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Abstract-- As distribution networks are turning into active 

systems, enhanced observability and continuous monitoring 

becomes essential for effective management and control. The 

state estimation (SE) tool is therefore now considered as the core 

component in future distribution management systems. The 

development of a novel distribution system SE tool is required  to 

accommodate small to very large networks, operable with limited 

real time measurements and able to execute the computation of 

large volumes of data in a limited time frame. In this context, the 

paper investigates the computation time and voltage estimation 

qualities of three different SE optimization solution methods in 

order to evaluate their effectiveness as potential distribution SE 

candidate solutions. 

 
Index Terms-- Distribution Network, State Estimation, 

Weighted Least Squares, Weighted Error Modulus. 

I.  INTRODUCTION
1
 

The new generation distribution networks are called ‘active’ 

as there will be numerous distributed generators (DG), active 

loads and henceforth bidirectional power flow through the 

medium voltage (MV) networks. The transition from a passive 

to an active and smart distribution network is encouraging 

development to improve the performance and the flexibility of 

network operation. The active distribution network can 

improve and maintain quality of service, reduce costs and 

increase the capacity of the grid to host DG. The complete 

observation of the states of the system can enable these smart 

grid functionalities and the state estimation(SE) tool is the core 

component for this.  

SE tools sit in the heart of active distribution network 

management systems to estimate the actual network status, to 

feed into control functions, asset management software, 

demand management tools and some other functionalities. The 

algorithms and procedures of MV distribution system SE 

(DSSE) tool require to be capable of enduring heavy 

computational burden to achieve the required near to real-time 

state estimation. Compared to the optimization processes 

applied to transmission system SE may not bring such accuracy 

for DSSE. Research into DSSE has proposed diverse 

optimization techniques. A. K. Ghosh et el. applied a 
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probabilistic approach for the distribution circuit state 

estimation based on forward and backward sweeps [1]. R. 

Hoffman in [2] applied a similar load flow based estimation 

technique that is referred to as a ladder algorithm. The 

algorithm converts all measurements into current 

measurements. The current measurements data are extensively 

studied by M. E. Baran and A. W. Kelley. These authors adopt 

a weighted least squares (WLS) approach to develop a 3φ 

DSSE tool [3]. However, the same authors later have 

developed a branch-current based 3φ DSSE tool in order to 

achieve more computational efficiencies and less sensitivity to 

line parameters than the conventional node voltage based tools 

[4]. Reference [5] also applies a 3φ current based estimator that 

uses a current based formulation. A revised version of a branch 

current based estimation tool is developed by H. Wang and N. 

S. Schulz using current magnitude and phase angle as the 

primary states [6]. W. Xu et el. [7] develop a WLS 

optimization problem where the weight of the measurements is 

termed as quality tag. F. Bignucolo et el. [8] develop a 

probabilistic voltage state estimation taking into consideration 

high penetration of DG. R. Sing et el. [9] investigate 

compatibility of three different mathematical optimization 

algorithms (WLS, Weighted Least Absolute Values (WLAV) 

and Schweppe Huber Generalized M (SHGM) estimators) for 

DSSE with UK generic distribution networks in presence of 

DG. Many papers have considered the virtual measurements as 

an equality constraint that enables reduction of ill conditioning 

problem to some extent  [8] [9] [10] [11] [12].  

In this paper, we aim to assess three SE solution process as 

candidate DSSE solution. The optimization processes include 

classical and constrained WLS as well as a comparatively 

novel approach referred to as weighted error modulus (WEM). 

II.  POWER SYSTEM STATE ESTIMATION 

Power system SE is a tool that estimates the actual system 

state through some mathematical optimization procedures 

utilizing metered data which are prone to small or large errors. 

The calculated system state will comply with as much of the 

available measurement information as possible. The SE is a 

minimization problem that satisfies (1). Here 𝑧𝑖 is the 

measurement of state 𝑖, ℎ𝑖(𝑥) is corresponding measurement, 𝑥 

is the state vector and 𝑀 is the number of available 

measurements. 

                                       Min ∑[𝑧𝑖  –  ℎ𝑖(𝑥)]   

𝑀

𝑖=1

                             (1) 
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The measurements are classified into three types: pseudo, 

real and virtual measurements [9][11] [13].  
 The real measurements are the sensor data. The trust level 

depends on the precision of the metering device. 

 Virtual measurements are not measured, but confidently 

known e.g. zero injection nodes; considered as the most 

accurate measurements. 

 The pseudo measurements are assumed or predicted from 

the load profiles; these are expected to be the most 

erroneous.  

Each measurement is associated with a weighting factor to 

quantify the degree of trust for that type of measurement. A 

weighting factor is calculated from the inverse of the 

corresponding measurement variance. 

