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Abstract

The objective of this paper is to consider research progress
in the field of software project economics with a view to
identifying important challenges and promising research di-
rections. I argue that this is an important sub-discipline
since this will underpin any cost-benefit analysis used to
justify the resourcing, or otherwise, of a software project. To
accomplish this I conducted a bibliometric analysis of peer
reviewed research articles to identify major areas of activ-
ity. My results indicate that the primary goal of more ac-
curate cost prediction systems remains largely unachieved.
However, there are a number of new and promising avenues
of research including: how we can combine results from
primary studies, integration of multiple predictions and ap-
plying greater emphasis upon the human aspects of predic-
tion tasks. I conclude that the field is likely to remain very
challenging due to the people-centric nature of software en-
gineering, since it is in essence a design task. Nevertheless
the need for good economic models will grow rather than
diminish as software becomes increasingly ubiquitous.
Keywords: cost models, effort prediction, empirical soft-
ware engineering, software project management.

1 Introduction

The economics of software projects has been seen as an
important sub-discipline of software engineering for some
time. This is because projects are generally embedded in
a wider business environment such that the issues of cost,
schedule and productivity are of considerable significance.
One of the earliest papers to consider cost and productivity
aspects of a software project was written by Bennington [8]
more than half a century ago. It is striking that many is-
sues remain unchanged, not least that developing large and
complex software systems remains a costly and a somewhat
unpredictable business; that despite the significant amount
of research effort and the many advances project prediction

remains a largely unsolved challenge.
Nonetheless, I believe this is still an important topic

since software systems are procured, developed, deployed
and maintained in order to solve business (business being
defined in the broadest sense of the word) problems. Conse-
quently, cost1prediction is an essential input into any cost-
benefit analysis. Clearly it is also extremely useful when
assessing bids in a sub-contracting situation. A closely
related, and equally valuable, topic is schedule prediction
particularly for business sectors, for example e-commerce,
where time to market is the primary consideration.

The scope of this chapter is restricted to quantitative
methods and the main unit of analysis is at the micro level
i.e. the project rather than business, sector or even nation.
Good examples of empirical comparison at the macro-level
are by Cusumano and Kemerer [12] and more recently
Cusumano et al. [13]. This article will not directly ad-
dress the matter of software development productivity ex-
cept inasmuch as this forms part of many cost models. For
a thorough example of an empirical analysis of productivity
see [46].

The remainder of the paper is organised as follows. The
next section describes the results of a bibliometric analysis
of published project prediction research. This is followed
by an assessment of research progress and a discussion of
the outstanding challenges. The paper concludes by propos-
ing a research agenda for the community and suggesting
some possibly fruitful avenues of enquiry.

2 Review of Past Research

This section aims to give an overall picture of research ac-
tivity to date in the area of software project cost prediction.
A more detailed survey based upon a systematic review2 of

1Note that cost and effort are used interchangeably in the literature
since labour is usually the dominant and least predictable component of
overall project costs.

2A systematic review is, as the name implies, a systematic and repeat-
able search for all relevant literature that satisfies the inclusion criteria de-



Figure 1. Journal Publications by Year

over 300 journal papers may be found in [25].
All the searches this paper were undertaken using the

ISI Scientific Citation Index Web of Knowledge (WoK) and
were conducted on November 30, 2006. The WoK indexes
more than 22,000 journals and 12,000 conferences and has
the advantage of allowing a single search query to access
items from more than one publisher rather than being re-
stricted to, say Elsevier when using ScienceDirect. The
journals are cataloged back to 1970 and the conference pro-
ceedings from 1990. WofK supports searching of titles,
keywords and abstracts but not full content searching. Thus
there is a likelihood that it rather underestimates the body
of literature.

In order to consider the research activity in the field of
effort or cost prediction the following query was used:

(((cost model*) OR (effort
prediction) OR (effort
estimation)) AND (software
project))

Note that where several terms are placed in sequence then
all terms are required but do not necessarily need to be ad-
jacent.

