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Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-
induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements,
fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and
randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding
mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results
on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear
stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed
out.

1. Introduction

In recent years, the networked control systems (NCSs) have
become very prevalent owing to the advantage of decreasing
the hard-wiring, the installation cost, and the implementa-
tion difficulties.Their applications could cover awide range of
industries such as space and terrestrial exploration, access in
hazardous environments, factory automation, remote diag-
nostics and troubleshooting, experimental facilities, domes-
tic robots, aircraft, automobiles and manufacturing plant
monitoring [1, 2]. In the networked world nowadays, signals
are typically transmitted through networks (e.g., Internet)
which may undergo unavoidable communication delays,
packet dropouts and disorder, quantization, saturations, and
so on. These network-induced phenomena include, but are
not limited to, missing measurements, fading measurements,
signal quantization, time-delays, randomly occurring nonlin-
earities, probabilistic sensor delays, and sensor saturations. It
is well known that these network-induced phenomena would

lead to abrupt structural and parametric changes in practical
engineering applications. Consequently, it is of important sig-
nificance to tackle the filtering and sliding mode design pro-
blems for systems with network-induced phenomena.

The nonlinearity and stochasticity are ubiquitous features
existing in almost all practical systems that contribute sig-
nificantly to the complexity of system modeling. Since the
occurrence of the nonlinearities and stochasticitywhich inev-
itably degrades the system performance and even leads to
instability, the analysis and synthesis problems for nonlinear
stochastic systems have long been themain streamof research
topics andmuch efforts have beenmade to deal with the non-
linear stochastic systems. Accordingly, many control and fil-
tering approaches have been successfully applied in many
branches of practical domains such as computer vision, com-
munications, navigation and tracking systems, and econo-
metrics and finance. Over the past decade, with the rapid
developments of the NCSs, the design of controller and
filter for nonlinear stochastic systems with network-induced
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phenomena has recently become a hot research focus that has
attracted an increasing interest.

In this paper, we aim to provide a timely review on the
recent advances of the recursive filtering and sliding mode
design for nonlinear stochastic systems with network-in-
duced phenomena. The network-induced phenomena under
consideration include missing measurements, fading mea-
surements, signal quantization, probabilistic sensor delays,
sensor saturations, randomly occurring nonlinearities, and
randomly occurring uncertainties. The recent developments
of the network-induced phenomena are first summarized.
Secondly, various filtering and sliding mode designs for non-
linear stochastic systems are reviewed in great detail and
some interesting yet challenging issues are raised. Subsequ-
ently, latest results on recursive filtering and sliding mode
design for discrete-time nonlinear stochastic systems with
network-induced phenomena are reviewed. Finally, conclu-
sions are drawn and some possible related research directions
are pointed out.

The remainder of this paper is arranged as follows. In
Section 2, the network-induced phenomena are discussed. In
Section 3, the developments of filtering and sliding mode
design problems for nonlinear stochastic systems are summa-
rized. Some latest results on the recursive filtering and sliding
mode design problems for nonlinear stochastic systems with
network-induced phenomena are reviewed in Section 4. In
Section 5, both the conclusions and some future research
works are given.

2. Network-Induced Phenomena

Recently, much work has been done on the network-induced
problems focusing on the missing measurements, fading
measurements, signal quantization, sensor saturations, prob-
abilistic sensor delays, randomly occurring nonlinearities,
time delays, and so forth.

2.1. Missing Measurements. Most traditional controller/filter
design approaches rely on the assumption that the measure-
ment signals are perfectly transmitted. Such an assumption,
however, is conservative in many engineering practices pre-
sented with unreliable communication channels. For exam-
ple, due to temporal sensor failures or network congestions,
the system measurements may contain noise only at certain
time points and the true signals are simply missing. As such,
the control and filtering problems with missing measure-
ments have received considerable research attention and
many important results have been reported in recent years;
see, for example, [3–13]. To be more specific, the optimal
estimation problems have been investigated in [5, 8] for linear
systems with multiple packet dropouts. In [12], the stochastic
stability has been analyzed for extended Kalman filtering
(EKF) with intermittent observations. A common way for
modeling the data missing is to introduce a random variable
satisfying the Bernoulli binary distribution taking values on
either 1 or 0, where 1 is for the perfect signal delivery and
0 represents the measurement missing. Most of the afore-
mentioned results have been based on the hypothesis that all

