae As an example, Black-Scholes pricing
formula is commonly used to construct an implied volatiityface for options on the same underlying
asset with various strikes and maturities. This surfacedvoe reduced to a single point if the assump-
tions behind the formula were to be true. Further, implieldtiiities are often used for the measurement
of risk using partial Monte Carlo for option portfolios. Ochoice of using these expressions &r, l»

is thus in line with the reality of the market and it also allbous to make a ‘like-for-like’ comparison
between various partial Monte Carlo methods, as we will g n

Numerical experiments involved comparisons of five diffemraethods:

e Empirical methods a Monte Carlo assessment of the chosen assets. Pdsdényeahead portfo-
lio values are obtained by simulatihy trajectories for then stocks and adding their correspond-
ing European call values, computed throughl(5.2). The sitinr is performed with distribution
of risk factors specified later in this section. The loss amdifdistribution is achieved subtracting
the stocks’ initial values and the fair price of the call opt from the simulated portfolio values;

e Delta-Gamma-dP metho@lso referred to as partial Monte Carlo earlier, is a comaipon ac-
cording to formula[{Z]1). This involves simulating trials for each¥;, whereA.# are obtained
deducting#;(0) from the corresponding stock pric& while o andl™ are the ones provided in
section2;

e Delta-Gamma-Q methothvolves nonparametric estimation of pdf and cdfrofrisk factors.
Nonparametric estimation is able to capture the featurasskffactors such as skewness and



10 of[28 P. DATE AND R. BUSTREO

fat-tailedness. The probability conserving transforovafd.1) on eacih.#; provides cdf and pdf
values to apply formuld(4].2). Coefficientd]; in (£.4) are computed approximately &[); ~
E[d.7;/d#][ 6]i, while element$l|ij are computed approximately as

[z ]ij ~ E[dA/d]E[d.}/d] [T ij,

where coefficientsl.#/d% are calculated using formula(8.2). The approximafipd. 7 /d%]

is introduced to decrease the computational burden of therithm and, simultaneously, to
achieve VaR values close to those obtained through full Kl&@#rlo simulation. Beind\ % ~
4 (0,1) we are in a framework similar to the one described byl (2.3 titerefore possible to find
coefficientsay, by andAg’s. Using these coefficients one can invert the related cieriatic
function via FFT;

e Delta-Gamma-dP Normal methapplies formulal(Z]1), i.e. assuming and%; to be jointly
normally distributed and ignoring the functional depentkebetween; andé;;

e Delta-Gamma-Q Normal methaapplies formulal(Z]4), i.e. uses a quadratic approximadi®n
suming normal risk factors as in Delta-Gamma-dP above, Gupeites VaR using an inversion
integral.

The last two models use normal factors with mean and varitratanatch sampling the mean and the
variance of changes in the respective risk factor. This oulogy allows a fair comparison between
the first batch of three models considered and the last tw&indahis assumption can be interpreted as
follows: provided that a portfolio evolves as described by the emglirnodel, what would be the VaR
and CVaR that one would compute by employing the Delta-Ga@madel or a Delta-Gamma-Normal
model?

Probability distributions of risk factors for empiricaldbelta-Gamma-dP have to be assessed. This
can be done using either parametric (making use of a présdlewdel fitted on the already available
dataset) or nonparametric estimation. Once the probalditribution is estimated, Monte Carlo sim-
ulation can be used to find VaR and CVaR for empirical as welDaka-Gamma-dP methods. For
Delta-Gamma-dP normal and Delta-Gamma-Q-normal, VaR afaRGre obtained by using formulae
(I.1) and[[T.R) for normal distribution and given confidelesel.

Once VaR is computed using different methods, we wish to @mfheir accuracy. Confidence
intervals and/or standard error estimates are usually ispdrform this task. The author lin_Pritsker
@) stated This is typically not done for Delta and Delta-Gamma basdiireges of VaR since there
is no natural method for computing a standard error or consting a confidence intervélabout this
issue. One can use the empirical distribution from a MontéoGmulation to obtain confidence inter-
vals for VaR estimates (95% confidence are typically catedlgbut this can be easily generalized). The
nonparametric confidence intervals, based on finite saretey, are easy to compute and are valid for
any continuous distribution of the random varialfte Varying the sample sizé/, of the Monte Carlo
simulation changes the width of the confidence intervalpetiog to the accuracy of VaR needed. Table
[l displays the index of ordered statistics to build 95% canfik intervals for 95% and 99% VaR for a
different number of draws. Confidence intervals for CVaR also be obtained using formu[a(ll.2) and
tabled, but are not reported here.
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Table 1. 95% confidence intervals for Monte Carlo 95% and 9%R.V

Number of Draws 95% VaR 99% VaR
Lower Bound  Upper Bound Lower Bound Upper Bound
500 15 35 1 10
1,000 37 64 4 17
10,000 457 544 81 120
50,000 2,404 2,597 456 545
100,000 4,865 5,136 938 1,063

Our experiment considered a portfolio made up of fifty stoakd fifty European call options. Stock
prices were generated usimg distributed as Studenttswith different degrees of freedom, ranging
from 4 to 10. The values chosen for the simulation include titthe horizon idh = 1 day, the number of
simulations required is1 = 10%, the interest rate= 0.05, the maturitied; = 1 year, fori = 1,2, ...,50.
The correlation matricesl are randomly generated. Strike pridésand initial values#(0) were
chosen such that some of the options were in the money, soneeatvihe money and some were out of
the money. The parameters used in our simulation are in tigereeported in tablg 2. The full table of
values is omitted for brevity.