This search retrieved 320 journal and 333 conference ar-
ticles. Given that the conference search started from 1990,
rather than 1970, this suggests that more material is pre-
sented in conferences than in journals and again underes-
timates the totality of the work since pre-1990 conference
articles are not included.

fined in a protocol with the goal of reducing subjectivity and selectivity.
These reviews are gaining popularity in software engineering, see [37].

Figure 2. Journal Article Citations by Year

Fig. 1 shows the distribution of journal papers by year
of publication commencing from 1991. There is a clear up-
ward trend suggesting increasing levels of activity. Like-
wise Fig. 2 shows inter-journal citations for the same pe-
riod with an even more marked increase, although it must
be borne in mind the cumulative effect derived from the fact
that articles can be cited only after they are published.

Thus it is self evident that the topic is of some signif-
icance and has been attracting the attention of researchers
over a number of years. Next we examine in more detail the
state and breadth of this research activity.

3 Progress to Date

The next step is to consider the types of research that have
been conducted under the general banner of cost prediction.
Using the classification and analysis given in [25], Fig. 3
shows the breakdown of papers under the various head-
ings together with a count of publications for each class.
The dominant category (61%3) is research that either in-
troduces or evaluates an estimation technique (Est meth).
Another significant area is covered by papers that consider
how to measure the size of a software system (Size) at
20%. Clearly this is an important topic since the major-
ity of algorithmic cost prediction systems are based upon
some function of size. Unfortunately how to measure soft-
ware size is a non-trivial problem. Research papers that
address organisational issues (Org) of effective project pre-
diction make up 16% of output in the area. Measuring or

3Note that the percentages do not sum to 100 since some papers are
classified into more than one category.



Title Authors Source Year Total Average
Citations per Year

Resource-constrained project scheduling: ... Brucker et al. EJOR 1999 120 13.33
Estimating software project effort using analogies Shepperd and Schofield TSE 1997 54 6
A review of studies on expert estimation ... Jørgensen JSS 2004 15 5
A cross-cultural study on escalation of commitment ... Keil et al. MISQ 2000 28 4
On the problem of the software cost function Dolado IST 2001 19 3.17
Reliability of function point measurement ... Kemerer CACM 1993 43 3.07
A controlled experiment ... Myrtveit and Stensrud TSE 1999 24 3
Impact of effort estimates on software project work Jørgensen and Sjøberg IST 2001 15 3
Modeling development effort in object-oriented systems ... Briand and Wüst TSE 2001 15 2.5
An empirical study of maintenance and development ... Kitchenham et al. JSS 2002 10 2.5

Table 1. Most cited journal papers

Figure 3. Proportions of Journal Publications
by Classification

coping with the uncertainty inherent in a prediction is the
next largest topic (8%). Interestingly this growing research
topic was not much represented before about 1995. Other
topics are model calibration (Calibration), the study of pro-
duction functions, a concept from the field of economics
(Prod fn), how to assess the accuracy of prediction systems
(Accuracy metrics), characteristics of statistical analyses of
various data sets that are typically used to evaluate predic-
tion systems (Data sets) and finally other topics that do not
fall into any of the above categories.

We now consider each of these topics in more detail.
Given the substantial number of research papers — the
searches in the previous section retrieved in excess of 600
articles — the following analysis is highly selective. Papers
are selected either due to their perceived significance in that
they have a citation count (normalised by years since publi-
cation) or in order to provide wider coverage of the topic.

3.1 Estimation techniques

The dominant area of activity is proposing new estimation
techniques or evaluating extant techniques sometimes in or-
der to provide a benchmark comparison with a new tech-
nique.

The work essentially falls into one of three techniques:

• algorithmic or parametric models

• induced prediction systems (via some kind of machine
learning method)

• human centric techniques (usually referred to as expert
judgement)

3.1.1 Algorithmic or parametric models

Some of the earliest models could be described as algorith-
mic and generally take the form of a function that relates
size of the task to the degree of effort (cost) to perform it.
Thus we have:

E = a (S)b (1)

where E is project effort, S size, a is a coefficient to repre-
sent productivity (typically determined by combining a se-
ries of drivers that are intended to represent the development
environment) and b is a returns to scale coefficient.

