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Abstract 
 

Neural networks are generally exposed to a dynamic environment where the training 

patterns or the input attributes (features) will likely be introduced into the current domain 

incrementally. This paper considers the situation where a new set of input attributes must 

be considered and added into the existing neural network. The conventional method is to 

discard the existing network and redesign one from scratch. This approach wastes the old 

knowledge and the previous effort. In order to reduce computational time, improve 

generalization accuracy, and enhance intelligence of the learned models, we present ILIA 

algorithms (namely ILIA1, ILIA2, ILIA3, ILIA4 and ILIA5) capable of Incremental 

Learning in terms of Input Attributes. Using the ILIA algorithms, when new input 

attributes are introduced into the original problem, the existing neural network can be 

retained and a new sub-network is constructed and trained incrementally. The new sub-

network and the old one are merged later to form a new network for the changed 

problem. In addition, ILIA algorithms have the ability to decide whether the new 

incoming input attributes are relevant to the output and consistent with the existing input 

attributes or not and suggest to accept or reject them. Experimental results show that the 
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ILIA algorithms are efficient and effective both for the classification and regression 

problems.  

 

Keywords: Constructive learning algorithms, Incremental learning, Input attributes, 

Neural networks, Supervised learning 
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1. Introduction 

Multilayered feedforward neural networks are widely used to realize nonlinear mappings 

between the input space and output space with a set of parameters. During the learning 

phase, the networks basically are assumed to exist in a static environment, i.e., the 

dimension of the input space is fixed and all sets of training patterns are provided 

initially. The networks adapt themselves to the static environment by updating their 

parameters and sometimes by updating their structures (network size) as well (e.g., 

constructive learning algorithms [1]). However, in reality, the networks are generally 

exposed to a dynamic environment instead of a static one. Such changing factors in the 

dynamic environment can be classified into two situations: 

• The sets of training patterns are not provided completely in the initial state. 

During the training process, new incoming information, corresponding to new 

training patterns are found and introduced into the current system. 

• During the training phase, a set of new input attributes (features) is introduced 

into the current system, corresponding to increasing the dimension of the input 

space. 

 

In such a dynamic environment, a neural network needs to learn the patterns or input 

attributes incrementally. Many researchers have presented incremental learning methods 

for the first situation. Fu et al. [2] proposed an incremental method for pattern 

recognition, called “incremental backpropagation learning network”, which employs 

bounded weight modification and structural adaptation learning rules and applies initial 

knowledge to constrain the learning process. Bruzzon et al. [3] proposed a novel classifier 

based on RBF neural networks for remote-sensing images. Hebert et al. [4] proposed a 

method to combine an unsupervised self-organizing map with a multilayerd feedforward 
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neural network to form the hybrid Self-Organizing Perceptron network for character 

detection. These methods can adapt network structure and/or parameters to learn new 

incoming patterns automatically, without forgetting previous knowledge. For these 

methods, we can see incremental learning is defined, with respect to training patterns, as 

a process of updating a previously trained network to learn a set of new incoming training 

patterns acquired after the network is trained without repeating the entire design and 

training procedure using the complete training sets.  

 

In this paper, we consider the second situation where a new set of input attributes must be 

considered and added into the current system. We assume the original problem has 1N  

input values (an input attribute has one or more input values) and K  output values as 

shown in Figure 1. Now another set of input values needs to be considered and added into 

the problem domain and the new input vector consists of N  input values. It is possible 

that the combined inputs may require a larger network than the existing network. The 

conventional solution is to discard the existing network and redesign a new network 

based on the new input vector. However, this approach wastes the previous training 

effort. Normally, this is not a problem because training is done off-line. There are 

situations where one might want to train the network incrementally in real-time without 

discarding the existing network, if it can be done quickly and the performance obtained is 

acceptable, especially when the existing inputs and the training set are large and the time 

available is short. Applications can be found like on-line stock forecasting systems where 

new factors affecting stock markets have come to scene, critical medical diagnostic 

systems where new factors contributing to a disease in concern have been found and re-

training needs to be done on the fly, real-time command control systems where new 
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factors affecting situation analysis have come into effect and no training time can be 

wasted, etc.  

 

In this paper, we will focus on Incremental Learning in terms of Input Attributes (ILIA) 

and the corresponding algorithms as ILIA algorithms. ILIA algorithms construct and train 

a new sub-network using the added input attributes based on the existing network. They 

have the ability to train incrementally and allow the system to modify the existing 

network without excessive computation. The ILIA algorithms are presented in details in 

section 2 and the corresponding experiments and their results are illustrated in section 3. 

Section 4 is the concluding remark. 

