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2 G. A. TAYLOR ET AL.

1. INTRODUCTION

Over the last three decades the FE method has firmly established itself aanti@rd approach for
problems in computational solid mechanics (CSM), especially with regadéformation problems
involving non-linear material analysis [1, 2]. As a contemporary, the rhethod has similarly
established itself within the field of computational fluid dynamics (CFD4]. Both classes of methods
integrate governing equations over pre-defined control volumes [#B¢h are associated with the
elements making up the domain of interest. Additionally, both approaeimese classified as weighted

residual methods where they differ with respect to the weighting fonstihat are adopted [6].

Over the last decade a number of researchers have applied FV methods to priob{@&M (see
[7] for a review) and it is now possible to classify these methodts iwo approaches, cell-centred
[8,9, 10, 11, 12] and vertex-based [13, 6, 14, 7].

The first approach is based upon traditional FV methods [3] that have bieketyvapplied in
in the context of CFD [4]. Subsequently, in the last decade such tedwmigave been applied to
CSM problems involving structured [8, 9] and unstructured meshesifd511, 12]. With regard to
these techniques, it should be noted that when solid bodies undergondétm the application of
mechanical boundary conditions is best affected if they can be set at the pliysicalary. However,
if the disretisation approach is cell-centred then displacements at the drgufal example, have
to be projected from the nearest node of discretisation. Therefore, caledagproximations may
be problematic when considering complex geometries where displacemehéskaiundary are not
prescribed and are determined as part of the simulation.

The second approachis based on traditional FE methods [2] and employ$ishatmns to describe
the variation of an independent variable, such as displacement, over an elementtardfore well
suited to complex geometries [13, 6, 14]. In a more general sense theaappran be classified as a
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A VERTEX-BASED FINITE VOLUME METHOD 3

cell-vertex FV method [4, 6]. However, it should be noted that the@gogr presented in this paper is a
specific class of cell-vertex methods that employs non-overlapping ¢ootumes [16, 17, 18, 7]. For
this reason the approach will be subsequently referred to as a vertex-hasestiod to distinguish it
from other cell-vertex techniques. Additionally, it is important tienthat the approach is equivalent to
the previous non-overlapping FV methods as employed by Bailey arss€td] for 3D linear elastic

problems and by Ofiate et al. for 2D linear elastic problems [6].

Both the above FV approaches apply strict conservation over a contromgolnd have
demonstrated superiority over traditional FE methods with regard toanc[10, 7]. Some researchers
have attributed this to the local conservation of an independent varialedefaced by the control
volumes employed [13, 14] and others to the enforced continuity ofeheatives of the independent
variables across cell boundaries [10]. The objectives of this paper are tibeetber application of a
vertex-based FV method to problems involving elasto-plastic defoaomab describe implementations
and to provide a detailed comparison with a standard Galerkin FE methad &xtended range of 3D

elements, consisting of tetrahedral, pentahedral and hexahedral types.

2. MATHEMATICAL FORMULATION

In this section standard mathematical models that have been employed generathputational solid
mechanics are presented. The models are described in a general sense withordijaeth$ionality,
such that formulations in any dimension are possible when suitablEcesgmand vectors are employed
[71.
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4 G.A. TAYLORETAL.
2.1. Equilibrium Equations and Boundary Conditions

In matrix form, the incremental equilibrium equations are
L] {Ac} +{b} = {0}  inQ, 1)
where[L] is the differential operatofAc} is the Cauchy stres$b} is the body force an@ is is the
domain. The boundary conditions on the surfice T'; U T, of the domair(2 can be defined as [2, 6]
[RT{Ac} = {t,} onT; and )
{Au} = {up} onl,, 3)
where{t,} are the prescribed tractions on the boundary{u,} are the prescribed displacements on

the boundary',, and[R] is the outward normal operator [6, 7].

2.2. Constitutive Relationship

In matrix form, the stress is related to the elastic strain incrementafiyllasis; {Ac} = [D]{Ae¢.},
where[D] is the elasticity matrix. For the deformation of metals, the von-Mige&l criterion is
employed and the elastic strain is givenfaye. } = {Ae} — {Aeyp }, Wwhere{Ae} and{Ae,, } are the
total and visco-plastic strain, respectively. The visco-plastic stegmis given by the Perzyna model

(19]

et =7 (%2 - >% >t @

oy 204

whereo.q, oy, v, N ands are the equivalent stress, yield stress, fluidity, strain rate setysgarameter

and deviatoric stress, respectively. The: > operator is defined as follows;

0 when z<0 and
<z>=

z when z > 0.