Probably the best known example of this form of model
is COCOMO due to Boehm [10] which has a number of
interesting features. It comprises a series of three models:
basic, intermediate and detailed. The models assume two
sets of relationships: between size (in terms of lines of code
(LOC)) and effort similar to Eqn. 1 and also between effort
and elapsed time T given by Eqn. 2. The latter implies that
a certain size of project in effort E implies an optimal du-
ration, T . In other words units of effort and time are not
linearly interchangeable.



T = c (E)d (2)

The model coefficients are dependant upon the type of
project and Boehm identifies three different classes of
project (organic, semi-detached and embedded). The ap-
proach is widely cited and there are many implementations
since the model and the data set for which it was originally
developed are in the public domain [9]. Subsequently the
model has evolved into COCOMO II [11] and a specialised
version, COCOTS, has been produced for commercial off
the shelf (COTS) component-based projects [3]. The un-
derlying philosophy of these models is that software devel-
opment environments vary significantly and that this can be,
or even needs to be, accommodated by sophisticated models
with a high degree of parameterisation. Of course the down
side is that such models are also more difficult to calibrate.

A somewhat contrasting approach is for individual de-
velopment environments to develop their own local models
using simple statistical techniques such as regression anal-
ysis. Typically a small data set of local projects is analysed
to find the best fitting model usually of the form:

E = β0 + β1X1+, · · · ,+βnXn (3)

where β0 is the intercept and could be interpreted as
fixed project costs, β(1,...,n) are the model coefficients and
X(1,...,n) are the independent variables that are entered into
the model often chosen by some stepwise procedure. The
point is that the model derived will only have local signifi-
cance and there is no expectation that the model can be (or
should be) ported to new environments and achieve good
prediction results.

More recently there has been some exploration of robust
regression techniques the advantage being that this can re-
duce the problem of over fitting to a few influential data
points, see for example [50, 52]. This can be useful where
the data are skewed as frequently is the case for software
project data sets.

Another application of regression modelling given its
comparative simplicity, is as a benchmark when evaluat-
ing other more sophisticated techniques, see for example
[16, 43]. The rationale is that if the more sophisticated tech-
nique cannot be shown to be significantly more effective
than regression modelling then it is not be worth the addi-
tional analysis effort.

3.1.2 Induced prediction systems

In recent years there has been considerable interest in ap-
plying machine learning techniques to induce a prediction
system from training data. The basic idea is that there is no
requirement to specify the form or structure of the predic-
tion system a priori, rather it is discovered or learnt from

training cases or examples. The quality of the resultant pre-
diction system is then assessed by testing it against unseen
cases.

There are a variety of machine learning methods. These
include: artificial neural networks (ANNs), rule induction
algorithms, case based reasoning (CBR), hybrid approaches
such as neuro-fuzzy methods and multiple learners.

The general approach has been to use a software project
cost or effort data set and split it4 into training and valida-
tion subsets. The accuracy of the prediction system is then
usually assumed to be an average (or some other statistic)
of the individual predictions from the validation subset.

The machine learning approach for cost prediction that
has been most explored is that of CBR, in part because the
idea of formalising the process of predicting by analogy is
attractive. The idea is that history repeats itself but not ex-
actly [54]. Hence we need a means of measuring similarity
between two projects (cases) when it is possible that no sin-
gle characteristic (feature) matches exactly. This is usually
done by plotting each case in p-dimensional feature space
where each of the p features is standardised (i.e. it has equal
influence). Then similarity can be defined as a Euclidean
distance5.

