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Abstract

Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades
significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue,
in this paper, we propose a unique splitting-while-merging clustering framework, named ‘‘splitting merging awareness
tactics’’ (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range
of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and
then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process
and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The
SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite
mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different
clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection
criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated
gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based
on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting
algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1)
needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to
many different applications, (3) offering superior performance compared with counterpart algorithms.
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Introduction

Clustering methods have been widely used in many fields,

including biology, physics, computer science, communications,

artificial intelligence, image processing, and medical research,

requiring analysis of large quantities of data to explore the

relationships between individual objects within the respective

datasets [1–13]. However, clustering is one of the most difficult

and challenging problems in the realm of machine learning due to

the lack of universal and rigorous mathematical definition. The

definition of clustering often depends on the specific systems or

problems, e.g. in computer vision, where it is defined as image

segmentation [1,2], or in complex network analysis, where it is

known as graph clustering or community detection [14–16].

After some pioneering works by Eisen et al. [6], Golub et al. [7],

and Tamayo et al. [8], clustering was extensively employed in gene

expression analysis where microarray and real time sequencing

have allowed rapid measurement of genome-wide transcrip-

tion[3,5,17–25]. There are many families of clustering algorithms

used in the gene expression analysis, including partitional

clustering, hierarchical clustering, model-based clustering, self-

organizing clustering [3,23]. Results of most of successful

clustering algorithms strongly depend on the determined number

of clusters, e.g. k-means, model-based clustering, and hierarchical

clustering (when the clustering memberships need to be deter-

mined). However, in many cases, a priori knowledge of the actual

number of clusters is not available. Thus, the number of clusters

has to be estimated beforehand. The problem of determining the

best number of clusters needs to be addressed in another branch of

research in clustering analysis, known as clustering validation [26–

28]. Among various clustering validation criteria, clustering

validity indices, also known as relative criteria, have been

employed to quantitatively evaluate the goodness of a clustering

result and estimate the best number of clusters. There are two

main classes of validity indices: a) model-based or information

theoretic validation, e.g. minimum description length (MDL) [29],

minimum message length (MML) [30,31], Bayesian information

criterion (BIC) [32], Akaike’s information criterion (AIC) [33], and

the normalized entropy criterion (NEC) [34]; b) geometric-based

validation, which considers the ratio of within-group distance to

between-group distance (or its reciprocal), such as Calinski-

Harabasz (CH) index [35], Dunn’s index (DI) [36], Davies-Bouldin

(DB) index [37], I index [38], Silhouette index (SI) [39], the

geometrical index (GI) [40], the validity index VI [41] and the

parametric validity index (PVI) [42,43].
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Once an appropriate clustering validity index is selected, the

general practice for determining the best number of clusters has

few steps: a set of clustering results are firstly obtained by a

clustering algorithm with fixed number of clusters within a

predetermined range [Kmin,Kmax]; then, these clustering results are

evaluated by the chosen validity index; finally, depending on the

chosen validity index, maximum or minimum index value

indicates the best number of clusters (in some cases if the index

value has an increase or decrease trend against the number of

cluster, the significant knee point indicates the best number of

clusters). However, this solution requires an extensive search for

the number of clusters and is tedious work for large number of

clusters

Moreover, the initialization of clustering is also a major issue.

For some algorithms with the deterministic initialization, e.g.

hierarchical clustering and clustering with kauffman approach

initialization (KA) [44], the optimal solution is not always

guaranteed. For some algorithms sensitive to initialization, such

as k-means with random initialization, expectation-maximization

(EM) [17], and self-organization map (SOM) [45], they may get

stuck at local minimum. Addressing this problem requires running

the algorithm repeatedly with the same dataset using several

different initializations. This makes such clustering algorithms

more computationally unfavourable. Thus, better options would

be integrative frameworks or strategies which provide an

automatic and consistent clustering, so users do not have to worry

about setting those data-specific parameters.

Earliest attempts of automated clustering without employing

any a priori knowledge of number of clusters were growing cell

structure [46] and growing neural gas [47]. Although these

algorithms are useful to visualize high dimensional data, they are

not suitable for clustering because they over-fit the data. A self-

splitting competitive learning (SSCL) algorithm was proposed to

achieve the automated clustering [48]. In SSCL, a competitive

learning paradigm, so called one-prototype-take-one-cluster (OPTOC),

was developed for self-splitting by employing an asymptotic

property vector (APV) to guide the learning of a prototype;

meanwhile a split validity criterion was embedded in SSCL to

assess whether each cluster would contain more than one

prototype: if it was the case, then cluster would be split into two.

However, there are two vital issues to prevent its practical uses: 1)

the prototypes are easily trapped into global centroid, especially

the first few ones [48], and 2) the parameters for stopping both

OPTOC learning and splitting are crucial to the algorithm but

they are difficult to estimate reliably [49]. Yet, the SSCL has an

attractive advantage in that it does not require a priori knowledge

about the number of clusters in the input dataset.

Another strategy for automated clustering has been proposed

using a similar method [49–52]. In these approaches, the input

data was over-clustered to a large number of partitions, say kmax,

then these partitions were merged to fewer clusters, which were

closer to the natural clusters. This strategy is called splitting-then-

merging (STM). In terms of clustering techniques, the algorithm

by Figueiredo and Jain [50] was based on unsupervised learning of

finite mixture models (ULFMM), the self-splitting-merging com-

petitive learning (SSMCL) by Wu and colleagues in [49] was based

on OPTOC competitive learning paradigm, and a variational

Bayesian Gaussian mixtures (VBGM) framework has been

explored [51,52]. Another critical difference between these

algorithms is that the criteria for selecting final clustering are

different. In ULFMM, along with the merging process from kmax

to kmin, a model order selection criterion, which was minimum

message length (MML) in their case, was used; in SSMCL, as a

merging criterion was defined according to the measurement of

distortion between two clusters, merging process would not stop

until no cluster met the merging criterion; in VBGM, after the

convergence of the optimization algorithm, the estimated number

of clusters tends to be the number of non-empty clusters. There

are two critical issues in the STM framework: one is that the

maximum number of clusters kmax has to be determined a priori,

however such an upper limit is subjective and sometimes only an

inexact estimate is available; another issue is that as one of bottom-

up algorithms, the STM framework cannot produce a very

accurate clustering result in some circumstances, since it makes

clustering decisions based on local patterns without initially taking

into account the global distribution. Recently, Mavridis and

colleagues proposed a parameter-free clustering (PFClust) algo-

rithm, which is able to determine the number of clusters

automatically [53]. PFClust clusters the dataset in two steps: first

step is to estimate expectation and variance of intra-cluster

similarity by randomisation; second step is to cluster the dataset

based on the threshold calculated in randomisation. However, to

select a suitable threshold, PFClust needs a good approximation to

the distribution of mean intra-cluster similarities, and it requires a

large number of randomisation which is time-consuming.

