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Abstract Cloud computing is a paradigm that pro-
vides access to a flexible, elastic and on-demand com-
puting infrastructure, allowing users to dynamically re-
quest virtual resources. However, researchers typically
cannot experiment with critical parts of cloud systems
such as the underlying cloud architecture, resource pro-
visioning policies and the configuration of resource vir-
tualisation. This problem can be partially addressed
through using simulations of cloud systems. Unfortu-
nately, the problem of testing cloud systems is still chal-
lenging due to the many parameters that such systems
typically have and the difficulty in determining whether
an observed behaviour is correct. In order to allevi-
ate these issues, we propose a methodology to semi-
automatically test and validate cloud models by inte-
grating simulation techniques and metamorphic testing.

Keywords Metamorphic testing - Cloud computing -
Simulation and Modelling

1 Introduction

Cloud computing is a paradigm that provides access to
a flexible and on-demand computing infrastructure, by
allowing the user to rent a number of virtual machines
for a specific time slot. Currently, this paradigm is be-
ing adopted by several major enterprises in communica-
tions such as Google, IBM, Microsoft and Amazon. All
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of these organisations have invested billions of dollars in
order to provide their own cloud computing solutions.
In fact, the market is expected to rise from $40.7 billion
in 2011 to more than $241 billion in 2020 [19].

The underlying complexity of cloud systems leads to
testing being expensive and requiring much time and ef-
fort. Thus, it is desirable to design and develop formal
testing methodologies for checking cloud systems [1].
Usually, formal testing approaches involve analysing the
outputs generated by the system under test. If an anal-
ysed output is not the expected one, then the system
under test has failed this test. The mechanism that re-
liably decides whether a test is passed or failed is called
an oracle. Unfortunately, in some situations an oracle
is not available or it is computationally too expensive
to apply the oracle and alternative approaches must be
used [21]. This problem arises in cloud systems, where
there rarely is an oracle indicating whether the design
of a cloud system is correct.

In general, we can say that a cloud system “works” if
this system is able to perform several pre-defined tasks.
For example, let us consider a data center with ten
thousand physical machines, a communication network
that interconnects them and a collection of services that
provide virtualised resources for users, that is, a cloud
system. If different users are able to rent virtual ma-
chines (in short, VMs) and execute applications using
these VMs, we can state that this cloud system works.
However, typically a system has to fulfil many addi-
tional conditions. Consider a cloud system where each
machine contains a quad-core processor. If the cloud
manager only uses two out of four CPU cores from
each machine, then the cloud system is wasting half
of its computing power. However, the users can still use
the system by renting VMs and executing applications,
because the number of physical cores managed by the
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system is transparent to them. In this case, we can state
that the system does not work correctly; there is inbuilt
inefficiency.

In testing, validating or optimising a cloud system it
is often necessary to customise management aspects of
the system, like resource provisioning policies, hypervi-
sors and configuration of virtualised resources. The pro-
cess of adapting such aspects is typically expensive and
time consuming and in some cases the researcher does
not have access to a cloud system for which they have
appropriate permissions. These factors have led to in-
creasing interest in simulation. Usually, a cloud system
modelled using simulation techniques consists of thou-
sand of machines, networks, switches, users and other
management modules. It may be necessary to assign
values to thousands of parameters when configuring this
model and so it usually is not feasible to test every pos-
sible input and check the outputs produced. Moreover,
a single change in a module requires regression test-
ing to be applied and this involves the tests being run
again and the test output being checked, further in-
creasing the cost of testing. These factors make testing
expensive, with the checking of test output (the oracle)
often being manual and so significantly contributing to
the cost.

In this paper we propose a methodology that in-
tegrates a complete simulation platform for modelling

cloud computing systems, with testing methods for check-

ing the correctness of modelled cloud systems. The main
goal of our research is to provide a mechanism that al-
lows users to model both software and hardware parts
of cloud systems, design new cloud system models and
automatically test these models in a cost-effective man-
ner. The main advantages of the proposed methodology
can be summarised as follows:

— Scalability: The size of the simulated cloud can vary
from several computers to thousand of machines.

— Clostless: Using our proposed methodology does not
require specific hardware to be executed. Also, a
cloud is no longer required to perform experiments
because the simulation platform can be executed in
any computer.

— Automatic testing: Once users provide the required
inputs for the testing process, the cloud model is
automatically checked in order to analyse its cor-
rectness.