sensors have identical failure characteristics [5]. However, in
practical applications, owing to the sensors aging, sensor tem-
poral failure, or some of the data coming from a highly noisy
environment, the measurement missing might be partial and
individual sensor could have different missing probability in
the data transmission process [11].

2.2. Fading Measurements. Fading measurements are now
well known to be one of the most frequently occurring phe-
nomena in networked systems [14, 15].They refer to the cases
when the perfect communication is not always available and
the system measurement fades/degrades in a probabilistic
way. To be specific, the linear state estimation problem has
been investigated in [14], where single or multiple sensors
amplify and forward their measurements of a common linear
dynamical system to a remote fusion center via noisy fading
wireless channels. It has been shown that the expected estima-
tion error covariance (with respect to the fading process) at
the fusion center remains bounded and converges to a steady
state value.The estimation outage minimization problem has
been studied in [15] for state estimation of linear systems over
wireless fading channels. Obviously, the missing measure-
ments mentioned above are extreme cases of the fading ones.
Accordingly, the filtering problems with missing measure-
ments have drawn considerable research interest [5, 12, 16–
18]. Very recently, a more general description of the multiple
missing measurements has been put forward in [11] and has
already stirred some research interests where each sensor is
allowed to have individual missing probability in data trans-
mission. As mentioned above, a usual way for handling the
missing measurements is to introduce the Bernoulli dis-
tributedwhite sequence specified by a conditional probability
distribution, where the measurement signal is assumed to be
either completely missing or completely available. However,
such an assumption is quite restrictive in practice in case of
fading measurements for an array of sensors.

2.3. Signal Quantization. At the forefront of networked sys-
tem, the quantization issue has recently become a research
focus that has attracted an increasing interest because, in a
networked environment, signals are often quantized before
being transmitted to other nodes due to the finite word length
of the packets. Up to now, a series of results have been
available in the literature on the quantization effects; see, for
example, [19–25] and the references therein. In [21], the pro-
blem of quadratic stabilization has been studied for single-
input-single-output linear time-invariant systems with loga-
rithmic quantizers. Subsequently, by using the sector-bound
approach, the quantized feedback control problems have
been tackled in [23, 26] for linear discrete-time systems. Par-
allel to the quantized feedback control issue, the quantized
estimation problem also has a wide range of applications, see
for example, [27, 28] for more detailed discussions. Specifi-
cally, in the case when the measured signals are transmitted
over a digital communication channel, the state estimator has
been designed in [28] for linear system with quantized mea-
surements. It is worth noticing that most published results
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on the quantization effects have been dealt with for time-
invariant systems over an infinite horizon. However, in real-
ity, themajority of practical systems exhibiting the time-vary-
ing nature and the system dynamics are better quantified over
a finite horizon, and this is particularly true for systems un-
dergoing digital discretization. So far, the finite-horizon
recursive filtering problemhas not been properly investigated
for nonlinear time-varying systems subject to quantization
effects.

2.4. Randomly Occurring Nonlinearities and Randomly Occur-
ring Uncertainties. Nonlinearities and uncertainties serve as
two important kinds of complexities for systemmodeling. As
is well known, many engineering systems in practice are
influenced by additive nonlinear disturbances and/or uncer-
tainties that are caused by environmental circumstances.
Such unpredictable disturbances may be subject to random
abrupt variations, for instance, random failures and repairs of
components, changing subsystem interconnections, sudden
environmental disturbances, and modification of the operat-
ing point of a linearizedmodel of a nonlinear system. In other
words, the nonlinear disturbances and the parameter uncer-
tainties may occur in a probabilistic way with certain types
and intensity. A typical example is the networked control sys-
tems where signals are transmitted through networks and the
nonlinear disturbances and the uncertainties may occur ac-
cording to the network conditions that are randomly change-
able. In this case, both the randomly occurring nonlinearities
(RONs) and the randomly occurring uncertainties (ROUs)
should be taken into account when designing the practical
control systems. Recently, in [29, 30], the concept of RONs
has been introduced to model the randomly occurring non-
linear functions for complex networks, but ROUs has not yet
received adequate research attention.