 

 

 

 

 

 

 

 

 

2. ILIA Algorithms 

2.1 Design Goals 
 

In order to reduce excessive computation and increase learning speed, improve 

generalization accuracy, and enhance intelligence of the learned models, the proposed 

ILIA algorithms should meet the following design goals. 

Figure 1. New attributes are introduced into the input vector 
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Design goal 1: The neural network must automatically grow to an appropriate size 

without excessive computation. 

 

It is widely known that network architecture is of crucial importance for neural networks. 

Too small a network cannot learn the problem well [5], while a size too large will lead to 

overfitting and thus poor generalization [6]. So it is a key issue in neural network design 

to find appropriate network architecture automatically and optimize the set of weights for 

the architecture. In order to fulfill the first design goal, constructive neural networks are 

used. These networks are able to construct their own topology according to some pre-

defined criteria without prior knowledge. As a result, the previously trained network is 

extended to incorporate constructive algorithms with incremental learning capability. Our 

key idea is to grow another sub-network that is dependent on the previous trained 

network after a set of new input attributes is introduced into the current domain. The 

additional training process begins with a small neural network. The network grows in size 

constructively only if needed. This approach is expected to be more efficient than the 

network pruning approach that begins with a large network [7]. 

 

Design goal 2: The network architecture and training approach must allow incremental 

learning. And the ILIA algorithms should have the ability to determine whether to accept 

or reject new incoming input attributes. 

 

The network should adopt some methods to adapt to the new environment, because 

learning should be a continuous and incremental process. The ILIA algorithms should 

have the ability to determine whether the new input attributes are relevant (important) to 

the output and consistent with the existing input attributes or not. Relevant and consistent 
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input attributes, if used for further network training, can bring about gradual 

improvement in network performance. In contrast, detrimental effects will result from 

irrelevant or inconsistent input attributes.  

 
 
Design goal 3: Learning new knowledge without forgetting existing knowledge. The 

existing knowledge should be preserved after each incremental learning step.  

 

Existing knowledge should not be wasted. Instead, some way should be devised for an 

incremental network to exploit the existing knowledge effectively. In addition, the 

existing knowledge can be exploited during the incremental learning process, especially 

if the new incoming input attributes are found to be relevant and consistent with the 

existing input attributes. This way, learning time can be reduced. 

 
 

2.2 Procedure for the ILIA Algorithms 
 

For ILIA algorithms, a changing environment is defined as a problem with new incoming 

input attributes, i.e., after a neural network is trained, the input dimension that is equal to 

the number of input units can increase when new input attributes arrive. Therefore, the 

number of input units has to be increased. In our ILIA algorithms, there is no need to 

reconstruct the whole network when the environment is changing.  It suffices to increase 

the number of input units and grow a new portion of neural network corresponding to the 

new incoming input attributes based on the existing knowledge (network). The main 

difficulty is how to use the existing knowledge in incremental learning. In this paper, we 

tried five different algorithms, namely, ILIA1, ILIA2, ILIA3, ILIA4, and ILIA5. The 

overall scheme of the ILIA algorithms is shown in Figure 2.  
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ILIA algorithms are composed of three stages. The procedure for ILIA1 is as follows.  

 

In stage 1, the existing network is retained as the old sub-network, as shown in Figure 2 

and Figure 3 (a). Present all the training, validation, and test patterns to the old sub-

network. The sum of weighted inputs for each output unit on each pattern is calculated 

and stored in arrays. 

 

In stage 2, grow and train the new sub-network.                                         

Step 1: Expand the input dimension. Add input units to the new sub-network to reflect 

the expansion of the dimension of the input space. The newly added ( 1NN − ) 

input values consist of the inputs of the new sub-network; and the sum of 

weighted inputs from the old sub-network and new sub-network goes to the 

input of each output unit, as shown in Figure 3 (b).  

 

 

 

Figure 2. The overall scheme of the ILIA algorithms 
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(a) Existing network (Old sub-network) (b) ILIA1 algorithm 

(c) ILIA2 algorithm (d) ILIA3 algorithm 

(e) ILIA4 algorithm (f) ILIA5 algorithm 

Figure 3. The network structure for the ILIA algorithms 

: Old input units : New input units : Hidden units 

: Output units : Collapsed output units 
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Step 2: The new input units are connected to the output units of the original network. 

A two-layer feedforward network is obtained. 

Step 3: Train the two-layer network obtained in step2. During the process of adjusting 

the input weights of each output unit, only the weights from the new sub-

network are adjusted. The sum of weighted inputs for each output unit on each 

pattern is the sum of weighted inputs from the old sub-network and the new 

sub-network.  

