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H., Control for 2-D Time-Delay Systems with
Randomly Occurring Nonlinearities under Sensor
Saturation and Missing Measurements

Jinling Liang~“*, Zidong Wangc and Xiaohui Lii°

Abstract

In this paper, theH,, output-feedback control problem is investigated for a <la$ two-dimensional (2-
D) nonlinear systems with time-varying delays under impetrimeasurements. Randomly occurring nonlinearities
(RONSs) are introduced in the system to account for protstlailinonlinear disturbances typically caused by networked
environments and governed by a sequence of random variab&gng the Bernoulli distribution. The imperfect
measurement outputs are subject to both data missing addmray occurring sensor saturations (ROSSs), which are
put forward to characterize the network-induced phenonsenh as probabilistic communication failures and limited
capacity of the communication devices. The aim of this p&pty design an output-feedback controller such that the
closed-loop system is globally asymptotically stable ia thean square and the prescribiéd performance index
is satisfied. Sufficient conditions are presented by respitid intensive stochastic analysis and matrix inequality
techniques, which not only guarantee the existence of tlsgeatkcontrollers for all possible time-delays, RONS,
missing measurements and ROSSs but also lead to the exgxpriessions of such controllers. Finally, a numerical
simulation example is given to demonstrate the applidgbilf the proposed control scheme.

Index Terms

Two-dimensional (2-D) systems; Output-feedback con®elnsor saturation; Randomly occurring nonlinearities
(RONSs); Missing measurements.

. INTRODUCTION

Two-dimensional (2-D) systems have received tremendassareh attention since they have extensive applica-
tions in image processing, seismographic data proceghiagnal processes and water stream heating [4], [11], [17],
[19], [24], [26], [29]. In the past decade, many importanttheelologies and techniques have been developed for
analysis and synthesis problems of 2-D systems, which dieglbut are not limited to, the stability and performance
analysis problems [3], [5], [10], [13], [18], [25], [31], 8, [41], robust and/of{,, control problems [9], [21], [34],
[40], [43], robust and/oH , filtering problems [4], [8], [28], as well as th&,, model reduction problems [12].
Since time delays frequently occur in practical systems anedoften the source of instability, 2-D systems with
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various types of delays have also been a research focus ipagtefew years, and a great number of results have
been reported in the literature, see e.qg. [3], [4], [31],][Note that, in the context of 2-D systems, the stochastic
perturbation issue has been taken into account in [13], ¢ the saturated nonlinearities have been studied in
[3], [18], [33].

Virtually, almost all real-world systems are influenced lgytain nonlinear disturbances and therefore nonlinear
analysis has been a main stream of research for severalagecadditionally, nonlinearities have been treated as a
deterministic function of the system states. In today'vasive networked environments, however, the nonlineariti
may occur in a random way due probably to the random fluctatiahe network load and the unreliability of the
wireless links. In other words, the nonlinearities themsglcould experience random abrupt changes in their type
or intensity because of abrupt phenomena such as randamefgirepairs of the components as well as the changes
in the interconnections of subsystems, see [7], [15], [82]nfiore details. Such network-induced nonlinearities are
customarily referred to as randomly occurring nonlinéssit(RONSs), see [6], [16], [37]. Although RONs have
received some initial research attention for 1-D systerns, dorresponding results for 2-D systems have been
scattered, and this constitutes one of the motivationsherpgresent research.

It is worth mentioning that, in the aforementioned literatuthe control and filtering synthesis approaches rely on
the ideal assumption that there is a continuous flow of measant signals with infinite precision. Unfortunately,
such an assumption is not always true especially under miedgcenvironments [23], [27], [38]. For example, the
sensor output often suffers from probabilistic signal migglue to multi-path fading, channel congestion, rejectio
in-transit, faulty networking hardware or faulty networkivers, etc. Therefore, the missing measurement (also
called packet dropout or packet loss) problem has gainedwigg research interest in the past few years leading
to a wealth of published results. On the other hand, netwudlieed sensor saturations often occur randomly
because of physical limitations of system components akasahe difficulties in ensuring high fidelity and timely
arrival of the control and sensing signals through a pogsihteliable network of limited bandwidth. In networked
control systems, the randomly occurring sensor saturdfiRiPSS) can be regarded as a random phenomenon in
which physical entities or processes cannot, due to prbbstdbifluctuations of the network loads, transmit energy
and power without bounds on the magnitude or rate [35], [86]far, for 1-D networked control systems, important
features such as control and sensing under limited capanilymissing measurement have been incorporated in
the design approaches, and much attention has been drawrearetwork-induced phenomena including signal
guantization/saturation and stochastic loss/degradationeasurement data in the feedback loop, see [7], [32] for
more details. For example, the state estimation and coptotllems in the case of sensor saturations and/or missing
measurements have been well studied, see e.g. [2], [30], [BY. However, little effort has been devoted to the
corresponding control problems for 2-D systems despite fgiractical significance.

Summarizing the above discussion, it can be concludedipdhe H ., control problem has attracted persistently
increasing research attention for the 2-D time-delay systbecause of their wide applications; 2) RONs occur
sometimes in networked systems and should not be overlaokib@ analysis of system performances; 3) both the
sensor saturations and the missing measurements may apprataneously during the signal transmission due
to the limited bandwidth of the networks; and 4) it is of boliedretical significance and practical importance to
investigate how the RONs, ROSSs and missing measuremétstake dynamic behavior of the controlled systems.
Itis, therefore, the main purpose of this paper to designuput-feedback controller such that, in the simultaneous
presence of RONs, ROSSs and missing measurements, thd-tboge2-D system is globally asymptotically stable
in the mean square and the prescridéd performance index is satisfied. It is noticeable that sucasigth problem
is rather challenging due to its mathematical difficulty mthbsystem modeling and performance analysis, and this
gives rise to the main motivation for our current research.
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In this paper, we aim to investigate thé., output-feedback control problem for a class of 2-D nonlinea
systems with RONs and time-varying delays under imperfezdsarements including ROSSs and missing data. We
are interested in deriving sufficient conditions under Wwhibe existence of the desired controllers is guaranteed
and the explicit expression of such controllers is givEme main contribution of this paper is mainly fourfold: 1)

a “comprehensive” 2-D model is proposed to describe RON$iendystem states as well as sensor saturations and
missing measurements in the system outputs, all of whicly@arerned by Bernoulli distributed white sequences;
2) a combination of important factors contributing to thenqaexity of networked systems are investigated within
an unified framework that caters for RONs, ROSSs and misseasunements; 3) a new energy-like quadratic
function is employed to analyze the system stability andop®ance; and 4) intensive stochastic analysis is
conducted to enforce th# ., performance for the addressed comprehensive systems itioadh the stochastic
stability constraint.

The remaining part of this paper is organized as follows.édot®n II, the H,, output-feedback control problem
is formulated for the 2-D time-delay systems with RONs, R@88 missing measurements, and some preliminaries
are briefly outlined. In Section lll, the global asymptottatslity in the mean square for the closed-loop system is
analyzed, theH, performance level is investigated, and the output-feeklisaatroller is also explicitly designed.

In Section IV, an illustrative example is provided to verihe effectiveness of the designed control scheme. Finally,
conclusions are drawn in Section V.

