
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.83.92.127

This content was downloaded on 11/05/2015 at 14:17

Please note that terms and conditions apply.

CMS Dashboard Task Monitoring: A user-centric monitoring view

View the table of contents for this issue, or go to the journal homepage for more

2010 J. Phys.: Conf. Ser. 219 072038

(http://iopscience.iop.org/1742-6596/219/7/072038)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/219/7
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

CMS Dashboard Task Monitoring: A user-centric monitoring
view

Edward Karavakis1,2, Julia Andreeva2, Akram Khan1, Gerhild Maier2, Benjamin
Gaidioz2

1 School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH, UK

2 CERN, European Organisation for Nuclear Research, CH-1211 Geneva 23,
Switzerland

E-mail: Edward.Karavakis@cern.ch

Abstract. We are now in a phase change of the CMS experiment where people are turning
more intensely to physics analysis and away from construction. This brings a lot of challenging
issues with respect to monitoring of the user analysis. The physicists must be able to monitor
the execution status, application and grid-level messages of their tasks that may run at any site
within the CMS Virtual Organisation. The CMS Dashboard Task Monitoring project provides
this information towards individual analysis users by collecting and exposing a user-centric set
of information regarding submitted tasks including reason of failure, distribution by site and
over time, consumed time and efficiency. The development was user-driven with physicists
invited to test the prototype in order to assemble further requirements and identify weaknesses
with the application.

1. Introduction
The Experiment Dashboard [1] is a monitoring system developed for the LHC experiments in order to
provide the view of the Grid infrastructure from the perspective of the Virtual Organisation. The CMS
Dashboard provides a reliable monitoring system that enables the transparent view of the experiment
activities across different middleware implementations and combines the Grid monitoring data with
information that is specific to the experiment.

The scientists must be able to monitor the execution status, application and grid-level messages of
their tasks that may run at any site on the distributed WLCG infrastructure. The existing CMS
monitoring systems provide this type of information but they are not focused on the user's perspective.

The CMS Dashboard Task Monitoring project addresses this gap by collecting and exposing a
user-centric set of information to the user regarding submitted tasks. It provides a clear and precise
view of the status of the task including job distribution by sites and over time, reason of failure and
advanced graphical plots giving a more usable and attractive interface to the analysis and production
user. The development was user-driven with physicists invited to test the prototype in order to
assemble further requirements and identify weaknesses with the application.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

c© 2010 IOP Publishing Ltd 1

In the first section of this paper, the concept of the Experiment Dashboard monitoring system will
be described in detail. The next sections provide an overview of the Task Monitoring application and
its features. The two final sections focus on the known issues, the future work and draw some
conclusions.

2. Architecture
The CMS Task Monitoring application is part of the Experiment Dashboard system [2] which is
widely used by the four LHC experiments. The Controller is the main piece of the web application
(Figure 1). It receives all client requests and decides what to do with them. For each client request
there should be a corresponding Action, which will normally involve some interaction with the model
of the application (some business logic that might involve accessing or updating persistent data).

A client request might involve producing some output. This output is identified by its mime/type
and will have a View associated with it. The Action will put any data that it collected/produced in a
shared area (the ActionContext) so that it can later be taken by the View to produce the output to the
client. All the relationship between client requests, Actions, Views and its associated mime/types is
defined in a single configuration file, the ActionMapping file. A widely used format for data retrieval
is HTML but information can also be retrieved in XML, CSV or image formats allowing any third
party application to use the system.

The Dashboard Task Monitoring application is built on top of the Dashboard Job Monitoring
system which uses multiple sources of information [3]. There are two main architectural principals of
the Dashboard Job Monitoring system:

• Monitoring should not be intrusive to the information source. Thus, it does not pool
information from the primary monitoring sources on a regular basis to avoid adding additional
load on the services responsible for the job processing.

• The Dashboard uses a message-oriented architecture. There is no synchronous connection to
the primary information producer. The job submission tools as well as the jobs themselves are
instrumented to report in real time important events to the MonALISA [6] servers. The
Dashboard Collectors regularly consume information published by the MonALISA servers. At
the time when the development of the Dashboard started in the summer of 2005, no messaging
system was provided as a standard component of the Grid Middleware stack. The MonALISA

Figure 1. Web Application Architecture

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

2

system was selected to be used as a messaging system for the Dashboard. Currently, the
Dashboard development team is integrating the Dashboard with the Messaging System for the
Grid (MSG) [4].

The data collectors gather both Grid-related information as well as information specific to the
application which is run by the users (Figure 2). The Grid-related information is obtained in the XML
format from the Logging and Bookkeeping Database using the Imperial College Real Time
Monitoring publisher (ICRTM) [5]. The application-specific information is gathered throughout a
job's lifetime via the MonALISA monitoring system.