A challenge for all the machine learning techniques —
and indeed not restricted to software project prediction —
is what is known as the feature subset selection problem. In
practice most data sets contain features that are included for
a range of reasons such as being easy to collect, relevant to
a different problem and so forth. Thus some or even many
of the features are either irrelevant or harmful to a particu-
lar prediction goal. In practice choosing the right subset of
features to use for a prediction system turns out to be very
influential upon the quality of the resulting prediction. Un-
fortunately it is also very difficult. Formally it is an exam-
ple of an NP-hard search problem, however it is amenable
to the use of heuristic search algorithms [4]. Kirsopp et
al. [28, 29] have found that even simple search algorithms
such as greedy search or hill climbers are able to yield sub-
stantially improved predictions when combined with a CBR
system. An interesting result is that for each data set stud-
ied, there was a large reduction in the number of features,
typically 60-80%.

Several variants of the main machine learning ap-
proaches have been studied using many data sets and dif-
fering validation techniques [44]. The upshot is that there
does not appear to be a particularly consistent pattern al-
though some studies have sought to systematically combine

4The process of splitting the data set into training and validation sub-
sets turns out to have a significant impact upon the subsequent validation
process particularly when the data is heterogeneous. Typically this either
done randomly or by an n-fold method. Failure to use a sufficient number
of samples can result in misleading results [28].

5The distance metric must be extended to handle non-continuous fea-
tures such as weak orders and categorical types.



and compare results [45]. However I discuss this topic in
more detail in Section 4.

3.1.3 Human centric techniques

Whilst surveys have been consistent in reporting expert
judgement as the most common prediction technique in the
literature this has been a somewhat neglected area in terms
of research activity.

Hughes [19] conducted a study of estimation practice at
Ericsson in the mid 1990s and found considerable variation.
For example, practitioners reported a range of effort values
to make the prediction from 5 minutes to 4 weeks. Thus
it would seem that what is labelled ‘expert judgement’ is
in reality a family of techniques united by the fact that no
formal model is employed. Another finding was the lack of
feedback provided to estimators thus significantly reducing
the learning opportunities.

Another topic that has generated some interest although
less actual empirical research is the use of groups of ex-
perts to generate software project predictions. Boehm [9]
proposed the customisation of a general purpose group de-
cision making technique for software prediction and named
the approach wideband Delphi. Passing and Shepperd [51]
studied groups of 4 postgraduate students given prediction
tasks. The overall accuracy of group predictions was found
to be significantly better than those of individuals. How-
ever, one group was dominated by an individual, who was
able to influence the remainder of the group such that they
finished up with a poorer prediction than as individuals.

3.2 Software size measurement

From the foregoing discussion of the algorithmic models
(see for example COCOMO - Eqn. 1) it can be seen that
the size of software is a major input. The challenge is
how might software size best be measured? Traditionally
size was measured as LOC however there are a number of
drawbacks. First, LOC is not available until after coding
is complete, i.e. late on in the development process. Sec-
ond, it is difficult to make comparisons between different
programming languages that may take varying numbers of
statements to perform a given function.

Consequently an alternative approach to software size
was developed known as function points (FPs). The pio-
neering work was done by Albrecht [5] who proposed that
it would be more useful to measure the amount of function-
ality delivered by a particular software system. Effectively
function points are the weighted sum of counts of differ-
ent function types such as processing a system input, query,
etc. Some variants then propose an adjustment to the raw
FP count by taking into account various non-functional re-
quirements such as whether there are multiple sites or that

a high transaction rate is required. From this basic idea fur-
ther variants have been proposed including Mk II function
points which is more closely based on a entity-relationship
models [57] and object points [58]. FPs cannot be used to
directly predict effort, however, they are often used as a de-
pendent variable when constructing a regression model as
per Eqn. 3.

The other major application of FPs is for benchmark-
ing particularly software productivity where there is a need
to obtain some measure of output. There are several well
known benchmarking data sets based upon the use of FPs
including that of the ISBSG [40] and the so-called Finnish
data set [46].

