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Abstract
In this note we prove the well-posedness for stochastic 2D Navier-Stokes equation driven by gen-
eral Lévy processes (in particular, α-stable processes), and obtain the existence of invariant mea-
sures.

1 Introduction and Main Result

In this article we are concerned with the following stochastic 2D Navier-Stokes equation in torus
T2 = (0,1]2:

dut = [∆ut − (ut · ∇)ut +∇pt]dt + dLt , divut = 0, u0 = ϕ ∈H0, (1.1)

where ut(x) = (u1
t (x), u2

t (x)) is the 2D-velocity field, p is the pressure, and (Lt)t¾0 is an infinite
dimensional cylindrical Lévy process given by

Lt =
∑

j∈N
β j L

( j)
t e j ,
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where {(L( j)t )t¾0, j ∈N} is a sequence of independent one dimensional purely discontinuous Lévy
processes defined on some filtered probability space (Ω,F , (Ft)t¾0; P) and with the same Lévy
measure ν , {β j , j ∈ N} is a sequence of positive numbers and {e j , j ∈ N} is a sequence of or-
thonormal basis of Hilbert space H0, where for γ ∈ R, Hγ with the norm ‖ · ‖γ and inner product
〈·, ·〉γ denotes the usual Sobolev space of divergence free vector fields on T2 (see Section 2 for a
definition).
As a continuous model, stochastic Navier-Stokes equation driven by Brownian motion has been
extensively studied in the past decades (cf. [9, 3, 5, 8], etc.). Meanwhile, stochastic partial
differential equation with jump has also been studied recently (cf. [11, 6]). However, in the
well-known results, the assumption that the jump process has finite second order moments was
required in order to obtain the usual energy estimate. This excludes the interest α-stable process.
In this note, we establish the well posedness for stochastic 2D Navier-Stokes equation (1.1) driven
by a general cylindrical Lévy process, and obtain the existence of invariant measures for this
discontinuous model. More precisely, we shall prove that:

Theorem 1.1. Suppose that for some θ ∈ (0, 1],

(Hθ ): Hθ :=

∫

|x |>1

|x |θν(dx) +

∫

|x |¶1

|x |2θν(dx) +
∑

j∈N
|β j |θ <+∞.

Then for any ϕ ∈H0, there exists a unique solution (ut)t¾0 = (ut(ϕ))t¾0 to equation (1.1) satisfying
that for P-almost all ω and for any t > 0,

(i) t 7→ ut(ω) is right continuous and has left-hand limit in H0, and
∫ t

0
‖∇us(ω)‖2

0ds <+∞;

(ii) it holds that for any φ ∈H1,

〈ut(ω),φ〉0 = 〈ϕ,φ〉0 +
∫ t

0

[〈∆us(ω),φ〉0 + 〈us(ω)⊗ us(ω),∇φ〉0]ds+ 〈Lt(ω),φ〉0.

Moreover, there exists a constant C = C(Hθ ,θ)> 0 such that for any t > 0,

E

�

sup
s∈[0,t]

‖us‖θ0

�

+E

�
∫ t

0

‖∇us‖2
0

(‖us‖2
0 + 1)1−θ/2

ds

�

¶ C(1+ ‖ϕ‖θ0 + t). (1.2)

In particular, there exists a probability measure µ on (H0,B(H0)) called invariant measure of
(ut(ϕ))t¾0 such that for any bounded measurable functional Φ on H0,

∫

H0

EΦ(ut(ϕ))µ(dϕ) =

∫

H0

Φ(ϕ)µ(dϕ).

Remark 1.2. Assumption (Hθ ) implies that cylindrical Lévy process (Lt)t¾0 admits a càdlàg version
in H0 and for any t > 0 (cf. [12, p.159, Theorem 25.3]),

E‖Lt‖θ0 <+∞.

In fact, for θ ∈ (0,1], by the elementary inequality (a+ b)θ ¶ aθ + bθ , we have

E‖Lt‖θ0 ¶ E





∑

j∈N
|β j | · |L

( j)
t |





θ

¶
∑

j∈N
|β j |θ ·E|L

( j)
t |

θ = E|L(1)t |
θ
∑

j∈N
|β j |θ <+∞.