III.  MAJOR SE RELATED ISSUES FOR MV DISTRIBUTION 

SYSTEMS 

The MV distribution networks are typically extensive 

networks (100,000s km long) consisting of hundreds of 

thousands of nodes. Most of the MV region of the networks 

are poorly monitored. There will be low information about the 

network status in the present and near future distribution 

management system (DMS). The degree of trust on available 

information will be different depending on the type of the data 

and accuracy of the instruments. It is not feasible with regard 

to the economical and physical aspects to place meters at each 

node and along each branch for measurements of voltage and 

power in distribution networks. At the same time, we can be 

more confident in the outcome of the DSSE tools as more real 

measurements are available to provide system information. 

The DSSE tool will be using mostly pseudo-measurements, 

along with several virtual-measurements and relatively few 

real measurements.  

The severe limitation of real time measurements would be 

the main challenge in developing the DSSE tool. As a matter 

of fact, the power system state estimator is capable of 

producing acceptable results when there is a high redundancy 

of real measurements. Whereas for distribution systems, not 

only the redundancy is very low, also the various data origins 

such as measurements through field sensors and load 

estimation techniques lead to a new challenge for DMS. Due 

to the presence of these different types of measurement data 

associated with three very different range of weighting factors 

and various branch sizes, the normal-equation based state 

estimator is prone to matrix ill-conditioning.  

In essence, the DSSE is expected to address new generation 

DMS issues like the impact of DG penetration, ill conditioning 

problem resulting from normal equation based optimization, 

heavy computational burden arising from large distribution 

networks and the impact of smart grids. 

IV.  CHOICES OF POTENTIAL SE SOLUTION PROCESS 

Three methods are discussed and compared as potential 

methods for DSSE in this section. The WLS method is the 

most common and widely used SE solution process. 

Constrained WLS (CWLS) is an alternative approach to solve 

WLS optimization. WEM is a novel iteratively re-weighting 

approach introduced in [13].    

A.  Weighted Least Square (WLS) 

The most commonly used state estimator is the normal 

equation based WLS method, which provides an optimal 

solution when it is fed with known measurement variances and 

normally distributed measurement errors. It minimizes the 

weighted difference between the calculated states and the 

measured values using the following equation:  
 

            Min 𝐽(𝑥)  =  [𝑧 −  ℎ(𝑥)]𝑇  𝑊 [𝑧 −  ℎ(𝑥)].                 (2) 
                                              

Where, 𝐽(𝑥) is the minimization criteria, 𝑧 is the sensor 

information, ℎ(𝑥) is the measurement equations, 𝑊 is the 

weighting factor matrix and 𝑥 is the state vector. The state 

variable ‘𝑥’ normally represents the voltage magnitude and the 

phase angle of every node in the network. The optimum point 

is achieved when the gradient of 𝐽(𝑥) becomes zero. The 

complexity of the problem arises as (2) is a nonlinear 

minimization problem. Equation (2) is solved by Gauss-

Newton iterative method that utilizes Taylor series expansion 

of the gradient of 𝐽(𝑥) for approximate linearization of the 

problem. The Gauss-Newton method reaches the solution point 

by iteratively improving the calculated quantity. An update of 

the state vector ∆𝑥, is produced at each iteration. 

 

                 ∆𝑥 =  (𝐻𝑇  𝑊 𝐻 )−1 𝐻T 𝑊 [ 𝑧 −  ℎ(𝑥) ].                (3) 
                       

Here 𝐻 is the Jacobian of ℎ(𝑥). The convergent point is 

achieved when all elements of ∆𝑥 become close to zero i.e. 

almost no change occurs to the calculated state vector in two 

consecutive iterations. 𝐻T 𝑊 𝐻 is called the gain matrix [14]. 

The state estimator can redistribute the measurement errors to 

keep all estimation errors (even for higher erroneous 

measurements) within acceptable levels. It gives a compromise 

solution between the more accurate and less accurate 

measurements satisfying (4). Here the real and the estimated 

value of states are  𝜇  and  𝑥𝑒𝑠𝑡  respectively, 

 

                          ∑|𝑧𝑖  −  ℎ𝑖(𝑥𝑒𝑠𝑡)|

𝑀

𝑖=1

= ∑|𝑧𝑖  –  𝜇𝑖|

𝑀

𝑖=1

                   (4) 

 

and Max |𝑧 − ℎ(𝑥𝑒𝑠𝑡)|𝑖 <  Max |𝑧 –  𝜇|
𝑖
,  where 𝑖 = 1. . 𝑀.  

B.  Constrained Weighted Least Square (CWLS) 

The CWLS method takes virtual measurement as constraints 

and hence improves the Gain matrix ill-conditioning problem. 