Table 2. Parameters range.
Value Min Max
Ki 2 99
i -43 41
Z0) 12 123
Vi 4 10
The proposed method provides a new covariance matrix whatthitreflects non-normality in risk factor

distributions. Computations of 95% and 99% VaR and CVaR th@en obtained keeping constant all
the values except from the correlation matdxvhich is allowed to vary and reported in tablé§13—4:

Table 3. Values of 95% and 99% VaR for the four experimentsnted, with confidence intervals in brackets.

Experiment 1 2 3 4

95% VaR

Empirical 90.4 72.6 82.1 160.1
(87.9,93.3) (71.1,74.7) (79.4,84.5)  (151.8,167.7)

A-I-dP 92.3 74.1 82.5 162.6
(89.4,94.7) (71.7,76.3) (79.2,85.4)  (153.2,168.4)

A-I-Q 91.0 71.9 81.9 164.1

A-I-dP Normal 84.6 90.2 86.1 102.5
(81.6,87.5) (87.4,92.8) (83.8,89.9) (96.4,107.8)

A-I-Q Normal 84.0 91.0 854 104.4

99% VaR

Empirical 131.5 108.0 117.8 246.9
(127.3,135.0) (103.8,111.6) (110.8,124.3) (237.2,264.5

A-I-dP 136.0 109.1 119.8 244.9
(131.9,140.9) (106.6,112.6) (115.2,124.6) (238.1,263.2

A-I-Q 135.4 109.4 118.2 250.0

A-I'-dPNormal 127.4 135.6 126.8 152.0

(122.2,131.6) (132.2,140.8) (121.5,132.1) (146.5,157.7
A-I-Q Normal 127.1 137.4 125.9 155.7
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Table 4. Values of 95% and 99% CVaR obtained by varying theetaiion matrix.

Experiment 1 2 3 4
95% CVaR

Empirical 1159 94.2 103.7 212.8
A-I-dP 118.4 955 1055 212.7
A-I-Q 1152 949 1058 217.7

A-I-dP Normal 110.0 1175 1108 1324
A-r'-QNormal 110.8 119.1 111.2 134.8

99% CVaR

Empirical 150.9 1275 1329 2925
A-I-dP 155.6 125.3 141.0 2885
A-I-Q 153.4 127.0 1315 285.7

A-I-dPNormal  147.2 155.2 143.9 176.9
A-I-QNormal  145.8 157.9 1425 180.4

Confidence intervals for full and partial Monte Carlo methaake obtained using values in correspon-
dence of 10000 draws in tablgl1l, while interval estimates are unavklédr Delta-Gamma-Q since
it is a deterministic computation. The results indicatd,tath varying covariance matrikl, while
Delta-Gamma-dP and Delta-Gamma-Q provide a reasonabty@maroximation to the empirical value
of VaR and CVaR, the two remaining models (based on normadispimption) do not provide a consis-
tent estimation of VaR and CVaR. In particular, using the ieitgd VaR estimations as references, we
can state that:

e in the first experiment 95% and 99% VaR are underestimatetmitar% and 3%, respectively
and 95% and 99% CVaR are underestimated of about 5% and 38éctezly;

¢ in the second experiment 95% and 99% VaR are overestimataloaft 25% and 26%, respec-
tively and 95% and 99% CVaR are overestimated of about 25%23%g respectively;

e in the third experiment 95% and 99% VaR are overestimatedbofied% and 7%, respectively
and 95% and 99% VaR are both overestimated of about 7%;

e in the fourth experiment 95% and 99% VaR are underestim&dtataut 35% and 37%, respec-
tively and 95% and 99% CVaR are underestimated of about 388%, respectively.

VaR and CVaR computed under the assumption of normal disétbrisk factors are, according to
expectations, unreliable. Results for varying parameddhver thanH are qualitatively similar. Port-
folio composition changes such as the number of stocksdecluthe number and/or kind of (puts or
calls) options included also lead to similar qualitativécloisions. Finally, the proposed methodology
is quite general and works when few risk factors are norniiliyributed and/or present a certain de-
gree of skewness. This was verified in simulation experiserith few normal and centered skew-
distributions (see e.q. Azzalini & Capitahio (2003) for aits about skewi-distributions) with a skew-
ness absolute value greater than one components. Resaltshirse cases (varying other parameters,
changing portfolio composition and changing distributibassumptions) do not add any additional in-
formation and are hence omitted for brevity. We expressditnesome considerations about accuracy
and computational time of the simulation for the three mdshased for computation of VaR and CVaR
in our article: full Monte Carlo, partial Monte Carlo and EeiGamma-Q method. A fair comparison
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involves that all three methods require a nonparametrimasibn. Let us recall tham is the num-
ber of risky factors andl is the number of simulations required. The empirical metbiofiill Monte
Carlo method is generally thought to give the most accurstienates of VaR for large sample sizes
but it tends to be very time consuming, specially when thdygical solutions for some assets are not
available. Furthermore, closed-form pricing formulae moeoften available and options often need to
be priced (and the sensitivities need to be computed) nealltie.g. by solving a partial differential
equation. In these cases, the time required will be sevedalrs of magnitude higher, especially for
Monte Carlo method. The Delta-Gamma method or partial M@ado produces estimates less accu-
rate than full Monte Carlo but is less expensive in termsrogti As reported in Mina & Ulmet (1999),
the partial Monte Carlo require&(Mn?) operations while the full Monte Carlo requires additiorialet