Moreover, (Hθ ) admits ν(dx) = dx/|x |1+α with α ∈ (θ , 2θ).
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Remark 1.3. By estimate (1.2) and Poincàre’s inequality, we have

E

�
∫ t

0

‖∇us‖θ0 ds

�

¶ E
�
∫ t

0

‖∇us‖θ0 (‖us‖2−θ
0 + 1)

(‖us‖2
0 + 1)1−θ/2

ds

�

¶ CE

�
∫ t

0

‖∇us‖2
0 + 1

(‖us‖2
0 + 1)1−θ/2

ds

�

¶ C(1+ ‖ϕ‖θ0 + t).

This estimate in particular yields the existence of invariant measures by the classical Bogoliubov-
Krylov’s argument (cf. [4]).

Remark 1.4. An obvious open question is about the uniqueness of invariant measures (i.e. ergodicity)
for discontinuous system (1.1). The notion of asymptotic strong Feller property in [9] is perhaps
helpful for solving this problem.

This paper is organized as follows: In Section 2, we give some necessary materials. In Section 3,
we prove the main result.

2 Preliminaries

In this section we prepare some materials for later use. Let C∞0 (T
2)2 be the space of all smooth

R2-valued function on T2 with vanishing mean and divergence, i.e.,
∫

T2

f (x)dx = 0, div f (x) = 0.

For γ ∈R, let Hγ be the completion of C∞0 (T
2)2 with respect to the norm

‖ f ‖γ =
�
∫

T2

|(−∆)γ/2 f (x)|2dx

�1/2

,

where (−∆)γ/2 is defined through Fourier’s transform. Thus, (Hγ,‖ · ‖γ) is a separable Hilbert
space with the obvious inner product

〈 f , g〉γ :=

∫

T2

(−∆)γ/2 f (x) · (−∆)γ/2 g(x)dx .

Below, we shall fix an orthonormal basis {e j , j ∈N} ⊂ C∞0 (T
2)2 of H0 consisting of the eigenvec-

tors of ∆, i.e.,

∆e j =−λ je j , 〈e j , e j〉0 = 1, j = 1, 2, · · · , (2.1)

where 0< λ1 ¶ · · ·¶ λ j ↑ ∞.

Let {(L( j)t )t¾0, j ∈ N} be a sequence of independent one dimensional purely discontinuous Lévy
processes with the same characteristic function, i.e.,

EeiξL( j)t = e−tψ(ξ), ∀t ¾ 0, j = 1,2, · · · ,
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where ψ(ξ) is a complex valued function called Lévy symbol given by

ψ(ξ) =

∫

R\{0}
(eiξy − 1− iξy1|y|¶1)ν(dy),

where ν is the Lévy measure and satisfies that
∫

R\{0}
1∧ |y|2ν(dy)<+∞.

For t > 0 and Γ ∈B(R \ {0}), the Poisson random measure associated with L( j)t is defined by

N ( j)(t,Γ) :=
∑

s∈(0,t]

1Γ(L
( j)
s − L( j)s−).

The compensated Poisson random measure is given by

Ñ ( j)(t,Γ) = N ( j)(t,Γ)− tν(Γ).

By Lévy-Itô’s decomposition (cf. [2, p.108, Theorem 2.4.16]), one has

L( j)t =

∫

|x |¶1

xÑ ( j)(t, dx) +

∫

|x |>1

xN ( j)(t, dx).

For a Polish space (G,ρ), letD(R+;G) be the space of all right continuous functions with left-hand
limits from R+ to G, which is endowed with the Skorohod topology:

dG(u, v) := inf
λ∈Λ

�

sup
s 6=t

�

�

�

�

log
λ(t)−λ(s)

t − s

�

�

�

�

∨
∫ ∞

0

sup
t¾0
(ρ(ut∧r , vλ(t)∧r)∧ 1)e−rdr

�

, (2.2)

where Λ is the space of all continuous and strictly increasing function from R+→R+ with λ(0) =
0 and λ(∞) =∞. Thus, (D(R+;G); dG) is again a Polish space (cf. [7, p.121, Theorem 5.6]).
We need the following tightness criterion, which is a direct combination of [10, Corollary 5.2] and
Aldous’s criterion [1].