The CWLS method can be expressed as below [15] [16] [17] 

[18], when 𝑟 = 𝑧 − ℎ(𝑥) and virtual measurement equation 

𝑐(𝑥) is expressed as equality constraint. 

 

   𝑀𝑖𝑛      𝐽(𝑥) =
1 

2
[𝑧 − ℎ(𝑥) ]𝑇 𝑊  [𝑧 − ℎ(𝑥)]  

                𝑠. 𝑡.    𝑐(𝑥) = 0                                                         (5) 
 

Solving using a Lagrange multiplier, the following is 

obtained 

 

ℒ (𝑥, 𝜆) =  
1 

2
(𝑧 − ℎ(𝑥) )𝑇 𝑊  (𝑧 − ℎ(𝑥) ) − 𝜆′ 𝑐(𝑥)     (6) 



 

Defining, ,  
𝜕ℎ(𝑥)

𝜕𝑥
= 𝐻     and      

𝜕𝑐(𝑥)

𝜕𝑥
= 𝐶. 

 

𝐶  is the Jacobian of 𝑐(𝑥). After deriving 1st order 

optimality conditions, the linearized Gauss-Newton update 

equation is obtained as 

 

|𝐻
𝑇𝑊 𝐻 𝐶𝑇

𝐶 0
| |

∆𝑥
−𝜆

| = |𝐻
𝑇𝑊𝑟
 ∆𝑐

|                                         (7) 

 

Here, ∆𝑥 =  ∆𝑥𝑘+1 − ∆𝑥𝑘 when 𝑘 is the present iteration 

number. 

The gain matrix (𝐻𝑇𝑊 𝐻) in (7) excludes virtual 

measurements and therefore can avoid very high weighting 

values. This reduces the condition number of the gain matrix 

considerably.  

C.  Weighted Error Modulus (WEM) 

 A novel estimator, WEM method is proposed as a candidate 

DSSE tool. In this approach, the weighting value associated 

with the measurement is modified iteratively within the WLS 

method. In addition to the measurement errors, linearization 

errors from the Taylor series approximation of the optimization 

equation for 𝐽(𝑥) are also present. The Gauss-Newton solution 

of WLS optimization function with linearization errors 𝑙𝑒 can 

be written:  

 

𝐻 ∆𝑥 =  𝑟 + 𝑙𝑒                                                                  (8)  
                                       

Here, 𝑟 =  𝑧 –  ℎ(𝑥) = vector of residuals. According to the 

Gauss-Newton principle, the linearization error is negligible 

provided that the initial guess of the state is close to the actual 

value. Normally, the measurement error approximates around 

1% of the actual state value and therefore the WLS method 

gives good estimation under normal conditions. This implies 

that the residual vector always have a considerably smaller 

value. However, this will not hold true if any gross error exists 

in the measurements. In that case, the assumption H ∆x ≈ r, is 

no longer true and therefore, 𝑙𝑒 in (8) will have a larger value. 

The proposed WEM method utilizes the characteristics of the 

variation in 𝑙𝑒 depending on the accuracy of the measurement 

to reweight the weighting vector. Essentially, the WEM 

method attempts to reduce general measurement errors by the 

WLS method and gross errors by the WLAV method.   

If wi  is modified iteratively such that for k
th
 iteration 

 

𝑤𝑖
𝑘+1 =

𝑢𝑖

| (𝐻 ∆𝑥)𝑖 − 𝑟𝑖|𝑘
                                                      (9) 

        

Here 𝑢𝑖 is the measurement re-weighting factor. When 

(𝐻 ∆𝑥)i is negligible and | 𝑟𝑖 |
k
 = | 𝑟𝑖 |

k+1 
, we can say that 

 

| (𝐻 ∆𝑥)i  − 𝑟𝑖|
𝑘  ≈  | (𝐻 ∆𝑥)i  − 𝑟𝑖|𝑘+1 ≈ 𝑟𝑖

𝑘+1               (10)  
 

By replacing the value for 𝑤𝑖
𝑘+1 and putting in the 

minimization problem [19] 

 

𝑀𝑖𝑛 ∑ 𝑢𝑖  |𝑟𝑖

𝑀

𝑖=1

|                                                            (11) 

 

As the method consisted of one inner and one outer loop 

operation, the inner loop iteration is capped at a smaller 

number of iterations (which is five here) and allowed to 

terminate even if convergence is not achieved. The outer loop 

is the main control to decide when the algorithm is satisfying 

the convergence criteria and should terminate.  