The total infinitesimal strain i§Ae} = [L]{Au}, where{Au} is the incremental displacement.
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A VERTEX-BASED FINITE VOLUME METHOD 5

3. VERTEX-BASED DISCRETISATION

Employing the constitutive relationship of the previous sectibequations (1) and (2), and assuming
the boundary conditions as described by equation (3) are directly satisfigte vector{Au}, the
method of weighted residuals can be applied to the equations to obtawiltveiig weak form of the

equilibrium equation [2];

- / LW (IDIZ}{Au) — [D){Acy}) dQ + / W7 (b} +
Q Q

/F [RW]T (D][L){Au} - [D[{Aewp}) T + / W) {t,}dr = {0}, 5)

where[I¥] is a diagonal matrix of arbitrary weighting functions.

At this point the unknown displacement can be approximated as [2]

{Au} ~ {Ad} = Y [N]{Aa}; = > [TIN;{Aa};, (6)
j=1 j=1
where{Aa}; is the unknown displacement at the veriexV; is the shape function associated with
the vertex andI] is the identity matrix. The displacement approximation can be introdirded

equation (5) if the arbitrary weighting functiofi§’] are replaced by a finite set of prescribed functions

(W] =3I, [W];, for each vertex [2, 6],

- / LW (DILH{A} — [D]{Acyp}) dQ + / W7 {b} A0 +
Q Q
/F [RW]T(D][L1{Ad} — [D{Aewy}) T + / W) {1, }dT = {0}

for i=1,n. (7

Equation (7) can be expressed as an incremental linear system of equationfoofitfi ]{Aua} —
{f} = {0}, where[K] is the global stiffness matri{,Aa} is the global displacement approximation
and{f} is the global equivalent force vector and can be formed from the summdtiba tllowing
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6 G.A. TAYLORETAL.

contributions;

Ky = [ pwiToENyae - [ Ew)TDIEN]r - and ®

uq

(= [ erae + [ EWTIDHAG) a0

i Q;

+ /Fti[W]zT{tp}dF —/ [RW]T[D]{ A€y} dT, ©)

where(); is the control volume associated with the verteandl'; = T',, U Ty, is the boundary of the

control volume.

3.1. Standard Galerkin FE Method

In the standard Galerkin FE method the weighting function associatédaniertex is equal to the
shape function of the unknown associated with that vertex [2, 4116], = [N];. The shape functions
describe the variation of an unknown over an element and there can be a numleen@fts associated
with each vertex. Hence, it is apparent that control volumes described by imgidinctions of this
form will always overlap. This is illustrated in Figure 1(a) for a pimtwo dimensional case of two
adjacent nodesandyj, where the control volumes; andQ2; have contributions from all the elements
associated with their respective vertiéesnd;.

Hence, for the standard Galerkin FE method the contributions as descyileegiations (8) and (9)

are

K],y = /Q B [D][B]; 4 and (10)

i

() = / INJT (b} + / (BT [D}{Aew} dD + / INYT {1} dT, (1)

i o} r,,
where[B]; = [LN];.
It is important to note that if the boundary of the control volumegtsas that described By; in
Figure 1(a), coincides with the external boundary of the domainhtaygesfunctions are not necessarily
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A VERTEX-BASED FINITE VOLUME METHOD 7

zero along that part of the boundary. Thus, if a flux is prescribed, suchtragteon, this will not
necessarily disappear and may contribute to the equivalent force vector abe@screquation (11).
Additionally, the symmetrical nature of the stiffness matrix asdatid by equation (10) should be
noted. The Galerkin approach is accepted as the optimum technique for tnelgisigal situations
described by self-adjoint differential equations, particularly thossolid mechanics, as the inherent

symmetrical nature is preserved by the choice of weighting functior®.[2,

3.2. Vertex-based FV Method

In the vertex-based FV method the weighting functions associated witirtex are equal to unity
within the control volume[IW]; = [I], and zero elsewhere. This definition is equivalent to that for
the subdomain collocation method as defined in the standard texts Ho®gver, it is important to
note that weighting functions defined in this manner permit a varietyose§ipilities with regard to
the control volume definition [6]. This is because the weightingfioms are not restricted to a direct
association with the cell or element as in the Galerkin case. This is an impodiasideration and
requires the recognition of the vertex-based FV method as a discratisationique in its own right
[4].