Here, we propose a new splitting-merging clustering framework,

named ‘‘splitting-merging awareness tactics’’ (SMART) to over-

come these problems. The proposed framework is different from

aforementioned over-cluster-then-merge strategy and employs a

novel splitting-while-merging (SWM) strategy. The proposed

system integrates such crucial clustering techniques as cluster

splitting methods, cluster similarity measurement, and clustering

selection, within a framework to mimic human perception doing

the sorting and grouping, which was inspired by the work of

Zhang and Liu [48]. The framework starts with one cluster and

accomplishes many clustering tasks to split and merge clusters.

While splitting, a merging process is also taking place to merge the

clusters which meet the merging criterion. In this process,

SMART has the ability to split and merge clusters automatically

in iterations. Once the stop criterion is met, the splitting process

terminates and then a clustering selection method is employed to

choose the best clustering from several generated ones. Moreover,

the SMART framework is not restricted to a specific clustering

technique. In this paper, we implement SMART in two algorithms

using two distinct clustering paradigms: SMART I employs

OTPOC competitive learning as the splitting algorithm and the

calculation of cohesion between two clusters [54] as the merging

criterion; and SMART II employs modified component-wise

expectation maximization of mixtures (CEM2) [50], which was

originally proposed in [55], to fulfil splitting and merging. For both

algorithms, once the splitting-merging process terminates, a model

order selection algorithm plays a critical role in selecting the best

clustering among the generated clusterings during the splitting

procedure. Two benchmark demonstration datasets are used to

illustrate each step in the SMART flow. The main purpose of this

paper is to develop the SMART framework and its algorithms for

microarray gene expression datasets. Thus, two simulated gene

expression datasets and two real microarray gene expression

datasets are studied using SMART. By comparing the perfor-

mance of several metrics, namely adjusted Rand index (ARI)

[61,62], correct selection rate (CSR) of number of clusters, the

estimated number of clusters (K̂K ), normalized mutual information

(NMI), Jaccard index (JI), Silhouette index (SI), Calinski-Harabasz

(CH) index, and minimum message length (MML), the numerical

results show that our proposed method is superior. Most

importantly, SMART does not require any parameters dependent

on the respective dataset or a priori knowledge about the datasets.

SMART: Unique Splitting-While-Merging Framework
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The main sections of this paper are organised in the following

sequence. The next section describes the philosophy of the

proposed framework. We then provide the results of many

examples, including two demonstration examples, two simulated

datasets and two real gene expression datasets, to support the

proposed framework. Subsequently, the clustering techniques

employed in the SMART framework are detailed in Methods

section. Finally, we conclude with a discussion of applications for

future research.

Results

SMART Framework
First of all, we must emphasize that SMART is a framework

rather than a simple clustering algorithm, within which a number

of clustering techniques are organically integrated. Thus, concep-

tually, SMART does not fall into any categories classified in [2,4].

In this section, we focus on the overview of the whole framework,

and describe implementation solutions and specific clustering

techniques in the following sections.

Suppose that we are going to partition the dataset

XX~fxij1ƒiƒNg, where xi[RM|1 denotes the i-th object, M
is the dimension, and N is the number of objects. The flowchart of

the framework is illustrated in Fig. 1.

The whole clustering procedure is divided into four tasks.

SMART starts with one cluster (K~1, where K is the number of

clusters), and the cluster needs to be initialized, which is Task 1.

Subsequently, the data goes through a SWM process, where

splitting and merging are automatically conducted in iterations. In

the splitting step of each iteration, which is labelled Task 2,

SMART splits one of the clusters into two. After a splitting step,

the new clustering is censored by a merging criterion, which is

associated with Task 3. If the condition for merging is satisfied,

then one merges the two clusters, otherwise the merging step is

skipped. SMART then goes through a termination-check, where a

stopping criterion is applied. If the condition for termination is not

satisfied, SMART goes to the next iteration and continues to split,

otherwise, SMART finishes the splitting-merging process. The last

step is the clustering selection (Task 4).

Note that these tasks in the SMART flow can be completed

using many clustering techniques in the literature, e.g., Task 1 can

be done by any initialization technique either deterministic or

random; Tasks 2 and 3 may be achieved by any splitting algorithm

and merging criterion respectively or they may be combined into

one algorithm; and Task 4 can be accomplished by any of either

model order selection algorithms or validity indices. Different

techniques will make the implementation slightly different but the

flow does not change. Moreover, different clustering algorithms

bring different features into the framework and so SMART can be

customized for different applications. In the following Methods

section, we will develop two SMART algorithms using different

splitting and merging algorithms, i.e., OPTOC competitive

learning and finite mixture model learning, which are called

SMART I and SMART II, respectively, and they have similar

configurations. In particular, both use MML [30,31] as clustering

selection algorithm and use the same termination criterion in the

SWM process, namely the maximum number of merges, Nmax.

The logic behind the termination criterion is that normally

merging will not start until optimal clustering is reached. Once

Nmax is reached, the splitting and merging will terminate

automatically. We summarise the categorization of existing self-

splitting-merging algorithms and our two SMART algorithms in

Table 1. All existing self-splitting-merging algorithms employ the

STM strategy with different clustering paradigms; instead our

SMART algorithms employ the SWM strategy. For the purposes

of direct comparisons with the existing STM algorithms, we

propose two specific SMART algorithms. Nevertheless, it should

Figure 1. The flow chart of the SMART framework. SMART is
initialized in Task 1; SMART splits one of clusters into two in Task 2; the
new clustering is censored by a merging criterion in Task 3; SMART goes
through the SWM process iteratively and generates many candidate
clusterings; finally, the optimal clustering is selected by clustering
selection criterion in Task 4.
doi:10.1371/journal.pone.0094141.g001

Table 1. Categorisation of two existing splitting-then-
merging (STM) algorithms and our two splitting-while-
merging (SWM) SMART algorithms.

STM (requiring Kmax) SWM

Competitive Learning SSMCL SMART I

Finite Model Mixtures (Gaussian) ULFMM, VBGM SMART II

doi:10.1371/journal.pone.0094141.t001
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be noted that, within the proposed SMART framework, many

other algorithms can be derived for different clustering paradigms.

Experiment Set-up
In this paper, we use two demonstration datasets, which are

bivariate mixture models: the first one is quadrature phase-shift

keying (QPSK) data with signal-to-noise ratio (SNR) equal to

15 dB and the second one is a 3-component bivariate mixture

[50]. Since we have more interest in the microarray gene

expression data analysis, we employ two microarray gene

expression data modelling methods to simulate or synthesize gene

expression data. One simulates the state-based gene expression

data [19] and another one simulates the periodic behaviour of

yeast cell cycle[17,59]. The advantages of using simulated data are

that the ground truth is known and we have the freedom to

manipulate the noise level of the data by tuning a few parameters.