Notations The notations used throughout this paper are fairly stahelacept where otherwise statédl.is used
to be the sef0,1,2,...}. R® andR™*" denote, respectively, the-dimensional Euclidean space and the set of
all m x n real matrices. and0 represent the identity matrix and the zero matrix with appeie dimensions,
respectively. The notatiotX > 0 (respectively,X > 0) means that matrixX is real, symmetric and positive
semidefinite (respectively, positive definiteliag(---) stands for the block-diagonal matrix with blocks given by
the matrices in(---). For matricesA € R™*™ and B € RP*4, their Kronecker product is a matrix iR"™?*"4
and denoted as! ® B. The superscript “T” is used to represent the matrix trasgjpm, and “*” in a matrix
stands for the term which is induced by symmetry. For integerand n with m < n, |m,n| denotes the
integers set{m,m + 1,...,n} and |m,n) means the integers s€¢in,m + 1,...,n — 1}. (Q,.%,Prob) is a
complete probability space, where the probability meadtre has total mass. E{a} and E{«|3} represent,
respectively, the mathematical expectation of the stachaariable o and the expectation of conditional on
B with respect to the given probability measuPeob. For v € [3(N x N), similar as in [8], define its norm
1013 = 32520 Yoo E{llu(k, )P} — & 352 E{flu(k, 0)2} — § 3252 E{[[v(0, 5)[2)} where | - | refers to the
Euclidean vector norm. Matrices, if not stated, are assumédve compatible dimensions for algebraic operations.

Il. PROBLEM FORMULATION AND PRELIMINARIES

Consider a 2-D system along two directions described by #meigl Fornasini-Marchesini state-space model of
the following form:

(w(k+1,h+1) =A1z(k +1,h) + Asx(k,h + 1) + D1az(k + 1,h — 7(h)) + Doa(k — o(k), h + 1)

+ 4(k, WG f(x(k 4 1,h), 2(k, h + 1)) + Biu(k + 1, h) + Bou(k, h 4+ 1)

+ Eyw(k +1,h) + Byv(k,h + 1), (1)
y(k, h) =E(k, h)A(k, h)Cx(k,h) + (I — A(k, h))g(Ca(k, h)) + Myv(k, h),
z(k,h) =Wix(k, h) + Wau(k, h) + Mav(k, h)

wherek, h € N, z(k,h) € R" is the state vectory(k,h) € R™ is the measured output vector angk, h) € R"
is the signal to be controlled.(k, h) € R is the control input vector)(k, h) € RP is the exogenous disturbance
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input which belongs tds(N x N). A;, D;, B;, E;, M;, W;, C andG (i = 1,2) are known system matrices with
compatible dimensionsi(k) and7(h) are time-varying positive scalars denoting the delaygeetvely, along the
horizontal direction and along the vertical direction, efhisatisfy

o1 < o(k) < o9, 1 < 7(h) < 7, Vk,h € N (2)

whereo; and7; (i = 1,2) are positive known integers denoting, respectively, theetoand upper bounds of
the time-varying delaysy(k,h) € R is a Bernoulli distributed white sequence accounting fa pfhenomena of
randomly occurring nonlinearities and taking values ofieitl or 0 with

Prob{%(k,h) =1} =7, Prob{%(k,h) =0} =1 -7, )

where” € [0,1] is a known constant. Obviously, for &l i € N, the stochastic variabl¢(k, h) has the variance
F¥(1—=%). f(-,+) : R* x R™ — R™ is a known nonlinear function satisfying(0,0) = 0 and the following inequality

(f (u,v) — F1o)T (f(u,v) — Fac) <0 @)

whereu, v € R"?, ¢ = (UT ’UT)T, Fi = [Fll Flg] anng = [Fgl FQQ] € Rx2n,
The saturation functiog(-) : R™ — R™ has the following form:

o) = [ () o) - gnlwn) | ©

with w = (wy,ws, ..., wy)T € R™ and, fori = 1,2,...,m, g;(w;) = sign(w;) min{|w; |, Wi max } Wherew; max is
the ¢th element of the saturation level vectoy, ..

In system (1),Z(k,h) = diag(&1(k,h),&a(k,h), ... . &n(k,h)) and &(k,h) (i = 1,2,...,m) are mutually
independent scalar random signals on the probability space, Prob) taking values on the intervadl, 1] and
satisfying

E{&(k,h)} =&,  E{&(k )} =0a7. (6)

A(k,h) = diag(M (k,h), Aa(k, h), ..., A\ (k,h)) and A;(k,h) (i = 1,2,...,m) are Bernoulli distributed white
sequences taking values 6rand1 with

Prob{\;(k,h) = 1} = \;, Prob{\;(k,h) =0} =1 — \;, (7)

wherei = 1,2,...,m; k, h € Nand); € [0,1] is known. It is further assumed that, in this papgi, k), & (k, h)
and \;(k,h) (: =1,2,...,m) are mutually independent.

Remark 1:In reality, the RONs, the missing measurements and the RO&8Shae main important issues
that have been investigated extensively for various systemeh as networked control systems, sensor networks,
power grid networks and coupled mechanical systems. Rardwupt changes in the environmental circumstances
result in the nonlinear disturbances occurring in a prdisioi way. In system (1), the random variabj€k, h)
is introduced to regulate the nonlinear influente (k + 1, k), z(k,h + 1)) on the structure and dynamics of the
2-D system. Such kind of phenomenon has been named as RORE]iar{d has drawn some attention ever since
then, see e.g. [6]. Moreover, due to the physical or techriicdtations of the system components, the sensor
measurement cannot provide unlimited amplitude signald,leence the random diagonal matrixk, ) is used
in (1) to account for the sensor saturation case which migbtiorandomly [35], [36]. On the other hand, missing
measurements are ubiquitous due to the limited bandwidthefchannels for signal transmission or the sensor
aging/temporal failure in the sensor networks. In model\{® use random diagonal matf#(k, ») to characterize
such unavoidable phenomena. It should be noted that theraémtioned RONs, missing measurements and ROSS
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have been frequently considered for the 1-D (one-dimeagiosystems. When it comes to the 2-D dynamical
systems, the related results have been very few.
The initial boundary condition associated with the diser2{D system (1) is given by

o(k, h), k€ |—02,0], h € |0,k
(k) = 0, k€ |—092,0], h €|k +1,00) (®)
' o(k,h), k€ |0,k2], h € |—72,0]
0 k€ |ke+1,00), he L—TQ,OJ

with ¢(0,0) = ¢(0,0), wherex; andrxy are two finite positive integersp(k, h) and ¢(k, h) are known vectors
belonging toR™ with finite norm.

Before presenting the main aim of this paper, we introdueefdliowing definitions for the 2-D system (1) with
initial condition (8) which are illuminated by the ideas ib3], [26].

Definition 1: For the unforced system (1) (i.e«(k, ) = 0 in (1)) and every initial boundary condition in (8), the
trivial solution of (1) is said to be globally asymptotigaitable in the mean square if, in the case)@f, h) = 0,
the trivial solution of (1) is stable in the mean square (i@ ense of Lyapunov) and the following equality holds:

im Bk, b))} = 0.