The job submission tools of the CMS experiment and the job wrappers generated by these tools are
instrumented to report meta-information about a user's tasks and the progress of a user's job to the
MonALISA server. The Dashboard then presents all this information in a coherent way, as if all of it
came from one source [7].

3. Monitoring Features
Task Monitoring provides monitoring functionality regardless of the job submission method or the
middleware flavour and it works transparently across various Grid infrastructures which is the reason
why it is so heavily used by many analysis users [8][9]. It is easy to understand how it works and how
to navigate throughout the tool. It is clean and intuitive in layout and it contains no unnecessary
information (Figure 3).

The tool has very low latency and it updates in 'real time' from the worker nodes where the jobs are
running. A snapshot of the user interface can be seen in Figure 3.

Figure 2. Job Information Gathering

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

3

Clicking on the information link next to the name of the task provides meta-information such as
input dataset, version of the software used by the task and of the submission tool and the task creation
time. Clicking on the number of jobs corresponding to a given status provides a detailed information
of all the jobs of a selected category (Figure 4).

Clicking on any name on the 'Site' column opens the Site Status Board for the CMS Sites [10],
providing a 24-hour status availability of the selected site allowing to identify any problematic site and
blacklist it from resubmissions. Also, clicking on the 'Retries' column provides a detailed re-
submission history of every single job which can be very useful for debugging purposes. An example

Figure 3. User Interface

Figure 4. Detailed Job Information

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

4

can be seen in Figure 5; the job produced an output to the Storage Element (SE) but the staging out
finished with an error (exit code: 60307), thus, all following resubmissions had no chance to succeed,
since the file was already created on the SE (exit code: 60303). Before any further resubmission, the
output file generated by the previous attempt should be removed from the SE.

The application offers a wide variety of graphical plots that will visually assist the user to
understand the status of the task. These plots show the distribution by site of successful, failed,
running and pending jobs as well as for the processed events (Figure 6a) and they can help identify
any problematic site and blacklist it from further resubmissions (Figure 6b). They also demonstrate the
terminated jobs in terms of success or failure and over the time range that the task has been running
(Figure 6c). In the case of failure, the distribution by reason is demonstrated, whether it be Grid-
Aborted or Application-Failed jobs (Figure 6d).

Figure 6. Graphical Plots: a) Processed Events over Time, b) Terminated Jobs by Site, c) Terminated
Jobs over Time, d) Reason of Failure

Various kinds of consumed time plots are available such as the distribution of CPU and Wall Clock
time spent for successful and failed jobs and the average efficiency distributed by site (Figure 7).

Figure 5. Detailed Resubmission Information

a)

c) d)

b)

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

5

These plots will help the user to see how the CPU time per event and efficiency can vary
depending on the site that the jobs are running on. The user gets information regarding the time that
has been consumed for a specific task or a given job:

• For any given task (Figure 8), the following information is available: the average efficiency of
the task, the total and the average CMSSW CPU and job wrapper Wall Clock time usage and
the average CPU time spent per event.

• At the job-level the user gets information about the efficiency of every single job separately.

4. Experience of the CMS User Community with Task Monitoring
In the CMS Community, the CMS Remote Analysis Builder (CRAB) [12] is used for the job
submission. CRAB is a Python programme simplifying the process of creation and submission of
CMS analysis jobs to the Grid environment. CRAB can be used in two ways: i) as a standalone
application and ii) with a server. The standalone mode is suited for small tasks and it submits the jobs
directly to the scheduler and these jobs are under the user's responsibility. In the server mode, suited
for larger tasks, the jobs are prepared locally and then passed on to a dedicated CRAB Server which
then interacts with the scheduler on behalf of the user and performs additional services such as
automatic resubmissions and output retrieval.

Figure 7. Efficiency Distributed by Site

Figure 8. Consumed Time information for a selected task

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

6

Rather often, Task Monitoring discovers previously undetected problems with the CRAB Server or
the Workload Management Systems (WMS). The Dashboard reports a job as 'finished' when the job
finishes on the worker node but the job status updates by the Grid services can introduce some latency
and they are quite often delayed due to a component of the CRAB Server or due to problems of the
WMS or of the Logging and Bookkeeping system (LB) [13]. Thus, when the users see a big delay in
status updates in CRAB compared to the status shown in Task Monitoring, they report the problem
and after investigation either the CRAB Server is fixed or the faulty WMS is blacklisted.