Despite their relatively widespread adoption by the soft-
ware industry, FPs have also been subject to some criticism.
Probably the biggest area of concern is the weighted com-
bination of counts of individual function types since it has
been claimed that this is equivalent to ‘adding together ap-
ples and pears’. A study by Kitchenham and Kansala [33]
found significant correlations between the individual counts
indicating that the counts are not orthogonal. By using mul-
tiple regression they were able to obtain new weights and
identify redundant aspects of the FP formulation that led to
improved predictions. Another cause of some concern has
been the subjectivity inherent in counting function points
typically from requirements or design documents. An in-
vestigation by Low and Jeffery [41] found substantial varia-
tion between the FP analysts on occasions in excess of 30%,
although a separate study by Kemerer [27] found rather
smaller differences however these were between pairs of FP
analysts. Lastly, adjustment factors have not generally been
found to be useful, see for example [21].

3.3 Organisational issues

Some researchers have adopted a broader perspective than
the individual project and considered the relationship (in
both directions) between estimation at the project level and
the organisation. Abdel-Hamid [1] has pioneered the use
of simulation to explore the dynamics of software project
behaviour. Although such models and simulations are in-
teresting vehicles to explore the complex interactions and
feedback behaviour of software development organisations
a problem is such models are extremely difficult to validate.

Other research such as that by Lederer and Prasad [39]
has endeavoured to find relationships between organisa-
tional factors such as the degree of project manager control
and the accuracy of software project estimates. Their re-
sults were quite surprising. No relationship could be found
between different types of technique and estimation accu-
racy (e.g. use of formal / algorithmic techniques had no no-
ticeable impact upon reducing estimation errors) other than
informal techniques were associated with larger errors. The



only management or conextural factor that improved mat-
ters was making estimators responsible and providing feed-
back. (It is possible also that if staff are being assessed in
terms of their predictions these may become self fulfilling.)

3.4 Uncertainty

Rather surprisingly, given that an estimate is by definition
a probabilistic statement, uncertainty aspects of prediction
have not formed a major area of research, or at least not un-
til relatively recently. Indeed most work assessing and com-
paring different prediction systems has treated a prediction
as being a single point value.

Some interesting work that has adopted an organisational
perspective to deal with the uncertainty inherent in predic-
tion has explored the idea of many software projects being
viewed as a portfolio, see Kitchenham and Linkman [34].
They argue that there are four sources of prediction error:
(i) model error (ii) measurement error (iii) assumption error
and (iv) scope error. It is important to avoid double counting
e.g. if the error is included in the model it shouldn’t be in-
cluded in the risk analysis. They also argue that model error
(i.e. the prediction is a probabilistic output will be assymet-
ric since effort cannot be negative) should be dealt with by
a distribution such as the gamma distribution. As a conse-
quence estimators should use the mean and not the median
or mode, otherwise the overestimates will be less than the
underestimates. Finally they argue the only way to manage
risk is across a portfolio of software projects.

In a survey of expert estimation of software development
effort research Jørgensen [23] identifies the need to assess
the uncertainty of the estimate. Elsewhere [22] he suggests
and evaluates a simple approach to quantifying the level of
uncertainty by providing < c, lower, upper > where c is
the level of confidence expressed as a percentage that the
true value lies within the range specified by lower, upper.
Studies, for instance [24], have consistently indicated that
estimators are over confident regarding their prediction ac-
curacy. Clearly this is an important but somewhat under-
investigated topic.

3.5 Calibration

Some research has addressed the question of whether the
performance of general purpose algorithmic models such
as COCOMO might be improved by calibrating the coeffi-
cients to the local environment, see for example Gulezian
[17]. Jeffery and Low [20] also studied various algorithmic
models including COCOMO (again), SLIM, ESTIMACS
and Checkpoint. They concluded that calibration was ‘es-
sential’ if such models were to be used effectively outside
of the environments in which they were developed. This is
an interesting conclusion since such models were intended

Data set Count Mean KSLOC b
Yourdon 17 34 0.72
Kemerer 17 220 0.79
Walston 60 20 0.91
Behrens 22 n.a. 0.94
Bailey 19 29 0.95
Belady 33 92 1.06
Wingfield 15 180 1.06
COCOMO 63 67 1.11
Albrecht 24 66 1.49

Table 2. Economies / diseconomies of scale
by empirical study (Adapted from [6])

to be general purpose through their many drivers and pa-
rameters. Note also that the more complex the prediction
system i.e. the more parameters to be estimated the more
data required. This can be problematic since there can often
be a shortage of relevant, local data.

