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Abstract. This paper presents a wavelet based approach for the vibratory analysis of beam-soil 
structure related to a point load moving along a beam resting on the surface. The model is 
represented by the Euler-Bernoulli equation for the beam, elastodynamic equation of motion 
for the soil and appropriate boundary conditions. Two cases are analysed: the model with a half 
space under the beam and the model where the supporting medium has a finite thickness. 
Analytical solutions for the displacements are obtained and discussed in relation to the used 
boundary conditions and the type of considered loads: harmonic and constant. The analysis in 
time-frequency and velocity-frequency domains is carried out for realistic systems of 
parameters describing physical properties of the model. The approximate displacement values 
are determined by applying a wavelet method for a derivation of the inverse Fourier transform. 
A special form of the coiflet filter used in numerical calculations allows to carry out analysis 
without loss of accuracy related to singularities appearing in wavelet approximation formulas, 
when dealing with standard filters and complex dynamic systems. 

1.  Introduction 
The problem analysed in this paper is related to the abatement of vibrations generated by high-speed 
trains. The investigation of the traffic interaction with the environment plays a significant role in the 
construction of new tracks and trains [1, 2, 3] and is one of most important subjects of EU research in 
the area of surface transportation. 

Modern high-speed trains move with velocities which increase very dangerously the level of 
vibrations [4, 5]. The Rayleigh velocity is usually treated as a critical velocity and the theoretical 
investigations and experimental tests show that the ground vibrations grow significantly when the 
trains’ speed reaches this critical value [6, 7]. Although many results concerning railway tracks built 
on the surface were described in the literature [3, 6], new analytical and numerical approaches to the 
problem of vibrations abatement are still needed, with special interest in ground vibration analysis [7, 
8, 9]. 

The type of the load and properties of the supporting layer strongly influence the level of accuracy 
of numerical approximations of displacement. Two different cases of the same model are presented in 
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this paper: the first one with a half space under the beam and the second one when the supporting layer 
has finite thickness. The complexity of solutions is discussed in relation to the velocity and frequency 
of the load. The level of vibrations generated by the load is computed in the cases of harmonic and 
constant point loads moving along the beam resting on the surface of viscoelastic medium. The case of 
the harmonic load is very important for the analysis of surface vibrations generated by moving load 
and usually shows a strong response of the system for even its small velocities. It does not show any 
singularities in mathematical formulas and can be effectively solved by using carefully adopted 
calculation methods. In order to avoid numerical instabilities appearing for some systems of 
parameters, a wavelet approximation method [10] and a specially chosen coiflet filter [11] are used for 
derivation of the inverse Fourier transform. This method is very effective for high velocities and high 
load frequencies and allows to reduce numerical problems for calculations that prevent effective 
analysis of the system due to the big amount of time needed for calculations [12]. 

2.  A load moving along a beam 
An infinitely long beam is resting on viscoelastic surface and the point load is moving along the beam. 
Two cases are analyzed: finite thickness h  of supporting medium (Fig.1) and a half space under the 
beam (Fig.2). 

 
 
 
 
 
 
 
 
 

Figure 1: Finite thickness of the medium. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Half space under the beam. 
 
 
The equation for the vertical motion of the beam can be written as Euler Bernoulli equation: 
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where ),( txW , ),,( tzxzzσ , )(tP , EI , Bρ , a  and )( ⋅δ  are the vertical displacement of the beam, 
the vertical stress, the vertical point load, the bending stiffness, the mass per unit length of the beam, 
the thickness of the beam in y  direction and the Dirac delta function, respectively. 

The motion of the viscoelastic layer can be described by the following elastodynamic Navier’s 
equation: 
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where [ ]),,(,0),,,(),,( tzxwtzxutzx =u , ρ  and λ , µ  are the displacement vector, the mass density 
of the soil and Lame’ constants, respectively. The boundary and continuity conditions are: 
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 (for model 2). (5b) 

The interpretation of these conditions can be described in the following way: the beam does not 
move horizontally, the vibrations of the beam and the vertical displacements of the soil at the surface 
are the same and the radiated waves vanish at hz =  (model 1) and at the infinity (model 2). The 
Fourier transform can be used for obtaining the steady state response of the surface for these systems 
[4]. The described model presents the system based on the assumptions formulated in [4, 12] where 
the problem of ground vibrations due to a load moving in a tunnel is investigated for harmonic and 
constant loads. Accordingly the reformulated equations and conditions lead to the investigation of the 
soil response for the load moving along the beam resting on the surface similar to the models 
published in [8, 13, 9] where the main direction of investigation is focused on derivation of critical 
velocities. One should note that the present paper analyses the two-dimensional model, whereas the 
analysis in three dimensions would allow to solve the problem in a more general case with y  
direction and possibly simplify some calculations by introduction of other systems of coordinates. 