2.5. Probabilistic Sensor Delays. Most traditional filtering
algorithms have been based on themeasurement outputs that
are supposed to contain information about the current state of
the system. However, in engineering practice, the system
measurements may be subject to unavoidable sensor delays,
which is particularly true in a networked environment. In the
past decade, a great number of results have been reported for
filtering problems with deterministic/fixed sensor delays; see
for example, [31–33]. On the other hand, because of limited
bandwidth of the communication channel, it is often the case
that the sensor delay occurs in a randomwaywhen, for exam-
ple, the information is transmitted through networks in real-
time distributed decision-making andmultiplexed data com-
munication environment [34]. Accordingly, the filtering pro-
blemswith random sensor delays have recently receivedmuch
research attention (see, e.g., [35–39]), where all sensors share
the same type of delay characteristics [40, 41]. Nevertheless,
in reality, the system measurements are usually collected
through multiple sensors with different physical constraints.
In this case, it is fairly conservative to assume that all sensors
undergo random delays of the same probability distribution
law. Rather, it would make more practical sense to consider
individual features for randomly occurring sensor delays.

2.6. Sensor Saturations. It is well known that sensors may not
always produce signals of unlimited amplitude mainly due to
the physical constraints or technological restrictions. The
sensor saturation, if not properly handled, will inevitably
affect the implementation precision of the designed filtering/
control algorithms and may even cause undesirable degrada-
tion of the filter/controller performance. Consequently, the
actuator/sensor saturation problem has been gaining an
increasing research interest that has led to many important
results reported in the recent literature; see, for example, [42–
48]. To be more specific, the output feedback𝐻

∞
controllers

have been synthesized in [43, 47, 48] and the robust𝐻
∞
filters

have been designed in [44, 45] for systems with sensor satur-
ations. It is worth mentioning that most existing results con-
cerning the sensor saturations have been concerned with
time-invariant systems over the infinite-horizon. Unfortu-
nately, in reality, almost all real-time systems should be time-
varying especially those after digital discretization. Recently,
motivated by the practical importance of the sensor satura-
tion issues, the 𝐻

∞
control problem has been addressed in

[48] and the set-membership filtering problem has been
investigated in [46] for a class of time-varying systems with
saturated sensors.

2.7. Random Parameter Matrices. Discrete-time systems with
random parameter matrices arise in many application do-
mains such as digital control of chemical processes, mobile
robot localization, radar control, missile track estimation,
navigation systems, and economic systems [49–51]. For this
case, some system parameters might be randomly perturbed
within certain intervals probably due to the abrupt phenom-
ena such as random failures and repairs of the components,
changes in the interconnections of subsystems, sudden envi-
ronment changes, and modification of the operating point of
a linearized model of nonlinear systems. Accordingly, some
research efforts have been made on the filter design with ran-
dom parameter matrices. For example, the recursive optimal
estimation problem has been dealt with in [49] for linear dis-
crete-time systems with random parameter matrices in the
minimum variance sense. The distributed Kalman filtering
fusion problem has been tackled in [50] for systems with
random parameter matrices and the potential application has
also been discussed. Nevertheless, probably due to its math-
ematical complexity, the recursive filtering problem for dis-
crete time-varying nonlinear stochastic systems with random
parameter matrices has not received adequate research atten-
tion yet.