to assess all of the positiohs times. The Delta-Gamma-Q method demonstrates an accuisichh w
is comparable to the one of partial Monte Carlo and requirés®) operations. Therefore, compar-
ing computational costs it emerges that partial Monte Gargtower than the Delta-Gamma-Q method
unlessm is very large depending on the VaR confidence lev€E.g., about 1000 for 95% VaR and
about 5000 for 99% VaR, as chosenlin Mina & Ulmeér (1999)). Speed parémces of a typical port-
folio made up ofm stocks andn European call options witm = 1,2,3,4,5,10,20,30,40,50 for the
empirical,A-I"-dP andA-I"-Q has been measured using an Intel dual core i3 clocked&GHg, with
3GB RAM and using MATLAB 7.9. Any computation includes essition of 95% and 99% VaR and
CVaR. The computational times (expressed in seconds) adrtip@rical, A-I -dP andA-I"-Q methods
are reported in tab[g 5:

Table 5. Net computational times for the computation of Vale €VaR for the portfolio made up ofh stocks andn European

m  Empirical A-IF-dP  A-Ir-Q

1 0.090184 0.084911 0.025212
2 0.137924 0.103209 0.040598
3 0.158297 0.113802 0.043022
4 0.207286 0.137386 0.048445
5 0.233043 0.164483 0.051230
10 0.621080 0.206162 0.067723
20 0.832268 0.301063 0.163616
30 1.018157 0.373982 0.231480
40 1.288235 0.479643 0.288678
50 1.466571 0.563397 0.332650

The computational times in tadlé 5 refer to computations il 000 simulations and do not include
the time for nonparametric estimation of the risk factorse $#t the full Monte Carlo method as the
reference in terms of values and computational times. Itheanoticed that both partial Monte Carlo
and Delta-Gamma-Q are quantitatively comparable to thereate, as shown in table§B-4. Further-
more, our method requires a lower amount of time than ther dét® methods considered for all the
included values ofm. As envisaged in the study of computation costs the Deltan@a-Q method for
the computation of results is the quickest, since it explibie computational speed of the FFT algorithm.
Larger scale computational tests tend to be portfolio-$ige¢iowever, the qualitative conclusion that
Delta-Gamma-Q method is comparable in its speed to Deltar@aNormal method, but outperforms
it in accuracy for non-normal risk factors, holds true.
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6. Empirical tests

Having seen the performance of our method with a simulatetigho with up to 50 assets, we now
move to demonstrating it with a real financial portfolio araimparing it with Delta-Gamma-Normal
method in computing VaR and CVaR. This section is divided iiite subsections. Subsectibnl6.1
introduces the data employed and presents some of theirijpldse statistics. The portfolio analyzed
is constituted of four European options on FTSE100 indexdlwhepresents our single risk factor). A
representative real portfolio with a relatively small nuenbf assets is chosen for demonstration since it
is easier to visualize data and report results with a smatlbar of assets; it is also easy to reproduce our
experiments based on the information provided here, ifd@sBSubsectidn 6.2 illustrates the choice and
the features of the portfolio tested, while secfiod 6.3lidels details on the backtesting tools used. These
include tests for unconditional as well as conditional cage in predicting tail losses. Subsectibns 6.4
and[6.5 respectively report the results of backtestingguBialta-Gamma-Normal approach and the
approach presented in this paper.

6.1 Data

For computing the VaR estimates and for backtesting, wewsaeéts of data:

1. Asetof 501 daily closing prices for each of the four in@ddeuropean options on the underlying
index FTSE100, according to the portfolio composition sietin tables VEB;

2. A set of daily closing FTSE100 values which is used forneating the parameters related to
non-normality as described in sectdn 3.

All the data has been retrieved from Datastream. The partésialyzed includes observations from
10/07/2009 to 1006/2011. The whole set of daily portfolio variations has beelit &p two 250-
units subsets: an in-sample subset that covers obsersdtmm 13/07/2009 to 2506/2010, and an
out-of-sample subset that covers observations froff088010 to 1006/2011. Summary statistics on
FTSE100 daily returni; for the considered period are reported in téble 6:

Table 6. Summary statistics of the FTSE100 returns for thiegd0/07/2009— 10/06/2011.

Statistic Value
Mean 0.0722%
Standard Deviation 1.0349%
Minimum -3.1815%
Maximum 5.1610%
Skewness 0.0072
Kurtosis 4,3989

The empirical distribution of daily returns is leptokurice., its kurtosis exceeds the value 3), that
indicates fat-tailedness, and slightly skewed. The Lfdlis test, used to test the null hypothesis that
data come from a normal distribution when the sample is s(aaé e.gs@‘?) for details),
also rejects normality at both 5% and 1% significance lewahe considered series. Figlile 1 represents
the returns histogram for FTSE100 for the considered period
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FIG. 1. FTSE100 returns histogram for the period@p/2009— 10/06/2011.