The rest of the paper is structured as follows. Sec-
tion 2 describes the motivation for integrating a simu-
lation platform and MT. Section 3 describes in detail
our methodology for testing cloud systems using meta-
morphic testing. Section 4 presents the results of exper-
iments. Section 5 presents some related work. Finally,

Section 6 presents our conclusions and some directions
for future work.

2 Motivation

There are several factors that make analysing or reason-
ing about the underlying architecture of a cloud system
particularly challenging. First, cloud systems are usu-
ally very large and this fact hampers the analysis and
study of these systems. Second, virtualisation, that is,
the resources of the cloud provided to end-users are vir-
tual, introduces additional complications because dif-
ferent VMs can be hosted in a single machine sharing
the same resources among different users. Finally, we
cannot oversee the vast number of users that are con-
currently using a cloud system.

It is important to emphasise that cloud systems are
built out of tens of thousands of commodity machines,
where a simple failure in the system may produce catas-
trophic consequences. Therefore, ensuring the good func-
tioning of these systems is a priority. As an example, in
2011 Amazon EC2 suffered an unexpected crash during
network reconfiguration [10]. This crash affected more
than 70 organisations, including FourSquare, the New
York Times, Quora and Reddit, in some cases causing
sites to remain off-line for many hours.

In this work we use the iCanCloud simulation frame-
work to represent the behaviour of cloud systems [18].
Moreover, an additional framework, called E-mc? [4], is
used to model the energy consumption of each hardware
device in the cloud. Both simulation frameworks are
currently available under the GPL3 license at http://
www.iCanCloud.org. The main reasons to use these
simulation frameworks is three-fold: First, these simula-
tors are open source. Thus, the source code is available
and can be modified if required. Second, these simula-
tors provide highly detailed models of both the hard-
ware part of the cloud system and the virtualisation
schema. Third, there is a GUI that allows the environ-
ments to be easily configured. Moreover, the specific
motivations for using simulation in our work are:

— Simulation is cheaper than performing experiments
directly in a real cloud.

— The level of flexibility obtained by using simulation
is much higher than when using real cloud systems.

— Scalability. In particular, the number of VMs that
a single user may rent in public clouds is limited. In
contrast, in a simulated environment cloud systems
can be modelled with a fully customisable number
of machines.

— Researchers can share simulation models.
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Also, this paper investigates the application of Meta-
morphic Testing (in short, MT) to the testing of cloud
systems since such systems are typically complex and
often have no oracle.

MT was developed in order to test systems where
there is no oracle or it is expensive to compute the or-
acle. The essential idea is that instead of checking the
output 07 produced when testing with one input =, we
test with a second (follow-up) input x5, observing out-
put 02, and check that 0, and oy are related as expected.
Thus, in MT there are two relations: the relation be-
tween the original test input x1 and the follow-up input
x9, and the expected relation between the two outputs.

Consider, for example, the problem of checking a
program f that should be an implementation of the
trigonometric sine function. While it may be difficult
to check whether the application of f to an input is
correct, we know a number of properties of the sine
function and any correct implementation should have
these properties. One such property is that sin(—z) =
—sin(z). In order to check this metamorphic relation,
having tested f with an input we also test f with the
negation of the original input and check the above prop-
erty. If the property does not hold then f must be faulty
and it must have failed on at least one of the two inputs
(the original value and its negation). In this paper we
adapt the idea of MT to cloud systems.

There are three main reasons for using MT in this
work. First, it has been shown in different application
scenarios that MT alleviates the oracle problem, pro-
viding a better approach for testing large and complex
scenarios than conventional testing techniques. Second,
the effectiveness of the proposed methodology can be
increased by adding new metamorphic relations (in short,
MRs). MRs can be shared among different research
groups in order to increase the applicability to a wider
range of cloud configurations. Third, it is possible to
concentrate the testing effort on a particular feature of
the system by using specific MRs, targeting either a
specific characteristic or a part of the system. This can
be easily done if MRs are grouped in categories, each
one being responsible for analysing a specific feature of
the cloud system.

MT has been used in the past to test Web Ser-
vices [7], focusing efforts on checking the correctness of
these applications. The approach presented in this pa-
per focuses not only on testing applications, but also the
underlying architecture of the cloud system on which
the application is being executed. In other words, our
approach aims to model and test the complete system
and not only an application.