Step 4: Generate a pool of candidate units and select the best candidate unit from the 

pool and install it into the new sub-network. Each new hidden unit is 

connected to all the output units and the new input units, as shown in Figure 3 

(b). During the training process, only the weights connected to the new hidden 

unit are adjusted and all the previously installed units (and weights) are all 

fixed. This way train and install hidden units as many as possible until the 

overall stopping criteria are satisfied. 

 

In stage 3, determine whether the new incoming input attributes are relevant to the output 

and consistent with the existing input attributes or not. If the new incoming input 

attributes are relevant to the output and consistent with the existing input attributes, then 

merge the new sub-network with the old sub-network to form the new neural network 

(overall solution) for the changed problem. Otherwise, reject the new incoming input 

attributes and retain the old sub-network. 

 

The differences between the procedure for the other ILIA algorithms and that for ILIA1 

lie in stag 2. Stage 1 and 3 are the same for all of them. For ILIA2 and ILIA3, the major 

differences from ILIA1 are as follows: 
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• For ILIA2, in stage 2, based on the structure grown and trained from ILIA1, 

collapse the output layer as shown in Figure 3 (c). This means that the K  units 

that were output units so far are now deemed to be the hidden units in the next 

hidden layer. Add the new output units and connect them to all the input units and 

the collapsed output layer (now it is a hidden layer). Then adjust all the newly 

added connections.  

• For ILIA3, in stage 2, based on the structure obtained in ILIA2, train and install 

hidden units. Generate a pool of candidate units and select the best candidate unit 

from the pool and install it into the new sub-network. As shown in Figure 3 (d), 

the new hidden unit receives input connections from the collapsed output layer 

and all the input units. This way train and install hidden units as many as possible 

until the overall stopping criteria are satisfied. 

 

The stage 2 for ILIA4 is as follows: 

Step 1: Expand the input dimension. Add input units to the new sub-network to reflect 

the expansion of the dimension of the input space. 

Step 2: Collapses the output layer of the existing network (old sub-network) directly 

in stage 2, as shown in Figure 3 (e). Add the new output units and connect 

them to all the input units and the collapsed output layer (now it is a hidden 

layer).  

Step 3: Train the newly added connections. During the training process, the old sub-

network is fixed and only the weights from the new sub-network, i.e. newly 

added connection are adjusted.  
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For ILIA5, the major difference from ILIA4 is the following. In stage 2, based on the 

structure obtained in ILIA4, ILIA5 generates a pool of candidate units and selects the 

best candidate unit from the pool and installs it into the new sub-network. As shown in 

Figure 3 (f), the new hidden unit receives input connections from the collapsed output 

layer and all the input units. This way ILIA5 trains and installs hidden units as many as 

possible until the overall stopping criteria are satisfied. 

 

An intuitive explanation of our approaches - and why they work- is the following. When 

the problem has changed with a new set of incoming input attributes, the old sub-network 

previously trained can still be used in constructing the new neural net, as the existing 

input attributes are still valid. For ILIA1, with the new input attributes, a new sub-

network is grown with the purpose to decide for each output unit the effect from the new 

input attributes. So it is grown solely based on the new input set. This new sub-network is 

later merged with the old sub-network to superimpose their effects on each output unit. 

This should be achievable from our assumption that the new input attributes have no 

clash with the existing input attributes. If the new input attributes are not consistent with 

the old ones, we can use some detecting mechanism to detect and reject them, which will 

be explained in details in section 3.2.1. For ILIA2, based on the network obtained by 

ILIA1, the original output layer is collapsed to become a hidden layer. This way, ILIA2 

can obtain more information than ILIA1. Firstly, it collapses the original output layer, 

therefore, it has the potential to grasp the higher-order information and has the chances to 

“update” or “improve” the existing network via the added connections between the new 

output units and the collapsed output units. Secondly, the new output units are fed the 

connections from all the input units (including the existing input units and new ones) at 

the same time.  For ILIA3, based on the network obtained by ILIA2, it continues to 
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install hidden units into the new sub-network. The motivation is to obtain more 

information than ILIA2. ILIA4 collapses the output layer of the old sub-network directly 

after a new set of input units are added. The motivation of ILIA4 is to gain the higher-

order information of the old sub-network and the information from all the inputs together 

by collapsing the output layer. Based on ILIA4, ILIA5 continues to add the hidden units.  