3.6 Production functions

A topic that has generated considerable discussion is
whether software development exhibits economies, disec-
onomies, both or fixed returns to scale [7, 36]. A presump-
tion made by many researchers and embodied in many mod-
els such as COCOMO [10] is that of diseconomies, in other
words, if we assume some production function of the form
E = a (S)b where E is project effort, S size, then b is
greater than one (see Eqn.1). Note that the values a and
b can be derived empirically for this production function
by building a linear regression model using the natural log
transformation of the data (i.e. ln(E) = b(ln(S))) and then
re-transforming the data back to its original scale.

Table 2 shows in order of increasing value, the economy
of scale coefficient b where b < 1 implies economies of
scale, b = 1 linear or fixed returns and b > 1 diseconomies
of scale as proposed by models such as COCOMO [9]. It
can be seen that there exists considerable diversity which
cannot easily be explained in terms of project size. More-
over as Kitchenham [36] has argued, it is necessary to show
that the production function is significantly non-linear, i.e.
that the 95% confidence limits for b do not contain unity.
For this reason she has argued that for most practical pur-
poses one can assume constant returns to scale. This is de-
spite the commonly held view that larger software projects
are less productive than smaller projects.

The lack of evidence for more complex production func-
tions is also supported by Dolado [15] who used a genetic
programming algorithm to search for functions using a very
rich set of operators not limited to exponentiation. He con-



cluded that there were not significant deviations from a lin-
ear model.

3.7 Data sets and other topics

Until recently the topic of what data are used to evaluate var-
ious competing prediction systems has scarcely been con-
sidered. An important initiative by Menzies et al. [53] has
been to promote a systematic collection of properly doc-
umented and catalogued data. This has been motivated
by various concerns not least the difficulty of replicating
other researchers’ work when the data are not made pub-
licly available.

Mair et al. [44] conducted an analysis of 50 journal pa-
pers that used data sets to evaluate cost prediction systems.
They found substantial diversity between the data sets em-
ployed (in terms of number of projects and/or features, age,
homogeneity and so on). Moreover the choice of data set
employed seemed opportunistic yet highly influential upon
the results. The systematic review of more than 300 journal
papers by Jørgensen and Shepperd [25] reached a similar
conclusion.

4 Challenges for the Future

From the foregoing discussion I will try to identify a re-
search agenda for the future and then speculate about those
avenues that I consider are likely to be the most worthwhile
or promising.

Even from this short review it is clear that there are a
multiplicity of approaches to building prediction systems
for software project costs. This is perhaps unsurprising
given that no one approach seems to dominate, that is no
one approach is consistently more accurate.

These different prediction approaches have given rise
to an increasing number of empirical studies commencing
from pioneering work such as [31, 26] where the goal has
been to validate and compare approaches using different
project data sets. Many of these studies have been indepen-
dent of the prediction system proposers which has clear ben-
efits in terms of reduction of (unintended) researcher bias.
In addition, an advantage of using different data sets is that
we hope to better sample the rather ill-defined population of
software projects and thereby gain a clearer idea as to how
the prediction approaches might generalise. Thus our goal
is to answer the question: which prediction system should a
practitioner use and in what circumstances?

As stated there has been a substantial increase in the
number of empirical studies of comparing various compet-
ing project cost prediction systems (see Fig.3). Whilst this
offers a useful opportunity to build a picture there are, un-
fortunately, a number of difficulties. Consider the following
example.