Definition 2: For the given scalay > 0, the discrete 2-D system (1) is said to be globally asymdii stable
in the mean square with aH,, disturbance attenuation levelif it is globally asymptotically stable in the mean
square, and under zero-initial condition, i.e(k,h) = 0 = ¢(k, k), the controlled output(k, k) satisfies

12ll2 < ~llvll2

for all nonzerov € [5(N x N, RP).
In this paper, the following output-feedback controlleraopted:
Z(k+1,h+1) =Aip2(k+ 1,h) + Agsz(k,h + 1) + Kipy(k + 1,h) + Kogy(k,h + 1), ©)
u(k,h) =Hi(k,h)

where z(k,h) € R" is the state of the controller},s, K;; and H; (i = 1,2) are the controller parameters to
be designed. It is assumed that the initial boundary canditdor (9) is taken to be:(0,h) = 0 = z(k,0) for k&,
h € |0,00).
By lettingn(k, h) = (27 (k, h), 2T (k, h))T and substituting (9) into (1), we get the augmented closeg-bystem
as follows:
nk+1,h+1) =(A1 + AAi(k,h))n(k + 1,h) + (A + AAz(k, h))n(k,h + 1)
+DiLn(k +1,h —7(h)) + DaLn(k — o(k),h + 1)
+ (G + AG(k,h))F(n(k +1,h),n(k,h + 1)) + E1v(k + 1, h) + Ev(k, h + 1),
z(k,h) =Wn(k,h) + Mav(k, h)

wherez = diag(gl,f_g, c 7£_m)1 A= diag(j\l, /_\2, e ,/\m),

(10)

A B1H
A = b B A k) = B 0 oy
Klf:AC Alf Klf(\:(k + 1, h)A(k + 1, h) — \:A)C 0
A BoH
Ay = S BN A B 0 o
Kgf:AC Agf Kgf(:(k?, h+1)A(k,h+1) —ZA)C 0
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D D E E
Dl = ! ) DZ = ’ ) 51 = ! ) 52 = ? )
0 0 Ky ;M KoM,
3G 0 0
_ B |, L=|T1 0],
g 0 Kif(I—A) Ky(I—A) [ }
Ag%Jw::[Vﬂhhé—Vﬂ? 0 0 |

Kip(A = A(k+1,h)) Kop(A— A(k,h+ 1))
)

f(Ln(k+1,h), Ln(k,h + 1)
Flnk +1,h),n(k, b+ 1)) = g(CLn(k +1,h)) C W= Wy |,
g(CLn(k,h+1))

The main objective of this paper is to design an output-faekllxontroller in the form of (9) for the discrete
2-D time-delay system (1) such that the closed-loop 2-Desygtl0) is globally asymptotically stable in the mean
square with a prescribeH ., disturbance attenuation level

Remark 2: The output-feedback control problem has been extensivelgstigated in the literature for 1-D
systems. Compared with the rich literature for the outgeback control of 1-D systems, the corresponding results
for the 2-D systems are relatively few [39]-[41]. On the @thand, most of the existing output-feedback control
results have been established for fihear 2-D systems only. When referring to the case with stochdsdicrbances
such as RONs, missing measurements and ROSS, the corregpoesearch problem remainssolved

I1l. ANALYSIS AND SYNTHESIS FOR THE2-D TIME-DELAY SYSTEM

In this section, thed, output-feedback control problem formulated in the presisaction is to be investigated.
First, by employing an energy-like functional and somernstee stochastic analysis, the stability aAd, perfor-
mance issues are discussed. Then, the controller syngiresikem is considered and two design schemes are given
ensuring the closed-loop 2-D system (10) to be globally gegtically stable in the mean square with a prescribed
H,, disturbance attenuation level

As for the saturation functiop(-) in (5), with the similar techniques employed in [20], [3632], it is assumed
that there exists a certain diagonal matsixsuch that) < S < I and the following sector condition holds:

(9(Cx(k, b)) = Ca(k, )" (g(Cx(k, b)) — SCx(k, b)) < 0. (11)
In the following discussion, for simplicity, the first eqiat in the closed-loop system (10) can be written as

n(k+1,h+ 1) =Y(k, h) + AA (k, h)n(k + 1, k) + AAy(k, h)n(k, h + 1)
+ AG(k, W) F(n(k + 1, k), n(k, h + 1)) + Eyo(k + 1, k) + Ew(k, h + 1) (12)

whereY(k,h) = #((k,h) ands/ = [Ay Ay DiL DoL GJ, ((k,h) = (0" (k+1,h) nT(k,h+1) nT(k+
Lh—7(h) 07k —o(k),h+1) FL(n(k+1,h),n(k,h+ 1))

Theorem 1:Let the output-feedback controller parameteys, Ky, H; (i = 1,2) and theH, performance level
~v > 0 be given. Then, the closed-loop 2-D system (10) is globadlyngptotically stable in the mean square with
disturbance attenuation levelif there exist matrice®; > 0, Q; > 0 (i = 1,2) and positive scalars; (j = 1,2, 3)
such that the following matrix inequality holds:

O =0+ G (P1+ Po)9" + (1 + Po) e

2 m
+3° (Wﬂﬁf + 37 (wiii(Py + Po) TV + G (Pr + 7%)‘%5)) <0, (13)

j=1 i=1
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wherew; = Ni(1 = Ay), tai = Mi(02 — &), e = [ & &), 4 =[9T 0 0T withg=[0 0 0 0 G|T,

T T
le[woooomo}, %Z[OWOOOOMQ},

T . _ T
Cri = %T 00 ] , Cri = [ §i(P1+P2)Ciil 0 0 0 —(P1+P2)Ky; } )
- T _ ~ T
Gi= ]G 0 0], Gu=[0 &PEPICUL 0 0 ~(Pr+ Pk |
~ T T
€1 = ?{Z 0 0 } ; ?11' = [ (Py+P2)CiiL 0 0 0 0 ] ;
~ T T
Gi=|[%5 0 0], @u=[0 PtPCaL 00 0],
[ &y Py O 0 @5 |
o 0 0 *  BPgy 0 0 @y
d=| x —2I 0 , ¢ = * x  —Q; 0 0
* * —72[ * * * —Qs 0
B * * * P55 |
and
£
Q11 =(rp—1+1)Q1 —P1 — EILT(FEFH + FLiF)L — L7 CTSCOL,
Byy = (09 — 01 +1)Qy — Py — E—lLT(FlTQFzz + F2T2F12)L - ssLTCTSCL
@12 == ——LT(F11F22 + F21F12)L q) LT(F11 + FQI)Il + LTCT([ + 5)127

Po5 = ELT(Flz + Fp)Ti + ELTCT(I + S)Is, Os5 = —e17] Iy — 6275 Ty — €314 I3,
Cii =Ki1E,C, K1 =Ki&y, Co=KoEC, Ko=KE; &i=1[0 0 EJ], &;=1[0 E; 0],

0 0 G 00
K, = , Ky = , G=+71-7 ;
1 [Klf] 2 [Kzf] (1 —=7) 000]
inwhichZ; =[I 0 0,,Zo=1[0 I 0], Z3=[0 0 I] andE; is the matrix inR™*™ with only the diagonal
(z,7)-component ag and all the other elements &s
Proof: Consider the following energy-like functional

whereVi(k, h) = 37_, Vai(k, h) and Va(k, h) = 37°_ Va;(k, h) with
h—1
‘/ll(kvh) = 77T(k7, h)Pﬁ?(kB h)v V12(k7h) = Z nT(kvi)an(k7i)7
i=h—7(h)

—T1

Vig(k,h) = Y Z n" (k) Qun(k,i);  Vai(k,h) = n" (k, h)Pan(k, h),

Jj=1—79 i=h+j
k—1 o1
Vaolk,h) = > nT(i,h)Qan(i,h),  Vas(k.h)= > Z (i, h) Qan(i, h);
i=k—o(k) j=l—02i=k+j

wherek, h € N, matricesP; > 0 andQ; > 0 (i = 1,2) are to be determined from the matrix inequality (13).
DenoteX(k, h) = {n(k+1,h),n(k+1,h—1),... , n(k+1,h—72),n(k,h+1),n(k—1,h+1),... ,n(k—0o2, h+1)},

and define the index as follows:
3 3

T o= B{ (3 AVa(k,h) + 3 AVa (k, ) IRk, 1)} (15)