 

2.3 Some Definitions and the Stopping Criteria for Growing and 
Training the Sub-network 

 

As mentioned in the previous sections, constructive learning algorithms are incorporated 

into the ILIA algorithms. There are many constructive learning algorithms, such as the 

Constructive Backpropagation (CBP) algorithm [8], Cascade-Correlation (CC) 

algorithm [9], Dynamic Node Creation (DNC) method [10], and Tiling algorithm [11], 

etc. In this paper, we adopt the CBP algorithm. The reason why CBP is selected is that 

the implementation of CBP is simple and we do not need to switch between two different 

cost functions like in the CC algorithm. And we only need to backpropagate the output 

error through one and only one hidden layer. This way the CBP algorithm is 

computationally as efficient as the CC algorithm [8].  

 

Although constructive learning algorithms have many advantages [1, 12], they are very 

sensitive to changes in the stopping criteria. If training is too short, the components of the 

network will not work well to generate good results. If training is too long, it costs much 

computation time and may result in overfitting and poor generalization. Referring to [13, 

14], we adopted the method of early stopping using a validation set to prevent overfitting. 
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The set of available patterns is divided into three sets: a training set is used to train the 

network, a validation set is used to evaluate the quality of the network during training and 

to measure overfitting, and a test set is used at the end of training to evaluate the resultant 

network.  The size of the training, validation, and test set is 50%, 25% and 25% of the 

problem’s total available patterns. 

 

The error measure E  used is the squared error percentage [13], derived from the 

normalization of the mean squared error to reduce the dependency on the number of 

coefficients in the problem representation and on the range of output values used: 
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where maxo and mino are the maximum and minimum values of output coefficients in the 

problem representation. 

 

)(tEtr is the average error per pattern of the network over the training set, measured after 

epoch t . The value )(tEva is the corresponding error on the validation set after epoch t and 

is used by the stopping criterion. )(tEte  is the corresponding error on the test set; it is not 

known to the training algorithm but characterizes the quality of the network resulting 

from training. 

 

The value )(tEopt  is defined to be the lowest validation set error obtained in epochs up to 

epoch t :  
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The generalization loss [13] at epoch t  is defined as the relative increase of the 

validation error over the minimum so far (in percent): 
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A high generalization loss is one candidate reason to stop training because it directly 

indicates overfitting.  

 

To formalize the notion of training progress, a training strip of length k [13] is defined to 

be a sequence of k epochs numbered 1+n … kn +  where n  is divisible by k . The 

training progress measured after a training strip is: 
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It is used to measure how much larger the average training error is than the minimum 

training error during the training strip.  

 

During the process of growing and training sub-networks, we adopted the following 

heuristic overall stopping criteria: thopt EE <  OR (Reduction of training set error due to 

the last new hidden unit is less than 0.01% AND Validation set error increased due to 

the last new hidden unit). The first part ( thopt EE < ) means that the optimal validation set 

error is below the threshold and the result has been acceptable. The other part means the 

last insertion of a hidden unit resulted in hardly any progress. The criteria for adding a 

new hidden unit are as follows: At least 25 epochs reached for the current network AND 

(Generalization loss )(tGL >5 OR Training progress )(tPk <0.1). The first part means 

that the current network should be trained for at least a certain number of epochs before a 

new hidden unit is installed because the error curves will be turbulent in the beginning. 
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The second part means that the current network has been overfitted or training has little 

progress.  

 

3. Experimental Results and Analysis 

3.1 The Experiment Scheme 

We have run a number of benchmark problems to evaluate our proposed ILIA algorithms. 

In order to simulate the arrival of new input attributes, the training patterns of the 

benchmark problems were partitioned into two independent portions. The first portion 

was used to grow and train the old sub-network. The obtained old sub-network was 

regarded as the existing network. The other portion was considered as the new input 

attributes and the new sub-network was constructed using the ILIA algorithms. In this 

paper, we will report the results of two classification problems (Diabetes1, and Thyroid1 

problem) and one regression problem (Flare1 problem). These three benchmark 

problems are all taken from the PROBEN1 benchmark collection [13] and they all are 

real-world problems. 

 

In the sets of experiments undertaken, we ran 20 trials with each algorithm for each 

problem. The RPROP algorithm [15] was used to minimize the cost function. The 

RPROP algorithm used the following parameters: 2.1=+η , 5.0=−η , 1.00 =∆ , 

50max =∆ , 60.1min −=∆ e , with initial weights from –0.25 … 0.25 randomly. In all 

experiments, 8 candidates were adopted and thE  was set to 0.1. The hidden units and 

output units all used the sigmoid activation function. All the experiments were conducted 

using a Pentium III – 650 PC.  
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3.2 Results and Analysis 

Several issues are of particular importance: generalization accuracy, learning speed, and 

the network complexity. As to generalization accuracy, for the classification problems, 

we pay more attention to classification error than test error; for the regression problems, 

we pay more attention to test error. It should be noted that the number of old input units, 

the number of new input units, and the number of total input units are different. 