For the vertex-based FV method the contributions as described by atgi@jand (9) are

Kl = = [ IR and (12)

ug

o= [ qppan - [

i u;

(RIFDHAep}dr + [ {t,}aT. (13)

Itis important to note that the traction boundary conditions can bkeaigiirectly as another surface
integral, but in the previous Galerkin approach an additional surfacesakeisgenerally included on
the domain boundary. A non-overlapping control volume definitioitable for a vertex-based FV
method is illustrated in two and three dimensions in Figures 1(b) amdspectively. The Figures
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8 G.A. TAYLORETAL.

illustrate the assembling of vertex-based control volumes from thkited sub-control volumes [7].
Additionally, the asymmetric nature of the contributions to tlverall stiffness matrix as described
by equation (12) does not ensure that symmetry will always be presemvethisreason FV methods
were initially argued as being inferior, but in the light of recent resealadrevdifferent control volume

definitions have been proposed, the extent of this inferiority hagdnta question [6, 5, 14].

4. DESCRIPTION OF 3D ELEMENT TYPES

In this section implementations of three dimensional element types dostdndard FE and vertex-
based FV methods will be described and compared. As part of this research aofatigee
dimensional element types has been developed by extending trilinear hexdaffedt) to include
linear tetrahedral (LT) and bilinear pentahedral (BLP) element types withdegdhe vertex-based
FV method. General two dimensional element types have been described phefaolinear elastic
[13, 6] and non-linear material problems [20, 7].

It is possible to theoretically analyse and compare the FV and FE methtitefeT element, as it
is with linear elements in one and two dimensions [7, 6]. Unfortunasslyvith higher order bilinear
guadrilateral elements in the two dimensional case, no simple theoreticahosmpis available with
regard to the higher order bilinear or trilinear elements in three dimneasihough the same arguments
apply with regard to closer agreement of the two methods in the limisaiftably refined mesh [7].

The three dimensional elements discussed in this section are illustratexth global and local
coordinates in Figures 4, 5 and 6 respectively. The shape functions ardassgalerivatives are
described in the Appendix for each three dimensional element type, respe@tagigdard coordinate
transformation techniques are employed for both the FE and vertex-besedtRods. The techniques
are described in more detail in the following sections. As for the timeedsional case, equivalent

Copyright© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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A VERTEX-BASED FINITE VOLUME METHOD 9

meshes can be used by both methods, though it is important to notehthatiffness matrix
contributions are computed differently [7]. For the FV method thestroigtion of the sub-control
volumes is a relatively straight forward extension of the two dineradi approach [13, 21], except
that in three dimensions the control volumes are defined by internacasfof the mesh element
[14, 7]. In this way it is possible to construct a control volumesisting of cubic sub-control volume
contributions from elements associated with a vertex. This approadhssalted in Figure 2 for the
simple case of eight arbitrary elements contributing to a vertex-basdttuolume. The control
volume consists of the eight cubic sub-control volumes. Each suttet@nlume has three integration
points associated with it, which are situated at the face centres. It sheuldted that it is possible
to utilise a numerical integration scheme involving a greater numbeseaihted integration points.
Although this approach is relatively straight forward it has not beeestigated in the research
presented here, as it involves further comparison of the two methodsigberhorder numerical
integration point schemes. This research is restricted to comparing euil@her order integration
schemes for the two methods. Finally, it should be noted that the caks emually well for a vertex
with n associated elements, whetenay consist of a variety of element types, such as tetrahedra,

wedges or bricks.

In summation, equivalent elements are employed in both the FV and FEasiomg. Therefore, the
discretisation order, which is of course dependent upon the order stfifipee functions associated with

the elements used [2], is identical for both the FE and FV analyses.