6.2 Test portfolio

The portfolio tested includes four European options on Hmesunderlying: the index FTSE100. Its
composition is changed periodically to mirror the variai@ccurring in a typical, actively traded op-
tions portfolio. To be specific, the portfolio is made up obtywairs of options, each pair consisting
of a call option and one put option having common strike pkicand maturityT. The daily portfolio

7% is made up ofé(”, %(”, %(2) and 34(2), witht =1,2,...,501. Therefore the daily portfolio val-
uesll; are computed aBl; = ‘Kt(l) + %(l) + %(2) + %(2) and the daily changes in portfolio values are
computed ag\l;_1 =T — M1 fort =2,3,...,501. We decided to change the portfolio composition
over time, including options having different charactécs (strike prices and maturities), to highlight
that the method does not depend on specific features of th®lmr As mentioned earlier, nonlinear
portfolios are rarely static over a long period of time. Tmggmte a large enough data sample, with the
same underlying risk factor for backtesting, it makes séosese a portfolio of options which evolves
over time. The whole length of time under test is split in siffedlent length intervals. Intervals with
different lengths provide again a more general frameworkevery change of interval one of the two
call-put pairs is dropped and is alternately replaced bythaeracall-put pair of options, with both the
call and the put having the same strike price and maturitiplel@ displays the portfolio composition
chosen, whereas figuré 2 provides a graphical represemt#tibie portfolio composition as a function
of time.
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FiG. 2. Graphical representation of portfolio compositioniing. Options are included in the portfolio in corresponaeatthe
relative thick segment.

Note that most options have a life which is shorter than whatreeds for a reasonably large backtest-

ing data sample, which makes the proposed changes in portigdr time (keeping the risk factor the
same) a sensible alternative for backtesting VaR methgiedo

Table 7. Portfolio composition in the different intervals.

Interval from to Length %t(l) %(1) %(a %(2)
1 10/07/2009 10'11/2009 88 <@ @ b  »b)
2 11/11/2009 2602/2010 78 €@ 2@ ¢ PO
3 01/03/2010 3007/2010 110 ¥ 2@ ¢© 20O
4 02/08/2010 30'11/2010 87 ¢9 2@ ¢© E
5 01/12/2010 1503/2011 75 ¢ 20 ¢@©  2E
6 16/03/2011 1006/2011 63 ¢ 2O ¢©@ 2O

Strike prices and maturities of each pair of option8"), #() | € {a,b,c,d,e, f,g} are reported in

tablel3:

Table 8. Considered strike prices and maturities.
Asset Label a b c d e f g
Strike Price 3,800 2,000 3,000 4,800 3,700 5,400 2,600
Maturity 18/06/10 18/06/10 17/09/10 17/12/10 18/03/11 06711 17/06/11

6.3 Backtesting: methodology

Backtesting is a statistical tool to verify whether a modeldequate for its purpose. In the case of VaR
models, it consists in checking that actual losses are @wliith projected ones. It is crucial to check if
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predicted values of measure of risk are reliable. If thabisthe case one should reassess assumptions,
include a different - and valid - set of parameters or prodddeémproved modeling methodology. In
this section we are backtesting VaR computations. Sevaetlhbes recommend backtesting VaR models
includingl Joriohl(2007), Kupiec (1995) and Christoffel¢2603). The most common method to test a
VaR model has been suggestefl in Kupiec (1995), where theradgheloped a 95% confidence region
for the unconditional coverage test. The unconditionakcage test is the standard tool for backtesting
models and is also recommended by Basel Il (see| e.q. Cherrladh€2011)), therefore we decided
to employ it throughout this paper. According to this prased a model is correctly calibrated when
the number of exceptions (i.e. portfolio losses exceedi@g)Ms in line with the confidence level. If
backtesting reveals too many exceptions then the risk isn@stimated by the current model, hence one
could reserve an insufficient required capital and suffiéical losses under extreme market movements.
On the other hand too few exceptions signals an overestitnateand that would lead to an inefficient
allocation of capital. This situation is also not ideal fostitutions that look for maximizing profits.
Let's define.% as:

7 0 if A <VaRyyg-1
B I R SV S

where.# andVaR, (_; represent respectively the loss at titrend thea confidence level VaR com-
puted at timet given the information at timé— 1. Therefore the number of exceptions is given by
2 =N, A, whereN is the total number of observations. Since each daily ouéconuld lead to an
exception or not, the random variabk follows a binomial distribution:

00 = ()= p

wherep=1—a, anda is the level for the selected VaR. Let us consider the numbexeeptions in
the samplex,”and define the failure rate agN. Null and alternative hypothesis are Kupiec's test
)) are as follows:

{ Ho:p= %
Hiip#y
so we test whether the observed failure rate differs signifly from the given confidence levpl The
test statistic used is:
1— N—X ~X
LRy = —21n (%) ~x2. 6.1)
[1-%]" (%)

Using a 95% confidence interval this likelihood ratio tegeces the null hypothesis ifR,c > 3.841.
Table[9 displays 95% confidence regions of non rejectiontfedupiec’s test:

Table 9. Non rejection regions for Kupiec'’s test.