Therefore, the computational cost of one epoch can differ significantly between the old 

sub-network, new sub-network, and the network obtained using the conventional method. 

Comparing the number of epochs solely will be misleading. So for learning speed, we 

place the emphasis on training time instead of epochs. As far as network complexity is 

concerned, the total number of independent parameters (the number of weights and biases 

in the net) is more significant than the total number of hidden units due to the same 

reason.  

 
 
3.2.1 Diabetes1  

The Diabetes1 problem diagnoses diabetes of Pima Indians. It has 8 inputs (8 attributes), 

2 outputs and 768 patterns. All inputs are continuous. Its attributes are: number of times 

pregnant, plasma glucose concentration, diastolic blood pressure, triceps skin fold 

thickness, 2-hour serum insulin, body mass index, diabetes pedigree function, and age.  

 
 
We conducted 3 groups of experiments for the Diabetes1 problem. In the first group of 

experiments, we selected 7 input attributes for training the old sub-network and assumed 

the remaining 1 input attribute as the new incoming input attribute. The results obtained 

are displayed in Figure 4 - 7.  In the X axis, “attribute x” means that all input attributes 

except the x-th attribute are assumed as the existing attributes and the x-th attribute is 
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assumed as the new incoming input attribute. For example, for attribute 1 (the first 

column), we assumed all input attributes except the 1st attribute as the existing attributes 

and assume the 1st input attribute as the new incoming attribute. An “old sub-network” 

was constructed for the existing input attributes and its classification error is 23.13%, as 

shown in Figure 4. After the 1st input attribute was introduced into the system, ILIA1, 

ILIA2, ILIA3, ILIA4 and ILIA5 were used to construct the new sub-networks and their 

classification errors are 23.28%, 23.41%, 23.54%, 23.18% and 24.26% respectively. For 

this case, it can be seen that the new incoming attribute has negative effect (larger 

classification error) on the old sub-network’s performance. However, for other cases, e.g. 

when attribute 2 instead is introduced into the system, ILIA1, ILIA2, ILIA3, ILIA4 and 

ILIA5 all incur much less classification error (23.67%, 24.51%, 23.10%, 24.78% and 

24.26% respectively) than the old sub-network (its classification error is 30.99%).  

 

We can divide the input attributes into the following two classes: 

• Class1: The old sub-network’s classification error is relatively large. After the 

new incoming input attribute (e.g. attributes 2 and/or 6) is introduced into the 

problem domain, the classification error will be significantly reduced by using 

any ILIA algorithm. 

• Class2: The old sub-network’s classification error is relatively small. After the 

new incoming input attribute is introduced into the problem domain, the 

classification error is increased by using any ILIA algorithm or the classification 

error is increased by some ILIA algorithms and reduced by other ILIA 

algorithms, e.g. attribute 1, 3, 4, 5, 7 and 8. 
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What are the main reasons causing the input attributes to have different performances? 

Input attributes have different relevance/importance for a problem [16, 17]. If an input 

attribute is relevant to the problem, then introducing this new incoming input attribute 

can enhance the performance (reducing the classification error). On the other hand, if a 

new incoming input attribute is irrelevant to the outputs or inconsistent with the previous 

ones, it will have little or negative effect on the old sub-network’s performance. It should 

be mentioned that in our ILIA algorithms, we assume that existing attributes are all 

relevant. Therefore, for Class1 attributes, they are relevant and important input attributes. 

Note that a feature (input attributes) selector presented in [16] depicted that the Diabetes1 

problem has about 2.03 relevant features (input attributes). Our results are consistent with 

theirs as it shows only attributes 2 and 6 are relevant. In contrast, Class2 attributes are 

irrelevant ones or they are inconsistent with the existing attributes.  

 

From Figure 4 - 5, we can see that ILIA algorithms can improve performance with Class1 

input attributes. Using attribute 2 as an example, the old sub-network’s classification 

error is 30.99%. All ILIA algorithms reduced the classification error significantly and 

ILIA1 and ILIA3 have smaller classification error than those obtained by the other ILIA 

algorithms and the conventional method. For attribute 6, all ILIA algorithms have smaller 

classification error than that obtained by the conventional method. In addition, ILIA 

algorithms can detect Class2 input attributes. To deal with Class2 attributes, ILIA 

algorithms can reject them and retain the old sub-network.  It can be seen, for attributes 1, 

3, 7 and 8, the old sub-network’s classification error is smaller than those obtained by 