4.1. Linear Tetrahedral (LT) Element

Naturally, the nodal points are equivalently defined in the local coomisgdtem for both FE and
FV methods. This is necessary in order to be consistent with the shagiiofs. The LT element is
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10 G.A. TAYLORETAL.

illustrated in local coordinates in Figure 4(b).

Obviously, the coordinates for the FE Gauss points and the FVratieg points are different. To
illustrate this difference the six integration points for the F&thod are illustrated in Figures 7(b) and
7(c), whereas the single Gauss point is illustrated in Figure 7(a.\Weéighting associated with the
Gauss point is equivalent to the volume the tetrahedron occupies indhkdoordinate system. For
the FV method the six integration points coincide with the sierinal surfaces required to construct

the four cubic sub-control volumes associated with a LT element.

4.1.1. Theoretical Analysis of the LT Elemeritis possible to theoretically analyse and compare both
methods for the LT element due to its simple linear nature, by exteridentyvo dimensional elastic
analysis of a linear triangular element [6] to the three dimensional inea# material analysis of LT
element [7].

Concentrating on the non-linear terms of equations (11) and (13) teenexforce contributions at

anode are

V== [ (BT DN Aepbdn  and (DY =+ [ (RT(D}{Aep}ar,

for the FE and FV methods respectively. The theoretical equivalence of thegstéegrals with regard
to a LT element can now be proven. Consider a cluster of LT elements suinguhe vertex in a
similar fashion to that described in Figure 2. Tkik component of the external force vector due to

visco-plastic strains for the FE method with contributions frenelements is

n n

: ON., : AN.,
==Y —“D AP A0 =) " D AP | - —.dQ 14
ik ~ /Qei 856]‘ Ee]‘k eejk Q. 8CUj ( )

e=1

at nodei. Alternatively, for the FV method it is
PV = Z/F ;D AP AT =3 D Al (/F njdr> . (15)
e=1 ei e=1 €;
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A VERTEX-BASED FINITE VOLUME METHOD 11

In both cases the visco-plastic strain tensor is constant over the elemerd)lowing the visco-plastic
strain factor to be taken outside of the integral. This is a consequétielmear nature of the element
which furnishes strain and other associated constitutive variables astsnster the element. Hence,
the contributions for the two methods are identical if the bracketegjiats in equations (14) and (15)
are equivalent. In the three dimensional case it is possible to consgiegla LT element from the
cluster with surfaces of area, s», s3 ands, and unit outward normal&n; }, {n2}, {ns} and{n4}. It

should be noted that the LT element is assumed to be orientated such the¢ suis opposite vertex

Applying the divergence theorem [22] to the bracketed integral in equélti), such that

Ne,
2 LdQ) = TLjNidF,
Q; Oz; a0,

whereo(l., is the boundary surface of the element. It can be shown analytically [7hattegral of

the linear shape functions associated with veftexer the boundary surface

1 1 1
/BQP n;N;dl' = ny; gsl + n2j552 +n3; 553
and by corollary of the divergence theorem
1 1 1
n1j§81 + n2j552 + 7131583 = _/r . n;dl,

whereT ., is the elemental contribution to the FV control volume. By similar atiedy procedures, it

is also possible to demonstrate the equivalence of all contributiotietglobal system of equations

for LT elements with regard to FE and FV methods.

4.2. Bilinear Pentahedral (BLP) Elements

The BLP element is described in local coordinates in Figure 5(b). Theintegration points for
the FV method are drawn in three planes, Figures 9(a), 9(b) and 9(c)eahtre six Gauss points

Copyright®© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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12 G. A. TAYLOR ET AL.

associated with the FE method are drawn in two planes in Figures 8(a) lhd-8(¢ the FV method
the nine integration points coincide with the nine internal facesiredtio construct the six cubic sub-
control volumes associated with a BLP element. The elemental stiffnessasdivrmed from a BLP
element are distinctive for the two methods. Additionally, for therfrethod an asymmetric elemental
contribution is added to the coefficient matrix for BLP elements when thecentrol volumes are not
of equal volume, whereas for the FE method the contributions are againsadwaymetric regardless

of element shape.