Group Count
Support for Regression 7
Inconclusive 4
Support for CBR 9

Table 3. Summary of Study Support for
Regression-Based and CBR Prediction

4.1 An example analysis of multiple em-
pirical studies

As an example of the inconsistent nature of empirical results
relating to the evaluation of prediction systems we consider
regression models and CBR approaches. A total of 20 stud-
ies have been identified through a systematic review [45]
of the journal and conference literature. No judgement is
made concerning the quality of studies other than that all
20 studies have undergone peer review. Table 3 shows an
almost even split between studies based upon reported ac-
curacy levels with 35% favouring regression models, 45%
favouring CBR approaches and the remaining 20% unde-
cided. This is problematic since it is unclear what the over-
all body of evidence is indicating, and what advice should
be given to practitioners.

The problem we need to address is: why are the results
inconsistent? One might expect differing results when mod-
els are generated from different data sets, however, in sev-
eral cases results were inconsistent even when utilising the
same data set and the same prediction techniques. This is
not necessarily due to carelessness but may be an artefact
of the stochastic nature of some validation techniques and
the fine tuning of prediction approaches. To try to quantify
the heterogeneity between primary studies various statistics
have been proposed including I2 which is an adaption of
Cochran’s Q to accommodate meta-analyses based upon
differing numbers of primary studies [18]. Unfortunately
this is not an option when, as is generally the case for cost
model validation studies, different response variables are
used.

4.2 Difficulties in evaluating prediction
systems

One of the reasons for the equivocal results in the previous
example is that there are variations in:

• the treatment of data, dealing with outliers and missing
values.

• the choice of response variable(s) (accuracy indicators)
when comparing prediction performance. The study
by Kitchenham et al. [35] identified no less than 12



different accuracy indicators that have routinely been
used. In addition to the problem noted above of being
unable to compute a measure of inconsistency within
the meta-analysis, these tend to capture different prop-
erties which can lead to rank reversal problems i.e. ac-
curacy indicator A prefers PS1 to PS2, whilst indicator
B prefers PS2 to PS1.

• validation strategy and the use of holdout data. These
fall into four general classes, namely, model fitting, the
jackknife, n-fold validation and cross validation. Mak-
ing comparisons between strategies is not easy since
some strategies are more conservative than others.

• the expertise of research teams to use sophisticated
prediction techniques. This problem has also been
noted by the machine learning community in an effort
to explain their inconsistent results [49].

Further, information necessary for meaningful comparison
may not be reported. Therefore, I believe it is a matter
of some urgency that we as a research community define
and agree reporting protocols and methods for comparison.
Moreover this is a more important task than performing yet
more empirical studies given our present difficulties in in-
terpreting and combining the results from such work.

There are also issues relating to the use of data sets that
are not in the public domain thus inhibiting re-analysis and
replication. Finally the choice of data set(s) for the analy-
sis is often ad hoc or opportunistic. Thus as [44, 25] note
we have the curious situation of certain, very old data sets
that are easily available being substantially over-represented
in terms of this kind of analysis. That this matters is also
beyond dispute, since simulation studies such as [55] have
shown the significant relationship between data set charac-
teristics (e.g. number of cases and features, feature scalar
types, missingness patterns, distributions, noise, etc.) and
the relative performance of different prediction systems. In
other words prediction techniques are often highly sensitive
to specific data set characteristics.

4.3 What data should we use?

Data quality is clearly an important topic since inaccurate
data can mislead analysis and hence any conclusions de-
rived from it. Surprisingly it has not been the topic of much
research in the context of cost estimation models. The pri-
mary focus to date has been dealing with missing values
and in particular using imputation techniques to replace the
missing value with one that is artificially generated [56].
However, there are many other data quality problems in-
cluding that of noisy observations. Unless these contain
implausible values (for example a 12 year old being the par-
ent of 10 children), it is not possible to identify noisy data

items with certainty. This is akin to the testing problem
for software, i.e. it is not possible to demonstrate the ab-
sence of defects. One possibility, building upon the testing
metaphor, is to explore capture-recapture techniques to esti-
mate the number of noisy data items. Simulation is another
alternative. Here the true model can be known so that the
level and type of noisy items can also be known.