ILIA algorithms. For attributes 4 and 5, although ILIA3 and ILIA5 have smaller errors 

than the old sub-network, the differences are negligible and retaining the old sub-network 

can also obtain smaller classification error than the conventional method. The final 
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classification errors obtained by ILIA using this detecting mechanism are displayed in 

Figure 5. We will elaborate the comparison of these ILIA algorithms to the conventional 

method in terms of training time and the number of independent parameters shortly later.  
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Figure 5. Classification errors of Diabetes1 after using the class-detecting mechanism (for a 
Class1 attribute, select ILIA’s result; for a Class2 attribute, select the old neural sub-network’s 
result) 

Figure 4. Classification errors of Diabetes1 before using the class-detecting 
mechanism (Note: “Old” stands for the old sub-network.) 
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In the second group of experiments, we selected 6 input attributes for training the old 

sub-network and assumed the remaining 2 input attributes as the new incoming input 

attributes. The results are shown in Table 1. In the third group of experiments, we 

selected 4 input attributes for training the old sub-network and assumed the remaining 4 

input attributes as the new incoming input attributes. The results are shown in Table 2. 

Figure 6. Number of iIndependent parameters of Diabetes1 (Note: The number of 
independent parameters obtained by an ILIA algorithm is the sum of those from the old 
sub-network and the new sub-network.) 

Figure 7. Training time of Diabetes1 (Note: Training time spent by an ILIA 
algorithm, or say, to construct a new sub-network, are is independent of the old sub-
network, i.e. we need not to include the training time spent by the old sub-network 
because it is an existing network.) 
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From Table 1 and 2, we can see that attributes 2 and 6 belong to Class1 again, indicating 

these two attributes are really important attributes.  

 

 
Table 1. Results for Diabetes1 (Second Group of Experiments) 

 
Problem Epochs T. Time 

(s) 

Hidden 

Units 

Indep.      

Param. 

Ete C. Error 

(%) 

Diabetes1 

 (Conventional method) 
8870 62.0 

 
 

10.2 

 
 

130 16.12 23.93 
Old sub-network 5204 34.2 8.1 87 19.74 32.47 

ILIA1 3876 20.7 14.6 121 15.96 22.89 

ILIA2 3957 21.3 16.6 143 16.06 24.77 

ILIA3 8074 52.9 23.4 231 15.57 23.26 

ILIA4 147 1.1 10.1 109 16.57 26.17 

 

 

Attributes 

1, 2 

ILIA5 3938 31.0 16.9 197 16.08 24.51 

Old sub-network 7258 47.9 10.2 106 15.59 22.92 

ILIA1 806 4.0 12.0 117 15.61 22.79 

ILIA2 878 4.5 14.0 139 15.95 23.52 

ILIA3 6544 47.8 21.6 238 15.89 22.99 

ILIA4 75 0.6 12.2 128 15.93 23.52 

Attributes 

3, 4 

 

 ILIA5 5399 42.4 19.7 226 15.91 23.28 

Old sub-network 6890 45.3 10.4 108 16.89 24.61 

ILIA1 4712 25.2 14.6 129 16.26 23.44 

ILIA2 4848 26.2 16.6 151 16.02 22.79 

ILIA3 9965 75.3 22.6 229 15.93 22.99 

ILIA4 142 1.1 12.4 130 16.31 23.15 

Attributes 

5, 6 

 

 ILIA5 5593 43.9 18.4 208 16.16 22.53 

Old sub-network 4513 29.6 5.9 67 16.68 23.91 

ILIA1 2553 13.6 10.9 91 16.33 24.51 

ILIA2 2604 14.1 12.9 113 16.91 24.71 

ILIA3 8533 59.5 19.9 204 16.26 23.98 

ILIA4 56 0.6 7.9 89 16.91 25.39 

 

 

Attributes 

7, 8 

 

ILIA5 5554 43.7 14.1 170 16.51 23.59 
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Table 2. Results for Diabetes1 (Third Group of Experiments) 

 
Problem Epochs T. Time 

(s) 

Hidden 

Units 

Indep.      

Param. 