Additionally, two real microarray gene expression datasets are

studied using SMART. The performance comparisons are carried

out between the SMART algorithms and both SSMCL, ULFMM,

VBGM, DBSCAN [60], MCLUST [17] and PFClust [53] in all

experiments. Moreover, two state-of-the-art mixture model

clustering, namely the mixture of factor analysers (MFA) [22]

and the mixture of common factor analysers (MCFA) [21] are

compared. Since these algorithms require a time-consuming

exhaustive search over both a range of number of clusters (K )

and a range of number of factors (q), with a number of initial

starts, we only compare them in real datasets. We list the software

in which all clustering algorithms were implemented in Table 2. In

our study, many metrics are investigated: ARI, CSR of number of

clusters, the estimated number of clusters K̂K , NMI, JI, SI, CH and

MML, where both the mean and the standard deviation are

presented for ARI, K̂K , NMI, JI, SI, CH and MML. Note that for

all metrics except K̂K and MML, the maximal values are the

measures of the best clustering results. CSR is the ratio of the times

of the number of clusters being correctly selected, to the total

number of experiments. In the following experiments, the

parameters for SMART I and II are set as: Nmax~5 for both

SMART I and II; kmax~30 for SSMCL, ULFMM and VBGM.

For MFA and MCFA, the parameters are set as: kmin~2,

kmax~30, the number of factors q from 1 to 10, using 50 initial

starts. For PFClust, we set the number of randomisation to be

10000. For MCLUST, we employ MML as clustering validation

to estimate the number of clusters because it does not estimate the

number of clusters automatically. For all demonstration datasets

and simulated datasets, we feed them into clustering algorithms as

they were generated without normalisation. Thus, the inputs for all

Table 2. The list of Software with which all clustering
methods in this paper are implemented.

Methods Software Reference

MFA MATLAB [22]

MCFA MATLAB [21]

SSMCL MATLAB [49]

ULFMM MATLAB (Downloaded) [50]

VBGM MATLAB (Downloaded) [52]

SMART I MATLAB -

SMART II MATLAB -

DBSCAN R (FPC Package) [60]

MCLUST R (Mclust Package) [17]

PFClust Java (downloaded) [53]

doi:10.1371/journal.pone.0094141.t002

Figure 2. The demonstration of SMART I using QPSK dataset in D1 example. Sub-figures(1) – (8) demonstrate that the procedure of SMART
I (SWM process). It starts with K~1 (sub-figure(1)), splits into K~2. K~3, K~4 and K~5 shown sub-figures(2) – (5) respectively, and then merges
some clusters while splitting as shown in sub-figures(6) – (8). The sub-figure(9) is the final clustering result. Parameter settings: Tchs~20 and Nm~5.
doi:10.1371/journal.pone.0094141.g002
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algorithms are treated equally. Although we standardise each

profile of gene to be zero mean and unit variance for real datasets,

it is still the case that the inputs for all algorithms are treated

equally.

Demonstration Examples
In the first place, we employ a benchmark test dataset – 512-

samples QPSK data with SNR level of 15 dB, which is labelled D1

dataset. This dataset can also be viewed as a 4-component

Gaussian mixture. This example may clearly demonstrate how

SMART I and II work, as shown in Figs. 2 and 3, respectively. In

both Figs. 2 and 3, subfigures from (1) to (8) illustrate the proposed

SWM process in the SMART framework, and subfigure (9) shows

the final clustering result. The results show that the first merge of

SMART I is after K~5 shown in Fig. 2-(5) and the first merge of

SMART II is after K~5 shown in Fig. 3-(5). Subsequently, the

merge counter measures the times of merges until the SWM

process terminates. To compare SMART with the state-of-the-art

clustering algorithms, namely SSMCL, ULFMM, DBSCAN,

MCLUST, PFClust and VBGM, using the same dataset, we

repeat the clustering experiments 1000 times for each algorithm.

The numerical results for D1 are shown in Table 3. SMART II,

DBSCAN, MCLUST, PFClust and VBGM produce perfect

results in all metrics, which means that there is no mis-clustered

members at all in their results in the whole experiment. For other

algorithms, the metrics are not always consistent. SSMCL has the

poorest performance compared with other algorithms according to

all metrics except that it has lower MML value than SMART I.

SMART I provides higher values of CSR, SI, and CH, and has

more closer mean and smaller standard deviation of K̂K than

ULFMM, but ULFMM has better performance in ARI, NMI, JI,

and MML. The reason for this observation may be that SSMCL

occasionally put some objects into wrong clusters but the number

of clusters is correct, while ULFMM sometime wrongly splits an

actual cluster into two but the objects are mostly in the correct

clusters.

The second demonstration example D2 is a 3-component

bivariate Gaussian mixture dataset used in [50], whose mixture

probabilities are a1 = a2 = a3 = 1/3, with mean vectors at

½0,{2�T ,½0,0�T ,½0,2�T , and equal covariance matrices

diagf4,0:4g. The covariance matrices are diagf2,0:2g in [50],

but we double them in our study as we try to discern the best

algorithm by enlarging the differences among their performances.

The numerical results for D2 dataset are shown in Table 4.

SSMCL and SMART I fail in this experiment. The reason is that

the competitive learning is a spherical or hyper-spherical

algorithm so it is not suitable for the clustering of elliptical or

hyper-elliptical datasets. Although SMART I has higher CH and

SI values than both SMART II and ULFMM, other metrics all

reveal that SMART I performs poorly. SMART II has 100% CSR

in the experiment and other performance in all metrics are best

except CH and SI. The explanation of this observation is that CH

and SI use Euclidean distance, which is a hyper-spherical metric.

Thus CH and SI are not reliable in this case. It is also worth noting

that VBGM has much poorer performance than SMART II in

this case, in particular, only 72.4% CSR. These results reflect that

SMART II is much better than ULFMM and VBGM where there

is considerable noise. DBSCAN fails in this experiment can does

not cluster at all (resulting all-zero partition); MCLUST and

PFClust perform poorly in this dataset. The clustering procedures

of SMART II and ULFMM are shown in Fig. 4 and 5,

respectively. These two demonstration examples show how the

mechanism of SMART is working. To some extent, they also show

that the SMART framework is more effective and more practical

than ULFMM, because it is not necessary for SMART to set kmax.

Figure 3. The demonstration of SMART II using QPSK dataset in D1 example. Sub-figures (1) – (8) demonstrate the procedure of SMART II. It
starts with K~2 (sub-figure(1)), splits into K~2. K~3, K~4 and K~7 shown sub-figures(2) – (5) respectively, and then merges some clusters while
splitting as shown in sub-figures(6) – (8). Sub-figure(9) is the final clustering result. Parameter setting: Nm~5.
doi:10.1371/journal.pone.0094141.g003

SMART: Unique Splitting-While-Merging Framework

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94141



Simulated Gene Expression Datasets
The first experiment (S1) is a stochastic model which simulates

the state-based gene expression data [19]. There are 11 clusters

f kjk~1,:::,11g of genes with M~50 samples in the simulated

data. The cluster size nk(k~1,:::,11) satisfy Poisson distribution

nk*4|Pois(l). The expression values are simulated as a

hierarchical log-normal model in each cluster. For k, firstly, a

vector of cluster template for the cluster is created with four

periods of expression of size mp(p~1,:::,4). The sizes of mp are

from a uniform distribution such that
P

mp~M and mpw2. The

initial template in four periods is simulated from

log (m(k)
p )*N(m,s2). Secondly, sample variability (s2

s ) is introduced

and the gene sample template G
(k)
j (j~1,:::,11) is generated from

log (G
(k)
j )*N(m(k)

p ),s2
s ), where j is such that

(m1z:::zmp{1)vjƒ(m1z:::mp). Then for each gene vector i

in sample j, the gene variability is added and expression values are

generated as log (xij)*N( log (G
(k)
j ),s2

0). Lastly, once gene data is

simulated, a random noise from normal distribution

(sn~0:05,0:1,0:2,0:4,0:8, and 1:2) is added. The parameters used

in this model are set as: m~6,s~1,ss~1:0,s0~0:1, and l~10.

