
 1

Incremental Learning with Respect to New Incoming

Input Attributes

Sheng-Uei Guan∗ and Shanchun Li

Department of Electrical and Computer Engineering, National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

Abstract

Neural networks are generally exposed to a dynamic environment where the training

patterns or the input attributes (features) will likely be introduced into the current domain

incrementally. This paper considers the situation where a new set of input attributes must

be considered and added into the existing neural network. The conventional method is to

discard the existing network and redesign one from scratch. This approach wastes the old

knowledge and the previous effort. In order to reduce computational time, improve

generalization accuracy, and enhance intelligence of the learned models, we present ILIA

algorithms (namely ILIA1, ILIA2, ILIA3, ILIA4 and ILIA5) capable of Incremental

Learning in terms of Input Attributes. Using the ILIA algorithms, when new input

attributes are introduced into the original problem, the existing neural network can be

retained and a new sub-network is constructed and trained incrementally. The new sub-

network and the old one are merged later to form a new network for the changed

problem. In addition, ILIA algorithms have the ability to decide whether the new

incoming input attributes are relevant to the output and consistent with the existing input

attributes or not and suggest to accept or reject them. Experimental results show that the

∗ Corresponding author. E-mail address: eleguans@nus.edu.sg

 2

ILIA algorithms are efficient and effective both for the classification and regression

problems.

Keywords: Constructive learning algorithms, Incremental learning, Input attributes,

Neural networks, Supervised learning

 3

1. Introduction

Multilayered feedforward neural networks are widely used to realize nonlinear mappings

between the input space and output space with a set of parameters. During the learning

phase, the networks basically are assumed to exist in a static environment, i.e., the

dimension of the input space is fixed and all sets of training patterns are provided

initially. The networks adapt themselves to the static environment by updating their

parameters and sometimes by updating their structures (network size) as well (e.g.,

constructive learning algorithms [1]). However, in reality, the networks are generally

exposed to a dynamic environment instead of a static one. Such changing factors in the

dynamic environment can be classified into two situations:

• The sets of training patterns are not provided completely in the initial state.

During the training process, new incoming information, corresponding to new

training patterns are found and introduced into the current system.

• During the training phase, a set of new input attributes (features) is introduced

into the current system, corresponding to increasing the dimension of the input

space.

In such a dynamic environment, a neural network needs to learn the patterns or input

attributes incrementally. Many researchers have presented incremental learning methods

for the first situation. Fu et al. [2] proposed an incremental method for pattern

recognition, called “incremental backpropagation learning network”, which employs

bounded weight modification and structural adaptation learning rules and applies initial

knowledge to constrain the learning process. Bruzzon et al. [3] proposed a novel classifier

based on RBF neural networks for remote-sensing images. Hebert et al. [4] proposed a

method to combine an unsupervised self-organizing map with a multilayerd feedforward

 4

neural network to form the hybrid Self-Organizing Perceptron network for character

detection. These methods can adapt network structure and/or parameters to learn new

incoming patterns automatically, without forgetting previous knowledge. For these

methods, we can see incremental learning is defined, with respect to training patterns, as

a process of updating a previously trained network to learn a set of new incoming training

patterns acquired after the network is trained without repeating the entire design and

training procedure using the complete training sets.

In this paper, we consider the second situation where a new set of input attributes must be

considered and added into the current system. We assume the original problem has 1N

input values (an input attribute has one or more input values) and K output values as

shown in Figure 1. Now another set of input values needs to be considered and added into

the problem domain and the new input vector consists of N input values. It is possible

that the combined inputs may require a larger network than the existing network. The

conventional solution is to discard the existing network and redesign a new network

based on the new input vector. However, this approach wastes the previous training

effort. Normally, this is not a problem because training is done off-line. There are

situations where one might want to train the network incrementally in real-time without

discarding the existing network, if it can be done quickly and the performance obtained is

acceptable, especially when the existing inputs and the training set are large and the time

available is short. Applications can be found like on-line stock forecasting systems where

new factors affecting stock markets have come to scene, critical medical diagnostic

systems where new factors contributing to a disease in concern have been found and re-

training needs to be done on the fly, real-time command control systems where new

 5

factors affecting situation analysis have come into effect and no training time can be

wasted, etc.

In this paper, we will focus on Incremental Learning in terms of Input Attributes (ILIA)

and the corresponding algorithms as ILIA algorithms. ILIA algorithms construct and train

a new sub-network using the added input attributes based on the existing network. They

have the ability to train incrementally and allow the system to modify the existing

network without excessive computation. The ILIA algorithms are presented in details in

section 2 and the corresponding experiments and their results are illustrated in section 3.

Section 4 is the concluding remark.

2. ILIA Algorithms

2.1 Design Goals

In order to reduce excessive computation and increase learning speed, improve

generalization accuracy, and enhance intelligence of the learned models, the proposed

ILIA algorithms should meet the following design goals.

Figure 1. New attributes are introduced into the input vector

Output Vector

 1 … K-1 K

 1

 P-1

 P

…

…

…

…

…

…

 Input Vector

 1 … N1 N1+1 … N

…

…

…

Existing Input
Attributes

New Input
Attributes

 6

Design goal 1: The neural network must automatically grow to an appropriate size

without excessive computation.