2.8. Time Delays. It is well known that time-delays are fre-
quently encountered in many industrial and engineering sys-
tems (e.g., chemical process, long transmission lines in pneu-
matic, and communicationnetworks) due to the finite switch-
ing speed of amplifiers or finite speed of information process-
ing [52, 53]. The existence of time delays may cause undesir-
able dynamic behaviors such as oscillation and instability
[54, 55]. Over the past decades, much effort has beenmade to
address the time-delay systems; see, for example, [56–64] and
references cited therein. To mention a few, a sliding surface



4 Mathematical Problems in Engineering

has been constructed in [57] for the uncertain system with
single/multiple state-delays and additive perturbations. In
[58], by means of linear matrix inequality (LMI) technique,
an integral slidingmode surface has been designed to address
the sliding mode control (SMC) problem for the uncertain
stochastic system with time-varying delays. In the case when
the system states are not easily measured, the SMC problem
has been investigated in [59] for systems with mismatched
uncertainties via the output feedback approach. In [65], the
SMC problem has been investigated for a class of nonlinear
singular stochastic systems with Markovian switching. Actu-
ally, according to the occurrenceway of time-delays, the time-
delays can be generally classified into two types: discrete de-
lays and distributed delays. Most of results mentioned above
are applicable to continuous-time systems only, and the rel-
evant results for discrete-time systems with mixed (i.e., both
discrete and distributed) delays have been very few. The dis-
tributed time-delay in the discrete-time setting is an emerg-
ing concept that has been proposed in [30, 66] for complex
networks.

3. Recursive Filtering and Sliding Mode
Design for Nonlinear Stochastic Systems

In this section, we are in a position to review the approaches
for handling the recursive filtering and sliding mode design
problems for nonlinear stochastic systems.

3.1. Recursive Filter Design. The analysis and synthesis prob-
lems for nonlinear systems have been the mainstream of re-
search topics and much effort has been made to deal with the
nonlinear stochastic systems; see, for example, [11, 67–81].
It is worth pointing out that, inmost literature, the nonlinear-
ities are assumed to occur in a deterministic way. While this
assumption is generally true especially for systems modeled
according to physical laws, other kinds of nonlinearities,
namely, stochastic nonlinearities, deserve particular research
attention since they occur randomly probably due to inter-
mittent network congestion, random failures and repairs of
the components, changes in the interconnections of subsys-
tems, sudden environment changes, and modification of the
operating point of a linearized model of nonlinear systems.
In fact, such stochastic nonlinearities include the state-multi-
plicative noises and random sequences as special cases.
Recently, the filtering problem with stochastic nonlinearities
described by statistical means has already stirred some re-
search interests, and some latest results can be found in
[11, 73, 82] and the references therein.

In the past few decades, the filtering or state estimation
problems for stochastic systems have been extensively inves-
tigated and successfully applied inmany branches of practical
domains [83–86]. It is well known that the traditional Kalman
filter (KF) serves as an optimal filter in the least mean square
sense for linear systems with the assumption that the system
model is exactly known. In the case when the systemmodel is
nonlinear and/or uncertain, there has been an increasing re-
search effort to improve Kalman filters with hope to enhance
their capabilities of handling nonlinearities anduncertainties.

Along this direction, many alternative filtering schemes have
been reported in the literature including the𝐻

∞
filtering [87–

89], mixed𝐻
2
/𝐻
∞

filtering [90–92], and robust EKF design
[93–97]. Tomention a few, the optimal linear estimation pro-
blems have been intensively studied in [9] with multiple
packet dropouts and in [40] for multiple sensors with differ-
ent delay rates, the robust recursive KF algorithm has been
developed in [98] for linear time-varying systems with sto-
chastic parametric uncertainties, and the EKF problem has
been dealt with in [94] for a class of uncertain systems with
sum quadratic constraints. Note that almost all real-time sys-
tems are time-varying and therefore finite-horizon filtering
problem is of practical significance [99]. However, there have
been very few results in the literature regarding filtering pro-
blems over a finite horizon for time-varying nonlinear sto-
chastic systems with network-induced phenomena.