We generate 100 datasets for each sn.

The errorbar charts of ARI, JI, CSR, and NMI are shown in

Figs. 6 (a) – (d) respectively. Generally speaking, in S1, it is found

that the FMM clustering works better than the competitive

learning and that the SMART framework has better performance

than over-cluster-then-merge strategy. The proposed SMART II

algorithm has superior performance when the noise level is low or

moderate. It has above 60% CSR and ARI, JI, and NMI values

close to 1 when the noise variance sn is equal or smaller than 0.1.

In all noise levels where sn is below 0.4, SMART II always

provides the superior performance among the compared algo-

rithms and no algorithm works well when sn is greater than 0.4.

We also investigate the impact of the parameter Nmax on the

performance of SMART in S1 datasets, and the results are shown

in Fig. 7. It is worth noting that the performance of SMART is

stable when Nmax is greater than or equal to two; in other words,

the performance of SMART is not sensitive to the value of Nmax.

In the second simulated dataset experiment (S2), we employ the

method in [59] to generate a number of synthetic gene expression

datasets with 500 synthetic genes in each dataset and 24 samples

for each gene. These 500 genes belong to K~5 clusters and each

cluster has 100 members. The model of cyclic gene expression is

given by

xij~rz½lzpr�(rz½lzpr� sin (2pj=8{vizqr), ð1Þ

where xij is the expression value of the i-th gene at the j-th time

point, each instant of r is an independent random number from

the standard normal distribution N (0,1), the parameter l controls

the magnitude of the sinusoid and it is fixed to three here. The

parameter p controls the random component added to the

magnitude and the parameter q controls the random component

added to the phase. The parameter vi is the phase shift of the i-th
gene and will determine which cluster the gene i will be in. Since

the noise in this model is not additive, we have to couple p and q to

be a pair, and raise both their values to change the noise power. By

increasing values of p and q will increase the noise power

increases. The paired parameters are listed as (p,q)[f(0:1,0:01),
(0:3,0:03), (0:5,0:05), (0:7,0:07), (0:9,0:09), (1:1,0:11), (1:3,0:13),
(1:5,0:15), (1:7,0:17), (1:9,0:19), (2:1,0:21), (2:3,0:23),
(2:5,0:25)g. Thus, there are 13 parameter pairs (PPs) from PP1

to PP13 representing 13 noise levels from low to high. For each
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pair of parameters, we generate 100 datasets, and subsequently,

we get 100 clustering results from each clustering algorithm. Figs. 8

(a) – (d) respectively show the errorbar charts of ARI, JI, CSR, and

NMI achieved by each method in the S2 experiment. The results

lead to the similar conclusion obtained in S1 experiment, which is

namely FMM clustering works better than competitive learning

and the SMART framework has better performance than over-

cluster-then-merge strategy. The most impressive observation is

that the proposed SMART II algorithm shows all ARI, JI and

NMI values equal to one and 100% CSR until the 7-th PP, which

is (1:3,0:13), while no other method has 100% CSR performance

and no other method has comparable performance in the whole

experiment. We carry out the same investigation of impact of the

parameter Nmax as in the S1 datasets. The results are shown in

Fig. 9, which also indicate that the performance of SMART is not

sensitive to the value of Nmax.

Real Microarray Gene Expression Datasets
Although the simulated experiments may have the advantage

that they show different performance in different conditions for

each method, they suffer the crucial drawback that they are not

real. So we have tested our SMART using real datasets.

The first real dataset (R1) is a subset of the leukemia dataset [7],

which consists of 38 bone marrow samples obtained from acute

leukemia patients at time of diagnosis. There are 999 genes in the

dataset [63]. The biological truth is that the samples include 3

groups: 11 acute myeloid leukemia (AML) samples, 8 T-lineage

acute lymphoblastic leukemia (ALL) samples and 19 B-lineage

ALL samples [7,63,64]. We repeat the clustering experiments

1000 times for each method. We also compare two state-of-the-art

mixture model clustering algorithms, namely MFA and MCFA,

with our proposed SMART algorithms. Since these algorithms

require a time-consuming exhaustive search over a range of K and

a range of q with a number of initial starts, we run them only once

for each K and each q with 50 initial starts, where K ranges from 2

to 30 and q ranges from 1 to 10. The results are shown in Table 5.

SSMCL and VBGM totally fail in this experiment, where SSMCL

always converges to one cluster and VBGM always terminates at

Kmax~30. Impressively, SMART I has significantly better

performance than ULFMM and has nearly 30% greater CSR

and better performance in other metrics. In terms of mean and

standard deviation of K̂K , SMART I has a mean closer to the true

value and significantly smaller standard deviation than ULFMM.

Both MFA and MCFA have their lowest MML values with three

clusters, but compared with two SMART algorithms, they show

poorer performance in all metrics. SMART II has the superior

performance and always provides 100% CSR and best perfor-

mance in all other metrics. Particularly, SMART II also has very

small variations in these metrics, that is, it provides consistent

results even though it is randomly initialized. In this experiment,

DBSCAN, MCLUST, and PFClust perform poorly and do not

provide the correct estimates of the true number of clusters.

Furthermore, their other validation metrics are worse than the

SMART II algorithm. We have also examined the impact of

variable values of Nmax on the performance. We choose three

values for the testing, Nmax~5, 10, and 20. The results are shown

in Table 6. We can read from the Table that in all performance

metrics, there is no significant difference among the results from

different Nmax values. Thus, It confirms again that the SMART

algorithms are not sensitive to the parameter Nmax in this test.

Another real dataset (R2) is yeast cell cycle a-38 dataset

provided in Pramila et al. [65]. It consists of 500 genes with highest

periodicity scores and each gene has 25 time samples. Addition-

ally, their peaking times as percentages of the cell cycle have also
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Figure 4. The demonstration of SMART II using Gaussian mixture dataset in D2 example. Sub-figures (1) – (8) demonstrate the procedure
of SMART II. SMART II starts from K~2 as shown in sub-figures(1) and (2), splits the dataset to K~3 and K~4 shown in sub-figures(3) and (4); the
merging commences while splitting continues as shown in sub-figures(5) – (8). Sub-figure(9) is the final clustering result. Parameter setting: Nm~5.
doi:10.1371/journal.pone.0094141.g004

Figure 5. The demonstration of ULFMM using Gaussian mixture dataset in D2 example. Sub-figures (1) – (8) demonstrate the procedure
of ULFMM. ULFMM starts from K~30 as shown sub-figure(1); ULFMM then merges clusters gradually to K~1 as shown in sub-figures(2) – (8)
respectively. Sub-figure(9) is the final clustering result. Parameter setting: kmax~30.
doi:10.1371/journal.pone.0094141.g005
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been provided by Pramila et al. [65]. It is widely accepted that

there are four phases in the cell cycle, namely, G1, S, G2 and M

phases [66,67]. But there is no explicit knowledge about how

many clusters should be in this dataset, so we cannot calculate

CSR in this case. We obtain four clusters by using both SMART I

and II, seven clusters by using ULFMM, eight clusters using

SSMCL, three clusters using MFA with five factors, and five

clusters using MCFA with six factors, as shown in Table 7.