Ete C. Error 

(%) 

Diabetes1 

(Conventional method) 
8870 62.0 

 
 

10.2 

 
 

130 16.12 23.93 
Old sub-network 3619 21.5 8.4 90 21.42 34.65 

ILIA1 5175 31.2 14.7 119 16.80 23.22 

ILIA2 5260 31.9 16.7 141 16.42 23.57 

ILIA3 9886 67.4 24.0 236 16.14 23.05 

ILIA4 227 1.7 10.4 112 16.95 23.46 

 

 

Attributes 

1, 2, 5, 6 

        

ILIA5 5038 39.1 15.8 182 16.54 23.57 

Old sub-network 3810 22.4 5.7 65 16.08 23.44 

ILIA1 5382 32.1 11.7 97 16.08 23.93 

ILIA2 5440 32.5 13.7 119 16.70 24.92 

ILIA3 11710 80.3 20.9 213 16.04 23.20 

ILIA4 68 0.7 7.7 87 16.59 24.58 

Attributes 

3, 4, 7, 8 

 

 ILIA5 8113 63.5 16.6 203 16.31 24.01 

 

 
 

From Figure 5 - 7 and Table 2, we can see that ILIA3 has the smallest classification 

errors in most cases. It is also noted that ILIA3 and ILIA5 resulted in more independent 

parameters and hidden units and spent comparable training time compared withas the 

conventional method. In Table 1, ILIA1 and ILIA2 have the smallest classification errors. 

ILIA4 spent the least training time. However, on the whole, ILIA1 and ILIA2 obtain 

satisfactory classification error compared with the conventional method and they spent 

much less training time than the conventional method. What’s more, the number of 

independent parameters and hidden units obtained by ILIA1 and ILIA2 are always 

comparable with to the conventional method.  
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3.2.2 Thyroid1  

Thyroid1 diagnoses whether a patient’s thyroid has overfunction, normal function, or 

underfunction based on patient query data and patient examination data. Thyroid1 has 21 

inputs (21 attributes), 3 outputs, and 7200 patterns.  

 

From Figure 8, we see that most input attributes (i.e., except attributes 10~12) belong to 

Class1, especially for attributes 16~18. In the case of “attributes 16~18”, we can see the 

old sub-network’s classification error is 6.44%. When attributes 16~18 were introduced 

into the system, the classification error was reduced significantly (ILIA1: 2.19%, ILIA2: 

1.56%, ILIA3: 1.46%, ILIA4: 2.38%, ILIA5: 2.24%). In the case of “attributes 10~12”, 

however, the old sub-network’s classification error is 1.79% and it was increased after 

the new attributes were introduced into the system. Therefore, there is one or more 

attributes among attributes 10~12 that belongs to Class2, resulting in negative effect on 

the old sub-network.  

 

The final classification errors, number of independent parameters, and training time are 

displayed in Figure 9 – 11.We see that ILIA3 obtained the smallest classification error in 

most cases. However, it usually spent more training time and resulted in a larger number 

of independent parameters than the conventional method. Compared with ILIA3, ILIA5 

also obtained a relatively complex network architecture. It is noted that ILIA2 also 

obtained a smaller classification error than the conventional method. In addition, 

compared with the conventional method, ILIA2 spent much less training time and has a 

comparable number of independent parameters. Compared with ILIA2, ILIA4 usually 

spent the leastless time but its classification errors are greater than ILIA2’s.  
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Figure 9. Classification errors of Thyroid1 after using the class-detecting mechanism 

Figure 10. Number of iIndependent parameters of Thyroid1 

Figure 8. Classification errors of Thyroid1 before using the class-detecting mechanism 
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3.2.3 Flare1 

Flare1 is a regression problem. It predicts solar flares by trying to guess the number of 

solar flares of small, medium, and large sizes that will happen during the next 24-hour 

period in a fixed active region of the Sun surface. Its input values describe previous flare 

activity and the type and history of the active region. Flare1 has 24 inputs (10 attributes), 

3 outputs, and 1066 patterns. 

 

For the Flare1 problem, we conducted two groups of experiments. The results show that 

most attributes belong to Class1 and they are relevant attributes, especially for attribute 3. 

From Figure 12 – 15 (first group of experiments), we see that ILIA1 reduced the test 

error for some cases and keep the test error unchanged for the other cases. ILIA2 

obtained the smallest test error. Similar to the previous two problems, ILIA2 spent much 

less training time (17.7 ~ 62.5s, in average 31.4s) than the conventional method (226.1s). 

At the same time, it obtained a smaller number of independent parameters than the 

conventional method. ILIA3 and ILIA5 increased the test error since it introduced 

relatively too many independent parameters and hidden units and tended to be overfitting. 

Figure 11. Training time of Thyroid1 
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Although ILIA4 reduced the test error and spent least training time, the test error 

obtained is generally larger than ILIA2. Therefore, ILIA2 is better than the other ILIA 

algorithms.  