In most of the available filtering algorithms, a conserva-
tive assumption is that the process and measurement noises
are uncorrelated. In practical engineering, these two kinds of
noises are often correlated. For example, for the target track-
ing problem, there may exists the cross correlation between
the process noise and the measurement noise if both of them
are dependent on the system state. Also, the process noise
sequences of a discrete-time system sampled from a con-
tinuous-time system are inherently correlated across time,
and there may be cross correlation between different sensor
noises if the various sensors work in a common noisy enviro-
nment. A typical example is the radar systems whose sam-
pling frequency is high enough compared with the error
bandwidth [100]. Recently, the filter design problems have
been widely studied in [101–106] with autocorrelated noises
and/or cross correlated noises. It should be mentioned that
very little research effort has been made on the recursive fil-
tering problem for time-varying nonlinear stochastic systems
with correlated noises and network-induced phenomena.

For practical purposes, the filter design is inevitably sub-
ject to certain physical constraints. For example, in many
applications, the system states should preserve the positivity,
the system outputs experience saturations, and the filter gains
may need to be of a specific structure for easy implementa-
tion. It should be pointed out that the filtering problems with
constraints have been gaining a recurring research interest in
the past decade; see, for example, [103, 107–111]. Very recently,
in [110], a KF algorithm has been developed to cope with the
constraints on the data injection gain. The gain-constrained
filtering problem has been investigated for a broad class of
real-time dynamical systems; see, for example, the tracking
problem of a land based vehicle [103], the estimation problem
of two state continuous stirred tank reactor [112], and the
tracking problem of a vehicle along circular roads [113].

3.2. Probability Guaranteed 𝐻
∞

Filter Design. In traditional
control theory, the performance objectives of a controlled sys-
tem are usually required to be met accurately [114]. However,
for many stochastic control problems, due to a variety of un-
predictable disturbances, it is neither possible nor neces-
sary to enforce the system performance with probability 1.
Instead, it is quite common for practical control systems to
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attain their individual performance objectivewith certain sat-
isfactory probability. These kinds of engineering problems
have given rise to great challenges for the realization of mul-
tiple control objectives with respect to individual probability
constraints. In particular, as a newly emerged research topic,
the probability-guaranteed 𝐻

∞
controller design problem

has been raised in [115] and then thoroughly investigated in
[116–119] in an elegant way. Specifically, the probability-guar-
anteed 𝐻

∞
analysis problem has been studied in [115, 119]

for a class of linear continuous-time systems and in [116] for
a class of linear discrete-time systems with structured distur-
bances. Recently, a new probability-guaranteed robust 𝐻

∞

filtering problem has been put forward in [118] for a class
of linear continuous time-invariant systems. Despite the
advances made on the research topic of probability-guar-
anteed design, there is still much room for further investiga-
tion on more comprehensive systems in order to cover more
engineering practice. For example, in reality, most engineer-
ing systems are nonlinear and time-varying with saturated
sensors, where the performances are usually evaluated over a
finite-horizon for time-varying systems.

3.3. Sliding Mode Controller/Observer Design. Among vari-
ous designmethods for robust control, the sliding mode con-
trol (SMC) scheme appears to be a rather popular one that has
been extensively studied and widely applied. This is because
SMC possesses remarkable strong robustness against model
uncertainties, parameter variations, and external distur-
bances [65, 120–122]. In the past two decades, SMC has be-
come one of the most active branches of control theory that
has found successful applications in a variety of practical
engineering systems such as robot manipulators, aircrafts,
underwater vehicles, spacecrafts, electrical motors, position-
ing systems, and automotive engines. For example, the adap-
tive sliding mode has been studied in [123, 124] for sensor-
less motor drives. The effective SMC schemes have been
designed in [125] for high-speed positioning systems and in
[126] for spacecraft-attitude-tracking maneuvers. Also, con-
siderable research attention has been devoted to the theo-
retical research on SMC problems for different systems. For
example, the concept of SMC has been widely employed in
controller design problems for uncertain systems [61, 127,
128], stochastic systems [58, 59, 65, 129], andMarkovian jump
systems [65, 130].