a N=250 N=500 N=1,000
95% T7<X<19 17< X< 35 38< X< 64
99% 1<X<6 2<X<9 5<X<16

The unconditional coverage test, on its own, focusses omtimeber of exceptions, but it does not
consider whether they are clustered. Since large lossehbdiin a small amount of time are more likely
to cause disastrous events than single exceptions showirgaasionally (sem&]_(_ZbOS) for
further details), it is crucial that the VaR model satisfies independence property. The independence
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test, developed in_Christoffersen (2003), is capable efttijg a VaR with clustered exceptions. Let us
define the indicator variable:

= 1 if an exception occurs
te otherwise

and then define the transition probabilites= P(_# =i and_#.1 = ). As an examplerp; provides
the probability of having an exception tomorrow given thaday there were no exception. The first-
order Markov sequence with transition probability matsxgiven by:

_|To Toi| _ |1-To1 T
Tho Thi 1-m, |

If the exceptions sequence is independent over time theprdimbility of an exception tomorrow does
not depend on today’s outcome, imy = 11 = 1. In this case null and alternative hypothesis are:

Ho : o1 = 1
Hi: o1 # Th1
To test it we use the following likelihood ratio test:
(1 — 7r)NooNao 7No1-+N11
— — X,
(1— Tior)Noo P (1 — Frug) Mo gt

LRng = —2In < (6.2)

& No1+Ni1 __Not N1
whererr= Noo TR rNio TR Th1 = Noo+No andin, = m Nij represents the number of days when
statej follows state, andi , ] can only assume values 0 and 1. Since we are interested instizuoiding
whether simultaneously the number of exceptions is coardtVaR exceptions are independent, we

can test jointly this two features using the conditionaleage test:
LRec = LRuc+LRng ~ X. 6.3)

Using a 95% confidence interval this likelihood ratio tegeces the null hypothesis ifR;c > 5.991.
Hence, the 95% level critical values fbR¢, LRing andLR.c are 3841, 3841 and 9991 respectively.
Computation of statistickR,c andLR,q as respectively specified ib (6.1) and {6.2) provides thé too
to accept or reject the model specification. In the followsegtiong 64 and 8.5, the daily estimates
of 95% and 99% VaR are calculated using Delta-Gamma-Norre#tiod and Delta-Gamma-Q method
for an asset with non-normal returns, respectively, and #re compared to actual losses. The series
of actual daily portfolio losses are computed&s= —ATl;, fort =1,2,...,500. As mentioned earlier

in sectior[ b, we focus on the point estimates as intervahestis are unavailable for Delta-Gamma-Q.
However, the point estimates for both in-sample and owaofiple VaR are computed for 95% as well as
99% confidence level, and are validated using unconditiagalell as conditional coverage tests. The
consistency of qualitative aspects of our conclusionssacadl these tests as well as across simulation
experiments in the previous section gives us some confidertbe validity of our point estimate-based
results. The results of using our method are detailed in®s®6i3, although we start with the description
of results using the traditional Delta-Gamma-Normal h&iginext.

6.4 Applying the Delta-Gamma-Normal method: results

The first experiment consists in computing 95% and 99% VaRetbnsidered portfolio using Delta-
Gamma-Normal model and assessing its reliability througtounditional and conditional tests. The
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descriptive statistics .7 are gathered in tab[e110.

Table 10. Descriptive statistics of tides.

Statistic In-sample  Out-of-sample
Mean 3.6772 2.8773
Standard Deviation 57.6257 53.3055
Minimum -170.8800 -157.4600
Maximum 264.4000 141.4700
Skewness -0.1112 -0.0386
Kurtosis 4.6705 3.3710

A glance at the statistics reported in tablé 10 suggests/lvathas a different type of distribution in
the two different subsets: the in-sample subset appeansanptally distributed and its Lilliefors test
rejects at levels 5% and 1% that” comes from a distribution in the normal family, while for the
out-of-sample subset, the Lilliefors test does not rejédevels 5% and 1% thad. comes from a
distribution in the normal family.

Sensitivitiesd", " andiV, with i € {¥W, 21 @, 221 according to the portfolio com-
position reported in tabld 7 are computed for both the ingamata and out-of-sample data using steps
(1) and (2) from the procedure described in subsefidn &5& and/l; are derived summing up the

correspondent sensitivities of the options included aétinThe Delta-Gamma-Normal approximation
becomes therefore:

1
AT :@tAt—i—dAY—i-él'tAYz. (6.4)

Assuming thatA.7 ~ .#(0,d?), it is possible to use the transformatidn” = 02, where 2 ~
A(0,1). The equation{6]4) can be rewritten as:

Al = O(At+5taf+%l}c72£f2. (6.5)

For each of the subsets one can utilize the standard deviatid.” and perform the partial Monte
Carlo Delta-Gamma-Normal VaR. The time horizioiis set to 1 day. Conditional and unconditional
tests are reported in taljlel11:

Table 11. Summary of test results for the Delta-Gamma-Nbmualel.