It is widely known that network architecture is of crucial importance for neural networks.

Too small a network cannot learn the problem well [5], while a size too large will lead to

overfitting and thus poor generalization [6]. So it is a key issue in neural network design

to find appropriate network architecture automatically and optimize the set of weights for

the architecture. In order to fulfill the first design goal, constructive neural networks are

used. These networks are able to construct their own topology according to some pre-

defined criteria without prior knowledge. As a result, the previously trained network is

extended to incorporate constructive algorithms with incremental learning capability. Our

key idea is to grow another sub-network that is dependent on the previous trained

network after a set of new input attributes is introduced into the current domain. The

additional training process begins with a small neural network. The network grows in size

constructively only if needed. This approach is expected to be more efficient than the

network pruning approach that begins with a large network [7].

Design goal 2: The network architecture and training approach must allow incremental

learning. And the ILIA algorithms should have the ability to determine whether to accept

or reject new incoming input attributes.

The network should adopt some methods to adapt to the new environment, because

learning should be a continuous and incremental process. The ILIA algorithms should

have the ability to determine whether the new input attributes are relevant (important) to

the output and consistent with the existing input attributes or not. Relevant and consistent

 7

input attributes, if used for further network training, can bring about gradual

improvement in network performance. In contrast, detrimental effects will result from

irrelevant or inconsistent input attributes.

Design goal 3: Learning new knowledge without forgetting existing knowledge. The

existing knowledge should be preserved after each incremental learning step.

Existing knowledge should not be wasted. Instead, some way should be devised for an

incremental network to exploit the existing knowledge effectively. In addition, the

existing knowledge can be exploited during the incremental learning process, especially

if the new incoming input attributes are found to be relevant and consistent with the

existing input attributes. This way, learning time can be reduced.

2.2 Procedure for the ILIA Algorithms

For ILIA algorithms, a changing environment is defined as a problem with new incoming

input attributes, i.e., after a neural network is trained, the input dimension that is equal to

the number of input units can increase when new input attributes arrive. Therefore, the

number of input units has to be increased. In our ILIA algorithms, there is no need to

reconstruct the whole network when the environment is changing. It suffices to increase

the number of input units and grow a new portion of neural network corresponding to the

new incoming input attributes based on the existing knowledge (network). The main

difficulty is how to use the existing knowledge in incremental learning. In this paper, we

tried five different algorithms, namely, ILIA1, ILIA2, ILIA3, ILIA4, and ILIA5. The

overall scheme of the ILIA algorithms is shown in Figure 2.

 8

.

ILIA algorithms are composed of three stages. The procedure for ILIA1 is as follows.

In stage 1, the existing network is retained as the old sub-network, as shown in Figure 2

and Figure 3 (a). Present all the training, validation, and test patterns to the old sub-

network. The sum of weighted inputs for each output unit on each pattern is calculated

and stored in arrays.

In stage 2, grow and train the new sub-network.

Step 1: Expand the input dimension. Add input units to the new sub-network to reflect

the expansion of the dimension of the input space. The newly added (1NN −)

input values consist of the inputs of the new sub-network; and the sum of

weighted inputs from the old sub-network and new sub-network goes to the

input of each output unit, as shown in Figure 3 (b).

Figure 2. The overall scheme of the ILIA algorithms

Existing
Knowledge

Existing Network
(Old Sub-network)

New Sub-network

Overall Solution

New Inputs Existing Inputs

 9

(a) Existing network (Old sub-network) (b) ILIA1 algorithm

(c) ILIA2 algorithm (d) ILIA3 algorithm

(e) ILIA4 algorithm (f) ILIA5 algorithm

Figure 3. The network structure for the ILIA algorithms

: Old input units : New input units : Hidden units

: Output units : Collapsed output units

 10

Step 2: The new input units are connected to the output units of the original network.

A two-layer feedforward network is obtained.

Step 3: Train the two-layer network obtained in step2. During the process of adjusting

the input weights of each output unit, only the weights from the new sub-

network are adjusted. The sum of weighted inputs for each output unit on each

pattern is the sum of weighted inputs from the old sub-network and the new

sub-network.

Step 4: Generate a pool of candidate units and select the best candidate unit from the

pool and install it into the new sub-network. Each new hidden unit is

connected to all the output units and the new input units, as shown in Figure 3

(b). During the training process, only the weights connected to the new hidden

unit are adjusted and all the previously installed units (and weights) are all

fixed. This way train and install hidden units as many as possible until the

overall stopping criteria are satisfied.

In stage 3, determine whether the new incoming input attributes are relevant to the output

and consistent with the existing input attributes or not. If the new incoming input

attributes are relevant to the output and consistent with the existing input attributes, then

merge the new sub-network with the old sub-network to form the new neural network

(overall solution) for the changed problem. Otherwise, reject the new incoming input

attributes and retain the old sub-network.