Recently, many important results have been reported on
the SMC problem for discrete-time systems; see [60, 61, 131–
135]. In [136, 137], the SMC problems for a class of uncer-
tain systems with mismatched uncertainty have been inves-
tigated. In the context of SMC for discrete-time systems, the
quasisliding mode concept has been proposed in [133] and
the discrete-time sliding mode reaching condition has been
thoroughly studied based on a reaching law approach. Such a
reaching condition has recently been shown in [60, 61, 138–
140] to be a popular and convenient way of addressing the
SMC problems for a class of discrete-time systems. Noting
the advantages of the NCSs, it seems significantly important
to investigate the SMC problem for discrete-time systemwith
various network-induced phenomena.

On the other hand, it is well known that system states are
not always available mainly due to the limit of physical con-
ditions or expense for measuring in reality. Therefore, the
state estimation problem has received a great deal of research
attention. In recent years, the sliding mode observer (SMO)
theory has been successfully applied to a wide range of areas
such as induction motor drives, 𝑛-degree-of-freedom mech-
anical systems, and single-link flexible joint robot systems
[141–143]. When designing the sliding mode observers
(SMOs), a suitable nonlinear output injection is usually intro-
duced to guarantee finite time convergence and induce a slid-
ing motion. Most research on SMO design has been carried
out along this line; see, for example, [141, 142, 144–149]. To be
specific, by constructing an appropriate SMO, the fault recon-
struction and estimation problems have been extensively
studied in [143, 146–148, 150] for uncertain systems. It should
be pointed out that almost all results mentioned above have
been concernedwith continuous-time systems, and the relev-
ant results for discrete-time systems have been very few de-
spite the fact that nowadays digitalized control systems are
inherently discrete-time ones.

As mentioned above, the time-delays and nonlinearities
are inevitably encountered in various industrial systems. The
occurrence of time-delays and nonlinearities would cause
great degradation of the system performance. Accordingly,
the SMO problem for nonlinear and/or time-delay systems
has gained considerable research interest and a variety of
important results have been published in the literature; see
[143, 148, 150–152]. To mention a few, in [151], an 𝐻

∞
SMO

problem has been investigated for uncertain nonlinear Lip-
schitz-type systems with fault and disturbances and a suffi-
cient condition has been given such that the𝐻

∞
performance

requirement is satisfied. By using Taylor series expansion
and employing a nonlinear transformation, the discrete-time
model has been derived in [150, 152] from its continuous-time
counterpart and then the discrete-time sliding mode state
estimation problems have been addressed for uncertain non-
linear systems. So far, very few results have been available for
the SMO problem of discrete-time systems with time-delays.

4. Latest Progress

Very recently, the recursive filtering and sliding mode design
problems have been widely investigated for nonlinear sto-
chastic systems with network-induced phenomena and some
interesting results have been reported. In this section, some of
the newest works with respect to this topic are summarized.

(i) In [153, 154], the recursive filtering problems have been
investigated for two classes of time-varying nonlinear sto-
chastic systems. Firstly, the phenomenon of measurement
missing occurs in a random way and the missing probability
for each sensor is governed by an individual random variable
satisfying a certain probability distribution over the interval
[0, 1]. Such a probability distribution is allowed to be any
commonly used distribution over the interval [0, 1] with
known conditional probability. Both deterministic and sto-
chastic nonlinearities have been included in the system
model, where the stochastic nonlinearities have been
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described by statistical means that could reflect the multi-
plicative stochastic disturbances. A new filter has been first
designed in [153] such that, in the presence of both the sto-
chastic nonlinearities and multiple missing measurements,
there exists an upper bound for the filtering error covariance
which is minimized by properly designing the filter gain.
Secondly, the recursive finite-horizon filtering problem has
been investigated in [154] for a class of time-varying nonlin-
ear systems subject tomultiplicative noises,missingmeasure-
ments, and quantization effects. The missing measurements
have been modeled by a series of mutually independent
random variables obeying Bernoulli distributions with pos-
sibly different occurrence probabilities. The quantization
phenomenon has been described by using the logarithmic
function and the multiplicative noises have been considered
to account for the stochastic disturbances on the system
states. By using similar techniques, the desired filter param-
eters have been obtained by solving two Riccati-like differ-
ence equations that are of a recursive form suitable for online
applications.