4.3. Trilinear Hexahedral (TLH) Elements

The TLH element is described in the local coordinate system in Figure Biie) twelve integration

points for the FV method are drawn in three planes, Figures 11(a)) &hd 11(c), where as the
eight Gauss points are drawn in two planes, Figures 10(a) and 10¢thd-&V method the twelve
integration points coincide with the twelve internal surfaces requoenstruct the eight cubic sub-
control volumes associated with a TLH element. The elemental stiffnessasatormed from a TLH

element are again different for the two methods. Additionally, for thenkethod an asymmetric
contribution to the coefficient matrix is obtained when the sub-comtiloines are not of equal volume,
whereas for the FE method the contributions are always symmetric fegsual the shape of the TLH

element.

5. RESULTS AND DISCUSSION

In this section the vertex-based FV method is applied to two and threendional validation problems
and compared with the standard Galerkin FE method. The non-linearcsolotocedure adopted
for both methods is based upon that of Zienkiewicz and Cormeau [23,0th Bethods utilised

Copyright© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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A VERTEX-BASED FINITE VOLUME METHOD 13

an explicit technique with regard to time stepping of the Perzyna exqué). It is important to
note that the FV solution procedure only differs from that of theifrEEontributions to the global
equivalent force vector and the global stiffness matrix, which allows an atecaomparison of the
two methods [7]Furthermore, the application of mechanical boundary conditions with regard
to vertex-based values is identical for both procedures. However, appropriately weighted FV
and FE formulations are employed with regard to the application of pressureand traction loads
[14, 7].() The methods are compared with regard to accuracy and computational cosaréreso

analysed for a variety of meshes with different element assemblies.

5.1. Test case: Perforated tensile strip

The perforated tensile strip with linear strain hardening has been modgtiesively using traditional
FE methods [23, 24] and a reference solution based upon experimentas datailable [25]. The
problem involves an applied stress as illustrated in Figure 12, whiititieased incrementally. The
initial increment loads the strip to the yield point and the follogvibad increments cause plastic
deformation up to the point of plastic flow. The six load incrementsdagcribed in Table I. The
material under investigation was an aluminium alloy, the Youngs madarid Poisson ratio required to
define the elasticity matrix are 7,088 mm—2 and 0.2, respectively, the yield stress is 24g3nm ~2
and the linear strain hardening coefficient [1] is 23Rggmm 2. The material property values and
units are consistent with those employed in both the original exarial [25] and numerical [23]

analyses.

The total strain was measured using a birefringent coating technigue getforated tensile strip
[25]. The total strain profiles obtained along the minimum sectiohefperforated tensile strip, which
is the line X-X’ in Figure 12, are described for all load increments guFe 13.

Copyright© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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14 G.A. TAYLOR ET AL.

The perforated tensile strip can be modelled using a plane stress apptiaxi, as described in
Figure 12. The geometry of this problem requires a non-orthogoesimwith regard to BLQ elements
as also illustrated in Figure 12. The problem can also be modelled in imvendions using CST

elements. The FV and the FE methods are compared for meshes consisting ahBICST elements.

The elasto-visco-plastic solution of this problem is time indepebdnd the steady state solution
is equivalent to the solution obtained in an elasto-plastic analysjs f2Belasto-plastic numerical
analysis with a von-Mises yield criterion has been performed using themeooml engineering
software ANSYS [26], in order to provide a further reference sotutn identical mesh, using BLQ
elements as described in Figure 12, was employed. The total strain ptuilimed is described in

Figure 13.

It is important to note that previous FE analyses have largely overigbeeldthe strain values
when compared to the reference solution [23]. The same over predictionsaccthre numerical
analyses performed in this research using both FE and FV methods, asit#idsin Figures 13
and 13 respectively. The problem was modelled with a number of meshes consi$tBigQ and
CST elements, with varying mesh density [7]. The mesh density is suisedan Figure 12 for BLQ
elements. The CST mesh employs the same number of nodes, but uses 63Qscl€éhese meshes
were fine enough to ensure that the numerical results are mesh indepefdéahfd@éming the above
theoretical analysis, the results for both methods are in complete agreetmemCST elements are
employed as illustrated in Figure 14(b). For BLQ elements, the two adstlare generally in close
agreement, but it is interesting to note that they are in closest agreementhéd problem is loaded
initially than at the the final load increment VI, as illustrated in Figl4€a). At the final load increment
the tensile piece is undergoing total strains of several percent, andfthigesimal strain theory is
reaching the limit of applicability. At this stage plastic flow is baging to occur and the material non-

Copyright© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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A VERTEX-BASED FINITE VOLUME METHOD 15

linearity would begin to be augmented by geometrical non-lineariteréstingly, the two methods

appear to differ more as the overall non-linearity of the problem increases.