We have performed a publicity campaign to bring awareness to the CMS User Community for the
Task Monitoring application, collect feedback, assemble further requirements and identify weaknesses
with the application. According to our web statistics [8][9], more than one hundred distinct analysis
users are using Task Monitoring for their everyday work.

5. Known Issues and Future Work
The overall improvement of the Task Monitoring application strongly depends on the completeness of
the job monitoring information in the Dashboard data repository. One of the known issues is the
incomplete information regarding the Grid status of the jobs. Currently, only information from the
Imperial College Real Time Monitoring (ICRTM) is used for this purpose. Unfortunately, only a
fraction of the CMS jobs are monitored by the ICRTM [4]. Jobs submitted via Condor_G [11] or
Condor-glideins escape it and not all Workload Management Systems (WMSs) are monitored by the
ICRTM. There is a lot of development effort, driven by the Dashboard team, to improve this situation
by instrumenting the Logging and Bookkeeping system (LB) for publishing job status changes
information to the Messaging System for the Grid (MSG). Then, this information will be available to
all possible interested clients including the Dashboard. Condor_G is also being instrumented to report
job status changes to the MSG.

Currently, a weak point of the application is the failure diagnostics for both Grid and application
failures due to the incomplete information we receive regarding the reason of the failure. The ideal
situation would be to reach to a point where the user shouldn’t have to open the log file to search for
what went wrong. The user should get everything from the monitoring tool. A development effort is
ongoing to improve the failure diagnostics reported to the Dashboard from the job wrapper.

We plan to develop a search functionality that will allow the user to search for a specific task or job
using a search pattern. Finally, we are working on developing a script to automatically generate a set
of commands for processing a set of jobs, such as resubmissions, killings, getting logging info and
retrieving the output. These commands will be both in CRAB format and in various underlying
middleware format. The user could select a subset or all of the failed jobs for a given task and be able
to download and run a single command file that will do the resubmission automatically. This feature is
needed when CRAB's task directory is not available for an unknown reason and the user can not use
the CRAB UI in order to manipulate the jobs of the task.

6. Conclusion
While the existing monitoring tools are coupled to a specific middleware, Task Monitoring provides
monitoring functionality regardless of the job submission method or the middleware platform offering
a complete and detailed view of the user's tasks including failure diagnostics, processing efficiency
and resubmission history.

The monitoring tool has become very popular among the CMS users. According to our web
statistics, more than one hundred distinct analysis users are using it for their everyday work. Close
collaboration with several CMS users resulted in the tool being focused on their exact monitoring
needs.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

7

Acknowledgments
The authors would like to thank all the participating users of the CMS Community for their feedback
and support. This work was funded by EGEE. EGEE is a project funded by the European Union under
contract INFSO-RI-031688.

References
[1] Experiment Dashboard, http://dashboard.cern.ch
[2] ARDA Dashboard Developer's Guide,

http://dashb-build.cern.ch/build/nightly/doc/guides/common/html/dev/index.html
[3] J. Andreeva et al. 'Experiment Dashboard: the monitoring system for the LHC experiments'. In

GMW'07: Proceedings of the 2007 workshop on Grid monitoring, ACM
[4] J. Andreeva et al. 'New Job Monitoring Strategy on the WLCG Scope'. In CHEP'09:

Proceedings of the 2009 International Conference on Computing in High Energy and
Nuclear Physics, IOP

[5] Imperial College Real Time Monitoring (ICRTM), http://gridportal.hep.ph.ic.ac.uk/rtm/
[6] Monitoring Agents Using a Large Integrated Services Architecture (MonALISA),

http://monalisa.cern.ch/monalisa.html
[7] P. Saiz et al. 'Grid Reliability'. In CHEP'07: Proceedings of the 2007 International Conference

on Computing in High Energy and Nuclear Physics, IOP
[8] Dashboard Production Server Statistics, http://lxarda18.cern.ch/awstats/awstats.pl?

config=lxarda18.cern.ch
[9] Dashboard Application Usage Statistics, http://lxarda18.cern.ch/usage.html
[10] Dashboard Site Status for the CMS Sites, http://dashb-ssb.cern.ch/ssb.html
[11] Condor-G, http://www.cs.wisc.edu/condor/condorg/
[12] CMS Remote Analysis Builder (CRAB),

https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideCrab
[13] Logging and Bookkeeping System, http://egee.cesnet.cz/cs/JRA1/LB/

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 072038 doi:10.1088/1742-6596/219/7/072038

8

http://lxarda18.cern.ch/awstats/awstats.pl?config=lxarda18.cern.ch
http://lxarda18.cern.ch/awstats/awstats.pl?config=lxarda18.cern.ch