(ii) In [155, 156], the recursive filtering problems have
been studied for two classes of time-varying stochastic sys-
tems with stochastic nonlinearities. Firstly, the phenomenon
of measurement fading occurs in a random way and the fad-
ing probability for each sensor is governed by an individual
random variable obeying a certain probability distribution
over the known interval [𝛽

𝑘
, 𝛾
𝑘
]. Such a probability distribu-

tion could be any commonly used discrete distribution over
the interval [𝛽

𝑘
, 𝛾
𝑘
] that covers the Bernoulli distribution as a

special case.Theprocess noise and themeasurement noise are
one-step autocorrelated, respectively. The process noise and
the measurement noise are two-step cross correlated. An
unbiased, recursive and locally optimal filter has been de-
signed in [155] for a class of time-varying nonlinear stochastic
systems with random parameter matrices, stochastic nonlin-
earity, andmultiple fadingmeasurements aswell as correlated
noises. Secondly, the proposed filtering method has been
extended to deal with the gain-constrained recursive filter
design problem in [156] for the systems subject to proba-
bilistic sensor delays, stochastic nonlinearities, and finite-step
correlated noises. Intensive stochastic analysis has been
carried out to obtain the filter gain characterized by the solu-
tion to recursive matrix equations. It has been shown that the
proposed scheme is of a form suitable for recursive computa-
tion in online applications.

(iii) The probability-guaranteed𝐻
∞

finite-horizon filter-
ing problem has been discussed in [157] for a class of time-
varying nonlinear systems with uncertain parameters and
sensor saturations.The systemmatrices are functions of mut-
ually independent stochastic variables that obey uniform
distributions over known finite ranges. By using the sector-
bounded approach, a decomposition technique has been em-
ployed to facilitate the filter design in terms of difference lin-
ear matrix inequalities (DLMIs). Attention has been focused
on the construction of a time-varying filter such that the
prescribed𝐻

∞
performance requirement can be guaranteed

with prespecified probability constraint. By employing the
DLMIs approach, sufficient conditions have been estab-
lished to guarantee the desired performance of the designed

finite-horizon filter. The time-varying filter gains have been
obtained in terms of the feasible solutions to a set of DLMIs
that can be recursively solved by using the semidefinite pro-
grammingmethod. A computational algorithmhas been spe-
cifically developed for the addressed probability-guaranteed
𝐻
∞

finite-horizon filtering problem.
(iv) The 𝐻

∞
SMO design problem has been studied in

[158] for a class of nonlinear discrete time-delay systems.The
nonlinear descriptions quantify the maximum possible deri-
vations from a linear model and the system states are allowed
to be immeasurable. Attention has been focused on the design
of a discrete-time SMO such that the asymptotic stability as
well as the 𝐻

∞
performance requirement of the error dyna-

mics can be guaranteed in the presence of nonlinearities,
time-delay, and external disturbances. Firstly, a discrete-time
discontinuous switched term has been constructed to make
sure that the reaching condition holds.Then, by constructing
a new Lyapunov-Krasovskii functional based on the idea of
“delay-fractioning” and introducing some appropriate free-
weighting matrices, a sufficient condition has been estab-
lished to guarantee the desired performance of the error
dynamics in the specified sliding surface by solving a min-
imization problem. In particular, the so-called “weighting”
scalar parameters have been constructively introduced to fit
both the delay-fractioning idea and the sliding mode
approach. It has been shown that the desired observer gains
can be obtained in terms of the feasible solutions to a set of
matrix inequalities that can be solved easily by using the semi-
definite programming method.