The differences between the procedure for the other ILIA algorithms and that for ILIA1

lie in stag 2. Stage 1 and 3 are the same for all of them. For ILIA2 and ILIA3, the major

differences from ILIA1 are as follows:

 11

• For ILIA2, in stage 2, based on the structure grown and trained from ILIA1,

collapse the output layer as shown in Figure 3 (c). This means that the K units

that were output units so far are now deemed to be the hidden units in the next

hidden layer. Add the new output units and connect them to all the input units and

the collapsed output layer (now it is a hidden layer). Then adjust all the newly

added connections.

• For ILIA3, in stage 2, based on the structure obtained in ILIA2, train and install

hidden units. Generate a pool of candidate units and select the best candidate unit

from the pool and install it into the new sub-network. As shown in Figure 3 (d),

the new hidden unit receives input connections from the collapsed output layer

and all the input units. This way train and install hidden units as many as possible

until the overall stopping criteria are satisfied.

The stage 2 for ILIA4 is as follows:

Step 1: Expand the input dimension. Add input units to the new sub-network to reflect

the expansion of the dimension of the input space.

Step 2: Collapses the output layer of the existing network (old sub-network) directly

in stage 2, as shown in Figure 3 (e). Add the new output units and connect

them to all the input units and the collapsed output layer (now it is a hidden

layer).

Step 3: Train the newly added connections. During the training process, the old sub-

network is fixed and only the weights from the new sub-network, i.e. newly

added connection are adjusted.

 12

For ILIA5, the major difference from ILIA4 is the following. In stage 2, based on the

structure obtained in ILIA4, ILIA5 generates a pool of candidate units and selects the

best candidate unit from the pool and installs it into the new sub-network. As shown in

Figure 3 (f), the new hidden unit receives input connections from the collapsed output

layer and all the input units. This way ILIA5 trains and installs hidden units as many as

possible until the overall stopping criteria are satisfied.

An intuitive explanation of our approaches - and why they work- is the following. When

the problem has changed with a new set of incoming input attributes, the old sub-network

previously trained can still be used in constructing the new neural net, as the existing

input attributes are still valid. For ILIA1, with the new input attributes, a new sub-

network is grown with the purpose to decide for each output unit the effect from the new

input attributes. So it is grown solely based on the new input set. This new sub-network is

later merged with the old sub-network to superimpose their effects on each output unit.

This should be achievable from our assumption that the new input attributes have no

clash with the existing input attributes. If the new input attributes are not consistent with

the old ones, we can use some detecting mechanism to detect and reject them, which will

be explained in details in section 3.2.1. For ILIA2, based on the network obtained by

ILIA1, the original output layer is collapsed to become a hidden layer. This way, ILIA2

can obtain more information than ILIA1. Firstly, it collapses the original output layer,

therefore, it has the potential to grasp the higher-order information and has the chances to

“update” or “improve” the existing network via the added connections between the new

output units and the collapsed output units. Secondly, the new output units are fed the

connections from all the input units (including the existing input units and new ones) at

the same time. For ILIA3, based on the network obtained by ILIA2, it continues to

 13

install hidden units into the new sub-network. The motivation is to obtain more

information than ILIA2. ILIA4 collapses the output layer of the old sub-network directly

after a new set of input units are added. The motivation of ILIA4 is to gain the higher-

order information of the old sub-network and the information from all the inputs together

by collapsing the output layer. Based on ILIA4, ILIA5 continues to add the hidden units.

2.3 Some Definitions and the Stopping Criteria for Growing and
Training the Sub-network

As mentioned in the previous sections, constructive learning algorithms are incorporated

into the ILIA algorithms. There are many constructive learning algorithms, such as the

Constructive Backpropagation (CBP) algorithm [8], Cascade-Correlation (CC)

algorithm [9], Dynamic Node Creation (DNC) method [10], and Tiling algorithm [11],

etc. In this paper, we adopt the CBP algorithm. The reason why CBP is selected is that

the implementation of CBP is simple and we do not need to switch between two different

cost functions like in the CC algorithm. And we only need to backpropagate the output

error through one and only one hidden layer. This way the CBP algorithm is

computationally as efficient as the CC algorithm [8].

Although constructive learning algorithms have many advantages [1, 12], they are very

sensitive to changes in the stopping criteria. If training is too short, the components of the

network will not work well to generate good results. If training is too long, it costs much

computation time and may result in overfitting and poor generalization. Referring to [13,

14], we adopted the method of early stopping using a validation set to prevent overfitting.

 14

The set of available patterns is divided into three sets: a training set is used to train the

network, a validation set is used to evaluate the quality of the network during training and

to measure overfitting, and a test set is used at the end of training to evaluate the resultant

network. The size of the training, validation, and test set is 50%, 25% and 25% of the

problem’s total available patterns.

The error measure E used is the squared error percentage [13], derived from the

normalization of the mean squared error to reduce the dependency on the number of

coefficients in the problem representation and on the range of output values used:

∑∑
= =

−
⋅
−

⋅=
P

p

K

k
pkpk to

PK

oo
E

1 1

2minmax)(100

where maxo and mino are the maximum and minimum values of output coefficients in the

problem representation.