=1 Jj=1
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with A‘/M(k,’, h) = Vh(k,’ +1,h+ 1) — ‘/1@(143 +1, h) andAVQj(k‘, h) = ‘/QJ(]C +1,h+ 1) — ‘/Qj (k,’, h+ 1) Calculating
(15) along the solutions of the closed-loop system (12), ame abtain

E{AVi1(k, h)[X(k, h)} =E{n" (k + 1,h + 1)Pin(k + 1,h + D)R(k, h)} — " (k + 1, A)Pin(k + 1, h), (16)
h h—1
E{AVia(k, B)IR(k, W)} =B{( > = > " (k+1,4)Qin(k+1,i)R(k, h)}
i=h+1—7(h+1) i=h—7(h)
:E{(T/T(k + 17 h) Ql”?(k + 17 h) - 77T(k7 + 17 h - T(h))an(k + 17 h — T(h))
h—1 h—71 h—1
Yoo+ D = D e+ L) Qun(k+ 1,4)IR(k, h)}
i=h4+1-71 i=h+1—7(h+1) i=h+1-7(h)
<E{(nT(k+1,h)Qin(k +1,h) — T (k4 1,h — 7(h))Qin(k + 1,h — 7(h))
h—71
+ Y nTk+1,0)Qun(k + 1,4)R(k, h)}
i=h+1—7(h+1)
<E{(nT(k+1,h)Qin(k +1,h) — T (k4 1,h — 7(h))Qin(k + 1,h — 7(h))
h—m

+ > g (k4 1,40)Quin(k +1,i))[R(k, h)}, (17)
i=h+1—79

—T1

E{AVi3(k, h)[R(k,h)} =E{ Y ( Z Z (k+1,0)Qin(k + 1,4)|R(k, )}
j=1-72 i=h+1+j i=h+j

=E{ i T(k+ 1,0k +1,h) — T (k+ 1, h + /)Qn(k + 1, h + 7))|R(k, h)}

Jj=1-"72

:E{((T2 - Tl)nT(k +1, h)an(k +1, h)

= > 0T (k+ 1+ 5)Qun(k + 1, h+ ) [R(k, h)} (18)
J=1—7s

and

E{AV5(k, h)
E{AVa(k, h)

N(k,h)} =E{nT (k +1,h + 1)Pon(k + 1,h + D)|X(k, h)} — 07 (k,h + D)Pan(k,h + 1),  (19)
N(k,h)} <BE{(n" (k,h +1)Qan(k,h + 1) —n" (k — o(k),h + 1)Qan(k — o (k), h + 1)

kO’l

+ > 0T, b+ 1)Qan(i, h+ 1))[R(k, h)}, (20)
i=k+1—0>
E{AVa3(k, h)[R(k, h)} =E{((o2 — o1)n" (kb + 1)Qan(k,h + 1)

—0

— > 0 (k+ 5 h+1)Qan(k + j,h + 1)[R(k, )} (21)

j=1-o02

Substituting (16)-(21) into (15), one has

J SE{(nT(k 1L+ 1)(Pr 4 Pk + 1+ 1) + 07 (k + 1,h) ((r2 — 71+ 1)Q1 — Py)n(k + 1, h)
— 0" (k+1,h—7(h)Qin(k +1,h — 7(h)) + 0" (k,h + 1)((02 — o1 + 1)Qs — Po)n(k, h + 1)
Tk — o(k), b+ 1)Qon(k — o (k) h + 1)) IR(k, h)}. 22)
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In the following, we first prove the global asymptotic stépiin the mean square of the closed-loop 2-D system

(10) with v(k, h) = 0. It follows from (10) that
E{n" (k+1,h+1)(P1 + Pa)n(k + 1,h + 1)|X(k, h)}
{97 Gs )Py + Po)V (k) + 5 (1, R) (A A (R, )T (Py + Pa) (AAs (k, B))g(k + 1, 1)
0" (k, b+ 1) (AAa(k, 1)T (Py +Po)(AAs(k, h))n(k, h + 1)
+ F(n(k + 1, h)on(k, b+ D)(AG (k1) (P14 P2) (AG(k, 1) Fn(k + 1, h),n(k. b + 1))
+ 207 (k + 1, h) (AA; (k, )T (Py 4+ P2)AG(k, h) F(n(k + 1,h),n(k, h + 1))

, (23)
=1,2,...,m)

T
o+ 20 (O o+ 1) (A (k, )T (Pr + Po) AG(k, R)F(n(k + 1, 1), nk, b+ 1)) | [R(k 1) }

T
where the mutual independence property of the random \esgltk, h), & (k, h) and \;(k, h) (

has been utilized when deriving the equality (23)
the (7, j)-block of matrixP; + P.. By resorting to the conditions (3), (6) and (7), we have
n(k,h+1))[R(k, h)}

E{2n" (k, h + 1)(AAz(k, b)) (Py 4+ P2)AG(k, h) F(n(k + 1,h)
—ENCa(k,h+ 1)) (P +P2)LG

= 2E{ | (§(k, ) = ) (Ko (2(k, h+ DAk b+ 1)
X f(z(k+1,h),x (Kof(E(k,h+ 1)A(k,h + 1)
(K1p(A — Ak + 1,0)g(Ca(k + 1, 1)) + Kop(A — A(k, h+ 1) (ox(k,hﬂ)))}m(k h)}
ng{(KZf( (k, b+ V)A(k, b+ 1) — ER)Ca(k, b+ 1)) (Py + Py
x Ko (R = Ak, 1)g(Cak, b+ 1)IR(k, 2) }
—2E{ (ko + 1)CT (S (alk b+ D&k, b+ 1) — EXN)ELKL) (Py + Pa)

For simplicity, in the following analysis, deno®, + P, as [(P1 + P2)ijlax2 Where (P + Ps);; € R™ means

N Cz(k,h + 1))T('Pl + P2 )ao
)9
)

[1h

(k,h +1)) +

S

i=1

N — ik, b+ 1) Ko ;) g(Ca(, b+ 1)) |R(k h)}

x (D
7j=1
2E{3:T (k, b+ DOT[Y ik, b+ D&k, b+ 1) — EX) (A — Ak, h+ 1) BT KT,
=1
(Py + Pa)oa Ko Bi] g(Car(le, b+ 1) RO, 1)}
S° Nk = DEET K (Py+ P)anKog Bi)g(Can(h, b+ 1) R(E, )}
(24)

2B {2 (k,h + 1)CT (
=1
—211«:{2 voin” (kb + 1) LTCL(PL + Po) Ko F(n(k + 1,h), n(k, h +1))|X(k, h)}

i=1
(k,h +1))R(k,h)}

and
E{2n (k +1,h)(AA; (k, W) (P1 + Po)AG(k, h)F(n(k + 1, h)
= 21@{ (k+1,n)CT i Ni(Ai = DGETK (P + Pa)2o K1 Ey) g(Ca(k + 1, 1)) [R(k h)}
(25)

i=1
—2E{§:L2m k+1,h)LTCL(Py 4+ Po) K1 F(n(k + 1,h),n(k, h + 1))|R(k, h)}

i=1
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wheresy; = \;(1 — \;)&;. Similarly, it can be obtained that