Although this objective seems promising, there are
some limitations that must be assumed by the user. In

MT, experienced users/domain experts are responsible
for providing useful MRs directly corresponding to the
most relevant properties of the system under test. MT
provides a simple method for deriving follow-up test
cases and, most importantly, is cost effective because
the process of checking the accuracy of the system can
be performed automatically without either an oracle or
human interaction.

Since the core of the proposed methodology lies in
the definition of MRs, the results provided by the test-
ing process depend of how appropriate these are. Thus,
appropriate relations should provide useful information
about the correctness of the cloud model, while poorly
defined relations would provide very little value. It is
the responsibility of the user to provide appropriate
MRs.

Although simulation provides a lot of advantages
that makes it a powerful tool for research, it also en-
tails some drawbacks. The main, and obvious, one is
that simulation does not provide real data since we only
simulate the performance of a cloud system during a
given experiment, in contrast to executing the experi-
ment in a cloud system.

It is important to note that our work is not in-
tended to replace experiments in real clouds. Instead,
the proposed methodology has been designed to help
researchers to find and improve those configurations
that obtain better results and discard those that are
not valid. However, the final stage of the research must
consist in executing the corresponding experiments in
a real cloud system.

3 The proposed methodology

This section describes in detail the proposed method-
ology for testing cloud systems. Fig. 1 shows the basic
schema of this methodology that integrates simulation
and testing.

In this work, a cloud model is defined by a data
center, the virtualisation schema and a cloud manager.
The data center defines the underlying architecture of a
cloud system, that is, the number of physical machines

Repository of MRs
Cloud repository Cloud model
I:User [Fopenio] Ercaue
[ etworks | Build

Memories

Choose MR's from

Report results

Fig. 1 Basic schema of the proposed methodology
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allocated in the cloud system, the configuration of the
basic subsystems of each physical machine and the net-
work topology. The virtualisation schema consists of the
configuration of each virtual machine, which is defined
by setting the virtualised CPU, storage and memory.
Finally, the cloud manager is an algorithm that allo-
cates VMs in the available physical machines of the
cloud.

Initially, users can create a cloud model by using the
cloud repository. Each cloud model is represented by a
text file readable by the simulator.

From now on, the term user denotes a person who
uses our proposed methodology while tenant refers to a
person who purchases services of the modelled cloud in
a simulated environment. Basically, a tenant is defined
by a set of purchased VMs, each purchased for a specific
time-slot, and a set of applications that are executed in
these VMs.

3.1 Modelling of a Cloud System

In order to illustrate the concepts described in this sec-
tion, we present a running example. This example also
presents a partial configuration of the model taken as
input by the simulator (see Fig. 2). For the sake of clar-
ity, only the most relevant parameters are showed.

Consider the data center of a modelled cloud system
that consists of 128 physical machines (see lines [8-9]).
Typically, each cloud has two types of machines, each
one dedicated to a specific task: computing nodes and
storage servers. A computing node is a machine used to
host one or several VMs. Generally, these VMs are pro-
vided to tenants that request cloud services. In contrast,
storage servers are in charge of managing remote data
access. In this example, we use 112 computing nodes
and 16 storage servers (see lines [16-17]). These nodes
are connected through an Ethernet 10 Gbps network
(see lines [3-5]).

Each physical machine must be configured by set-
ting up its basic sub-systems: CPU, memory and stor-
age. In this example, computing nodes use a quad-Core
CPU, 16 GB of memory and 1 disk of 500 GB (see lines
[26-31]), while storage nodes use a dual-Core CPU, 8
GB of memory and a 5-disk RAID system of 2 TB each
(see lines [34-39]).

The virtualisation schema consists of the configu-
ration of different VMs. Since virtualisation allows the
separation of physical and logical resources, it is one
of the major aspects in cloud computing environments.
Hence, the behaviour of virtual resources needs to be
appropriately simulated in order to obtain accurate re-
sults. A VM is modelled as a portion of the resources

Fig. 2 Example of an input cloud model

network Cloud 128{

channel ¢ extends DatarateChannel{
delay = 125.0us;
datarate = 10Gbps; }

parameters:
int comNodes = 112; // Computing nodes
int stoNodes = 16; // Storage nodes
int nps = 64; // Nodes per switch
int numSwitches = 16; // Number of switches
submodules:
cloudManager: CloudManager {...}

scheduler: CloudSchedulerFIFO
cn[comNodes]: Node {...}
sn[stoNodes|: Node {...}
s [numSwitches |: EtherSwitch {...}
switchStorage: EtherSwitch {...}