Subset a X MNpo Noz Nig Niz LRy LRing LRcc

95% 14 222 13 13 2 0.1827 1.1758 1.3385
99% 10 230 10 10 0 12.9555 0.8336 13.7891
95% 15 222 13 14 1 0.4961 0.0326 0.5286
99% 4 242 4 4 0 0.7691 0.1301 0.8992

Statistics for the in-sample subset show that the 95% Vaifhats is acceptable being all the values
LRyc, LRng and LR below the respective critical values. Instead, the largalmer of failures and

In-sample

Out-of-sample
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relative statistics suggest that the estimation using teléaBGamma-Normal method for the 99% VaR
is not appropriate. This result confirms the insight that jiséng the standard deviation of a risk factor,
neglecting its fat-tailed behavior could lead to an acdept&aR for relative low levels ofr (up to
95%), but could fail to provide suitable VaR for higher vauws a, underestimating its actual value.
This might explain a fraction of what has happened duringégeent financial crisis: managers, having
relied on Gaussian-based models and ignoring the non-tityrofirisk factors, obtained VaR values
that were (even catastrophically) wrong. The statidtRg, LR g andLR for the out-of-sample subset
are all below the respective critical values for both thkevels considered. This is not surprising since
the out-of-sample dataset is close to being normal; alstesde 10.

6.5 Applying the Delta-Gamma-Q method: results
The second experiment involves two phases:

e Calibrate the parameters of the Delta-Gamma-Q model fomanmomal factor using in-sample
data;

e Assessing the model validity through conditional and umiittonal tests using out-of-sample
data.

Daily 1-day horizorVaRy;_; estimates are obtained using the appropriate option pdcesrred on
dayt — 1. The first 250-unit subset of losses, covering the perioghft3/07/2009 to 2506/2010, is
used for parameter calibration while the second subsessék covering the period from A8/2010
to 10/06/2011 is used for model validation using the paramBtet E[d.” /d?%/] estimated in the in-
sample subset. The following part describes how the estsvatR;_; are computed. The payoff an
European call option is given bly (5.1), while the payoff farEBuropean put option is given by:

maxK —.(T),0). (6.6)
The calibration step itself requires the following stepsdach time interval considered:
1. finding the implied risk-free rates which are needed inifigd andr;
2. determining sensitivitie§, I and®;
3. working out coefficients that capture the index FTSE10®-normality;
4. calculating coefficientds , [ and@;
5. deriving coefficientsw , by andAg .

Given that daily implied volatilities of the call and the paption in each pairg, and oy, are also
available data, one can estimate the risk-free rate for patiof options by minimizing the quantity:

{(%7%(yaKaG%7raT7t))2+ (gzl 7‘@(yaKao-?};rvT7t))2:|v i= 1a2a

wherer is the only unknown, since option valugs and &7, index value, strike priceK and time

to maturity T —t are all known. The functiof#’(-) refers to the Black-Scholes formulae to compute
European call option prices and is providedbyl(5.2), whitsftinctionZ?(-) refers to the Black-Scholes
formulae to compute European put option and is given by:

2(S K, ornT —t)=Ke "TVo(—dy) —.7D(—dy), (6.7)
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whered; andd, are the ones expressed[in {5.2). Functional dependenceialbhes ort is suppressed
for notational brevity. Therefore two risk-free ratgsandr, are obtained for the two call-put option
pairs. This minimization was carried out in MATLAB 7.9 usiag inbuilt routine fminbnd, which uses
golden section search and parabolic interpolation. Seitisis Delta, Gamma and Theta for European
call options can be calculated usifig(5.3), while corresjimsensitivities for European put options are
given by:

0P 2P o(d1)
p=— = 1,y = =
Or =57 =P -LTr=523 FoVT —t
Oy = 97 __Zo¢dy) + 1K ®(—dp)e TV, (6.8)

ot 2T —t

Having two pairs of options in our test portfolio as desctibe section 6.2 we obtain two sets of
sensitivities applying the appropriate risk-free ratehte ¢orresponding pair of options.

A crucial role is played by the coefficieBt=E[d.” /d?/] which is able to encapsulate the possible
non-normality of the risk factor”. Its value for the computation &aR would be computed using a
sample average over a “window” of FTSE100 data of lengthJsing trial and error in the in-sample
subset we found that a suitable width for this risk factordaw n'is 150. We used three 150 wide
rolling windows for the in-sample subset: the first fromy/Qd/2009 to 0402/2010, the second from
18/09/2009 to 1504/2010, the third from 2711/2009 to 2506/2010. The valu® has been com-
puted for each rolling window using formula{8.1) and theierge value was used to verify whether
the model is valid using the conditional and unconditiormserage tests for the in-sample subset. This
simple moving average heuristic with overlapping windowsvides a smoothing effect. For assess-
ment of out-of-sample dat® is computed using a single window of width 150 from/27/2009 to
25/06/2010 (i.e., the in-sample data immediately prior to thetsihout-of-sample data set). The as-
sessment of modeling for out-of-sample data is done usingdow of width 150 from 2711/2009 to
25/06/2010, for the computation of the vallleneeded for the conditional and unconditional coverage
tests.

Coefficientsas , by and A4 are calculated using formulae as reported in Sedflon 4. [Refeu the
in-sample Delta-Gamma-Q and for the out-of-sample Deka@a-Q are shown in tadlel12.

Table 12. Summary of test results for the Delta-Gamma-Q imaglef real data.