E{n" (k +1,h)(AA; (k, h)T (P1 + P2)(AA; (K, h))n(k + 1, h)|R(k, h)}

= E{z"(k+1,h)C Z(éz(k + L)Xk + 1,h) — EX)°E] KT (Py + Pa) oo K1 EiCa(k + 1, h)[R(k, h)}
=1

=E{zT(k+1,n)CT Z(Xiaf — EN)E] K{;(P1 + P2)oe K1y EiCa(k + 1, h)[X(k, 1)}
=1

=E{> wam” (k+ 1,h)LTCT,(Py + Py)CaiLn(k + 1, )[R (K, h)}, (26)

=1
E{nT (k,h + 1)(AAx(k, h)T (P1 + Pa)(AAs(k, h))n(k, h + 1)|R(k, h)}

= E{i v3im” (ky b+ 1) LTCL(Py + Po)Cos Lny(k, h + 1)|N(k, h)} (27)
i=1
and
E{F" (n(k + 1,h),n(k, b+ 1))(AG(k, h))" (P1 + P2)(AG(k, h)) F (n(k + 1, k), n(k, h + 1))[X(k, h)}
= E{ |5k, h) = 92T (@(k + 1, h), (k. b+ 1)GT (P + Po)uGf (alk +1,h), a(k, h +1))
+2(3(k, h) =) T (@(k + 1,h),2(k, h + 1))GT(P1 + Pa)1a
(K1 p(A = A(k + 1,h))g(Cx(k + 1,h)) + Koy (A — A(k, b+ 1))g(Cx(k, b + 1))
+ (Kyp(A = Ak 4+ 1,h))g(Ca(k 4+ 1,h)) + Kop(A — Ak, h +1))g(C(k, h+ 1)) (P1 + Pa)s
x (K1 p(A = Ak + 1, h))g(Ca(k + 1, h)) + Kop (A — Ak, b+ 1))g(Ca(k, b + 1) )}m (k. h }

X

= E{ [7(1 = )T @k + 1,1), 2k, h+ 1)GT (P + Po)uGf (@l + 1,h), 2k, b+ 1)
+ 9" (Ca(k + 1,h)) (A = A(k + 1, )T K{((Py + Pa)22 K17 (A — A(k + 1,h))g(Cx(k + 1, h))
+ g (Calk,h+ D)(A = Ak, b+ 1) KT (Py + Pa)oa Kap(R — Ak, b+ 1)g(Calk, b+ 1)) IN(k, )}
k+1,h),2(k,h +1)GT(P1+ Pa)uGf(x(k + 1,h),z(k, h + 1))

+ 3 X1 = X)g" (Calk, b+ 1) EF KL (P + Pa)osKop Erg(Ca(k, h + 1))] IR(k, h)}

=1
- E{f (n(k + 1, 1), n(k, h + 1)) [i 1 (KL (Py + Po)Kns + K5(Py + Po)Ka) + GT(Py + 732)(;}
=1
x F ok + 1, ), n(k, b+ 1) [R(k 7) } (28)

wherey; = \i(1 — \;) andeg; = No? — €202, Ci, Cai, K14, Ko; and G are matrices defined in (13).

[

On the other hand, it follows from inequality (4) that for agiyen scalae, > 0, the following inequality holds:
T
£1 (Ilj-“(n(k +1,h),n(k,h +1)) — (Fi1Ln(k + 1,h) + FioLn(k, h + 1)))
X (Il}"(n(k: +1,h),n(k,h +1)) — (For Ln(k + 1,h) + FaoLy(k, h + 1))) <0. (29)

Similarly, for any given scalars, > 0 andes > 0, the condition (11) infers directly the validity of the foling
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two inequalities:
& (Ig]-"(n(k: +1,h),n(k,h +1)) — CLy(k + 1, h))T
% (ToF(n(k +1,h), 0k b+ 1)) = SCLn(k +1,1)) <0, (30)
s (TaFlk + 1.0 (kb 1) — CLn(k.h 1))
% (ZoF(n(k + 1, 1), 0k b+ 1)) = SCLn(k, h+1)) <0, (31)

where matriced, Z, andZ3 are defined in (13).
Substituting (24)-(28) into (23), and from inequalitie®)2(23), (29)-(31), we have that wherik, h) = 0,

T < B{CT (e, ) BC(k, )R (K, h)}, (32)

R -~ - 2 m -~ -
Whereg =& + eﬁZ{T(’Pl + 7)2)&27 + g(’Pl + ’Pz)gT + Z Z(Llicgji(’l)l + 7)2)—1ch + L4i?ﬂ 771 + 772 lgT
j=1i=1

and((k, h) is defined in (12). By the Schur's lemma [1¥ < 0 if the matrix inequality (13) holds, which infers
that there exists a constant> 0 such that

3 3
E{(V(k+1h+1)=> Vilk+1,h) = Voj(k,h+ 1)R(k,h)} < —pln(k,h+ 1) (33)
i=1 j=1

Taking mathematical expectation on both sides of (33) amdnsing up both sides of the inequality with h
varying from0 to N, we get

N N 3 3
ZZE{V(kH,hH)_Zvu(k:ﬂ,h)—ngj(k,hﬂ)}

k=0 h=0 i=1 j=1
N 3 N 3
ZZE{VM (k+ 1N +1) = Vig(k+ 1,00} + > S E{Vaj (N + 1,7 +1) — Va(0,/n + 1)}
k=0 i=1 h=0 j=1
N
uZZE{Iln koh+ 1)), (34)
k=0 h=0

where N is a constant integer satisfyiny > max{x1,k2} + max{oq, 72} with oo, 79, k1 and ko defined,
respectively, in (2) and (8). From the above inequality (34)s not difficult to obtain the following inequality

ZZE{Hn ko h+ 1)) }<_(ZZE{VM (k+1,0) — Vig(k + 1, N + 1)}

k=0 h=0 kOZl
3
+ZZE{x@j(o,h+1)—vzj(N+1,h+1)})
h=0 j=1
Nj3
<— (ZZE{VM k+1,0 }+ZZE{VQJ 0,h+1 }) (35)
k=0 i=1 h=0 j=1

where the last inequality holds under the bounded initiatdition (8). From the necessary condition for the
convergent positive series, (35) further means

pim  E{[|n(k, h)ll} = 0.
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To draw the conclusion that the closed-loop 2-D system (1) w(k, h) = 0 is globally asymptotically stable
in the mean square, we still need to show that the trivial t8miuof (10) with v(k, h) = 0 is stable in the mean
square (in the sense of Lyapunov). Taking mathematical@sapen on both sides of (33) leads to

E{V(k+1,h+ 1)} <E{Vi(k +1,h) + Va(k, h +1))}.
llluminated by the ideas introduced firstly in [26], the abamequality and the definition df (k, k) in (14) infer
that for anyd > N where N is defined in (34), the following inequality holds:
> E{V(kh)} =E{V(d+1,0)+V(d1)+...+ V(1,d) + V(0,d + 1)}
(k,h)EN (d+1)

< E{(Vl(d-i- 1,0) + Va(d+ 1,0)) + (Vi(d, 0) + Va(d — 1,1)) +
+ (Vi(1,d — 1) + Va(0,d)) + (VA(0,d + 1) + Va(0,d + 1))}
- E{V (d,0) + (Vi(d — 1,1) + Va(d — 1,1)) + ...+ (Va(1,d — 1) + Va(1,d — 1)) + Vg(O,d)}
E{(Vl(d 0) + Va(d, 0)) + (Vi(d — 1,1) + Va(d — 1,1)) +
+ (Vi(l,d — 1) + Va(1,d — 1)) + (Vi(0,d) + Va(0,d)) }
—E{V(d,0)+ V(d—1,1) +...+ V(1,d — 1) + V(0,d)}
= Y E{V(kh)}, (36)