For this validation problem, the non-uniform structure of the Ime#th regard to BLQ elements
requires a bi-conjugate gradient method (BiCGM) for the solutich@fsymmetric coefficient matrix
assembled by the FV method, where as the symmetric coefficient matrix assdmtihe FE method
merely requires a conjugate gradient method (CGM). The computationahegwf the BICGM with
regard to the comparison of the methods is illustrated in Figura)l8(ere the compute time is
plotted against mesh density. As expected the FV is approximately twicgpensve as the FE
method, because the BiCGM is computationally twice as expensive as telCshould be noted that
for comparison purposes it is possible to apply the BICGM to baglirametric and an asymmetric
matrix. However, the application of the BICGM to a symmetric matsbcomputationally wasteful
as it requires twice the computational cost to obtain an identical soltmidghe CGM. Therefore,
such a comparison has not been performed in this paper. For meshes comgi&BIT elements the
coefficient matrices obtained by FE and FV methods are identical, hence the CGM eamployed
in both cases. The computational costs of the methods are in closer agreeitiestrated in Figure
15(b). The FV is approximately ten percent slower than the FE methadstaitributable to the larger

number of integration points associated with the FV method for CSTeal&si7].

5.2. Test case: Internally pressurised spherical vessel

For this validation problem a thick walled spherical vessel, consistiranceelastic—perfectly plastic
material, undergoes an instantaneously applied internal pressure loadhré$sure load is 30
dN mm~2, the Youngs modulus and Poisson ratio required to define the ekastiairix are 21,000
dN mm~2 and 0.3, respectively, and the yield stress isd¥mm 2. The material property values
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16 G.A. TAYLORETAL.

and units are consistent with those employed in the plane strain aafysthick walled cylinder [1].
This problem is rate independent and the final solution is equivalenatmf an elasto-plastic analysis
[23]. A closed form radial solution is available [27]. Numerically theblem can be modelled in
three dimensional Cartesian coordinates, with the normal displacemenbnentp fixed to zero in
the relative symmetry planes. The spherical vessel is then reduced to an odllastrased in Figure

3t

Firstly, the problem was analysed with a series of meshes consistirig-béEments [7]. The hoop
stress profiles, along the radii, from a mesh independent solutiodatediand compared against the
reference solution in Figure 16(a). The profiles illustrate thesirethe plastic and elastic regions, and
the radial extent of the plastic region according to the analyticalisoluthe close agreement of the
two methods is illustrated. However, it is important to note the@t@agreement between the reference
solution and the FV method when a coarse mesh is employed. These oloservasiy be associated
with the higher order, trilinear nature of the elements employed in tltreetdimensional analysis
at this stage. With regard to the FV method, the implementation of ymeedsads (tractions) will
involve bilinear face elements for TLH elements. Hence, when considering pieatwn of pressure
loads for the two methods as described in equations (11) and (13), thebatons are different
due to the individual weighting technique associated with each methethdrfoore, the weighting
technique employed for the FV method may be more complementary, wheedpplnerally, as all
the terms are integrated conservatively at a local level. Conversely,ddfEhmethod the weighting
is not locally conservative which may introduce errors when pressure lassg employed. These
conclusions are tentative and rely on the interpretation of the pressatabions, but they agree with
the findings of other researchers [10] and strongly suggest that fudgbearch of the FV method
is worthwhile. It should also be noted that a comparison of mesh indepe¢rsolutions has been

Copyright© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng000;00:1-41
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A VERTEX-BASED FINITE VOLUME METHOD 17

performed by implementing a strategy of mesh refinement and that thesrskolvn in Figure 16

are mesh independent [7].

Secondly, the problem was analysed with a series of meshes consistindgPal&hents and there
was much closer agreement between the methods [7]. This is attributabkeltovéér order, bilinear
nature of the element concerned and the linear nature of the triangular faceshicieithe pressure
loads were applied. As illustrated in FiguretBe BLP elements are orientated so the pressure load was
prescribed over a triangular face. This was an outcome of the automatic meshtgeemployed [28]
and it is possible to further study the element when pressures are afapifezibilinear, quadrilateral

faces.