3.  Analytical solution 
The formulas for displacements and stress components can be rewritten by using Lame’ potentials: 
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Instead of equation (2) one can write two scalar equations: 
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Applying the Fourier transforms 
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gives the following representation of the system in the transform domain: 
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where )//(),/)2(/( *2222**2222 ρωµωρµλωω ickRickR TTLL −−=+−−=  and Lc , Tc  are 
velocities of the longitudinal and the shear waves in the layer, respectively. 
The boundary and continuity conditions (3)-(5) can be rewritten accordingly: 
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The solutions for equations (9b) are: 
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where coefficients 1A  and 3A  become zeros when the supporting layer has infinite thickness (model 

2). Then one can derive the solutions for displacements and stresses in the transform domain: 
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and hence, by using boundary conditions, one obtains the system of algebraic equations with respect to 

iA  that can be solved accordingly to the Cramer’s rule: 
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with D  and jD  the associated determinants. The solution for vertical displacement is represented by 

the equation: 
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for model 2. Hence, by the Fourier transform (8), one can obtain the integral form of solution for the 
displacements at the surface: 

 ∫ ∫ ∫
+∞

∞−

+∞

∞−

−
+∞

∞−

−= ωω
π

ωω dkdedtetPkwtw titkVi ))()(,(
~~

4
1

),0,0( 1
)(

102
1 . (14) 

When the moving load is harmonically varying in time with the load frequency Ω , 
)cos()( 0 tPtP Ω= , formula (14) takes the following form: 
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The case of 0=Ω  can be treated as a load constant in time. For this type of load the integrand in 
(15) has a strong singularity that prevents direct numerical calculation of the vertical displacement for 
both models. Therefore, in this paper, the displacements for relatively low load frequency are derived 
in order to approximate the constant point load. Instead of classical numerical integration, the 
alternative method [10] based on wavelet approximation of the inverse Fourier transform is used for 
calculation of integral (15). This method was previously successfully applied for the solution of 
number problems related to ground born vibrations analysis and investigation of interactions of fast 
railway transportation with the environment [12, 15, 16]. This method is very efficient for the analysis 
of ground and beam vibrations generated by loads moving with velocities near critical values and 
relatively high or low load frequencies [12, 15]. The wavelet approach allows to analyse detailed 
features of dynamic systems which might be lost when using numerical integration. 

The method adopted in this paper for calculation of integral (15) is based on wavelet expansion of 

functions in )(2 RL , with multiresolution coefficients knc ,  and kjd ,  obtained by using specially 

constructed wavelet filters: 
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Φ  and Ψ  are the scaling function and the wavelet function, respectively, derived in this paper by 

using coiflet filter kp  listed in Appendix. The average value of these coefficients ( ∑
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differs from any integer and therefore allows to take into account all terms of approximating sequence 
(16), as opposed to coiflet filters  used in previous publications [12, 15, 16]. In those cases, another 
singularity appeared in wavelet formulas and due to that fact, an additional approximating procedure 
was needed in order to eliminate troublesome terms. This modified system of coiflets improved the 
approximation accuracy and eliminated doubts related to analytical nature of the used sequences. 

For the coiflets, the approximating formula (16) takes the following form: 
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1M , 2M , 0j  are integers and 162)( minmin −= nnk ω , 12)( maxmax −= nnk ω  define the interval 

],[ maxmin ωω  covering the set of variable ω  in transform domain which has important meaning for the 

nature of original function. Formula (17) can be used for derivation of original function f  from its 

Fourier transform f
~

, with significantly large n . Usually, it is sufficient to assume 4=n  and 4f  

almost coincides with the original function. Nevertheless, the term 17f  is used in this paper, due to the 

fact that considered, relatively low, load frequencies shows strong sensitivity of the system for its 
dynamic changes. Numerical simulations show that for 16>n  the sequence (17) stabilises and further 
terms do not differ significantly. One should note that a similar procedure can be applied for a wide 
spectrum of daublets and coiflets filters which were specially constructed for numerical applications. 
These carefully considered and modified, if needed, systems of coefficients give approximation with 
appropriate accuracy depending on the nature of the analysed systems. 

4.  Wavelet evaluation of displacements – numerical examples 
The following system of parameters [4, 6, 12, 15, 16] is considered for parametric analysis: Young’s 

modulus 27 N/m103⋅=E ; the mass density 3kg/m1700=ρ ; kg/ms103 4** ⋅== λµ  and Poisson’s 

ratio 3/1=ν  for the soil; the mass density 24 kg/m103/ ⋅=aBρ ; the bending stiffness 

Nm10/ 9=aEI , the width in y  direction m4=a  and the vertical point load N105 4
0 ⋅=P  for the 

beam. The harmonic load is moving with three different velocities: Rc⋅≈ 46.0m/s35 , 

Rc⋅≈ 86.0m/s65 , TR cc ⋅≈⋅≈ 98.005.1m/s80 . These velocities allow to highlight some features 

of the system response for harmonic and constant loads. The values m/s76≈Rc  and m/s82≈Tc  are 
the Rayleigh velocity and the velocity of the shear waves in the soil, respectively. The thickness of the 

soil in model 1 is assumed to be m10  and m104 , and those cases are compared with model 2. The 

load frequency π2/Ω=Ωf  is equal to Hz2/1.0 π , Hz2/01.0 π  and Hz2/10 10 π−  for the 
representation of the estimated constant load [4]. 