Subset a X Noo Noz Nig Nig LRy LRng LR:c
In-sample 95% 14 223 13 13 1 0.1827 0.0620 0.2447
99% 5 240 5 5 0 1.9568 0.2041 2.1609
95% 14 223 14 13 0 0.1827 1.5400 1.7226
99% 2 246 2 2 0 0.1084 0.0323 0.1407

Out-of-sample

Results, computed using formulae mentioned earlier irseision, show that all tests for both 95% VaR
and 99% VaR are below the respective critical values, theeefannot be rejected. The proposed model
hence seems to provide acceptable VaR estimates in botllthsasnples considered and for both the
confidence intervals, in contrast with Delta-Gamma-Normathod outlined in subsection 6.4 earlier.
The results using 5-day time horizon were found to be camsistith these findings and are omitted for

brevity.
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7. Conclusions and futureresearch directions

Computing measures of risk such as VaR and CVaR involvesla-o# between accuracy and computa-
tional complexity. The method developed in this article|tB&amma-Q for assets with possibly non-
normal returns, allows us to compute VaR and CVaR throughabamation of Delta-Gamma-Normal
model in Glasserman (2003) and probability conservingsfiemmation il Sornettet all (2000). In this
method, the marginal distributions of risk factors are nepghrough nonlinear changes of variables
onto Gaussian distributions. A new covariance matrix cameffore be computed and it redefines the
dependence among transformed risk factors. Delta-Gamifiaients obtained under normal con-
ditions are multiplied by factors that take in account thepshof risk factors and then fast Fourier
transform allows us to perform a quick computation of VaR @R values. Using comprehensive
numerical experiments based on both simulated as well &slags we have demonstrated that using
Delta-Gamma-Normal method for non-normal risk factorsi&et® misleading results while our method
corrects the bias to a significant extent. The numericaltseate shown to be consistent across a range
of parameter values, across two different confidence laredsacross two different time horizons. The
method presented here highlights that using methods thabticecognize the lack of normality can
lead to rather biased estimates of both VaR and CVaR, edlydoiamonlinear portfolios. The method
presented features a good degree of flexibility since theois®nparametric estimation can capture
the distribution characteristics of risk factors to be gmall and the computational effort is lower than
partial Monte Carlo simulation.

This paper focusses only on dealing with possible skewnedda tails of the portfolio distribution.
As mentioned in sectidd 4, it would be interesting to seeefgthoposed framework can be extended to
prediction of VaR in a dynamic setting, perhaps includingmmena such as autoregressive behavior
and clustering of volatility. Further, the current work isited to analysis of a given (or fixed) port-
folio. The use of probability conserving transformatiordahe subsequent transformed correlations in
selecting a portfolio which optimizes risk/return chagaistics also indicates a potentially interesting
direction for future research.

References

ACERBI, C. & TASCHE, D. (2001) Expected Shortfall: a natural coherent altévadb Value at Risk,
Economic Notes31:379-388.

ALBANESE, C., ACKSON, K. & WIBERG, P. (2004) A new Fourier transform algorithm for Value-at-
Risk, Quantit. Financ.4(3):328-338.

ALEXANDER, C. (2008)Market risk analysis. Vol. 4, Value-at-Risk moddishn Wiley & Sons, Ltd.

ARTZNER, P., DELBAEN, F., BBER, J.M. & HEATH, D. (1999) Coherent measures of ridkath.
Financ, 9(3):203-228.

AzzALINI, A. & CAPITANIO, A. (2003) Distributions generated by perturbation of syety with
emphasis on a multivariate skevdistribution,J. Roy. Stat. Soc.,5(2):367-389.

BAseL COMMITTEE (2006) Basel Committee on banking supervision internafioanvergence of cap-
ital measurement and capital standatdtp://www.bis.org/publ/bcbs128.pdf



MEASURING THE RISK OF A NON LINEAR PORTFOLIO WITH FAT TAILED RSK FACTORS 23 of[28
BowMAN, A.W. & AzzALINI, A. (1997)Applied Smoothing Techniques for Data Analysis: The Ker-
nel Approach with S-Plus lllustration®xford Science Publications.

BRITTEN-JONES, M. & SCHAEFER, S.M. (1999) Non-linear Value-at-RislEuropean Finance Re-
view, 2:161-187.

CaMPBELL, S.D. (2005) A review of backtesting and backtesting praces. Working paper in Fi-
nance and Economic Discussion series, Divisions of RekefarBtatistics and Monetary Affairs,
Fedaral Reserve Board, Washington D.C., USA.

CASTELLACCI, G. & SICLARI, M.J. (2003) The practice of Delta-Gamma VaR: Implementing
quadratic portfolio modeEur. J. Oper. Res150(3):529-545.

CHEN, Q. & GERLACH, R.H. (2011) The two-sided Weibull distribution and thedfcasting of finan-
cial risk, OME Working Paperl-36.

CHRISTOFFERSEN P.F. (2003Elements of financial risk managemeftademic Press.

COVER, T.M. & THOMAS, J.A. (1991 Elements of information theorWiley-Interscience, New York,
NY, USA.

DUFFIE, D. & PAN, J. (1997) An overview of Value at Risl, Deriv, 4(3):7-49.

EL-JAHEL, L., PERRAUDIN, W. & SELLIN, P. (1999) Value-at-Risk for derivatives, Deriv, 6(3):7—
26.

EMBRECHTS, P., RESNICH, S.l. & SAMORODNITSKY, G. (1999) Extreme value theory as a risk man-
agement toolNorth American Actuarial JournaB(2):30—41.

FAN, J. & GIIBELS, |. (1996)Local Polynomial Modelling and Its Application€hapman & Hall /
CRC.

FEUERVERGER A. & WONG, A.C.M. (2000) Computation of Value-at-Risk for nonlingaortfolios,
J. Risk 3(1):37-55.