)(tEtr is the average error per pattern of the network over the training set, measured after

epoch t . The value)(tEva is the corresponding error on the validation set after epoch t and

is used by the stopping criterion.)(tEte is the corresponding error on the test set; it is not

known to the training algorithm but characterizes the quality of the network resulting

from training.

The value)(tEopt is defined to be the lowest validation set error obtained in epochs up to

epoch t :

)'(min)(
'

tEtE vattopt ≤
=

 15

The generalization loss [13] at epoch t is defined as the relative increase of the

validation error over the minimum so far (in percent):

)1
)(

)(
(100)(−⋅=

tE

tE
tGL

opt

va

A high generalization loss is one candidate reason to stop training because it directly

indicates overfitting.

To formalize the notion of training progress, a training strip of length k [13] is defined to

be a sequence of k epochs numbered 1+n … kn + where n is divisible by k . The

training progress measured after a training strip is:

)1
)'(min

)'(
(1000)(

...1'

...1' −
⋅

⋅=
+−∈

+−∈∑
tEk

tE
tP

trtktt

tktt tr

k

It is used to measure how much larger the average training error is than the minimum

training error during the training strip.

During the process of growing and training sub-networks, we adopted the following

heuristic overall stopping criteria: thopt EE < OR (Reduction of training set error due to

the last new hidden unit is less than 0.01% AND Validation set error increased due to

the last new hidden unit). The first part (thopt EE <) means that the optimal validation set

error is below the threshold and the result has been acceptable. The other part means the

last insertion of a hidden unit resulted in hardly any progress. The criteria for adding a

new hidden unit are as follows: At least 25 epochs reached for the current network AND

(Generalization loss)(tGL >5 OR Training progress)(tPk <0.1). The first part means

that the current network should be trained for at least a certain number of epochs before a

new hidden unit is installed because the error curves will be turbulent in the beginning.

 16

The second part means that the current network has been overfitted or training has little

progress.

3. Experimental Results and Analysis

3.1 The Experiment Scheme

We have run a number of benchmark problems to evaluate our proposed ILIA algorithms.

In order to simulate the arrival of new input attributes, the training patterns of the

benchmark problems were partitioned into two independent portions. The first portion

was used to grow and train the old sub-network. The obtained old sub-network was

regarded as the existing network. The other portion was considered as the new input

attributes and the new sub-network was constructed using the ILIA algorithms. In this

paper, we will report the results of two classification problems (Diabetes1, and Thyroid1

problem) and one regression problem (Flare1 problem). These three benchmark

problems are all taken from the PROBEN1 benchmark collection [13] and they all are

real-world problems.

In the sets of experiments undertaken, we ran 20 trials with each algorithm for each

problem. The RPROP algorithm [15] was used to minimize the cost function. The

RPROP algorithm used the following parameters: 2.1=+η , 5.0=−η , 1.00 =∆ ,

50max =∆ , 60.1min −=∆ e , with initial weights from –0.25 … 0.25 randomly. In all

experiments, 8 candidates were adopted and thE was set to 0.1. The hidden units and

output units all used the sigmoid activation function. All the experiments were conducted

using a Pentium III – 650 PC.

 17

3.2 Results and Analysis

Several issues are of particular importance: generalization accuracy, learning speed, and

the network complexity. As to generalization accuracy, for the classification problems,

we pay more attention to classification error than test error; for the regression problems,

we pay more attention to test error. It should be noted that the number of old input units,

the number of new input units, and the number of total input units are different.

Therefore, the computational cost of one epoch can differ significantly between the old

sub-network, new sub-network, and the network obtained using the conventional method.

Comparing the number of epochs solely will be misleading. So for learning speed, we

place the emphasis on training time instead of epochs. As far as network complexity is

concerned, the total number of independent parameters (the number of weights and biases

in the net) is more significant than the total number of hidden units due to the same

reason.

3.2.1 Diabetes1

The Diabetes1 problem diagnoses diabetes of Pima Indians. It has 8 inputs (8 attributes),

2 outputs and 768 patterns. All inputs are continuous. Its attributes are: number of times

pregnant, plasma glucose concentration, diastolic blood pressure, triceps skin fold

thickness, 2-hour serum insulin, body mass index, diabetes pedigree function, and age.

We conducted 3 groups of experiments for the Diabetes1 problem. In the first group of

experiments, we selected 7 input attributes for training the old sub-network and assumed

the remaining 1 input attribute as the new incoming input attribute. The results obtained

are displayed in Figure 4 - 7. In the X axis, “attribute x” means that all input attributes

except the x-th attribute are assumed as the existing attributes and the x-th attribute is

 18

assumed as the new incoming input attribute. For example, for attribute 1 (the first

column), we assumed all input attributes except the 1st attribute as the existing attributes

and assume the 1st input attribute as the new incoming attribute. An “old sub-network”

was constructed for the existing input attributes and its classification error is 23.13%, as

shown in Figure 4. After the 1st input attribute was introduced into the system, ILIA1,

ILIA2, ILIA3, ILIA4 and ILIA5 were used to construct the new sub-networks and their

classification errors are 23.28%, 23.41%, 23.54%, 23.18% and 24.26% respectively. For

this case, it can be seen that the new incoming attribute has negative effect (larger

classification error) on the old sub-network’s performance. However, for other cases, e.g.

when attribute 2 instead is introduced into the system, ILIA1, ILIA2, ILIA3, ILIA4 and

ILIA5 all incur much less classification error (23.67%, 24.51%, 23.10%, 24.78% and

24.26% respectively) than the old sub-network (its classification error is 30.99%).