Numerical simulations show (Fig. 3) that vertical displacement for the constant load can be 
approximated by the harmonic one with relatively low load frequency. One can show that the response 

characteristics stabilises when the frequency load increases below Hz10 6−  for the considered system. 

Therefore the value 1010−=Ω  of the frequency for the harmonic load is considered in parametric 
analysis for the investigation of the load constant in time. 

Figures 4 and 5, show plots of the vertical displacements for different sub-critical velocities and 
both considered models. One can observe that even relatively high thickness of the supporting layer in 
model 1 does not give a good approximation of the more realistic model when the soil under the beam 
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is a half space (Figs. 1 and 2), especially for high velocities near critical values (Fig. 5). Therefore one 
should analyse very carefully models with finite supporting layer [4] because complex dynamic 
variations of the system can give wrong results when applying this assumption. However the waves’ 
reflections might influence obtained results for this model, the propagation of reflected waves can be 
negligible due to viscoelastic properties of layer and its appropriately chosen thickness for the 
approximating procedure. 
 
 
 

 
 

 
 

Figure 3: The vertical displacement for model 1 and m104=h . 
 

 
 

 
 

 
 

Figure 4: The vertical displacement for the velocity m/s35=V . 
 

 
 

 
 

 
 

Figure 5: The vertical displacement for the velocity m/s80=V . 
 

 
 

 
 

 
Figure 6: The vertical displacement for m10=h . 

 
Figure 6 shows that the maximum amplitude of vertical vibrations decreases for higher velocities 

when the frequency load is equal to 1010−=Ω  which means that the assumption of the thickness 
m10=h  for the supporting layer is not realistic and leads to wrong results. This tendency is reversed 

when the value h  increases (Fig. 7) and these correct observations of the influence of velocity on train 
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induced vibrations are confirmed by the analysis of more realistic model 2 (Fig. 8) and by the theory 
[3, 4, 6, 7, 12]. The wavelet method adopted in this paper for the derivation of vertical displacements 
allows further detailed analysis of the system, especially in the area of high velocities and the point 
load constant in time. 
 

 
 
 
 
 
 
 

 
Figure 7: The vertical displacement for m104=h . 

 
 

 
 
 

 
 

Figure 8: The vertical displacement for model 2. 
 
The maximum amplitude derived by using the coiflet based wavelet approximation for a wide 

range of velocities shows that critical value of velocity for the constant load can be estimated around 
m/s80  for model 2 (Fig. 9). One can observe that the vibrations can reach the relatively high level of 

mm40  when the constant load moves with velocity near critical value. 
 
 
 
 
 
 
 
 
 
Figure 9: Critical velocity for model 2 and constant load – the maximum of vertical displacement. 

5.  Conclusions 
The problem of viscoelastic soil vibrations generated by a load moving along a beam resting on the 
surface was analysed in two cases: with finite thickness of supporting layer and with half space under 
the beam. A special wavelet method was adopted for the derivation of vertical displacements at the 
surface. This method allowed to carry out the analysis in the area of high velocities and low 
frequencies leading to the approximation of the point load constant in time. The applied estimation 
allowed to alleviate the problem of singularities appearing in the integrated formulas when the 
constant load was considered. The modified coiflets filter improved the accuracy of wavelet 
approximation compared to previously published results. The parametric analysis of the system was 
carried out depending on a number of factors, e.g. the thickness of supporting layer and the velocity of 
moving load and the critical velocity was numerically estimated for the constant load and a half space 

m/s65=V  m/s35=V  m/s80=V  

m/s35=V  m/s65=V  m/s80=V  
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under the beam. The analysis of this system can be extended by using the wavelet approach for more 
complex situations. 
 
Appendix 
The following set of coiflets is used for numerical calculations performed in this article: 
{0.003401479882015607, -0.004130806329954543, -0.03536170269249431, 0.05747767104264993, 0.3843902644404712, 

0.5358632409346619, 0.1908760013178301, -0.1321131305836887, -0.05295999083912471, 0.05813917906468963, 
0.00975811187504831, -0.01825628044991493, 0.0002608645070967113, 0.00327048515783943, 

-0.0003823627249285679, -0.0002646325745805278, 0.000017334234085592, 0.00001427373829770887}. 
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