(k,h)EN(d)
where N (d) is defined to be the index s¢tk,h)|k + h = d; k,h € N}. It should be noted that when deriving
the third and the forth steps of (36), the initial conditiop§:, h) = 0 for (k,h) € |—02,0] x [k1 + 1,00) and
¢(k,h) =0 for (k,h) € |[k2+1,00) x |—72,0] in (8) have been utilized. For any given scadar 0, by resorting
to the boundary initial condition (8), there must exist onea$ scalars € (0,¢) such that
max E{V(k,h)} < &
del0,N] (k’h)ze;v(d) ik}

whenever||p(k, h)|| < 0 for (k,h) € |[—02,0] x [0,k1] and||¢(k, h)|| <6 for (k,h) € |0,k2] X |—72,0] in (8).
This together with (36) guarantee that the closed-loopesydtl0) withv(k, h) = 0 is stable in the mean square.
From Definition 1, we know that the closed-loop 2-D system) (dith v(k, h) = 0 is globally asymptotically stable
in the mean square.

Let us now deal with theHd, performance for the closed-loop 2-D system (10). In theofoithg, assume that
in (8) ¢(-,-) =0 and¢(-,-) = 0. Consider the index as follows:

T =T +E{GT(k,h)z(k, h) — %07 (k, h)o(k, h))|R(k, h)}, (37)
wherez(k,h) = (2T (k+1,h) 2T (k,h +1)T, 5(k,h) = (VT (k+1,h) vT(k,h+1))T andJ is defined in (15).
Computing the indexy along the solutions of the closed-loop system (10), we have
T <B{[¢T(k, )Y BC(k, h) + 7 (k + 1, )EL (Pr + Po)rvlh + 1, h) + 7 (s, b+ DET (Py + Po)Eyu(h, b+ 1)

+ 20T (k 4+ 1, R)EL (P + P2)E&sv(k, h + 1) + 2V (k, h) (P + P2)(E1v(k + 1,h) + Ev(k, h + 1))

+ 0T (k4 1, WIWa(k +1,h) + 207 (k + 1, WWT Myv(k 4+ 1,h) + o7 (k + 1, h)MI Mav(k + 1, h)

+ 0 (kb + DOWIWn(k, b+ 1) + 207 (k, b+ OWT Mov(k, h + 1) + o7 (k, h + 1) MJ Myv(k, h + 1)

2T (ke + 1, R)o(k + 1, k) — 4207 (k, b+ Dok, b + 1)] IR(k, h)}

=E{C" (k, h)®{ (K, )[R (K, b)Y}, (38)
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whereC (k,h) = (¢T(k,h) vT(k+1,h) vT(k,h+1))T and matrix® is defined in (13). The condition (13) assures
that for all {(k,h) #0, J <0, i.e.,
E{V(k+1,h+ 1)[X(k,h)} <E{{(Vi(k + 1,h) + Va(k,h + 1)) — (|2(k + 1, h)||> + ||z(k, b + 1)||?)

+77([o(k + L)1 + ok, b+ 1)|*)]R(k, h)}.

Taking mathematical expectation on both sides of the abwoeguality, we have the validity of the followinig+ 2

inequalities:

E{V (k+1,0)} =E{Vi(k+1,0) 4 Va(k + 1,0)},

E{V (k,1)} <E{(Vi(k,0) + Va(k — 1, 1)) — (|2(k, 0)|* + [|z(k — 1, 1)[*) ++*([l(k, 0)||* + [[o(k — L, 1)||*)},
E{V(k —1,2)} <E{(Vi(k — 1,1) + Va(k — 2,2)) — (|lz(k = L, )| + [[2(k — 2,2)[?)
+72(lo(k = L2 + [lu(k - 2,2)[*)},

E{V(2,k — 1)} <E{(Vi(2,k — 2) + Va(1,k — 1)) — ([|2(2,k = 2)[]* + [|2(1, k — D)|*)
+72([0(2,k = 2)1 + [lo(1, k= 1))},
E{V (1, k)} <E{(Vi(1,k — 1)+ Va(0, k) — (|2(1, k = D> +[|2(0, k)[|*) + > (lo(1, k = DI + [0(0, k) [*)},
E{V(0,k + 1)} =E{V1(0,k + 1) + V2(0,k + 1)}.

Adding up both sides of the above inequalities and congidetie zero-initial boundary condition, we obtain

k+1 k—1

S E{V(k+1—4,4)} <E{Va(k+1,0) + Vi(k, 00} + Y B{V(k — j,5)} + E{VA(0, k + 1) + V(0, )}
j=0 Jj=1
k—1
+E{Vi(k+1,0) + Va(0,k + 1)} —E{2 ) [|l2(k — 4, )1 + [I2(k, 0)|* + [|2(0, k) [|*}
j=1
k—1
+E{2 ) llo(k = 5. 5)1% + ok, 0)1* + [[o(0, k)II*}
j=1
k k
=Y EB{V(k—5,0)} —E{2>_ |2k — 4, ) = [2(k, 0)|* — |20, k)[|*}
j=0 Jj=0
k
+ B2 [k — 3, )1 = [0k, 0)]* = [[v(0, k)|*}, (39)
§=0
which leads to the following inequality:
Nk 1 Ny 1 Ny
SN Bz -4 )1% - 3 D E{|l2(k, 0)]°} - 3 > E{2(0,0))1%}
k=0 j=0 k=0 k=0
Nk Ny k+1
<Y DY EBVE=4L) DD B{V(k+1—j,)}
k=0 j=0 k=0 j=0

N1 k 1 Ny 1 Ny
(0SBl — 3. — 2 S Bk 0P} - 2 5 B{lo(0.0)})
k=0 k=0

k=0 j=0
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Ni+1
=V(0,0) = > E{V(N1+1-j.5)}
j 0
+72(ZZE{HU sl }——ZE{HU (k,0)[%} — = ZE{HU (0, k)| })
k= 0] 0
<y (ZZE{HU — 3l }——ZE{HU k,0)| }——ZE{HN DI%Y).
k=0 5=0

where N; € N. Subsequently, by lettingy; — oo, one has

SSE: khn}——ZE{n (5, 0)|%) }——ZE{H 0, 1))
h=0 k=0
<72{ZZE{HUMH}——ZE{nmou }—-ZE{HUMH 3

h=0 k=0
or equivalently,

1213 < ~lvli3,

which completes the proof of Theorem 1. [ |
Remark 3:1t is well known that Lyapunov function and the relating Lyayov stability theory are always utilized
when investigating the 1-D dynamical systems. When refgrto the 2-D time-delay system (10) which evolves
in two independent directions, an energy-like functigik, ») in the form of (14) is constructed here firstly, and
then an index7 based on this defined quadratic function is introduced in, (dhich is just in the role of the

difference of the Lyapunov function when studying the 1-Btsyns. The main work in Theorem 1 is to find some

sufficient conditions under which the indegk is negative along the trajectories of the 2-D system (10} fturther
shown in Theorem 1 that such kind of negativeness guarattieeglobal asymptotic stability for the 2-D system
(20) in the mean square sense.
After establishing the analysis result, we are now in a osito solve the output-feedback controller design
problem for the system (10).
Theorem 2:For the givenH, performance level > 0, the closed-loop 2-D system (10) is globally asymptoti-
cally stable in the mean square with disturbance attenuddiel v if there exist matrice®; > 0, Q; > 0, X > 0,
Air, K5, Hy (i =1,2) and positive scalars; (j = 1,2,3) such that the following matrix inequalities hold:

o Wy Vi
-1
(Pi+P)X=1 and W= | I ) (40)
* x =1 0

x % x Wy

Where\I/44 = diag(l, L1,L1,Lg,Ly, 1) & (—X),

Uy =[af ¢V .. eV L D) gD B gD gD g

im 2m

with L = diag(l/ql,l/m,...,1/L1m), Ly = diag(l/b41,1/b42,...,1/L4m),
_ T _ T
¢ =|&cur 0 0 0 Ky 0 0] G =]0 &Cul 0 0 Ky 0 0],