 

V.  TEST 

The DSSE candidate solution processes are applied on the 

77 node radial network of the United Kingdom generic 

distribution system (UKGDS) dataset, which represents UK 

model distribution networks and is developed as a set of 

benchmarks for research purposes [20]. The 77 node radial 

network consists of 76 branches shown in Fig. 1. It is assumed 

that all real and pseudo-measurement errors are within 

expected thresholds (real within 1%, pseudo within 50% error 

margin) and the topology parameters value are not widely 

diverse. In this case, the topology parameters from original data 

set and measurement calculation from load flow values are 

considered to represent the true values. Real measurements (1 

voltage magnitude and 1 power flow measurements) are 

assumed to be available at grid supply point, i.e. node 1 in 

Fig.1.  

Although the required number of iterations for various 

DSSE tools are the same (i.e. three in this case), because of 

different computation methodologies, the estimation execution 

time is different in Fig. 2. WLS requires the least computation 

steps, therefore the computation time it takes is expected to be 

the minimum for the same number of iterations than that for 

others. On the other hand, WEM consists of one inner and one 

outer loop which means the total iterations require are equal to 

the number of inner loop iteration times the number of out loop 

iterations. Certainly, WEM is usually expected to take a longer 

time for SE calculation. CWLS method need more calculation 

and data processing compared to classical WLS, and this may 

have some effect on the computation time. 

 

 
 

Fig: 77 Node UKGDS network. Bus numbers  in black, branch numbers in 

red. 

 
 



 

Fig 2: Computation time for three SE solution processes 

 

 

Fig 3: Voltage estimation errors from 100 Mote Carlo studies for three SE 

solution processes 

Voltage estimation errors with respect to load flow results 

for the state of the network have been plotted for 100 sets of 

simulated measurement applied to three processes. It is clearly 

visible that all three processes give the similar quality of 

estimation for this set of measurements. The mean voltage 

estimation errors are less than 0.5% in all cases however 

maximum voltage estimation errors are around 1.5%.  

 

VI.  COMPERATIVE ANALYSIS 

Classical WLS is  a popular and widely used optimizer in 

power system SE problems especially for transmission systems 

due to its excellent performance in removing errors generated 

from noisy measurements.  However, the application of WLS is 

more challenging at distribution levels where significant 

numbers of pseudo and virtual measurements may cause 

deterioration of the gain matrix condition number. One of the 

major sources of matrix ill-conditioning is the high weighting 

factors assigned to virtual measurements. The 𝑊 matrix in 

CWLS method does not contain larger values as virtual 

measurements are used as constraints in the case. They form 

constrained equations defined by the 𝐶(𝑥) matrix  which is not 

included in the normal equations. The  𝐶(𝑥) is not squared in 

solution equation for CWLS. Hence use of virtual measurement 

as constraints plays an important role to prevent deteriorating 

condition of the coefficient matrix. However any possibility of 

the presence of bad data in the enforced constraint may leave 

negative effects on convergence and estimation quality [14], 

which is generally an unlikely event to occur. While avoiding 

forming complete normal equations, the coefficient matrix of 

CWLS remain no longer positive definite, therefore they 

require more sophisticated ordering and factorization. This can 

be treated as a trivial problem to consider as the advanced 

software technology like MATLAB can resolve this except for 

the additional computation time that may be required [15] [18]. 

Although the WLS method can be used to successfully 

detect and removes outliers, it is not always efficient in 

detecting and overcoming the effect of gross measurement 

errors or bad data. WEM method is therefore proposed as a 

candidate DSSE solution. WEM combines the theory of WLS 

and WLAV, therefore it can effectively remove both gross 

errors and small noises from measurement data. WEM tends to 

adjust the weight with magnitudes of relevant measurement 

residual values to attribute more emphasis to more coherent 

measurement data. The method therefore, instead of treating all 

pseudo-measurements equally, prefers a few of them to gain 

more weight as the solution approaches convergence. The 

reweighting factors are expected to promote those pseudo-

measurements which are closer representation of real states. 

However there is a risk of bad estimation if WEM trusts an 

erroneous pseudo-measurement applying too much weight to it.  

The evaluation on the 77 node network shows that all three 

processes take a similar number of iterations; however 

computation time for WEM method is significantly higher. In 

terms of quality of voltage estimation, all three solution 

processes perform equally well. 

 

VII.  CONCLUSION 

In this paper, we have assessed three SE solution processes: 

classical WLS, CWLS, and WEM methods, as candidate DSSE 

tools for MV systems. The voltage estimation quality is similar 

for the 77 node network, however the computation time is 

longer for WEM solution process. Considering the properties 

of the three methods, CWLS and WEM have greater potential 

as candidate DSSE solution processes. Considering the test 

case results, CWLS can be chosen as the best of the three 

solution processes to be applied for MV distribution systems. 
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