(..}

connections:
for i=0..numSwitches—1, for j=0..nps—1
s[i].ethg++ <—> ¢ <—> cn[(i*nps)+j]|.ethg++;

##+# Configuration of computing nodes

Cloud 128 .cn [ *|.memory.size_ GB = 16

Cloud 128.cn [ *].memory.numDRAMChips = 8

Cloud 128.cn[*].cpuModule.CPUcore [*].speed = 51
Cloud 128.cn[*].numCores = 4

Cloud _128.cn[#*]|.numStorageServers = 1
Cloud 128 .cn[x]|.storageSystem .device [*].
deviceType = "Disk_500GB_LI"

##+# Configuration of storage nodes

Cloud 128 .sn [ x]|.memory.size_ GB = 8

Cloud 128 .sn [ *].memory.numDRAMChips = 8

Cloud 128.sn[*].cpuModule.CPUcore [*].speed = 43

Cloud 128.sn[#*].numCores = 2

Cloud 128.cn[*].numStorageServers = 5

Cloud 128 .sn[x]|.storageSystem .device [*].
deviceType = "Disk_2000GB_LI"

of a given machine. Thus, a VM cannot exceed the re-
sources of the physical machine where it is executed.

For example, a virtual machine (quad-Core 2.1 GHz,
0.5, 16 GB of RAM, 0.25, 500 GB disk, 0.1) indicates
that we would like to use a machine providing a CPU
at least as good as quad-Core and having at least 50%
of its use, providing 4 GB of RAM and at least 10% of
a storage system of 500 GB or better.

Finally, a cloud manager must be provided to com-
plete the cloud system model. The main objective of the
cloud manager is to map the VMs requested by tenants
to the available physical machines in the cloud. Thus,
each cloud manager must implement its own mapping
algorithm. In this example we have used FIFO (see line
15 in Fig. 2).

The test engine module receives as input both a
cloud model and a set of MRs, both previously selected
by the user. Basically, this module automatically gen-
erates a set of follow-up test cases, which are built from
the original model provided by the user. Each test is ex-
ecuted using iCanCloud and the results collected. The
tool determines which instances of MRs were satisfied

o e I R N R
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and which were not and reports this to the user who
is responsible for determining whether the results are
acceptable.

3.2 Definition of Metamorphic Relations

We will consider MRs to formally compare the results
obtained in the testing process. Next we formally define
the pattern of our relations.

Definition 1 Let m be a cloud model and M’ be a set
of cloud models such that m ¢ M’. Let T be a set of
tenants. A metamorphic relation MR for m and T is
the set of 5-tuples

m’ € M’

AN
_ T7m7m/7 /
MR = <T(m),T(m’)) pl(mam)

I
p2(m,m’,T(m), T(m’))

where p; is a relation over cloud models and ps is
a relation over the cloud models and the execution of
tenants on these models. O

The set of MRs is partitioned into three different
categories, each representing a specific aspect of the
system to be tested. Thus, users are able to choose a
category in order to test a specific feature of the cloud,
instead of testing the model completely.

— Performance: This set contains those relations di-
rectly related to the performance of a given system.
Depending on the system to be tested, this per-
formance is measured in Mbps, MIPS or execution
time.

— Functional: This set contains those relations that
check the underlying functioning of a given system.

— Energy-aware: This set contains those relations that
check the restrictions regarding the energy consumed
by a given system, where this system can be a single
device, like a CPU, or a complete cloud system.

In order to illustrate our approach we show the full
results for one MR from each group. Next, the defini-
tion of each MR used is presented. We use two cloud
models and one set of tenants, denoted by m, m’ and
T respectively, where m represents the original model
provided by the user, m’ represents a variant automat-
ically generated by the testing engine and T represents
the workload executed in each model.