Theorem 2.1. Let {(X n
t )t¾0, n ∈ N} be a sequence of H−1-valued stochastic processes with càdlàg

path. Assume that

(i) for each φ ∈ C∞0 (T
2)2 and t > 0, limK→∞ supn∈N P

n

sups∈[0,t] |〈X n
s ,φ〉−1|¾ K

o

= 0;

(ii) for each φ ∈ C∞0 (T
2)2 and t, a > 0,

lim
ε→0+

sup
n∈N

sup
τ∈St

P
n

|〈X n
τ − X n

τ+ε,φ〉−1|¾ a
o

= 0,

where St denotes the class of all (Ft)-stopping times with bound t;

(iii) for every ε > 0 and t > 0,

lim
m→∞

sup
n∈N

P



 sup
s∈[0,t]

∞
∑

j=m

〈X n
s , e j〉

2
−1 ¾ ε



= 0.



682 Electronic Communications in Probability

Then the laws of (X n
t )t¾0 in D(R+;H−1) are tight.

The following result comes from [7, p.131 Theorem 7.8].

Theorem 2.2. Suppose that stochastic processes sequence {(X n
t )t¾0, n ∈ N} weakly converges to

(X t)t¾0 in D(R+;H−1). Then, for any t > 0 and φ ∈H1, there exists a sequence tn ↓ t such that for
any bounded continuous function f ,

lim
n→∞

E f (〈X n
tn

,φ〉−1) = E f (〈X t ,φ〉−1).

We also need the following technical result.

Lemma 2.3. Suppose that sequence {un, n ∈N} converges to u in D(R+;H−1). Then for any T > 0
and m ∈N,

sup
t∈[0,T]

‖ut‖0 ¶ lim
n→∞

sup
t∈[0,T+ 1

m
]
‖un

t ‖0. (2.3)

If in addition, for Lebesgue almost all t, un
t converges to ut in H0, then for any β > 0,

∫ T

0

‖∇ut‖2
0

(1+ ‖ut‖2
0)
β

dt ¶ lim
n→∞

∫ T

0

‖∇un
t ‖

2
0

(1+ ‖un
t ‖

2
0)
β

dt. (2.4)

Proof. Without loss of generality, we assume that the right hand side of (2.3) is finite. For any
φ ∈ H1, it is clear that t 7→ 〈ut ,φ〉0 is a càdlàg real valued function, and by definition (2.2) of
Skorohod metric, we have

dR(〈un,φ〉0, 〈u,φ〉0)¶ (2+ ‖φ‖1)dH−1(un, u),

and so 〈un,φ〉0 converges to 〈u,φ〉0 in D(R+;R) as n → ∞. Since the discontinuous points of
〈u·,φ〉0 are at most countable, for any T > 0 and m ∈ N, there exists a time Tm ∈ (T, T + 1/m)
such that 〈u·,φ〉0 is continuous at Tm. Thus, we have (cf. [7, p.119, Proposition 5.3])

lim
n→∞

sup
t∈[0,Tm]

|〈un
t ,φ〉0|= sup

t∈[0,Tm]
|〈ut ,φ〉0|.

Hence,

sup
t∈[0,T]

‖ut‖0 = sup
t∈[0,T]

sup
φ∈H1;‖φ‖0¶1

|〈ut ,φ〉0|

¶ sup
φ∈H1;‖φ‖0¶1

sup
t∈[0,Tm]

|〈ut ,φ〉0|

= sup
φ∈H1;‖φ‖0¶1

lim
n→∞

sup
t∈[0,Tm]

|〈un
t ,φ〉0|

¶ lim
n→∞

sup
φ∈H1;‖φ‖0¶1

sup
t∈[0,Tm]

|〈un
t ,φ〉0|

= lim
n→∞

sup
t∈[0,Tm]

‖un
t ‖0.

Thus, (2.3) is proven.
For proving (2.4), let N be the Lebesgue null set such that for all t /∈ N , un

t converges to ut in
H0. Fixing a t /∈ N , then as above, we have

‖∇ut‖2
0

(1+ ‖ut‖2
0)
β
¶

limn→∞ ‖∇un
t ‖

2
0

(1+ limn→∞ ‖un
t ‖

2
0)
β
¶ lim

n→∞

‖∇un
t ‖

2
0

(1+ ‖un
t ‖

2
0)
β

.

Estimate (2.4) now follows by Fatou’s lemma.
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3 Proof of Theorem 1.1

We first give the following definition about the weak solutions to equation (1.1).