SMART II has the superior performance as in other experiments.

We note that VBGM fails again in this experiment as it requires a

dimension reduction of the data before clustering. We do not

perform a reduction in data dimensions to obtain a fair

comparison. To discern the effectiveness of the clusterings, we

plot the histogram of the peak times of genes in each cluster for

each algorithm, as depicted in Fig. 10, where the grey bar plot is

the histogram of the 500 genes in the dataset. Fig. 10 (a) and (b)

show that four clusters represent reasonably good clustering since

there are only few small overlap regions between clusters. Fig. 10

(c) and (d) indicate that many clusters crowd and overlap in the

region of 5% to 30%, especially in Fig. 10 (c), a clustering

representing peaking at 20% superposes on another cluster, which

spans over 10% to 30%. These overlapped clusters have to be one

cluster. Fig. 10 (e) and (f) show that MFA and MCFA also give

reasonably good clustering results judged by eye, however poorer

than SMART II in the numerical metrics. Fig. 10 (g) and (h) show

the distribution of peak times of genes based on the clustering

results of MCLUST and PFClust, respectively. MCLUST has a

very similar performance to MFA. The partition provided by

PFClust has a cluster (labelled by brown circle) overlapping with

other clusters. The numerical metrics consistently indicate that

PFClust performs poorly in the R2 dataset. Since DBSCAN and

VBGM do not provide a reasonable result, we do not depict it in

Fig. 10. The results reveal that the SMART algorithms, especially,

SMART II, provide a better representation than other algorithms.

We also compare the running time of the clustering algorithms

for two real datasets in Table 8, where the algorithms

implemented with MATLAB are listed in the upper section and

the algorithms implemented with other platforms are in the lower

section. For the sake of a fair comparison, we consider the running

time of single run as the time consumed to find both best number

of clusters and best partition, rather that the time only for

clustering with one given number of clusters. The computer on

which we conducted the experiments is equipped with Intel Core

i7-3770 CPU 3.40 GHz and 8 GB RAM. According to the Table,

Figure 6. The errorbar charts of (a) ARI, (b) JI, (c) CSR, and (d) NMI for all compared algorithms in S1 datasets. The values of all four
metrics are in the range of [0,1], where 1 is the optimal value and 0 is the worst one. The vertical axis in each sub-figure represents individual index
and the horizontal axis is the standard deviation sn of the additive noise. SMART I and II are labelled with square and diamond markers respectively.
SSMCL is labelled with circle marker, ULFMM is labelled with right-arrowed triangle marker, VGBM is labelled with by hexagon marker, PFClust is
labelled with pentagon marker, MCLUST is labelled with down-arrowed triangle marker, and DBSCAN is labelled with up-arrowed triangle marker. For
SMART I, Tchs~20; for SMART I and II, Nm~5. For ULFMM, SSMCL, and VBGM, kmax~30.
doi:10.1371/journal.pone.0094141.g006
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SMART II consumed the least running time in both datasets.

SMART I is faster that its counterpart algorithm SSMCL, but

slower than ULFMM and VBGM. MFA and MCFA are time-

consuming because they have to exhaustively search over both a

range of number of clusters (K ) and a range of number of factors

(q), with a number of initial starts. The algorithms using other

platforms, namely DBSCAN, MCLUST, and PFClust, also take

longer time than the SMART algorithms to finish the same pieces

of work.

Methods

SMART I
Here, we present the implementation of SMART I where

OPTOC competitive learning is employed as the splitting and

learning algorithm [48,49], cohesion is employed as merging

criterion [54], and MML is employed as clustering selection

criterion. The details of how these techniques work together is also

presented.

OPTOC Competitive Learning. OPTOC competitive

learning paradigm was firstly proposed in [48]. In SMART I,

OPTOC competitive learning is employed to deal with Task 2.

Given each prototype ~PPk, the key technique is that an online

learning vector, asymptotic property vector (APV) ~AAk is assigned

to guide the learning of this prototype. For simplicity, ~AAk

represents the APV for prototype ~PPk and n~AAk
denotes the learning

counter (winning counter) of ~AAk. As necessary condition of

OPTOC mechanism, ~AAk is required to initialize at a random

location, which is far from its associated prototype ~PPk and n~AAk
is

initially zero. Taking the input pattern xi as a neighbour if it

satisfies the condition S~PPk,xiTƒS~PPk,~AAkT, where S:,:T is the inner

product operator. To implement the OPTOC paradigm, ~AAk is

updated online to construct a dynamic neighbourhood of ~PPk. The

patterns ‘‘outside’’ of the dynamic neighbourhood will contribute

less to the learning of ~PPk as compared to those ‘‘inside’’ patterns.

In addition to the APV, there is another auxiliary vector, called

distant property vector (DPV) ~RRk, assisting the cluster, which

contains more than one prototype, to split. Let n~RRk
denote the

learning counter for ~RRk, which is initialized to zero. ~RRk will be

updated to a distant location from ~PPk. The efficiency of splitting is

improved by determining the update schedule of ~RRk adaptively

from the analysis of the feature space. Contrary to the APV ~AAk,

Figure 7. The errorbar charts of (a) ARI, (b) JI, (c) CSR, and (d) NMI for SMART II with different Nmax values in S1 datasets. The vertical
axis in each sub-figure represents individual index and the horizontal axis is the standard deviation sn of the additive noise. The line with square
markers denotes Nmax~1;The line with circle markers denotes Nmax~2;The line with diamond markers denotes Nmax~5;The line with triangle
markers denotes Nmax~10;The line with pentagon markers denotes Nmax~20.
doi:10.1371/journal.pone.0094141.g007
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the DPV ~RRk always tries to move away from ~PPk. Readers may

refer to [48,49] for the details of updating ~PPk, ~AAk and ~RRk.

Original OPTOC claims that the prototype converges if

S~PPk,~AAkTvE. However, E is difficult to determine because it is

data related. In our case, we define that the prototype ~PPk

converges if it satisfies

1{
S~PPk,~AAkT

S~PP�k,~AA�kT

�����
�����vE

0
, ð2Þ

where E
0

is a positive constant smaller than one. It is worth noting

that E
0

is a relative number and is data-independent. Normally,

smaller E
0

leads to longer learning; while larger E
0

leads to poorer

performance. The suggested range of E
0

is ½0:001,0:005�. In our

experiments, E
0

is set to 0.005.