MRpggr: The CPU system of m having better per-
formance than the CPU system of m’ (and all other as-
pects being the same), denoted by A(mpu) > A(my,,),
implies that the time required to execute T over m/’ is

greater than or equal to the time required to execute
T over m, denoted by time(T(,,) > time(T(y,)). For-
mally:

m’ € M
m’ A
Ty )| Almes) > A

time(T(my) > time(T(m))

m

T
MRpgr = (T,(m7)

MRpyn: Let mp and m/» be two sets of physical
machines that represent the physical machines used to
model m and m/, respectively. If |mp| > |m/|, that
is, the model m contains more physical machines than
the model m’, both using the same hardware configu-
ration, then if T'(m') is executed successfully, denoted
as 1 T(m’), T(m) must also result in a successful exe-
cution, denoted as 1 T'(m). Formally:

m' € M
AN
_ T7m7m/a ’
MRrun = (T(m),T(m’)) |mp| i |m/p|

TT(m') =1 T(m)

We say that T'(m) is a successful execution of T
over m, denoted by 1 T'(m), if every application of every
tenant in T is executed completely, that is, none of these
applications are aborted by the expiration of any time
slot of any VM. We denote by | T(m) an unsuccessful
execution of T over m.

MREgnE: If the energy required to execute T'(m),
denoted by £2(T\,,)), is greater than the energy required
to execute T'(m’), denoted by £2(T 1)), that is, 2(T,,,)) =
a - 2(Tm) (@ > 1), then the time required to exe-
cute T'(m) must be less than the time required to exe-
cute T'(m’), denoted by time(T{,,,)) < time(T(py). For-
mally:

m' € M
AN
2(T(m))

(T (my) > 1

time(T(my) > time(T(m))

3.3 Description of the testing process

Conventional testing methods check whether the out-
put(s) returned by the system under test are the ex-
pected ones or not. Schematically, let p be a system.
Let I be the input domain and S be a test selection
strategy. Let T = {t1,ta,...,t,} C I be the set of
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tests generated by using S. When these tests are se-
quentially applied to the program p we obtain a se-
quence of outputs p(t1),p(t2),...,p(t,). Therefore, if
we have a specification implemented by an oracle, called
s, then we find an error if there exists t; € T such
that p(t,) # s(tn). But, in general, we will not have
an oracle and, therefore, we look for evidence regarding
whether an output is correct. Our proposed methodol-
ogy includes a testing framework whose main purpose
is to (semi-)automatically test the suitability of a cloud
model by using an approach inspired by metamorphic
testing. In this case, a single test case is represented by
a set of tenants T' executed over a single cloud model
m, denoted by T'(m). Actually, this part can be per-
formed by users even without using the testing part.
The idea will be to consider wariants of the original
model, compute the application of the set of tenants to
these variants, T'(mj}), T(m5), ..., T(m},), and compare
the obtained results. Let us note that our considered
variants are not mutants in the sense of mutation test-
ing [11]: our goal is not to kill the variants in order
to decide the goodness of the considered test (in this
case, the set of tenants T') but to compare the differ-
ent obtained results to detect a wrong or suboptimal
behaviour of the original model.

The test engine module is in charge of automati-
cally generating test cases, by following a given strat-
egy S. Initially, we use a basic strategy that consists in
sorting all the components that are used to generate a
cloud model. The sort criterion is based in the quality of
these components. Then, for each variant to be gener-
ated from the original cloud model, the strategy selects
the next preferable component of the list. Each variant
is represented as a text file (see Fig. 2). Basically, the
test engine generates a copy of the original cloud model,
that is, a variant, where the corresponding modification
is applied, e.g, using a better disk.

Let M be a set of all possible cloud models, the test-
ing engine module takes as input a cloud model m € M,
a set of tenants T' and a set of relations M R. If T'(m)
is a successful test case, then the set of variants M’ =
{mf,mj,...,m}.} € M from the original model m is
generated. Next, M’ is used to automatically generate
the follow-up test cases T'(mj}),T(m5),...,T(m},). Fi-
nally, these test cases are sent to the simulator to be
executed.

4 Performance experiments

This section describes experiments carried out with two
models that acted as case studies. The main hardware
features of these systems are shown in Table 1. In order

to simplify the exposition both cloud systems are ho-
mogeneous systems, that is, all physical machines in a
cloud system have the same hardware configuration. In
these experiments, different algorithms implementing
the cloud manager (First-Fit and Round-Robin) were
used to perform this task.

Table 1 Modelling of two different cloud systems

[ Device [ Cloud A [ Cloud B
Computing nodes 80 96
Storage servers 16 32
CPU 4-Core 2.1GHz 4-Core 2.1GHz
Memory 8 GB 4GB
Network Ethernet 1Gbps | Ethernet 1Gbps
Storage 500GB 500GB
Switches bandwidth 10 Gbps 10 Mbps
Cloud Manager First Fit Round-Robin

The virtualisation schema used in both cloud mod-
els is presented in Table 2.