Definition 3.1. A probability measure P on D(R+;H−1) is called a weak solution of equation (1.1)
if

(i) for any t > 0, P
�

u ∈D(R+;H−1) : sups∈[0,t] ‖us‖0 +
∫ t

0
‖∇us‖2

0ds <+∞
�

= 1;

(ii) for any j ∈N,

M ( j)t (u) := 〈ut , e j〉0 − 〈u0, e j〉0 −
∫ t

0

[〈us,∆e j〉0 + 〈us ⊗ us,∇e j〉0]ds (3.1)

is a Lévy process with the characteristic function

EeiξM ( j)t = exp

(

t

∫

R\{0}
(eiξyβ j − 1− iξyβ j1|y|¶1)ν(dy)

)

,

and {(M ( j)t )t¾0, j ∈N} is a sequence of independent Lévy processes.

Proof of Existence of Weak Solutions: We use Galerkin’s approximation to prove the existence of
weak solutions and divide the proof into three steps.
(Step 1): For n ∈N, set

H0
n := span{e1, e2, · · · , en},

and let Πn be the projection from H0 to H0
n and define

Ln
t :=

n
∑

j=1

β j L
( j)
t e j =

n
∑

j=1

∫

|y|¶1

yβ je j Ñ
( j)(t, dy) +

n
∑

j=1

∫

|y|>1

yβ je jN
( j)(t, dy).

Consider the following finite dimensional SDE driven by finite dimensional Lévy process Ln
t :

dun
t = [∆un

t −Πn((u
n
t · ∇)u

n
t )]dt + dLn

t , un
0 = Πnϕ. (3.2)

Since for any R> 0 and u, v ∈H0
n with ‖u‖0,‖v‖0 ¶ R,

‖Πn((u · ∇)u− (v · ∇)v)‖0 ¶ CR,n‖u− v‖0

and

〈u,∆u−Πn((u · ∇)u)〉0 =−‖∇u‖0, ∀u ∈H0
n, (3.3)

finite dimensional SDE (3.2) is thus well-posed.
Define a smooth function fn on H0

n by

fn(u) := (‖u‖2
0 + 1)θ/2, u ∈H0

n.

By simple calculations, we have

∇ fn(u) =
θu

(‖u‖2
0 + 1)1−θ/2

, ∇2 fn(u) =
θ
∑n

i=1 ei ⊗ ei

(‖u‖2
0 + 1)1−θ/2

−
θ(2− θ)u⊗ u

(‖u‖2
0 + 1)2−θ/2

, (3.4)
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and for all u, v ∈H0
n,

| fn(u)− fn(v)|¶ |(‖u‖2
0 + 1)1/2 − (‖v‖2

0 + 1)1/2|θ ¶ ‖u− v‖θ0 . (3.5)

By (3.2), (3.3), (3.4) and Itô’s formula (cf. [2, p.226, Theorem 4.4.7]), we have

fn(u
n
t ) = fn(u

n
0)−

∫ t

0

θ‖∇un
s ‖

2
0

(‖un
s ‖

2
0 + 1)1−θ/2

ds+
n
∑

j=1

∫ t

0

∫

|y|¶1

[ fn(u
n
s + yβ je j)− fn(u

n
s )]Ñ

( j)(ds, dy)

+
n
∑

j=1

∫ t

0

∫

|y|¶1

�

fn(u
n
s + yβ je j)− fn(u

n
s )−

θ 〈un
s , yβ je j〉0

(|un
s |

2 + 1)1−θ/2

�

ν(dy)ds

+
n
∑

j=1

∫ t

0

∫

|y|>1

�

fn(u
n
s + yβ je j)− fn(u

n
s )
�

N ( j)(ds, dy)

=: fn(u
n
0)− In

1 (t) + In
2 (t) + In

3 (t) + In
4 (t).