Cohesion. In [54], a similarity measure, namely cohesion,

was proposed. The cohesion metrics is used for Task 2 in SMART

I. It was defined as follows:

chs(CCk,CCl)~

P
x[CCk ,CCl

join(x,CCk,CCl)

jCCkjzjCCl j
, ð3Þ

where CCk is the cluster with the centroid Ck, jCCkj is the size of the

cluster of CCk. join(x,CCk,CCl) defines the similarity of the two clusters

referring to the existence of an object x, which is defined as

join(x,CCk,CCl)~ min fk(x),fl(x)ð Þ, ð4Þ

where fk(x) and fl(x) are the probability density function (pdf) of

the distributions in clusters CCk and CCl . In our case we assume that

an object in each cluster follows a multivariate normal distribution.

Minimum Message Length. Although there are a lot of

model order selection algorithms and validity indices, we choose

MML [30,31,50] for Task 4 in this work (both SMART I and

SMART II) to avoid losing our focus by comparing different

selection algorithms. MML is one of the minimum encoding

length criteria, like the minimum description length (MDL)

[29,56], and is used as the clustering selection algorithm. The

rationale behind minimum encoding length criteria is that if one

can build a short code for any given data, it implies that the code is

a good model for fitting data. The shortest code length for set XX is

{ log p(XXj )), where contains the means and the covariance

matrices Y. If p(XXj ) is fully known to both the transmitter and

receiver, they can both build the same code and communication

can proceed. However, if is a priori unknown, the transmitter has

to start by estimating and transmitting h. This leads to a two-part

Figure 8. The errorbar charts of (a) ARI, (b) JI, (c) CSR, and (d) NMI for all compared algorithms in S2 datasets. The vertical axis in each
sub-figure represents individual index and the horizontal axis is parameter pairs from PP1 to PP13, representing 13 noise levels from low to high. For
SMART I, Tchs~20; for SMART I and II, Nm~5. For ULFMM, SSMCL, and VBGM, kmax~30.
doi:10.1371/journal.pone.0094141.g008
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message, whose total length is given by

Length( ,XX )~Length( )zLength(XXj ): ð5Þ

All minimum encoding length criteria state that the parameter

estimate is the one minimizing Length( , XX ). The criterion was

derived to the following form [50]

Length( ,XX )~
Np

2

XK

k~1

log akz
Npz1

2
K log N

{ log p(XXj )zC, ð6Þ

where Np is the number of parameters which is required in each

component, fak,1ƒkƒKg is the mixing probability of the k-th

component with the constraint
PK

k~1 ak~1, and

C~(Npz1)K(1{ log 12)=2 is a constant. Note that the compo-

nents with zero-probability in ak have been eliminated and K is

the number of non-zero-probability components.

SMART I Implementation. Here, we integrate these tech-

niques into our SMART framework. The pseudo-code for

SMART I is presented in Table 9.

Normally, Task 1 in SMART can be done by any initialization

algorithms, either random or deterministic, like the KA algorithm

[44]. In SMART I implementation presented here, a simple

random initialization is used. The first prototype ~PP1 is randomly

selected, the APV ~AA1 is the farthest object away from ~PP1, and the

DPV ~RR1 is initialized as ~PP1. From then on, the SWM process

starts. Learning with the OPTOC paradigm drags the prototype

to its neighbour, which is ‘‘inside’’ the range of APV, and also

drags the APV towards the prototype. Task 2 will not finish until

every prototype converges. Since OPTOC is an online learning

algorithm, systematic errors may be introduced by the order in

which data is fed into the algorithm. Thus, every time OPTOC

starts, the order of input data is randomized.

Once the prototypes converge, Task 3 commences. The

pairwise cohesions are calculated to measure the distance between

the prototype clusters. A criterion is set to guide the merging

process, stating that if the maximum of the cohesions is Tchs times

more than the majority of the cohesions, it reveals that the pair of

two prototypes with this maximal cohesion are close enough to

merge. The merging process continues until no further merge

occurs. A merging counter records the number of merges. After

Figure 9. The errorbar charts of (a) ARI, (b) JI, (c) CSR, and (d) NMI for SMART II with different Nmax values in S2 datasets. The vertical
axis in each sub-figure represents individual index and the horizontal axis is parameter pairs from PP1 to PP13, representing 13 noise levels from low
to high.
doi:10.1371/journal.pone.0094141.g009
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the merging process finishes, the clustering is recorded as the

candidate to output. If the merging counter exceeds the maximum

number of merges Nm, the SWM process is terminated

automatically; otherwise, it goes to Task 2 and continues splitting.

Once the SWM process finishes, all the candidates are fed into the

MML algorithm, which is associated with Task 4, to calculate

Length( ,XX ). The final clustering results is the one, which

minimizes Length( ,XX ).

Note that there are two parameters Tchs and Nmax that have to

be set in SMART, but they are neutral, i.e., Tchs is a relative

number rather than absolute one, which is a data-independent

value; the reason for setting Nmax is that normally merging occurs

frequently after the natural clustering has been reached. In our

experiments, Tchs is set to 20 and Nmax is set to 5. This is the key

advantage over those over-clustering-then-merge algorithm, like

SSMCL. The critical problem of SSMCL is that if the kmax is set

too large, some prototypes have possibilities of being trapped in

the low density area and difficult to converge.

SMART II
Here, we present the principal of SMART II, where the finite

mixture model (FMM) is employed and the key technique is

modified CEM2 [50]. Since the FMM and the EM algorithm are

very well-known topics, we will not address their details here and

readers may refer to [57,58]. Since the conventional EM

algorithm for mixture model has many drawbacks, e.g., it is

sensitive to initialization and it is a local greedy method that may

be trapped into local minima, the CEM2 was proposed in [55] and

modified in [50]. The greatest advantage of modified CEM2 is that

the weaker component may naturally be excluded in the iterative

process, which gives the stronger ones a better chance of survival.

From the merging point of view, it is a merging process combined

with learning.

CEM2 and Its Modification
Clustering dataset XX , which follows a K-component finite

mixture distribution, becomes the discovery of the missing labels

ZZ~fz1,:::,zNg associated with the N data objects. Unlike

conventional EM algorithm, CEM2 updates the model parameters

f kj1ƒkƒKg and the probabilities of components

fakj1ƒkƒKg sequentially, rather than simultaneously. In

CEM2, the estimation is also two-step process, but in each

iteration, only one component has the opportunity to update its

parameters. For the j-component, it alternates the steps:

N CEM2 E-step: Compute the conditional expectation

C~fck,ijk~1,:::,K ; i~1,:::,Ng of the missing labels ZZ for

i~1,:::,N and k~1,:::,K ,

Table 6. Performance comparison of SMART I and II with variable values of Nmax.

Nmax~5 Nmax~10 Nmax~20

SMART I MML 3.89E4+1.62E2 4.00E4+1.52E2 4.00E4+2.01E2

CSR 99% 98.4% 98.4%

K̂K 2.99+0.13 2.98+0.15 2.98+0.15

CH 6.49+0.3 6.49+0.13 6.49+ 0.12

SI 0.36+2E-2 0.35+9.8E-3 0.35+1.2E-2

SMART II MML 2.9E4+8.37E-4 3.27E+1.97E-3 3.26+1.76E-3

CSR 100% 100% 100%

K̂K 3+0 3+0 3+0

CH 6.75+5.64E-5 6.55+8.37E-5 6.55+6.11E-5

SI 0.36+5.81E-8 0.36+5.83E-8 0.36+5.83E-8

doi:10.1371/journal.pone.0094141.t006

Table 5. Performance comparison of many metrics, including CSR, K̂K , MML, CH, SI for all algorithms in Leukemia dataset.