Table 2 Modelling of different VM types

[ Type [ CPU cores [ Memory [ Storage ]
VMsmall 1 core 1 GB 100 GB
VMpedium 2 cores 2 GB 250 GB
VMiarge 4 cores 4 GB 500 GB

In order to test a cloud system, it is required that
several tenants execute applications in it. In this work,
three applications were modelled using the iCanCloud
simulation platform: a Web server, a CPU-intensive ap-
plication and a High Performance Computing applica-
tion (in short, HPC).

The first application models the behaviour of a Web
server. The second application multiplies two large ma-
trices. Initially, these matrices are stored in the disk of
a storage server. This application reads these matrices,
performs the calculation and finally the result is written
to disk. Finally, the third application models an HPC
application, called BIPS3D [17].

Table 3 shows the modelling of 4 types of tenant.
We say that each type of tenant represents a group of
users in the cloud that have a similar behaviour. The
configuration of this behaviour can be set by using three
parameters: the rented VMs, the applications to be exe-
cuted, and how each application is assigned to a rented
VM. The first column refers to the name that defines
the type of a tenant. The second column represents the
number of simulated tenants of a given type. The next
three columns represent the number of applications re-
quested by each type of tenant. These are followed by
three columns that represent the VMs rented by each
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S-1 A cloud model m and a set of tenants 7" must be provided by using the GUI jointly with the cloud repository. Each tenant
t € T represents a set of applications that must be executed completely in the cloud model m.

S-2 Executing T'(m), the original model provided in [S-1], by using iCanCloud.

S-3 Depending on the features to be tested on m, a set of MRs, taken from the MR repository, must be selected. Basically,
these features depend directly on the requirements of the user that provides the cloud model in step [S-1], like testing the
overall system performance, the energy consumed by a specific subsystem or the main functionality of the cloud model.

These selected MRs are denoted by the set R.

S-4 Following a strategy Sgr, that will vary according to the chosen set of MRs, the test engine uses the model m to generate

a set of variants M’ = {m/},m},.
S-5 For each available model m’ € M
S-5.1 Executing T(m’) by using iCanCloud.

S-5.2 For each r € R, we check whether (T, m,m’,T(m),T(m’)) € r.

S-5.2.1 If we find that some of the relations do not contain the tuple, then m’ is discarded, a report indicating those
relations that are not passed by the model m is sent to the GUI and go to step [S-7].
S-5.2.2 If all the relations contain the tuple, then go to step [S-6].

S-6 A report indicating that the testing process has been executed correctly with no failures found is sent to the GUI.

S-7 End of the testing process.

Fig. 3 Testing methodology

Table 3 Modelling of different types of tenants

[ Type [ Instances [ Matrix [ Server | HPC [ VMumani | VMmed | VMiarge | Mapping

tecomp 30 5 0 0 3 0 0 Random
tupc 25 0 0 3 0 0 8 First-Fit
tserver 30 0 10 0 0 5 0 Best-Fit

tmia 15 5 5 3 3 3 2 Random

type of tenant. The last column gives the algorithm
used to map applications to VMs.

We now describe the results of experiments that
were performed by executing 100 tenants (see Table 3)
over Cloud A and Cloud B (see Table 1), using three
MRs (MRPER7 MRFUN and MRENE) by following
the methodology described in Fig. 3. In each testing
process, a total of 100 cloud models were generated.

The next table shows the number of tests that suc-
cessfully fulfilled each MR. We can observe that using
Cloud A, the percentage of successful tests is greater
than 90%. In contrast, there is a noticeable drop in
the percentage of tests that fulfil MRs when Cloud B
is used. This difference is mainly due to Cloud B be-
ing poorly configured. In this case, the parameter that
configures the bandwidth of the switches in Cloud B is
set to Mbps, instead of Gbps. This “mistake” causes a
bottleneck in the system. However, we obtain similar
results in both cloud models when using the MR focus-
ing on the functionality of the cloud. This is because
the functional behaviour of both models is correct, even
though the obtained performance is not that expected.
While Cloud A obtains good results when analysing
performance and energy consumption, Cloud B obtains
around 60% of successful tests. The main reason for
this result lies in the saturation of the communications
network. This leads to relatively little parallelism being
obtained when executing different VMs and so there

being little difference in the total time of execution of
the original model and the variants.