Thirdly, the problem was analysed with a series of meshes consistind eldments [7]. The
hoop stress profiles from mesh independent solutions are plotteduneFL6(b). As expected, there
is complete agreement between the two methods with regard to LT elementsgislihkstiffness
matrices and global force vectors constructed by each method are theoreticafigaljers shown
earlier in the paper. This is a consequence of the linear nature of botrethergl concerned and the

triangular faces over which the pressure is applied.

Finally, the methods were compared with regard to computational cossiding LT elements,
as the matrices are identical and symmetric a CGM is applicable in both caségstkated in Figure
17(b), the FV method (FV-CGM) requires more CPU time than the FEBotetFE-CGM) even when
the same linear solver is employed. This is expected as the FV methalsrisintegration points,
while the FE method visits a single Gauss point when adding canitifis to the linear system of
equations [7].

Considering TLH elements, the geometrical nature of this validatiorbleno prohibits an

orthogonally assembled mesh. Hence, for the FV method a BiCGM is reqlueeth the asymmetric
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nature of the coefficient matrix obtained [7]. Conversely, for the FE otethCGM is sufficient as the
matrix obtained is symmetric. These requirements agree with the dignassithe previous section.
As illustrated in Figure 17(a), the FV method (FV-BICGM) requirepragimately twice the CPU
time as the FE method (FE-CGM). This is also expected due to the catigmal requirements of the
two different linear solvers employed. Also for TLH elements, the FV methisits twelve integration
points per element, while the FE method visits eight Gauss points graeat.

Hence, it can finally be concluded that any improvement in accuracy obtained byyémgpibe

vertex-based FV method must be offset against the extra computatisatqaired.

6. CONCLUSIONS

The aim of the research presented in this paper was to develop and investigistarvisco-plastic
procedure that can fit within a three-dimensional FV multi-physics kitimn framework. From the

investigation of the procedure it emerges that:

e The vertex-based FV discretisation gives rise to an asymmetrical stiffnasix for higher order
elements in both 2D and 3D.

¢ For linear elements the stiffness matrix is symmetrical (as for the staizerkin FE method)
and the solution times for both methods are reasonably close; the F¥ambs approximately
10% more expensive than the otherwise equivalent FE method becausdafgter number of
integration points.

e For higher order elements the asymmetric system matrix, arising frentthformulation,
requiresan appropriate solution method and in the case of the BICGM (a BICGM and this
is twice as expensive as the symmetric CGM.
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¢ At the same level of mesh density and element type the vertex-based Fetidistton provides

results that are very similar to those of standard Galerkin FE methods.

The ultimate objective of this research is to develop a framework ofmiaad procedures for solving
a range of physical continuum phenomena in a compatible manner and tootkefa(ilitate the
analysis of problems involving the closely coupled interactions of pheimomena (ie. multi-physics).
The procedure developed in this research has been included in the mditgpbinulation software,
PHYSICA [29], which has been applied to a range of problems involving non-limegerial behaviour

[30, 31, 32, 33].
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APPENDIX
LT Element
Shape functions,
Ni(s,t,u) = i+§s—3—\l/§u, Ny(s,t,u) = i—%s—k%‘mt—g—\lﬁu,
Ns(s,t,u) = 1 — 35— ZT‘(gt 3_\1/§u’ Nu(s,t,u) = :+ %u
Derivatives,
ON1 2 Ny _ 0 oNy 1
Os - 3 ot - ’ ou - 3v/2°
aNa  _  _1 ONy 2v3 ONy 1
s 30 at 6 * ou 3v2°
ONs _ _1 ONs _  _2V/3 ONs _  __1_
s 30 at 6 * ou 3v2°
AN. _ N, _ N, _ 1
s = 0 Tro= . T = &
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BLP Element