For In
2 (t), by Burkholder’s inequality and (3.5), we have

E

�

sup
t∈[0,T]

In
2 (t)

�

¶ C
n
∑

j=1

E

 

∫ T

0

∫

|y|¶1

| fn(u
n
s + yβ je j)− fn(u

n
s )|

2N ( j)(ds, dy)

!1/2

¶ C
n
∑

j=1

 

E

∫ T

0

∫

|y|¶1

| fn(u
n
s + yβ je j)− fn(u

n
s )|

2ν(dy)ds

!1/2

¶ C T 1/2
n
∑

j=1

|β j |θ
 

∫

|y|¶1

|y|2θν(dy)

!1/2

¶ C T 1/2
∞
∑

j=1

|β j |θ .

where we have used condition (Hθ ). Here and after, the constant C is independent of n, T .
For In

3 (t), by Taylor’s expansion and (3.4), we have

E

�

sup
t∈[0,T]

In
3 (t)

�

¶ C
n
∑

j=1

β2
j

∫ T

0

∫

|y|¶1

|y|2ν(dy)ds ¶ C T
∞
∑

j=1

|β j |θ
∫

|y|¶1

|y|2ν(dy).

For In
4 (t), by (3.5), we have

E

�

sup
t∈[0,T]

In
4 (t)

�

¶
n
∑

j=1

E

 

∫ T

0

∫

|y|>1

| fn(u
n
s + yβ je j)− fn(u

n
s )|N

( j)(ds, dy)

!

=
n
∑

j=1

E

 

∫ T

0

∫

|y|>1

| fn(u
n
s + yβ je j)− fn(u

n
s )|ν(dy)ds

!

¶ C T
∞
∑

j=1

|β j |θ
∫

|y|>1

|y|θν(dy).

Combining the above calculations, we obtain that

E

�

sup
t∈[0,T]

(‖un
t ‖

2
0 + 1)θ/2

�

+E

∫ T

0

θ‖∇un
s ‖

2
0

(‖un
s ‖

2
0 + 1)1−θ/2

ds ¶ (‖ϕ‖2
0 + 1)θ/2 + C T + C T 1/2. (3.6)
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(Step 2): In this step, we use Theorem 2.1 to show that {(un
t )t¾0, n ∈ N} is tight in D(R+;H−1).

For any φ ∈ C∞0 (T
2)2, by equation (3.2), we have

〈un
t ,φ〉−1 = 〈un

0,φ〉−1 +

∫ t

0

[〈∆un
s ,φ〉−1 − 〈(un

s · ∇)u
n
s ,φ〉−1]ds+ 〈Ln

t ,φ〉−1

= 〈un
0,φ〉−1 +

∫ t

0

[〈un
s ,∆φ〉−1 + 〈un

s ⊗ un
s ,∇φ〉−1]ds+ 〈Ln

t ,φ〉−1.

Thus, for ε > 0 and any stopping time τ bounded by t, we have

〈un
τ+ε − un

τ,φ〉−1 =

∫ τ+ε

τ

[〈un
s ,∆φ〉−1 + 〈un

s ⊗ un
s ,∇φ〉−1]ds+ 〈Ln

τ+ε − Ln
τ,φ〉−1

¶ ε sup
s∈[0,t]

�

‖un
s ‖0 · ‖φ‖0 + ‖un

s ‖
2
0 · ‖∇(−∆)

−1φ‖∞
�

+
n
∑

j=1

|β j | · |L
( j)
τ+ε − L( j)τ | · ‖(−∆)

−1φ‖0.

Using (a+ b)θ ¶ aθ + bθ provided that θ ∈ (0,1], we get

E|〈un
τ+ε − un

τ,φ〉−1|θ/2 ¶ CφE

�

sup
s∈[0,t]

‖un
s ‖
θ
0 + 1

�

εθ/2 + Cφ



E

n
∑

j=1

|β j |θ · |L
( j)
τ+ε − L( j)τ |

θ





1
2

.

By the strong Markov property of Lévy process (cf. [12, p.278, Theorem 40.10]), we have

E|L( j)τ+ε − L( j)τ |
θ = E|L( j)ε |

θ = E|L(1)ε |
θ , ∀ j ∈N.