[ Cloud Model | MR_PER | MR_FUN | MR_ENE |

Cloud A 92/100 97/100 95/100
Cloud B 65,/100 92/100 63/100

Fig. 4 shows the results of a subset of the experi-
ments performed. For the sake of clarity, these charts
show the generated models by modifying only two pa-
rameters of the cloud: CPU and number of storage
servers. These charts show the tendency of the system
when some changes are applied in the original model.
In this case, the performance of each system is the tar-
get to be analysed, which is measured in seconds (less
is better).

Using Cloud A, the M Rpgg relation is fulfilled by
92/100 tests. This indicates that Cloud A is well con-
figured for performance tests. In contrast, only 65 tests
performed using Cloud B fulfilled the same relation.
This means that some subsystem in the cloud is not
working properly. The use of a better CPU does not
lead to improved performance because the communica-
tion network is saturated.

When using M Rpyy with Cloud A, there are a
few cases where the increase in the number of physical
machines in the model leads to the execution requir-
ing more time. This situation is mainly caused by the
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Fig. 4 Results of simulating cloud models A and B

BIPS3D application. When this application is executed
in different physical machines that are not connected
to the same switch, the time to perform network op-
erations is higher. Similarly, 92/100 tests passed this
relation when Cloud B is used. This means that this
model works similarly when the size of the system is
increased. That is, the bottleneck caused by the wrong
configuration of the network does not affect this MR.

Finally, the relation M RgnE is fulfilled by 97/100
test cases when Cloud A is used. The algorithm used
for mapping applications to VMs is directly responsi-
ble for the 3 tests that do not fulfill this MR. In some
cases, an application that requires significant resources
is executed in a VM that contains limited resources,
and vice versa. In these cases, powerful VMs are wasted
and applications that require significant resources have
long execution times, increasing also the energy con-
sumption. In contrast, using Cloud B, only 63/100 tests

fulfilled this MR. This is mainly caused by the wrong
configuration of the network system. Comment: I
am not sure what the following sentence
is meant to be saying so have not tried
to rewrite it. Maybe we can discuss by
email? Since the switches are very slow, they cause an
increment in the execution time of these applications,
remaining these physical machines active, and conse-
quently, consuming more energy.

The selection of the algorithm for allocating VMs
to physical machines also affects the results. Cloud A
uses a FIFO algorithm for allocating VMs to physical
machines. Therefore, when the cloud manager receives
a request to execute a VM, the first physical machine
that contains sufficient available resources is selected.
Consequently, even at the beginning of the execution a
physical machine may have several VMs. In contrast,
Round-Robin assigns the first available physical ma-
chine in the system, using a dedicated machine if pos-
sible. In this case, different VMs only share a physical
machine when there are no idle machines in the sys-
tem. While the FIFO algorithm leads to physical ma-
chines being shared by different VMs, where possible
Round-Robin leads to a dedicated physical machine be-
ing assigned to each VM. Thus, Cloud A typically uses
fewer physical machines in executing a workload, this
being reflected in the energy consumption. This effect
is more visible when the system is not well-configured,
like Cloud B, causing a drop in the number of successful
tests focusing on energy consumption.

There do not appear to be configuration that are
perfect for all the applications, which means that in
some cases one application demands a different configu-
ration to obtain better performance. This explains why
in all cases some of the MRs were not satisfied. When
many tests do not fulfill an MR, the user has to check
those tests that fail and explore potential solutions.

5 Related work

Testing [16] is probably the most widely used technique
for checking the correctness of complex industrial sys-
tems. Therefore, testing should play an important role
when deploying and configuring cloud systems. There
are several proposals in the literature to test cloud sys-
tems. This body of work covers a wide range of tech-
niques for testing different parts of cloud systems, like
symbolic execution [8] and fault injection in the target
system [13]. These approaches can be categorised into
two major groups: testing the cloud and testing in the
cloud (a.k.a. cloud-based testing or cloud testing). It is
important to note that our proposal uses techniques for
testing cloud computing systems, which is different from
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testing in the cloud. In the first case, cloud systems are
analysed in order to determine whether their underly-
ing designs are appropriate or not. For this process, a
real cloud system is not needed if we can simulate the
cloud system on a regular computer. In contrast, test-
ing in the cloud needs a cloud system to execute tests,
which may be related (or not) to checking the underly-
ing cloud system where these tests are executed.

