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Abstract— Clinical trials are typically conducted over a 

population in order to illuminate certain characteristics of a 

health issue or disease process. These cross-sectional studies 

provide a snapshot of these disease processes over a large 

population but do not allow us to model the temporal nature of 

disease. Longitudinal studies on the other hand, are used to 

explore how these processes develop over time but can be 

expensive and time-consuming, and only cover a relatively 

small window within the disease process. This paper explores a 

technique for integrating cross-sectional and longitudinal 

studies to build models of disease progression. 
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I.  INTRODUCTION 

Degenerative diseases such as cancer, Parkinson’s 
disease, and glaucoma are characterised by a continuing 
deterioration to organs or tissues over time. Longitudinal 
studies [1] measure clinical variables from a number of 
people over time generating Multivariate Time-Series (MTS) 
data. The advantage of longitudinal data is that temporal 
details of the disease progression can be determined. 
However, data is often limited in terms of the cohort size, 
due to the expensive nature of the studies. Cross-sectional 
studies record attributes (such as clinical test results) across a 
sample of the population, thus providing a snapshot of a 
particular process [2]. An advantage of cross sectional 
studies is that they capture the diversity of a sample of the 
population and therefore the degree of variation in the 
symptoms. They are also relatively cheap compared to 
longitudinal studies that involve extensive follow up. The 
main disadvantage of such studies is that the progression of 
disease is inherently temporal in nature and the time 
dimension is not captured. Previously, we developed a 
resampling approach known as the temporal bootstrap [3] 
that builds multiple trajectories through cross sectional data 
to approximate genuine longitudinal data. These pseudo 
time-series can be used to build approximate temporal 
models for prediction and for identifying stages in disease 
progression [4]. However, the use of cross-sectional data to 
build these models will always be limited by the fact that no 
genuine timestamps have been used to infer the models and 
so only an ordering is captured. 

II. METHODS 

Here, we investigate the effect of incorporating 
longitudinal data into pseudo temporal models in order to 
calibrate them. We explore how to best balance cross-
sectional data and longitudinal data in order to minimise the 
expensive process of longitudinal data collection. Pseudo 
Time-Series (PTS) can be used to build temporal models 

such as Hidden Markov Models for forecasting [5]. The 
Temporal BootStrap (TBS) builds PTS by resampling data 
from a cross-sectional study and repeatedly building 
trajectories through the samples. Each trajectory begins at a 
randomly selected datum from a healthy individual and ends 
at a random datum classified as diseased. The trajectory is 
determined by the Floyd-Warshall algorithm [6], a well-
established algorithm for finding the shortest path in 
weighted graphs. A full description of the algorithm to 
generate PTS appears in [3] and example PTS generated 
from simulated cross-sectional data are shown in Figure 2. 

 
Figure 1.  Example PTS generated from TBS on Simulated Data  

We explore whether adding a small number of 
longitudinal data samples to models learnt from cross-
sectional data (via the PTS approach) improves them. Real 
data from 91 Visual field tests where patients who are at 
high-risk of developing glaucoma undertake a 
psychophysical test to identify damage to sectors of their 
vision. No gold standard model exists but a comparison can 
be made to models learnt on the time-series and on sampled 
cross-sections of the time-series: We sample one VF test 
from each of the 91 patient time-series (91 MTS VF DATA 
in Figure 4) to generate a cross-sectional sample and 
generate PTS data for learning models from (PTS). We use 
AutoRegressive HMMs (ARHMMs) to model the data as we 
found it captures the smooth progression of disease. We 
compare this model as well as ones learnt from a 
combination of PTS and 10/20 real time-series (Random 
10/20 MTS) to see how quickly we can learn models that are 
close to the original. This is achieved by comparing the 
Kulbaeck Leibler (KL) distances [6] between these 
calibrated models and the mean KL distance between 200 
different ARHMMs learnt from the same original time-series 
(MEAN VARIANCE). In other words, if we can learn 
models from the sampled CS data that have similar KL 
distances to the general variation in learning a model from 
the full time-series, then we assume that the models are as 



close to one learnt from a full time-series. The experiments 
are repeated 100 times to derive confidence intervals and 
Wilcoxon Rank statistics on the distances. 

 

 
Figure 2.  Figure of VF Data Experimental Framework 

III. RESULTS 

Figure 3 shows the KL distributions generated from the 
experiments. Notice firstly that the KL distance between 
models that have been learnt on the full 91 time-series are in 
the region of 80-90 with a small confidence interval denoting 
relatively small variance from one model learning to the 
next. The models that are learnt from the sampled cross-
section using the PTS approach are impressively close to the 
time-series models but distinctly higher in KL distance 
(likely to be because real temporal information is lacking). 

  
Figure 3.  KL results for VF data with confidence intervals 

When 10 and 20 real time-series are used to calibrate the 
model, however, we see further improvement in the KL 
distance resulting in models that are demonstrably closer to 
the models learnt from all 91 time-series. Finally, models 
that are learnt from using the relatively small number of 
calibrating time-series only are clearly worse with much 
higher distance and large confidence intervals. Looking at 
Wilcoxon rank tests for significance in Table I, nearly all 
models are indeed significantly worse than the variation 
between models learnt on the full longitudinal dataset 
(significant differences are marked with asterisks) except for 
the PTS model calibrated with 20 real time-series. This 
implies we can learn models that are as good as the natural 
variation between model building on full longitudinal data 
by building PTS and calibrating with only 20 real 
longitudinal samples. We also see that many of the inferior 
models are similar in terms of their distances except for the 
very worst models (learnt from only 10 time-series). These 
are different (worse) from the calibrated PTS models. 

IV. CONCLUSIONS 

In this paper we have explored to what degree pseudo 
time-series, learnt from building trajectories through a cross-
sectional study, can be “calibrated” by relatively small 
numbers of real longitudinal study data to gain the advantage 
of both types of study. Future work will involve exploring 
Bayesian approaches to integrate longitudinal and cross-
sectional data where cross sectional data is used to build a 
prior model which can be updated with longitudinal data. 
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TABLE I.  WILCOXON RANK SIGNIFICANCE (SIGNIFICANT P VALUES ARE MARKED WITH AN ASTERISK P<0.01) 

 