Algorithms K̂K(q) CSR MML CH SI

MFA 3 (7) / 4.23E4 6.42 0.35

MCFA 3 (4) / 4.22E4 6.48 0.35

SSMCL 1+0 0.0% / / /

ULFMM 3.23+0.54 69.4% 3.91E4+2.07E2 5.96+0.89 0.32+0.06

VBGM 30+0 0.0% 4.02E4+2.27E3 0.78+0.02 0.048+0.013

DBSCAN 1+0 0.0% / / /

MCLUST 2+0 0.0% 4.27E4+0.0 6.73+0.0 0.36+0.0

PFClust 4+0 0.0% 4.31E4+2.91 3.73+4.3E-3 0.21+2.51E-4

SMART I 2.99+0.13 99.0% 3.89E4+1.62E2 6.49+0.3 0.36+0.02

SMART II 3 + 0 100% 2.9E4+8.37E-3 6.75+5.64E-5 0.36+5.81E-8

doi:10.1371/journal.pone.0094141.t005
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ck,i:E½ẑzk,ijXX ,^�~ âakp(xij^k)

PK
l~1

âalp(xij^l)

: ð7Þ

N CEM2 M-step: Set

âa�j ~

PN
i~1 cj,iPK

l~1

PN
l~1 cl,i

, ð8Þ

^�
j ~ argmax

^
j

flog p(XXj^)g ð9Þ

For l=j, âa�l ~âal and ^�
l ~

^
l .

In [50], the adoption of Dirichlet-type prior for aks results a new

M-step

âa�k~

max 0,
PN

i~1 ck,i{
Np

2

� �

PK
i~1 0,

PN
i~1 cl,i{

Np

2

� � , for k~1,2,:::,K: ð10Þ

The corresponding components ^
ks with âa�k~0 is eliminated

and become irrelevant. This component annihilation can be also

explained in an estimation theoretic point of view as that the

estimates are not accurate unless enough samples are involved.

Those estimates without enough samples are dismissed and in turn

others have more chances to survive. Modified CEM2 can fulfil

learning and merging, which are associated with Tasks 2 (only

learning part) and 3, respectively, in SMART II.

SMART II Implementation
Compared with SMART I, SMART II is easier to implement

since modified CEM2 can do both that are learning and merging.

In addition to the learning and merging techniques, there are two

configurations different from SMART I. The first is that in

SMART II, we initially start with K~2 because K~1 does not

need learning, but K~1 is still included in the candidate list for

selection in the output. The second is that the splitting process

cannot be done by modified CEM2 and has to be specified. Once

all components converge and all zero-probability components are

discounted, a new component will be injected into the framework.

This new component is initialized deterministically by using the

farthest object away from the closet component among all the

components as the mean and averaged covariance matrix of all

components’ covariance matrices, as given by

Kz1~ argmax
x[XX

f min
1ƒkƒK

D(x, k)g, ð11Þ

YKz1~
1

K

XK

k~1

fYkg, ð12Þ

where D(:) is a distance metric, and then the clustering splits

K~(Kz1). The pseudo-code for SMART II is in Table 10. The

stage for recoding the candidate clustering is after all current

components converges and all merges finish and before the

splitting for new component starts.

Discussion

We have developed a splitting-while-merging (SWM) clustering

framework, named splitting-merging awareness tactics (SMART).

The framework employs a SWM process and intrinsically

integrates many clustering techniques. SMART has the ability to

split and merge the clusters automatically during the process.

Once the stop criterion is met, the SWM process terminates and

the optimal clustering result is selected as final outcome by

applying the selection criterion.

Although many recent algorithms have been proposed to

achieve automated clustering, e.g. SSCL [48], ULFMM [50],

SSMCL [49], PFClust [53], and VBGM [51,52], there are some

issues that limit their practical use. For ULFMM, SSMCL, and

VBGM, in spite of the fact that they do not require the exact value

of K , they require the range of K , i.e. kmax, which is also not

available sometimes. For PFClust, it needs a good approximation

to the distribution of mean intra-cluster similarities, and it requires

a large number of randomisation which is time-consuming. The

main property of SMART is that it does not require any

parameters dependent on respective datasets or a priori knowledge

about the datasets, particularly, either the number of clusters or

the possible range of this number.

Algorithms
Two SMART algorithms have been implemented with two

distinct clustering paradigms: competitive learning for SMART I

and learning with finite mixture model for SMART II. Compet-

itive learning is a good candidate technique for on-line learning

applications [49]. The selection criterion employs the minimum

message length algorithm. It is worth noting that the components

in the framework, e.g. the splitting, merging algorithms or the

selection criterion, can be replaced by more powerful algorithms in

the future, but the whole framework remains unchanged. We

summarised the categorization of existing self-splitting-merging

algorithms and our two SMART algorithms in Table 1. All

existing self-splitting-merging algorithms employ the STM strategy

with different clustering paradigms; instead our SMART algo-

Table 7. Performance comparison of many metrics, including

K̂K , MML, CH, SI for all algorithms in yeast cell cycle dataset.

Algorithms K̂K(q) MML CH SI

MFA 3 (5) 1.36E4 6.68 0.37

MCFA 5 (6) 1.30E4 6.49 0.37

SSMCL 8 2.11E4 3.82 0.14

ULFMM 7 1.23E4 6.03 0.38

VBGM 20 3.97E4 1.98 0.17

DBSCAN 1 / / /

MCLUST 3 1.394 6.46 0.38

PFClust 6 1.24E4 3.94 0.32

SMART I 4 1.26E4 6.27 0.37

SMART II 4 1.16E4 6.86 0.39

doi:10.1371/journal.pone.0094141.t007
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Figure 10. Histogram of the peak times of genes in each cluster for each algorithm in Yeast cell cycle a-38 dataset. (a) SMART I,
Tchs~20 and Nm~5, K~4 (b) SMART II, Nm~5, K~4, (c) ULFMM,kmax~30, K~7, (d) SSMCL,kmax~30, K~8, (e) MFA, q~5, K~3, (f) MCFA, q~6,
K~5, (g) MCLUST, K~3, (h) PFClust. Sub-figures (a) and (b) show that four clusters represent reasonably good clustering since there are only few
small overlap regions between clusters. Sub-figures (c) and (d) indicate that many clusters crowd and overlap in the region of 5% to 30%, especially in
Sub-figure (c), a clustering representing peaking at 20% superposes on another cluster, which spans over 10% to 30%. These overlapped clusters
have to be one cluster. Sub-figures (e) and (f) show that MFA and MCFA also give reasonably good clustering results judged by eye, however poorer
than SMART II in the numerical metrics. Sub-figures (g) and (h) show the distribution of the peak times of genes based on the clustering results of
MCLUST and PFClust, respectively.
doi:10.1371/journal.pone.0094141.g010
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rithms employ the SWM strategy. Both algorithms were detailed

and tested using demonstration datasets as well as simulated gene

expression datasets. We also noted that SMART can be

implemented with other clustering paradigms without being

restricted in the two techniques presented here. Such flexibility

is apparently beneficial to extend SMART to many different

applications.