GiLLl, M. & KELLEZzI, E. (2006) An application of extreme value theory for meamyfinancial risk,
Comput. Econ27(5):207-228.

GLASSERMAN, P. (2003)Monte Carlo Methods in Financial Engineering (Stochastioddlling and
Applied Probability) Springer.

GLASSERMAN, P., HEIDELBERGER P. & SHAHABUDDIN, P. (2000) Portfolio Value-at-Risk with
heavy-tailed risk factordvlath. Financ, 12:239-269.

HuLL, J.C. (20060ptions, futures, and other derivativé2earson Prentice Hall.

JASCHKE, S.R. (2001) The Cornish-Fisher-expansion in the conteRistta-Gamma-normal approxi-
mations,J. Risk 4(4):1-14.

JorION, P. (2007)Value at Risk: the new benchmark for managing financial fis&Graw-Hill.

KAMDEM, J.S. (2003) Value-at-Risk and Expected Shortfall for gqad portfolio of securities with
mixture of elliptic distributed risk factorttp://arxiv.org/abs/cs.CE/0310043



24 of[25

Kuriec, P.H. (1995) Techniques for verifying the accuracy of riskasurement model§he J. Deriv,
3(2):73-84.

LiLLIEFORS, H.W. (1967) On the Kolmogorov-Smirnov test for normalitythtvmean and variance
unknown,J. Am. Stat. Ass062:399—-402.

MINA, J. & ULMER, A. (1999) Delta-Gamma four waykttp://www.texnology.com/risk.pdf

MONTERO, M. & KOHATSU-HIGA, A. (2003) Malliavin calculus applied to financ@hysica A
320:548-570.

NELSEN, R.B. (2006)An Introduction to CopulasSpringer Series in Statistics.

NOzARI, M., RAEI, S.M., RHANGIRI, P. & BAHRAMGIRI, M. (2010) A comparison of heavy-tailed
VaR estimates and Filtered Historical Simulation: Evidefrom emerging market$nternational
review of Business Research Papé&(g): 347-359.

PAOLELLA, M. (2007)Intermediate Probability: A Computational Approadiiley-Interscience, New
York, NY, USA.

PICHLER, S. & SELITSCH, K. (1999) A comparison of analytical VaR methodologies fiortfolios
that include optionsProceedings of 8th Symposium on Finance, Banking and InsetdJniversity
of Karlsruhe, Germany

PRITSKER, M. (1996) Evaluating Value-at-Risk methodologies: A@my versus computational
time. Working paper, Wharton Financial Institutions Cenlattp://ideas.repec.org/p/wop/pennin/96-
48.html

RAHMAN, M., JAN-PING, Z. & YI-HANG, S. (2011) An application of copula theory in the estima-
tion of Value at Risk in case of Bangladeshi stock marketernational Research Journal of Finance
and Economicsr1:118-131.

RAa0, C.R. (2001)Linear Statistical Inference and its Applications (2nd tih). John Wiley & Sons.

ROCKAFELLAR, R.T. & URYASEYV, S. (2000) Optimization of conditional Value-at-Rigk Risk 2:21—
41,

RouvINEZ, C. (1997) Going greek with VaRRisk 10(2):57-65.

SAK, H. & HAKsSOz, C. (2011) A copula-based simulation model for supply mdidfrisk, The Journal
of Operational Risk6(3):15-38.

SHAO, Q., WANG, H. & Yu, H. (2006) A calibrated scenario generation model for heavgd risk
factors,IMA J. Manage. Math.17:289-303.

SHEIKH, A.Z. & QIA0, H. (2010) Non-normality of market returns: a framework ésset allocation
decision-makingJournal of Alternative Investmentk2(3):8—-35.

SORNETTE, D., SMONETTI, P. & ANDERSEN J.V. (2000)p%-field theory for portfolio optimization:
“fat tails” and nonlinear correlation®hys. Rep.335(2):19-92.



MEASURING THE RISK OF A NON LINEAR PORTFOLIO WITH FAT TAILED RSK FACTORS 25 of[28

STOYANOV, S.V., RacHev, S.T., RACHEVA-lOoTOvA, B. & FaBozzi, F.J. (2011) Fat-
tailed models for risk estimationWorking Paper Series in EconomjcKarlsruhe Insti-
tute of Technology (KIT), Department of Economics and Basi Engineering,30:1-22.
http://EconPapers.repec.org/RePEc:zbw:kitwps:30

SzEGO, G. (2005) Measures of riskur. J. Oper. Res163(1):5-19.

ZANGARI, P. (1996) A VaR methodology for portfolios that includeiops. RiskMetrics Monitor, first
quarter 1996.

ZANGARI, P. (1996) An improved methodology for measuring VaR. Riskfi¢s Monitor, second quar-
ter 1996.

ZANGARI, P. (1996) How accurate is the Delta-Gamma methodologykMigics Monitor, third
quarter 1996.



	Introduction
	The Delta-Gamma-Normal model
	Probability conserving transformation
	Delta-Gamma-Q for assets with non-normal returns
	Simulation experiments
	Empirical tests
	Data
	Test portfolio
	Backtesting: methodology
	Applying the Delta-Gamma-Normal method: results
	Applying the Delta-Gamma-Q method: results

	Conclusions and future research directions