We can divide the input attributes into the following two classes:

• Class1: The old sub-network’s classification error is relatively large. After the

new incoming input attribute (e.g. attributes 2 and/or 6) is introduced into the

problem domain, the classification error will be significantly reduced by using

any ILIA algorithm.

• Class2: The old sub-network’s classification error is relatively small. After the

new incoming input attribute is introduced into the problem domain, the

classification error is increased by using any ILIA algorithm or the classification

error is increased by some ILIA algorithms and reduced by other ILIA

algorithms, e.g. attribute 1, 3, 4, 5, 7 and 8.

 19

What are the main reasons causing the input attributes to have different performances?

Input attributes have different relevance/importance for a problem [16, 17]. If an input

attribute is relevant to the problem, then introducing this new incoming input attribute

can enhance the performance (reducing the classification error). On the other hand, if a

new incoming input attribute is irrelevant to the outputs or inconsistent with the previous

ones, it will have little or negative effect on the old sub-network’s performance. It should

be mentioned that in our ILIA algorithms, we assume that existing attributes are all

relevant. Therefore, for Class1 attributes, they are relevant and important input attributes.

Note that a feature (input attributes) selector presented in [16] depicted that the Diabetes1

problem has about 2.03 relevant features (input attributes). Our results are consistent with

theirs as it shows only attributes 2 and 6 are relevant. In contrast, Class2 attributes are

irrelevant ones or they are inconsistent with the existing attributes.

From Figure 4 - 5, we can see that ILIA algorithms can improve performance with Class1

input attributes. Using attribute 2 as an example, the old sub-network’s classification

error is 30.99%. All ILIA algorithms reduced the classification error significantly and

ILIA1 and ILIA3 have smaller classification error than those obtained by the other ILIA

algorithms and the conventional method. For attribute 6, all ILIA algorithms have smaller

classification error than that obtained by the conventional method. In addition, ILIA

algorithms can detect Class2 input attributes. To deal with Class2 attributes, ILIA

algorithms can reject them and retain the old sub-network. It can be seen, for attributes 1,

3, 7 and 8, the old sub-network’s classification error is smaller than those obtained by

ILIA algorithms. For attributes 4 and 5, although ILIA3 and ILIA5 have smaller errors

than the old sub-network, the differences are negligible and retaining the old sub-network

can also obtain smaller classification error than the conventional method. The final

 20

classification errors obtained by ILIA using this detecting mechanism are displayed in

Figure 5. We will elaborate the comparison of these ILIA algorithms to the conventional

method in terms of training time and the number of independent parameters shortly later.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

Attribute

C
. E

rr
o

r
%

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Old

21.5

22

22.5

23

23.5

24

24.5

25

1 2 3 4 5 6 7 8

Attribute

C
. E

rr
o

r
%

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

Figure 5. Classification errors of Diabetes1 after using the class-detecting mechanism (for a
Class1 attribute, select ILIA’s result; for a Class2 attribute, select the old neural sub-network’s
result)

Figure 4. Classification errors of Diabetes1 before using the class-detecting
mechanism (Note: “Old” stands for the old sub-network.)

 21

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Attribute

In
d

ep
. P

ar
am

. ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

Attribute

T
. T

im
e

(s
)

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

In the second group of experiments, we selected 6 input attributes for training the old

sub-network and assumed the remaining 2 input attributes as the new incoming input

attributes. The results are shown in Table 1. In the third group of experiments, we

selected 4 input attributes for training the old sub-network and assumed the remaining 4

input attributes as the new incoming input attributes. The results are shown in Table 2.

Figure 6. Number of iIndependent parameters of Diabetes1 (Note: The number of
independent parameters obtained by an ILIA algorithm is the sum of those from the old
sub-network and the new sub-network.)

Figure 7. Training time of Diabetes1 (Note: Training time spent by an ILIA
algorithm, or say, to construct a new sub-network, are is independent of the old sub-
network, i.e. we need not to include the training time spent by the old sub-network
because it is an existing network.)

 22

From Table 1 and 2, we can see that attributes 2 and 6 belong to Class1 again, indicating

these two attributes are really important attributes.

Table 1. Results for Diabetes1 (Second Group of Experiments)

Problem Epochs T. Time

(s)

Hidden

Units

Indep.

Param.