Effectiveness of the SMART framework
Two demonstration examples illustrated the SWM process and

showed the effectiveness of the proposed SMART framework. For

different types of clustering techniques, the performance of the

SMART algorithms varied. SMART I, for example, did not work

well in the D2 dataset, since the CL-based algorithms are

spherical. Two models [19,59], which simulates state-based gene

expression data and time-sampled periodic gene expression data

respectively, were employed to evaluate the clustering algorithms.

In both types of simulated datasets, SMART-II offered remarkably

better performance than others. Generally speaking, FMM-based

algorithms performed better than CL-based algorithms in these

two cases. Furthermore, two real microarray gene expression

datasets [7,65] were studied using SMART. In these experiments,

SMART-II also showed superior performance in many metrics.

Particularly, SMART II has very small variations in these metrics,

which means that it provides consistent results even though it is

randomly initialized. Impressively, SMART I has significantly

better performance than ULFMM in both real datasets. In the

most cases except two demonstration examples, VBGM does not

perform well as it is not suitable to directly cluster high

dimensional datasets. One major issue of the STM framework,

as one of bottom-up algorithms, is that it cannot produce a very

accurate clustering result in some circumstances, since it makes

clustering decisions based on local patterns without initially taking

into account the global distribution. The SWM framework splits

and merges the clusters in a top-down fashion to reach a global

optimisation.

Table 8. Comparison of running time (seconds) of the
algorithms implemented in MATLAB (upper section) and
other platforms (lower section) for two real datasets
respectively.

Algorithms R1 (N~999,M~38) R2 (N~500,M~25)

MFA (MATLAB) 2.64E3 1.01E3

MCFA (MATLAB) 1.8E3 1.19E3

SSMCL (MATLAB) 43.68 7.18

ULFMM (MATLAB) 0.5 0.38

VBGM (MATLAB) 2.24 1.26

SMART I (MATLAB) 6.4 1.37

SMART II (MATLAB) 0.47 0.37

DBSCAN (R) 7.44 1.41

MCLUST (R) 165.10 13.44

PFClust (Java) 111.11 35.88

doi:10.1371/journal.pone.0094141.t008

Table 9. The pseudo-code for SMART I.

Task 1: Initializing SMART with K~1

Randomly select ~PP1 and find the farthest object as ~AA1 and initialize ~RR1~~PP1 ;

terminate = 0;

while !terminate do

Task 2: Use the OPTOC paradigm for the learning of prototype, and the

splitting of the cluster with largest variance;

if the prototype ~PPk does not converge then

Go back to Task 2;

end if

Task 3: Calculate pairwise cohesions for all converged prototypes (3);

if The maximum of cohesions is Tchs times larger than the median of cohesions

then

Merge the pair of cluster with the maximum cohesion;

Go back to Task 3 to continue merging;

end if

The stage for recoding candidate clustering.

if The number of merges is greater than or equal to Nm then

terminate = 1;

end if

end while

Task 4: Calculate the length for every converged clustering, output the clustering

with the minimum length.

doi:10.1371/journal.pone.0094141.t009
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Summary
We have proposed a new clustering framework named SMART

which possesses three outstanding properties: 1) by integrating

many clustering techniques including clustering paradigm, clus-

tering validation, and clustering measure, the proposed SMART

framework does not require any parameters dependent on the

respective dataset or a priori knowledge about the datasets; (2) the

implementation of the SMART framework is flexible and

extendible to different applications; (3) the SMART algorithms

appears to produce more accurate clustering results than

counterpart algorithms.

Future Work
In future work, we will derive new algorithms based on other

clustering paradigms, which could be either more robust for

general clustering purposes or more appropriate to some particular

type of data. Additionally, SMART will be applied in consensus

clustering [24,25], which can achieve consistency among different

clustering results of same set of genes in different datasets. Since

the critical issue of consensus clustering is the determination of the

number of clusters, SMART can overcome this problem and

produce different clustering results to many different datasets

without specifying any parameters related to respective datasets.

Combining these clustering results will reveal consistently co-

expressed genes, which have higher possibility to be co-regulated.

This can be beneficial in either gene discovery or gene regulatory

networks research.

Acknowledgments

This article summarises independent research funded by the National

Institute for Health Research (NIHR) under its Programme Grants for

Applied Research Programme (Grant Reference Number RP-PG-0310-

1004). The views expressed are those of the authors and not necessarily

those of the NHS, the NIHR or the Department of Health. Prof. A. K.

Nandi would like to thank TEKES for their award of the Finland

Distinguished Professorship.

Author Contributions

Conceived and designed the experiments: RF AKN. Performed the

experiments: RF AKN. Analyzed the data: RF AKN. Wrote the paper: RF

DJR AKN.

References

1. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review. ACM

Computing Surveys 31: 3, 316–323.

2. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: A review.

IEEE Transactions on Pattern Analysis and Machine Intelligence 22: 4–37.

3. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: A

survey. IEEE Transactions on Knowledge and Data Engineering 16: 1370–

1386.

4. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Transactions on

Neural Networks 16: 645–78.

5. Xu R, Wunsch DC (2010) Clustering algorithms in biomedical research: a

review. IEEE Reviews in Biomedical Engineering 3: 120–54.

6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and

display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 14863–

14868.

7. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science 286: 531–537.

8. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, et al. (1999) Interpreting

patterns of gene expression with self-organizing maps: methods and application

to hematopoietic differentiation. Proc. Natl. Acad. Sci. 96: 2907–2912.

9. Dembele D, Kastner P (2003) Fuzzy c-means method for clustering microarray

data. Bioinformatics 19: 973–980.

10. Qin J, Lewis DP, Noble WS (2003) Kernel hierarchical gene clustering from

microarray expression data. Bioinformatics 19: 2097–2104.

11. Slonim N, Atwal GS, Tkačik G, Bialek W (2005) Information-based clustering.

Proc. Natl. Acad. Sci., 102(51), 18297–18302.

12. Bandyopadhyay S, Mukhopadhyay A, Maulik U (2007) An improved algorithm

for clustering gene expression data. Bioinformatics 23: 2859–2865.

13. Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, et al. (2012)

Hierarchical clustering of brain activity during human nonrapid eye movement

sleep. Proc. Natl. Acad. Sci., 109(15), 5856–5861.

14. Girvan M, Newman MEJ (2002) Community structure in social and biological

networks Proc. Natl. Acad. Sci., 99 (12), 7821–7826.

15. Newman MEJ (2006) Modularity and community structure in networks, Proc.

Natl. Acad. Sci., 103:23, 8577–8582.

16. Fortunato S (2010) Community detection in graphs, Physics Reports, 486 (3-5),

75–174.

17. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based

clustering and data transformations for gene expression data. Bioinformatics 17:

977–987.

Table 10. The pseudo-code for SMART II.

Task 1: Initializing SMART with K~2

Randomly initialize ^
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