Thus, by (3.6) and (Hθ ),

E|〈un
τ+ε − un

τ,φ〉−1|θ/2 ¶ C
h

εθ/2 + (E|L(1)ε |
θ )1/2

i

, (3.7)

where the constant C is independent of n,τ and ε. On the other hand, by (2.1), we have

E



 sup
s∈[0,t]

∞
∑

j=m

〈un
s , e j〉

2
−1





θ/2

= E



 sup
s∈[0,t]

∞
∑

j=m

〈un
s , e j〉

2
0

λ2
j





θ/2

¶
1

λθm
E

�

sup
s∈[0,t]

‖un
s ‖
θ
0

�

. (3.8)

By Theorem 2.1 and (3.6)-(3.8), one knows that the law of (un
t )t¾0 in D(R+;H−1) denoted by Pn

is tight.
(Step 3): Let P be any accumulation point of {Pn, n ∈ N}. In this step, we show that P is a weak
solution of equation (1.1) in the sense of Definition 3.1. First of all, by Skorohod’s embedding
theorem, there exists a probability space (Ω̃, F̃ , P̃) and D(R+;H−1)-valued random variables X n

and X such that
(i) Law of X n under P̃ is Pn and law of X under P̃ is P.
(ii) X n converges to X in D(R+;H−1) a.s. as n→∞.
Thus, by (3.6), we have

Ẽ

�

sup
t∈[0,T]

‖X n
t ‖
θ
0

�

+ Ẽ

 

∫ T

0

θ‖∇X n
s ‖

2
0

(‖X n
s ‖

2
0 + 1)1−θ/2

ds

!

¶ C(1+ ‖ϕ‖θ0 + T ). (3.9)
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By Lemma 2.3 and Fatou’s lemma, for any m ∈N, we have

EP

�

sup
t∈[0,T]

‖ut‖θ0

�

= Ẽ

�

sup
t∈[0,T]

‖X t‖θ0

�

¶ lim
n→∞

Ẽ

�

sup
t∈[0,T+1/m]

‖X n
t ‖
θ
0

�

¶ (‖ϕ‖2
0 + 1)θ/2 + C(T + 1/m) + C(T + 1/m)1/2. (3.10)

On the other hand, for any δ ∈ (0,θ/4), by Hölder’s inequality and (3.9), we have

Ẽ

 

∫ T

0

‖X n
s − Xs‖δ0 ds

!

¶ Ẽ

 

∫ T

0

‖X n
s − Xs‖

δ/2
−1 ‖X

n
s − Xs‖

δ/2
1 ds

!

¶

 

Ẽ

∫ T

0

‖X n
s − Xs‖δ−1ds

!1/2 

Ẽ

∫ T

0

‖X n
s − Xs‖δ1 ds

!1/2

→ 0.

So, there exists a subsequence still denoted by n such that for P̃ × dt-almost all (ω, s), X n
s (ω)

converges to Xs(ω) in H0. By Lemma 2.3 and (3.9), we then obtain

EP

 

∫ T

0

θ‖∇us‖2
0

(‖us‖2
0 + 1)1−θ/2

ds

!

= Ẽ

 

∫ T

0

θ‖∇Xs‖2
0

(‖Xs‖2
0 + 1)1−θ/2

ds

!

¶ lim
n→∞

Ẽ

 

∫ T

0

θ‖∇X n
s ‖

2
0

(‖X n
s ‖

2
0 + 1)1−θ/2

ds

!

¶ C(1+ ‖ϕ‖θ0 + T ). (3.11)

Combining (3.10) and (3.11) gives (1.2). In particular, supt∈[0,T] ‖ut‖0 and
∫ T

0

θ‖∇us‖2
0

(‖us‖2
0+1)1−θ/2

ds are

finite P-almost surely, which produces (i) of Definition 3.1.
Fixing j ∈N, in order to show that M ( j)t defined by (3.1) is a Lévy process, we only need to prove
that for any 0¶ s < t,

EP eiξ(M ( j)t −M ( j)s ) = Ẽeiξ(M̃ ( j)t −M̃ ( j)s ) = exp

(

(t − s)

∫

R\{0}
(eiξyβ j − 1− 1|y|¶1iξyβ j)ν(dy)

)

, (3.12)

where

M̃ ( j)t := 〈X t , e j〉0 − 〈X0, e j〉0 −
∫ t

0

[〈X r ,∆e j〉0 + 〈X r ⊗ X r ,∇e j〉0]dr.

Fix 0¶ s < t below. By Theorem 2.2, there exists (sn, tn) ↓ (s, t) such that

lim
n→∞

Ẽeiξ〈X n
tn

,e j〉0 = Ẽeiξ〈X t ,e j〉0 , lim
n→∞

Ẽeiξ〈X n
sn

,e j〉0 = Ẽeiξ〈Xs ,e j〉0 .