Unfortunately, there are not many proposals focus-
ing on testing cloud architectures using a formal ap-
proach, and we have to look either at proposals for
formal testing in the distributed architecture [12] or
specifically focus on web applications [15,14]. Although
a web application can be executed in a cloud environ-
ment and a cloud system is inherently distributed, in
these cases the underlying architecture of the cloud is
not the target of the testing process. One of the few ex-
ceptions dealing with (formal) testing of cloud systems
presents a formalism where a computing cloud is mod-
elled as a graph, computing resources, such as services
or intellectual property access rights, are attributes of
a graph node, and the use of a resource is modelled as
a predicate on an edge of the graph [5].

In recent years, simulation has become a widely
adopted loosely formalised approach for testing cloud
systems. Basically, simulators build a model of the sys-
tem to be simulated, such that it imitates the behaviour
of the target system and then different measures, like
performance and power consumption, are gathered by
observing how the model works. Researchers have de-
signed cloud models and then performed ad-hoc testing
by manually simulating different scenarios. Among the
available simulation tools that can be used to model and

simulate cloud computing environments are CloudSim [2],

GreenCloud [9], SimGrid [3] and iCanCloud [18].

Formal testing approaches usually assume the ex-
istence of an oracle to check whether the outputs re-
turned by the system under test are those expected.
However, in real systems we rarely have an oracle. There-
fore, it is necessary to use alternative approaches to test
the developed systems. This does not mean that we
should not use formal methods at all, but that we need
to combine formal approaches (in particular, use formal
languages to design systems) with semi-formal ones to
test the validity of a system. In the frontier between
formal and semi-formal approaches we find metamor-
phic testing [6]. Metamorphic testing was designed to
alleviate the oracle problem. In fact, it is an automated
testing method that employs expected properties of the
target functions to test programs without human in-
volvement. These properties relate inputs provided by
the tests and outputs obtained from the tested system
and are called metamorphic relations. Typically, after

a test input has been used and the output observed, a
second follow-up test input is generated and applied, a
second output observed, and a process checks that the
two outputs are related as expected.

Metamorphic testing has been used in very differ-
ent application domains such as web applications [7],
middleware [20] and machine learning [22]. This versa-
tility suggests that there is scope to apply metamorphic
testing to the testing of cloud systems.

6 Conclusions and Future work

This paper presents a methodology that integrates sim-
ulation techniques with testing methods for checking
the correctness of cloud systems. In particular, the iCan-
Cloud simulation platform has been used to model and
simulate cloud systems, while techniques inspired by
metamorphic testing were used to validate these mod-
els.

The main goal of this work is to facilitate the pro-
cess of modelling and checking complete cloud systems
semi-automatically. Thus, when the testing process is
applied to a cloud model provided by the user, the gen-
erated results should provide useful information about
how this cloud model is working.

In order to show the usefulness and applicability of
our approach, different cloud systems have been mod-
elled and tested using the proposed methodology. While
the first cloud model fits well with the typical architec-
ture of cloud systems, the second cloud model provides
a slow network that does not fit well with the typi-
cal configuration of cloud systems. Moreover, we gave
different MRs, each one focused on checking a specific
aspect of the cloud.

The main objective of these experiments was to check
whether the proposed method can reveal that a cloud
model is not well designed. We expect that almost all
tests will fulfill each MR when a cloud model is well
designed. In contrast, when we applied the technique
to a cloud model defined using inappropriate values for
parameters, a significant number of tests did not satisfy
the MRs.

Given an initial cloud model and different MRs, it
was possible to automatically generate follow-up tests
and check whether the MRs were satisfied. The results
of the experiments showed the potential to determine
that a cloud system model was poorly designed. In this
case, the cloud that uses a slow network clearly shows
a drop in the number of tests that fulfil MR focused on
performance. This is because a slow network acts as a
system bottleneck.

It is important to remark that, although one of the
the cloud models was poorly configured, the same work-
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load could be executed in both cloud models. The main
difference lies in the time required to execute it. Since
both models provided the require functionality, almost
all tests satisfied the MR focused on functionality. Al-
though the process of identifying mistakes in the design
of a cloud system is not entirely automated, the user can
focus on those MRs that contains a high percentage of
failures and this should help them find mistakes in a
cloud model.

Future work will present a formal definition of a
cloud system in order to provide more consistent nota-
tion for including new metamorphic relations. Further
analysis of a wide-range of cloud models will be per-
formed. Finally, an extended collection of metamorphic
relations will be defined.
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