Nevertheless data quality is an important topic [14]. Es-
sentially we need to answer two questions. First can we
objectively assess the quality of a data set? The potential
consequence of asking this question is we may stop using
some of the publicly available (and therefore widely used
by researchers) data sets. The second question is can we
identify problematic data items and carry out some editing
procedure?

Another challenge, arising from the difficulties in col-
lecting high quality data is that of amassing sufficient rele-
vant data from which to build or train a prediction system.
This is because data may rapidly become obsolete, for in-
stance due to technology change, and furthermore project
completion is a relatively infrequent event. A systematic
review [38] has endeavoured to answer the question what
evidence is there that cross-company estimation models are
at least as good as within-company estimation models for
predicting effort for software projects? Unfortunately, as
per the previous systematic review, the answer is somewhat
equivocal and there is a lack of a consistent result. Again
such analysis is plagued by different research methods, dif-
ferent data sets and different prediction techniques. One
observation is that this kind of analysis is making assump-
tions about heterogeneity within a data set and across data
sets. It would be useful to make such notions more rigorous
or even quantifiable.

4.4 Combining predictors

Another potentially fruitful avenue is that of using multiple
predictors which of course begs the question how should
they be combined? Whilst the idea of using multiple clas-
sifiers or prediction systems is not uncommon in machine
learning this has not been widely deployed in cost predic-
tion. A study by MacDonell and Shepperd [42] studied
three different prediction techniques (regression, CBR and
expert judgement). The results indicated that no single tech-
nique dominated, however it is was not generally clear a pri-
ori which technique should be selected for a given software
project. Meta-level learning (using a rule induction algo-
rithm to determine which predictor to use in which circum-
stance) was also unsuccessful. Nor did the various combi-
nation strategies (e.g. use the mean) improve matters. Thus
we are left with the frustrating situation that we know that
it is theoretically better to use multiple predictors but we
don’t practically know how to select them.



Menzies et al. [48] also consider the problem of deter-
mining which prediction system to use and note the prob-
lem of high levels of variance between prediction sys-
tem comparisons, in other words the lack of reliability be-
tween and even within empirical studies. For this reason
they propose a machine learning based environment termed
COSEEKMO to automate the search for the best prediction
system. The main limiting factor for this work is that it
requires data to be collected to conform to the COCOMO
data model. Neveertheless the idea of using machine learn-
ing (sometimes known as meta-level learning) to discover
relationships between predictor and data set is attractive.

Another area in which more research is needed is the less
formal combining of prediction systems with expert judge-
ment. In the past the implication — if unvoiced — includ-
ing from some of the author’s work has been that formal
prediction systems will one day replace experts. However
this is extremely unlikely not least because software project
cost predictions are infrequent but very high value deci-
sions. Hence we need more work to consider how formal
models might support and assist experts rather than replace
them.

5 Summary

In this paper I have indicated that one of the major chal-
lenges for empirical software engineering researchers inter-
ested in project prediction is how to effectively combine re-
sults. Presently this is not feasible due to the diversity of
evaluation methods employed. The problem is further exac-
erbated by the ad hoc manner in which data sets are selected
and very weak notions we have of population and how it is
being sampled.Moreover, I have shown for two prediction
techniques that have undergone considerable investigation
(regression and analogy) the results are almost evenly split.

This implies five issues for the research community.
First, we need to consider more carefully what population
of software projects is of interest and then whether the data
sets we use represent an unbiased sampling of this popu-
lation? Second, we need to have better evaluation and re-
porting protocols to expedite comparison and combination
of results. Third, we should consider what data ought we
use when conducting empirical validations. Fourth, as has
been stated in the past [45], researchers should ask ques-
tions such as ‘when might it be better to use technique A
rather than B?’, as opposed to ‘is technique A better than
B?’. Finally, we might consider how multiple prediction
systems rather than one might be deployed and in particu-
lar whether we should modify the question into one of how
formal techniques can best assist the human experts.
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