2)

%fﬁz[cuL 00000 O}T, @, =[0 Cul 0 0 0 0 O]T; (i=1,2,...,m)

and the other symbols are the same as defined in Theorem 1.
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Proof: With the first equality in (40), it is known that = (P, +7P,)~'. From this fact and the Schur's lemma
[1], it is easy to find that the second inequality in condit{d®) is equivalent to that of (13) in Theorem 1 which

further infers the validity of Theorem 2. [ |
Theorem 3:For the givenH,, performance level > 0, the closed-loop 2-D system (10) is globally asymptot-

ically stable in the mean square with disturbance atteondével~ if there exist matrice§” > 0, Q; > 0, H,

A;, K; (i = 1,2), and positive scalars; (j = 1,2,3) such that for the given matriX’ > 0, the following matrix

inequality holds:

= <0, (41)

= o101, 1, 1, 1, 1
whereWy, = diag(s, 5¢1, 541, 5t4, 54, 3) @ (=F),

- - T . T

le[woooomo, W:[0W0000M2,
[ 011 O 0 0 O3

X 7 o @ 0 0 * @22 0_ 0 @25
Y = I Vv ) \Illlz * _72‘[ 0 ) O = * * _Ql 0 0 )
* * —'721 * * * -9y 0

| * * * @55_

TV v N W7 S 72 S S 72 U 72 w2 C 7 S

—(1) __ _ T —(1) __ _ T

G :[&Cli 000 —Ky; O 0] . Cy [0 §&Caxi 0 0 —K9 O 0] ;

_ _ T _ T

%ﬁf):[cuoooooo}, %(2)_[0 cgiooooo},

_ _ T _ _ _ _ _ . _

y:[oooocoo], g:[AlAzplmgss}

with
. . _ 0 0 _ 0 0
W= | WX +Wall Wi, Cu=| . e B -
K\E,CX K,E,C KB, CX  KyE;C

_ 0 0 0 _ 00 0 0 0

K = ~ = Kai = e ) 1_

! [o K\E; 0 2 0 0 Ky v YGOO

— A X + Blff Ay — D1 X D — E;

A= A = Dy 1= ~ ,

Aq YA + Ki=2AC YD X YD YFE, + KM

./_4 B A2X+BQI~{ A2 — D2X D2 g E2

2T Ay Y Ay + KyEAC >l YDyX YD, YT YEy + KoMy |

R 0 0

FYG Ki(I—-A) Ky(I—-A) |’
and

xcrscx xctsc

O11 = (12 — N0 — % —
n=(m-n+he 2| corscx  cTsc

(FﬂFQl —l—FZ:qFll) [ X I ] s

_a | X
I

2
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XCTSCX XCTSC | & [X

Ou = (03 — 01+ 1)0s — ¥ —
2 =(02—01+ 1) “| crscx  cTsc

5 7 (FlgFQQ —l—FZ:gFlg) [ X I :| s

3 X € X € X
O12 = —51 [ 7 (Ff Fog + Fi, Fra) [ X I } , O15 = 51 [ 7 (Fl + F3) T + 52 CT(I + S)Is,
_a | X T T €3 T _ AT+ _ _ 4T+ _ _ 4T
@25 =5 7 (F12 + F22)Il + 5 C (I + S)Ig, @55 = 6111 T 8212 Iy 6313 Ig,

and the other symbols are the same as defined in Theorem 1 awileni 2. Moreover, the controller parameters
in (9) can be designed as follows:

Ay =T YA - YAX - KEACX ~-YB,H)RT, Kiy=T"'K;,, H=HR"T (i=1,2) (42)
in which R andT" are any nonsingular matrices satisfying the following ditjua
TRT =T1-YX. (43)

Proof: From the definition of matrix?" and the condition (41), it is guaranteed that Y X is nonsingular
which further infers the existence of nonsingular matrifeand7" satisfying (43). Define two nonsingular matrices
I'; andI'y as follows:

X I ]
) FZ -

RT 0

1Y

I —
! 0o 77T

By taking matricesP; andP, in Theorem 2 ag?; = Py, = P with P = Pl‘T@Pfl, we get that the matri’ in
(40) has the form¥ = %P—l = %F;T@FQ‘P Performing a congruence transformation to the inequali40) by
block diagonal matrixdiag(ly @ T'y, I, 1o ® I, Iy @ I,T, I, @ T's, ), and then takingd; = PfQil“l (1=1,2),
after some tedious computation, we will get the inequality41) by just noticing that the equalities in (42) are
equivalent to the fact that

H=H;R" A =YAX+TKEACX +YB;H;R" + TA;R", K;=TK;; (i=1,2).

It follows immediately from Theorem 2 that the closed-loof Zystem (10) is globally asymptotically stable in
the mean square with disturbance attenuation leyeind the proof of this theorem is complete. [ |

Remark 4:Two kinds of design schemes are given in Theorem 2 and The8rewspectively, for the output-
feedback controller parameters of (9). Compared with TémoB, by noticing the first equality constraint in (40),
the conditions presented in Theorem 2 are not strict lineariminequalities (LMIs), and hence cannot be solved
directly by the convex optimization algorithm. However, figgorting to the cone complementary linearization (CCL)
method [14] and the sequential linear programming matrixhoe (SLPMM) [22], such kind of difficulty can be
overcome effectively. To further deal with such a non-conpeoblem, we have enforced slight restriction on the
matricesP; and P, (i.e., P; = P») and, accordingly, the conditions in (41) of Theorem 3 arev rstrict LMIs
which can be solved directly and effectively by the Matlab ILMdolbox.

Remark 5:In this paper, thed, output-feedback control problem is investigated for aslaistwo-dimensional
(2-D) nonlinear systems with RONs and time-varying delagdear imperfect measurements including ROSSs and
missing data. The main novelty lies in that 1) the propos&lf,stem is general enough to model the phenomena
of RONs, ROSSs and missing measurements; 2) a new enegggdidratic function is employed to analyze the
system stability and performance; and 3) intensive stdithasalysis is conducted to enforce the, performance
for the addressed comprehensive systems in addition tottuheastic stability constraint. It should be pointed
out that the main results established in Theorem 2 and The@reontain all the information about the system
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parameters, the occurring probabilities of RONs, ROSSsmaisding measurements, as well as the bounds of the
time-varying delays.