(v) In [159, 160], the robust SMC problems have been
investigated for discrete-time uncertain nonlinear stochastic
systems with time-varying delays. Firstly, the randomly oc-
curring nonlinearity (RON), which describes the phenom-
enon of a class of nonlinear disturbances occurring in a ran-
dom way, has been modeled according to a Bernoulli distrib-
utedwhite sequencewith a known conditional probability. By
constructing a novel Lyapunov-Krasovskii functional, the
idea of delay-fractioning has been applied to cope with the
robust SMC problem with time-delays. Sufficient conditions
have been derived in [159] to ensure the stability of the sys-
tems dynamics in the specified sliding surface. Such condi-
tions have been characterized in terms of a set of LMIs with
an equality constraint. A newdiscrete-time SMC lawhas been
synthesized to guarantee the reaching condition of the
discrete-time sliding surface. Moreover, the robust𝐻

∞
SMC

problem has been investigated in [160] for a general class of
discrete-time uncertain systems with stochastic nonlineari-
ties and time-varying delays. By constructing a similar sliding
surface and designing the SMC law, sufficient conditions have
been given to ensure that, for all parameter uncertainties,
unmatched stochastic nonlinearities, time-varying delays,
and unmatched external disturbance, the sliding mode dyna
mics is asymptotically mean-square stable while achieving a
prescribed disturbance attenuation level.

(vi) In [161, 162], the robust SMC problems have been
studied for discrete-time uncertain nonlinear stochastic sys-
tems with mixed time-delays. Firstly, both the sector-like
nonlinearities and the norm-bounded uncertainties enter
into the system in random ways, and such ROUs and RONs
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obey certain mutually uncorrelated Bernoulli distributed
white noise sequences with known conditional probabilities.
This description can reflect the fact that the ROUs and RONs
can appear or disappear in a probabilistic way due to unpre-
dictable changes of the environmental circumstances. The
mixed time-delays consist of both the discrete and the dis-
tributed delays, and the stochastic disturbance is of the gen-
eral Itô-type. An SMC lawhas been designed in [161] such that
the mean-square asymptotic stability of the sliding mode
dynamics can be guaranteed in the presence of ROUs and
RONs as well as mixed time-delays. By employing the idea
of delay-fractioning and constructing a new Lyapunov-Kra-
sovskii functional, sufficient conditions have been established
to achieve the desired performance in the specified sliding
surface by solving certain semidefinite programming prob-
lem. Secondly, the robust SMC design problem has been in-
vestigated in [162] for a class of uncertain nonlinear systems
with Markovian jumping parameters and mixed time-delays,
and a set of parallel results has been derived.

5. Conclusions and Future Works

In this paper, we have summarized some recent advances on
the recursive filtering and sliding mode design for nonlinear
stochastic systems with network-induced phenomena. The
developments of the network-induced phenomena have been
surveyed. Subsequently, various recursive filtering and sliding
mode design problems have been discussed for nonlinear sto-
chastic systems. Furthermore, the recursive filtering and slid-
ing mode design approaches of the nonlinear stochastic sys-
tems with network-induced phenomena have been given and
the latest results have been reviewed. To conclude this survey
paper, we highlight some related topics for the further re-
search works as follows.

(i) The nonlinearities addressed have some constraints
that may bring somewhat conservative results. The
analysis and synthesis of more general nonlinear sys-
tems with network-induced phenomena would be
one of the future research topics.

(ii) Another future research direction is to investigate the
guaranteed-cost control problem for nonlinear time-
varying systems with randomly occurring actuator
failures over a finite time-horizon.

(iii) In case that the convergence analysis of the recursive
filter approach becomes a concern, some additional
assumptions can bemade on the systemparameters in
order to ensure the global boundedness of the estim-
ation errors, which constitutes one of the future re-
search topics.

(iv) When the system states are immeasurable, the dyna-
mic output feedback sliding mode design is desired
for time-delay nonlinear stochastic systems with net-
work-induced phenomena.

(v) An additional trend for future research is to generalize
the current methods to the synchronization, control,
and filtering problems for nonlinear stochastic com-
plex networks with network-induced phenomena.
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