 

From Table 3 (second group of experiments), we can see that attributes 1~3 are more 

important than attributes 4~10, which is consistent with the results obtained in the first 

group of experiments. ILIA2 and ILIA4 obtained the same test error. Although ILIA4 

spent less training time, ILIA2’s results are still acceptable. 
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Figure 13. Test errors of Flare1 after using the class-detecting mechanism 

Figure 12. Test errors of Flare1 before using the class-detecting mechanism 
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Figure 14. Number of iIndependent parameters of Flare1 

Figure 15. Training time of Flare1 
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Table 3. Results for Flare1 (Second Group of Experiments) 

 
Problem Epochs T. Time 

(s) 

Hidden 

Units 

Indep.      

Param. 

Ete 

Flare1 

(Conventional method) 11174 226.1 

 

35.6 

 

1072 0.55 

Old sub-network 5416 70.7 18.7 230 0.60 

ILIA1 5546 99.0 21.8 717 0.58 

ILIA2 5593 100.6 24.8 801 0.53 

ILIA3 14604 298.6 51.6 1632 0.55 

ILIA4 68 2.6 21.7 314 0.53 

 

Attributes 

1~ 3  

(317 inputs) 

ILIA5 7751 170.2 47.4 1111 0.55 

Old sub-network 5148 89.5 18.1 434 0.55 

ILIA1 6330 80.6 11.4 569 0.55 

ILIA2 6409 83.4 14.4 653 0.54 

ILIA3 15910 292.3 43.4 1552 0.56 

ILIA4 43 1.5 21.1 518 0.54 

Attributes 

4 ~ 10 

(7 inputs) 

 ILIA5 9164 190.1 54.5 1553 0.57 

 
 
 
 
 

4. Concluding Remark 

 

Incremental learning is a desirable feature that eliminates the need to redesign and retrain 

a network from scratch. The ILIA algorithms proposed in this paper are for incremental 

learning in terms of new input attributes particularly. Using these algorithms, when a set 

of new input attributes is introduced into the current problem, the network previously 

trained can be retained as the old sub-network and a new sub-network is constructed and 

trained. The new sub-network and the old one are merged later to form a new solution for 

the changed problem.  

 



 30

ILIA1 retains the existing network as an old sub-network and constructs a new sub-

network based on the new input attributes. Based on ILIA1, ILIA2 collapses the original 

output layer to become a hidden layer. ILIA3 continues to install hidden units into the 

new sub-network based on that obtained from ILIA2. Although ILIA1 grasps the new 

incoming input attributes basically, ILIA2 can obtain more information than ILIA1. This 

is because: firstly, it collapses the original output layer, therefore, it has the potential to 

grasp the higher-order information and has the chances to “update” or “improve” the 

existing network via the added connections between the new output units and the 

collapsed output units; secondly, the new output units are fed the connections from all the 

input units (including the existing input units and new ones) at the same time.  ILIA3, 

based on the network obtained by ILIA2, continues to install hidden units into the new 

sub-network. Although ILIA3 has the potential to obtain more information than ILIA2, 

ILIA3 tends to result in too many independent parameters and more training time. For 

some problems having small number of training patterns, too many independent 

parameters will cause overfitting, which is reflected in the Flare1 problem. Unlike ILIA2, 

ILIA4 collapses the original output layer directly after a new set of input units are added.   

Based on ILIA4, ILIA5 continues to add the hidden units. From the results, we can see 

that ILIA4 usually spends less training time than ILIA2 while the latter obtains better 

generalization accuracy than the former. Like ILIA3, ILIA5 tends to result in too many 

independent parameters and more training time. 

 

On the whole, by using the ILIA algorithms existing knowledge can be preserved instead 

of being discarded. In addition, the ILIA algorithms have the ability to decide whether the 

new incoming input attributes are relevant to the outputs or not and suggest to accept or 

reject them. Consequently, a neural network can be grown incrementally to an 
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appropriate size without excessive computation. In general, the ILIA algorithms can 

obtain better generalization ability and spend much less training time (with ILIA1, ILIA2, 

and ILIA4) than the conventional method. At the same time, the obtained network 

complexity (with ILIA1, ILIA2, and ILIA4) is comparable to or less than that of the 

conventional method. Generally speaking, ILIA2 algorithm is better than the other ILIA 

algorithms. 

 

In this paper, we assume that only one set of new input attributes is introduced into the 

current system. Actually the ILIA algorithms can also be extended smoothly to 

continuous incremental learning. That means we can introduce new input attributes more 

than once. It should be mentioned that there exist many variations of the ILIA algorithms 

proposed in this paper, for example, we can collapse the output layer more times other 

than only once as in our ILIA algorithms (ILIA2, ILIA3, ILIA4, and ILIA5). These 

variations will be considered further in our future work.  
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