Shape functions,

Nl(S,t,u) = é(1+25)(1_u)1 N2(51t7u) = é(1_5+\/§t)(1_u)7
N3(Satau) = é(l_s_\/gt)(l_u)a N4(Sat7u) = %(1-1—28)(14—11,),
Ns(s,t,u) = L(1—s+V3t)(1+u), Ne(s,t,u) = L(1—s—/3t)(1+u).
Derivatives,
W= fa-w., 2 - 0. o= i),
6(;\;2 = _%(1_71‘)1 % = %(1_’”')7 65% = _%(1_8+\/§t)7
Peo= Sj0-w FE o= —P0-w R o= —j0-s- VA,
W= fagw), 2 - 0. % - K142,
Peo= Sj0aw. FE o= P04w, HE = J0-st V),
BEo= i, o= —R04w, FE o= j1-s- VA,
TLH Element
Shape functions,
Ni(s,t,u) = (1+s)(1+8)(1+u),  No(s,t,u) = g(1=s)(1+)(1+u),
Ni(s,t,u) = 5(1=s)(1=t)(1+u),  Na(s,t,u) = g(1+s)(1—-t)(1+u),
Ns(s,t,u) = 5(1+s)(1+8)(1—u),  Ne(s,t,u) = g(1=s)(1+)(1—-u),
Ni(s,tou) = 1-9)1-H0-u)  Na(s,t,u) = H(1+s5)1—t)(1—u).
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Derivatives,

N = la4n4u), Y= l1+s)(1+w),
e = la4+t+w), 22 o= lad-s)(1+uw),
s = —L1-nH+w), Hr = —i(1-s)(1+u),
e =  La-tH1+4w), Hr = -11+s)(1+u),
W = a4t -w), s = La+s)(1-uw),
W = la+t)(1-w), o = La-s(1-a),
M = la-t)(1-w), Y = -la-s)(1-uw),
W =  la-t)1-w), L& = —Lla+s)(1-uw),

9N = L1481+,

G2 = il-9(1+1),

GE = il-9(1-1),

e = 4901 -1),

9 = —Ll1+s)(1+1),

GE = —i(l-9)(1+1),

G = —il-9(1-1),

%& = —1(1+s)(1-1).
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I Il v \% Vi

Incrementkg mm~2) 5.59 095 146 1.73 1.52 1.64

Total kg mm™2) 5.59 6.54 8.00 9.73 11.25 12.89

Table I. Load increments applied to the perforated tensiip.s
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(@)
(b)
Figure 1. 2D control volumes, (a) overlapping FE and (b) neerlapping FV.
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y Control volume
X Sub-control
V4 volumes
@ Vertex
X Integration points
Figure 2. 3D assembly of FV sub - control volumes at a vertex.
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Figure 3. 3D schematic and unstructured meshes for a spheessel.
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(b)
Figure 4. LT element in (a) global coordinates and (b) locardinates.
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y
Z
(a)
t
(-1/2,v3/2, -1)
(1,0,-1)
5
(112,v312, 1) N\ i, e
N R S
(-1/2, 4312, 1
(b)
Figure 5. BLP element in (a) global coordinates and (b) lacakdinates.
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Figure 6. TLH element in (a) global coordinates and (b) lecairdinates.
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Gauss point weighting ¥6/4
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Figure 7. LT element in local coordinates, (a) Gauss poidt @) vertically and (c) horizontallgligned(inclined)

integration points.
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Figure 8. BLP Gauss points in local coordinatesa(a} —1/+/3 and (b)u = 1/+/3.
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u = -1/2 plane
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Figure 9. BLP FV integration points in local coordinated.«¢a= —1, (b)u = $ and (c)u = 0.
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Figure 10. TLH Gauss points in local coordinates.«(a} 1/4/3 and (b)u = —1//3.
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Figure 11. TLH FV integration points in local coordinates) «, (b) s and (c)t planes.
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S S R S S Applied stress
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704 degrees of freedon
315 BLQ elements

I

Height 18 mm Symmetry line
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Perforation radius 5 mm
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X X'
PLANE STRESS Symmetry line
Figure 12. Schematic of a perforated tensile strip.
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Figure 13. Predicted strain profiles for a perforated terstilip.
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Figure 14. Comparison of the total strain for (a) BLQ and (B)T&lements.
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Figure 15. CPU times for (a) BLQ and (b) CST elements on a SPARIAOMHz work station.
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Figure 16. Stress profiles, (a) 950 TLH and (b) 4,800 LT eldamen
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Figure 17. (a) TLH and (b) LT CPU times on a SPARC 4, 110MHz.