Ete C. Error

(%)

Diabetes1

 (Conventional method)
8870 62.0

10.2

130 16.12 23.93
Old sub-network 5204 34.2 8.1 87 19.74 32.47

ILIA1 3876 20.7 14.6 121 15.96 22.89

ILIA2 3957 21.3 16.6 143 16.06 24.77

ILIA3 8074 52.9 23.4 231 15.57 23.26

ILIA4 147 1.1 10.1 109 16.57 26.17

Attributes

1, 2

ILIA5 3938 31.0 16.9 197 16.08 24.51

Old sub-network 7258 47.9 10.2 106 15.59 22.92

ILIA1 806 4.0 12.0 117 15.61 22.79

ILIA2 878 4.5 14.0 139 15.95 23.52

ILIA3 6544 47.8 21.6 238 15.89 22.99

ILIA4 75 0.6 12.2 128 15.93 23.52

Attributes

3, 4

 ILIA5 5399 42.4 19.7 226 15.91 23.28

Old sub-network 6890 45.3 10.4 108 16.89 24.61

ILIA1 4712 25.2 14.6 129 16.26 23.44

ILIA2 4848 26.2 16.6 151 16.02 22.79

ILIA3 9965 75.3 22.6 229 15.93 22.99

ILIA4 142 1.1 12.4 130 16.31 23.15

Attributes

5, 6

 ILIA5 5593 43.9 18.4 208 16.16 22.53

Old sub-network 4513 29.6 5.9 67 16.68 23.91

ILIA1 2553 13.6 10.9 91 16.33 24.51

ILIA2 2604 14.1 12.9 113 16.91 24.71

ILIA3 8533 59.5 19.9 204 16.26 23.98

ILIA4 56 0.6 7.9 89 16.91 25.39

Attributes

7, 8

ILIA5 5554 43.7 14.1 170 16.51 23.59

 23

Table 2. Results for Diabetes1 (Third Group of Experiments)

Problem Epochs T. Time

(s)

Hidden

Units

Indep.

Param.

Ete C. Error

(%)

Diabetes1

(Conventional method)
8870 62.0

10.2

130 16.12 23.93
Old sub-network 3619 21.5 8.4 90 21.42 34.65

ILIA1 5175 31.2 14.7 119 16.80 23.22

ILIA2 5260 31.9 16.7 141 16.42 23.57

ILIA3 9886 67.4 24.0 236 16.14 23.05

ILIA4 227 1.7 10.4 112 16.95 23.46

Attributes

1, 2, 5, 6

ILIA5 5038 39.1 15.8 182 16.54 23.57

Old sub-network 3810 22.4 5.7 65 16.08 23.44

ILIA1 5382 32.1 11.7 97 16.08 23.93

ILIA2 5440 32.5 13.7 119 16.70 24.92

ILIA3 11710 80.3 20.9 213 16.04 23.20

ILIA4 68 0.7 7.7 87 16.59 24.58

Attributes

3, 4, 7, 8

 ILIA5 8113 63.5 16.6 203 16.31 24.01

From Figure 5 - 7 and Table 2, we can see that ILIA3 has the smallest classification

errors in most cases. It is also noted that ILIA3 and ILIA5 resulted in more independent

parameters and hidden units and spent comparable training time compared withas the

conventional method. In Table 1, ILIA1 and ILIA2 have the smallest classification errors.

ILIA4 spent the least training time. However, on the whole, ILIA1 and ILIA2 obtain

satisfactory classification error compared with the conventional method and they spent

much less training time than the conventional method. What’s more, the number of

independent parameters and hidden units obtained by ILIA1 and ILIA2 are always

comparable with to the conventional method.

 24

3.2.2 Thyroid1

Thyroid1 diagnoses whether a patient’s thyroid has overfunction, normal function, or

underfunction based on patient query data and patient examination data. Thyroid1 has 21

inputs (21 attributes), 3 outputs, and 7200 patterns.

From Figure 8, we see that most input attributes (i.e., except attributes 10~12) belong to

Class1, especially for attributes 16~18. In the case of “attributes 16~18”, we can see the

old sub-network’s classification error is 6.44%. When attributes 16~18 were introduced

into the system, the classification error was reduced significantly (ILIA1: 2.19%, ILIA2:

1.56%, ILIA3: 1.46%, ILIA4: 2.38%, ILIA5: 2.24%). In the case of “attributes 10~12”,

however, the old sub-network’s classification error is 1.79% and it was increased after

the new attributes were introduced into the system. Therefore, there is one or more

attributes among attributes 10~12 that belongs to Class2, resulting in negative effect on

the old sub-network.

The final classification errors, number of independent parameters, and training time are

displayed in Figure 9 – 11.We see that ILIA3 obtained the smallest classification error in

most cases. However, it usually spent more training time and resulted in a larger number

of independent parameters than the conventional method. Compared with ILIA3, ILIA5

also obtained a relatively complex network architecture. It is noted that ILIA2 also

obtained a smaller classification error than the conventional method. In addition,

compared with the conventional method, ILIA2 spent much less training time and has a

comparable number of independent parameters. Compared with ILIA2, ILIA4 usually

spent the leastless time but its classification errors are greater than ILIA2’s.