By equation (3.2), it is well-known that for any n¾ j,

Ẽexp

(

iξ



〈X n
tn
− X n

sn
, e j〉0 −

∫ tn

sn

[〈X n
r ,∆e j〉0 + 〈X n

r ⊗ X n
r ,∇e j〉0]dr





)

= EPn exp

(

iξ



〈un
tn
− un

sn
, e j〉0 −

∫ tn

sn

[〈un
r ,∆e j〉0 + 〈un

r ⊗ un
r ,∇e j〉0]dr





)
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= exp

(

(tn − sn)

∫

R\{0}
(eiξyβ j − 1− 1|y|¶1iξyβ j)ν(dy)

)

.

Thus, for proving (3.12), it suffices to prove the following limits:

lim
n→∞

Ẽ

�

�

�

�

�

exp

¨

iξ

∫ t

s

〈X n
r ⊗ X n

r ,∇e j〉0dr

«

− exp

¨

iξ

∫ t

s

〈X r ⊗ X r ,∇e j〉0dr

«

�

�

�

�

�

= 0,

lim
n→∞

Ẽ

�

�

�

�

�

exp

¨

iξ

∫ t

s

〈X n
r ,∆e j〉0dr

«

− exp

¨

iξ

∫ t

s

〈X r ,∆e j〉0dr

«

�

�

�

�

�

= 0,

lim
n→∞

Ẽ

�

�

�

�

�

exp

(

iξ

∫ tn

sn

〈X n
r ⊗ X n

r ,∇e j〉0dr

)

− exp

¨

iξ

∫ t

s

〈X n
r ⊗ X n

r ,∇e j〉0dr

«

�

�

�

�

�

= 0,

lim
n→∞

Ẽ

�

�

�

�

�

exp

(

iξ

∫ tn

sn

〈X n
r ,∆e j〉0dr

)

− exp

¨

iξ

∫ t

s

〈X n
r ,∆e j〉0dr

«

�

�

�

�

�

= 0.

Let us only prove the first limit, the others are similar. Noticing that for any δ ∈ (0,1) and a, b ∈R,

|eia − eib|¶ 2(|a− b| ∧ 1)¶ 2|a− b|δ,

by Hölder’s inequality and ‖u‖0 ¶ ‖u‖
1/2
−1 ‖u‖

1/2
1 , we have for δ < θ/4,

Ẽ

�

�

�

�

�

exp

¨

iξ

∫ t

s

〈X n
r ⊗ X n

r ,∇e j〉0dr

«

− exp

¨

iξ

∫ t

s

〈X r ⊗ X r ,∇e j〉0dr

«

�

�

�

�

�

¶ 2|ξ|δẼ

�

�

�

�

�

∫ t

s

〈X n
r ⊗ X n

r − X r ⊗ X r ,∇e j〉0dr

�

�

�

�

�

δ

¶ CẼ

�
∫ t

s

‖X n
r − X r‖0(‖X n

r ‖0 + ‖X r‖0)dr

�δ

¶ CẼ

�

sup
r∈[s,t]

(‖X n
r ‖0 + ‖X r‖0)

∫ t

s

‖X n
r − X r‖

1/2
−1 ‖X

n
r − X r‖

1/2
1 dr

�δ

¶ CẼ

�

sup
r∈[s,t]

(‖X n
r ‖0 + ‖X r‖0 + 1)2δ−(θδ/2)

�
∫ t

s

‖X n
r − X r‖−1dr

�δ/2

×
�
∫ t

s

(‖X n
r ‖1 + ‖X r‖1)

(‖X n
r ‖

2
0 + ‖X r‖2

0 + 1)1−θ/2
dr

�δ/2�

¶ C



Ẽ

�
∫ t

s

‖X n
r − X r‖−1dr

�2δ



1/4

→ 0,

as n → ∞, where in the last inequality, we have used (3.9) and Hölder’s inequality. As for the
independence of M ( j) for different j ∈N, it can be proved in a similar way.

Proof of Theorem 1.1: The pathwise uniqueness follows by the classical result for 2D deterministic
Navier-Stokes equation. As for the existence of invariant measures, basing on (1.2) (see Remark
1.3), it follows by the classical Bogoliubov-Krylov’s argument.
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