IV. [LLUSTRATIVE EXAMPLES

In this section, an illustrative example is given to demmatstthe effectiveness of the proposed output-feedback
control design schemes.
Consider the 2-D time-delay model (1) with system paransedsrfollows:

0.2 0.025 0 0.1 0.105 0.055 0.04 0
Ay =1 —0.006 0.1 015 |, Ay=| 0.155 0 -0.15 |, Bi1=| —-0.02 0.04 |,
| 005 -0.25 0.1 025 —-0.1 —-0.2 0.02 0
[ 0.0504 0.036 0.09 0.036 0.0612 0.036 0.06 0.04
D, = 0.072 0.036 0O , Do = 0 0.072 0.0468 |, By =] 0.02 0.04 |,
| —0.072 0.018 0 0.0348 0.036 0.0864 0 0.02
—0.01 0.11 0.2 0.1 0.04 [ 002 0.04 0.06 ]
G= 0 —-03 05|, FEi= 0.1 , FEo= 0.2 , C= ,
0.06 0.08 0.04
04 —-0.2 0.3 0.04 —0.06

M, = [ 8(1)2 ] LW = [ 0.02 —0.06 0.08 ] Wy = [ 0.14 0.06 } . My = [ 0.1320 } .

The time-varying delays in the horizontal direction and tretical direction are, respectively,(k) = 3 +
4)sin(47)| and 7(h) = 4 + 2| cos(&)|. Obviously, the upper (lower) bounds of the time-varyindagle are
o9 = 7,01 =2, 2 =6 andr = 3. The nonlinear functiory(-,-) occurs with a probabilityy = 0.68 and it is
in the form of f(u,v) = (f1(u1,v1), fo(uz, va), f3(us, v3))” With u = (uy, uz,u3)’ € R3, v = (vy,v9,v3)" € R3,
fi(ug,v1) = 0.2ug +tanh(0.04u; ) +0.2v1 —tanh(0.1v1), fo(ug, va) = 0.2ug —tanh(0.1ug) +0.2vy +tanh(0.04vy)
and f3(us,vs) = 0.1uz + tanh(0.05u3) + 0.2v3 + tanh(0.04vs). It can be shown thaf(-, -) satisfies the condition
(4) with

02 0 0 01 0 O 024 0 0 02 0 0
Iy = 0o 01 0 0 02 0 [, Fy = 0 02 0 0 024 0
0 0 01 0 0 02 0 0 015 O 0 024

The other related data accounting for the ROSSs and thengiss¢asurements are taken toXe= 0.7, A\, = 0.8,

& = 0.86, & = 0.76, a% =0.8 anda§ = 0.66. The saturation level vectar,,,, for the saturation functiog(-) is

taken to bg(6, 8)”. In this paper the saturation function is assumed to satisfiglition (11) withS = diag(0.1,0.2).
With the parameters given above, we aim to design an ougmakfack controller (9) for the 2-D time-delay

system (1) such that the closed-loop 2-D system (10) is ¢ilobaymptotically stable in the mean square with a

given H., disturbance attenuation level In the following, let theH ., performance level = 0.8 and the matrix

X = diag(1.7,1.2,1.6) in Theorem 3, by solving the matrix inequality (41) via Matlaoolbox, we can obtain

a feasible solution as follows (for space consideratiorly gart of the solution is listed here}; = 20.9901,

g9 = 24.2991, e3 = 20.1111,

0.1289  —0.0369 —0.0512 0.0315 —-0.0136  0.0720
A= —0.0020 0.1850  0.0419 |, Ay = | 0.0911 0.1002 —0.2984 |,
—0.1576 —0.1152  0.0146 0.0238 0.0291 —0.1763
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Fig. 1.

State trajectory:: (k, h) of the controlled system (1). F
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i=0,1,...

g. 2. State trajectorys(k, k) of the controlled system (1).

0.4095 —2.5345 0.7722 —2.6675
Ki=| —1.1643 —1.2066 |, Ky=| —25481 0.3004 |,
—0.6595 1.4734 1.3063  0.1409
22708 —0.8335 —0.2343
. —0.2727 —0.7414 —0.4222
H= , Y = | —0.8335 2.6414 —0.4427
—4.6907 1.8610 —0.1680
—0.2343 —0.4427 1.7706

To design the specific output-feedback controller (9), dgoosing the matrix’ — Y X shown in (43) with the
nonsingular matrice§” and R as

1.6667 —0.4294 —0.1430 | —1.5965 0.4046  0.1800
T'=1] —0.4294 19135 —0.2381 |, R = 0.3554 —1.0257 0.2283 | ;
| —0.1430 —0.2381  1.4797 0.1927  0.2669 —1.1771

then the output-feedback controller gains in (9) can begiesl as follows according to (42):

0.1518  —0.0710 —0.0861 ] —0.1035 0.0818  0.0869
Ay = —0.1894 0.1195  0.1801 , Ayp = | —0.0747 —0.1155 —-0.2214 |,
| 0.0868 —0.2481  0.0759 0.1897 —0.0879 —0.1337
0.0254 —1.7011 0.2166 —1.6686
Kip=| —0.6714 —-0.9274 |, Kop= | —1.1945 —-0.2303 |,
| —0.5513  0.6821 0.7115 —0.1031
| 0.5145  1.0527  0.6816
P71 27967 —0.7495 0.4306 |

It follows immediately from Theorem 3 that the 2-D time-dekystem (1) with parameters given above is globally
asymptotically stable in the mean square with a gi¥ep disturbance attenuation level, if cooperated with the
output-feedback controller (9) with controller gains desd as above. Moreover, by resorting to the Matlab LMI
toolbox, it is obtained that the minimutH,, performance level can be taken as* = 0.4924.

By taking the initial boundary condition(k, h) of the time-delay 2-D system (1) to i§@.15 tanh(k+8) sin(h+
7), —0.2 tanh(k+8) cos(h+T7),0.16 tanh (k+8) sin(h+7))? for (k,h) € [~7,0] x| 1,14/, (0.15 cos(k+8) coth(h+
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-0.54

-1k

i=0,1,... i=0,1,...

Fig. 3. State trajectorys(k, h) of the controlled system (1). Fig. 4. Exogenous disturbance inputk, k) of system (1).

7),0.18 cot (k + 8) sin(h + 7), —0.2 cos(k + 8) coth(h +7))* for (k,h) € |1,13] x 6,0, (—0.012,0.06,0.036)"
for (k,h) = (0,0), and(0,0,0)” for (k,h) € [—7,0] x |15,00) U [14,00) x |—6,0]. With the output-feedback
controller gains designed as above, the state trajectofiéise closed-loop system (10) are given in Figs. 1-3. It
can be seen from Figs. 1-3 that the time-delay 2-D systemr{dgmucontrol without exogenous disturbance input
is globally asymptotically stable in the mean square.

Furthermore, let the exogenous disturbance infiat ) besin((k+8)(h+7)) for (k,h) € [0,24] x [0,25] and
0 otherwise which have been explicitly shown in Fig. 4. Under rero-initial condition, the dynamical behavior
of the controlled output(k, h) of the time-delay 2-D system (1) is presented in Fig. 5 whiatther demonstrate
the effectiveness of the design scheme proposed here.

V. CONCLUSIONS

This paper has investigated thé,, output-feedback control problem for the time-delay 2-Dteyss. Three
sets of random variables have been introduced, respagtieedccount for the phenomena of randomly occurring
nonlinearities (RONs), missing measurements as well aoraly occurring sensor saturations (ROSSs). First, by
resorting to an energy-like index and the intensive staohasmalysis, sufficient criteria have been given which
guarantee the closed-loop 2-D system to be globally asyinplly stable in the mean square with an givER,
disturbance attenuation level. Then, two kinds of desidres®es have been proposed separately which depend on
the explicit solutions of certain matrix inequalities. Amaerical example has also been given in the end of the
paper to demonstrate the effectiveness of the proposedrdsshemes.
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