 25

0

1

2

3

4

5

6

7

1~3 4~6 7~9 10~12 13~15 16~18 19~21

Attribute

C
. E

rr
o

r
%

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Old

0

0.5

1

1.5

2

2.5

1~3 4~6 7~9 10~12 13~15 16~18 19~21

Attribute

C
. E

rr
o

r
%

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

0

200

400

600

800

1000

1200

1400

1600

1~3 4~6 7~9 10~12 13~15 16~18 19~21

Attribute

In
d

ep
. P

ar
am

. ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

Figure 9. Classification errors of Thyroid1 after using the class-detecting mechanism

Figure 10. Number of iIndependent parameters of Thyroid1

Figure 8. Classification errors of Thyroid1 before using the class-detecting mechanism

 26

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1~3 4~6 7~9 10~12 13~15 16~18 19~21

Attribute

T
. T

im
e

(s
)

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

3.2.3 Flare1

Flare1 is a regression problem. It predicts solar flares by trying to guess the number of

solar flares of small, medium, and large sizes that will happen during the next 24-hour

period in a fixed active region of the Sun surface. Its input values describe previous flare

activity and the type and history of the active region. Flare1 has 24 inputs (10 attributes),

3 outputs, and 1066 patterns.

For the Flare1 problem, we conducted two groups of experiments. The results show that

most attributes belong to Class1 and they are relevant attributes, especially for attribute 3.

From Figure 12 – 15 (first group of experiments), we see that ILIA1 reduced the test

error for some cases and keep the test error unchanged for the other cases. ILIA2

obtained the smallest test error. Similar to the previous two problems, ILIA2 spent much

less training time (17.7 ~ 62.5s, in average 31.4s) than the conventional method (226.1s).

At the same time, it obtained a smaller number of independent parameters than the

conventional method. ILIA3 and ILIA5 increased the test error since it introduced

relatively too many independent parameters and hidden units and tended to be overfitting.

Figure 11. Training time of Thyroid1

 27

Although ILIA4 reduced the test error and spent least training time, the test error

obtained is generally larger than ILIA2. Therefore, ILIA2 is better than the other ILIA

algorithms.

From Table 3 (second group of experiments), we can see that attributes 1~3 are more

important than attributes 4~10, which is consistent with the results obtained in the first

group of experiments. ILIA2 and ILIA4 obtained the same test error. Although ILIA4

spent less training time, ILIA2’s results are still acceptable.

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

1 2 3 4~7 8~10

Attribute

E
te

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Old

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

1 2 3 4~7 8~10

Attribute

E
te

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

Figure 13. Test errors of Flare1 after using the class-detecting mechanism

Figure 12. Test errors of Flare1 before using the class-detecting mechanism

 28

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 4~7 8~10

Attribute

In
d

ep
. P

ar
am

. ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

0

50

100

150

200

250

300

1 2 3 4~7 8~10

Attribute

T
. T

im
e

(s
)

ILIA1

ILIA2

ILIA3

ILIA4

ILIA5

Traditional

Figure 14. Number of iIndependent parameters of Flare1

Figure 15. Training time of Flare1

 29

Table 3. Results for Flare1 (Second Group of Experiments)

Problem Epochs T. Time

(s)

Hidden

Units

Indep.

Param.

Ete

Flare1

(Conventional method) 11174 226.1

35.6

1072 0.55

Old sub-network 5416 70.7 18.7 230 0.60

ILIA1 5546 99.0 21.8 717 0.58

ILIA2 5593 100.6 24.8 801 0.53

ILIA3 14604 298.6 51.6 1632 0.55

ILIA4 68 2.6 21.7 314 0.53

Attributes

1~ 3

(317 inputs)

ILIA5 7751 170.2 47.4 1111 0.55

Old sub-network 5148 89.5 18.1 434 0.55

ILIA1 6330 80.6 11.4 569 0.55

ILIA2 6409 83.4 14.4 653 0.54

ILIA3 15910 292.3 43.4 1552 0.56

ILIA4 43 1.5 21.1 518 0.54

Attributes

4 ~ 10

(7 inputs)

 ILIA5 9164 190.1 54.5 1553 0.57

4. Concluding Remark

Incremental learning is a desirable feature that eliminates the need to redesign and retrain

a network from scratch. The ILIA algorithms proposed in this paper are for incremental

learning in terms of new input attributes particularly. Using these algorithms, when a set

of new input attributes is introduced into the current problem, the network previously

trained can be retained as the old sub-network and a new sub-network is constructed and

trained. The new sub-network and the old one are merged later to form a new solution for

the changed problem.

 30

ILIA1 retains the existing network as an old sub-network and constructs a new sub-

network based on the new input attributes. Based on ILIA1, ILIA2 collapses the original

output layer to become a hidden layer. ILIA3 continues to install hidden units into the

new sub-network based on that obtained from ILIA2. Although ILIA1 grasps the new

incoming input attributes basically, ILIA2 can obtain more information than ILIA1. This

is because: firstly, it collapses the original output layer, therefore, it has the potential to

grasp the higher-order information and has the chances to “update” or “improve” the

existing network via the added connections between the new output units and the

collapsed output units; secondly, the new output units are fed the connections from all the

input units (including the existing input units and new ones) at the same time. ILIA3,

based on the network obtained by ILIA2, continues to install hidden units into the new

sub-network. Although ILIA3 has the potential to obtain more information than ILIA2,

ILIA3 tends to result in too many independent parameters and more training time. For

some problems having small number of training patterns, too many independent

parameters will cause overfitting, which is reflected in the Flare1 problem. Unlike ILIA2,

ILIA4 collapses the original output layer directly after a new set of input units are added.

Based on ILIA4, ILIA5 continues to add the hidden units. From the results, we can see

that ILIA4 usually spends less training time than ILIA2 while the latter obtains better

generalization accuracy than the former. Like ILIA3, ILIA5 tends to result in too many

independent parameters and more training time.

On the whole, by using the ILIA algorithms existing knowledge can be preserved instead

of being discarded. In addition, the ILIA algorithms have the ability to decide whether the

new incoming input attributes are relevant to the outputs or not and suggest to accept or

reject them. Consequently, a neural network can be grown incrementally to an

 31

appropriate size without excessive computation. In general, the ILIA algorithms can

obtain better generalization ability and spend much less training time (with ILIA1, ILIA2,

and ILIA4) than the conventional method. At the same time, the obtained network

complexity (with ILIA1, ILIA2, and ILIA4) is comparable to or less than that of the

conventional method. Generally speaking, ILIA2 algorithm is better than the other ILIA

algorithms.

In this paper, we assume that only one set of new input attributes is introduced into the

current system. Actually the ILIA algorithms can also be extended smoothly to

continuous incremental learning. That means we can introduce new input attributes more

than once. It should be mentioned that there exist many variations of the ILIA algorithms

proposed in this paper, for example, we can collapse the output layer more times other

than only once as in our ILIA algorithms (ILIA2, ILIA3, ILIA4, and ILIA5). These

variations will be considered further in our future work.

 32

References

 [1] T. Y. Kwok and D. Y. Yeung, “Objective functions for training new hidden units in

constructive neural networks”, IEEE Transactions on Neural Networks, Vol. 8, pp. 1131-

1148, 1997.

 [2] L. M. Fu, H. -H. Hsu and J. C. Principe, “Incremental backpropagation learning networks”,

IEEE Transactions on Neural Networks, Vol. 7, pp. 757-761, 1996.

 [3] L. Bruzzon and P. D. Fernandez, “An incremental-learning neural network for the

classification of remote - sensing images”, Pattern Recognition Letters, Vol. 20, pp. 1241-

1248, 1999.

 [4] J. -F. Hebert, M. Parizeau and N. Ghazzali, “Cursive character detection using incremental

learning”, in Proceedings of the Fifth International Conference on Document Analysis and

Recognition, pp. 808 – 811, 1999.

 [5] A. Blum and R. L. Rivest, “Training a 3-node neural network is NP-complete”, Neural

Networks, Vol. 5, pp. 117-128, 1992.

 [6] E. B. Baum and D. Haussler, “What size net gives valid generalization?” Neural

Computation, Vol. 1, pp. 151-160, 1989.

 [7] R. Reed, “Pruning algorithm—a survey”, IEEE Transactions on Neural Networks, Vol. 4, pp.

740-747, 1993.

 [8] M. Lehtokangas, “Modelling with constructive backpropagation”, Neural Networks, Vol. 12,

pp. 707-716, 1999.

 [9] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture”, in D. S.

Touretzky (eds) Advances in neural information processing systems, Vol. 2, pp. 524-532,

Morgan Kaufmann Publishers, CA, 1990.

[10] T. Ash, “Dynamic node creation in backpropagation networks”, Connection Science, Vol. 1,

pp. 365-375, 1989.

[11] M. Mezard and J. P. Nadal, “Learning in feedforward layered networks: The tiling

algorithm”, Journal of Physics, Vol. A22, pp. 2191-2203, 1989.

 33

[12] S. -U. Guan and S. Li, “An approach to parallel growing and training of neural networks”,

in Proceedings of 2000 IEEE International Symposium on Intelligent Signal

Processing and Communication Systems, vol. 2, Honolulu, Hawaii, 2000, pp. 1101-

1104.

[13] L. Prechelt, “PROBEN1: A set of neural network benchmark problems and benchmarking

rules”, Technical Report 21/94, Department of Informatics, University of Karlsruhe,

Germany, 1994.

[14] L. Prechelt, “Investigation of the CasCor family of learning algorithms”, Neural Networks,

Vol. 10, pp. 885-896, 1997.

[15] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation learning:

the RPROP algorithm”, in Proceedings of the IEEE International Conference on Neural

Networks, pp. 586-591, 1993.

[16] R. Setiono and H. Liu, “Neural-network feature selector”, IEEE Transactions on Neural

Networks, Vol. 8, pp. 654 –662, 1997.

[17] P. V. D. Laar, T. Heskes and S. Gielen, “Partial retraining: a new approach to input

relevance determination”, International Journal of Neural Systems, Vol. 9, pp. 75-85, 1999.

[18] S. -U. Guan and S. Li, “An approach to incremental learning with respect to input

attributes”, in Proceedings of International ICSC Congress on Intelligent Systems and

Applications (ISA'2000), University of Wollongong, Australia, 2000.

