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Abstract 

CHREST is a cognitive architecture that 

models human perception, learning, 

memory, and problem solving, and which 

has successfully simulated numerous human 

experimental data on chess. In this paper, we 

describe an investigation into the effects of 

ageing on expert memory using CHREST. 

The results of the simulations are related to 

the literature on ageing. The study illustrates 

how Computational Intelligence can be used 

to understand complex phenomena that are 

affected by multiple variables dynamically 

evolving as a function of time and that have 

direct practical implications for human 

societies. 

1 Introduction 

The study of computational or human intelligence 

requires consideration of how experiences are 

stored in a memory. Human memory is still poorly 

understood, and the processes by which experiences 

are stored, retrieved, and compared are still part of 

ongoing study in diverse disciplines. In this paper, 

we describe a computational model of human 

memory, CHREST, and show how we can verify 

some basic properties of how experiences are used 

and stored by considering the effects of ageing on 

humans. CHREST stores its memories in a tree-like 

structure, known as a chunking network. Processes 

of perception and short-term memory (STM) enable 

CHREST to acquire data and form links between 

familiar patterns within its memory. By showing 

how CHREST captures the effects of ageing on 

humans, we provide new evidence that CHREST’s 

form of memory structure captures the processes of 

human memory. We argue that the chunking 

network could form a good basis for storing data in 

systems for computational intelligence.  

As a demonstration of CHREST’s properties, 

we explore an important feature in the development 

of human intelligence: the process of ageing. In 

industrialised countries, the effects of ageing on 

expertise has recently become the focus of much 

interest; among other reasons, ageing may 

potentially have serious economic consequences, as 

it might erode the expertise associated with the 

workforce. 

There is typically—although this varies 

considerably between individuals—a diminution of 

abilities such as vision, hearing, and memory as 

humans age [1]. A similar trend can be observed 

with intelligence, with the qualification that the 

ability to solve new problems, known as fluid 

intelligence, is more affected than the ability to use 

previously-acquired knowledge, known as 

crystallised intelligence. 

An important question in current ageing 

research is the extent to which expertise might act 

as a moderator on the negative effects of ageing [2]. 

In particular, research into expertise has tried to 

identify more general compensatory mechanisms 

that might counterbalance the negative effects of 

ageing on cognition. 

Charness [3-5] has carried out influential 

research on ageing in chess. In a memory task 

where positions were briefly presented, he found 

that, for the same skill level, younger players 

recalled chess positions better than older players. 

There was also an interaction between skill level 

and presentation time, in that the difference 

between younger and older players became greater 

as the presentation time was increased from 1 to 4 

seconds. It is interesting to note that, in spite of 

producing worse performance than younger players 

of the same skill level in memory tasks, older 

players performed equally well in problem solving 

tasks where they had to choose the best move, and 

that they were also faster at choosing their move. 

However, according to [6], methodological issues 

limit the interpretation of these results: while the 

skill level was the same between the two age 

groups in the experiments carried out by Charness, 

it is likely that the older players had passed their 

peak and that their skill level was lower than was 

the case a few years previously; a consequence of 

this is that they had the (crystallised) knowledge of 

stronger players, which makes direct comparison 

with the younger players somewhat difficult. 

So far, two computational models have been 

used to study the effects of ageing on chess 

expertise. Charness [7] developed a stochastic 

model of ageing inspired by Feigenbaum and 



Simon’s EPAM model [8] in order to investigate 

the assumption that, with increasing age, players’ 

cognitive mechanisms get slower with the 

consequence that less exact information gets 

encoded per unit of time. In the model, expertise is 

implemented by varying the probability of 

detecting salient pieces on the chess board and 

finding information in long-term memory (LTM). 

To model ageing, Charness proposed the hypothesis 

that older players are 1.6 times slower than younger 

players at carrying out these cognitive operations 

[9]. The model’s behaviour was compared to the 

data referred to above regarding the comparative 

ability of young and old players to memorise chess 

positions presented for 1, 2, or 4 seconds. The focus 

of the analysis was on the interaction between 

presentation time and skill. In general, the model 

does a reasonable job of simulating the human data. 

The interaction between presentation time and skill 

is explained by the fact that the salient piece 

detector is not often used with short presentation 

times, and the main skill difference in performance 

comes from the time required to find chunks. By 

contrast, with longer times, the salient piece 

detector is used frequently, and the ability of young 

players is boosted by the mechanisms conjointly. 

While interesting, Charness’s simulations suffer 

from two limitations: first, the model cannot predict 

errors, and second, the model, being mathematical 

in nature, does not really carry out the task but 

merely makes predictions of behaviour as a 

function of the values of the independent variables. 

More recently, Mireles and Charness [10] ran a 

series of simulations with neural networks in order 

to further explore the link between knowledge and 

ageing. They focused on the task of memorising 

sequences of moves from chess openings.  

The neural network type used was a recurrent 

network with four layers. An input and an output 

layer were each fully connected to a hidden layer, 

which was linked to a context layer. The network 

was trained under supervised learning through 

backpropagation. 

Ageing was modelled as modulations in the 

noise affecting the neural networks. The results of 

the simulations indicated that the effect of 

knowledge was to protect performance against the 

deteriorating effects of ageing. In line with the 

literature on ageing, the models simulated the fact 

that old players show a larger variability in 

performance than the young players. The 

simulations were not compared directly to human 

data; rather, the interest was in accounting for 

effects discussed in the general literature on ageing. 

In this paper, we report further simulations of 

Charness’s memory experiment, using as the 

subject the CHREST model of human cognition (as 

described below). We have also carried out a wider 

investigation into the extent to which CHREST 

predicts that the effect found by Charness with a 

specific level (club players) generalises to other 

levels of skill. Thus, as in Charness and Mireles’ 

neural network experiment, we have also repeated 

the experiment on different simulated levels of 

chess skill. 

 

2 The CHREST Cognitive 

Architecture 

CHREST (Chunk Hierarchy and REtrieval 

STructures) is a cognitive architecture that models 

human perception, learning, memory, and problem 

solving [11, 12]. Influenced by the earlier EPAM 

model [8], it originated from modeling work on 

chess expertise [13, 14]. 

The model combines low-level aspects of 

cognition (e.g., mechanisms monitoring 

information in short-term memory) with high-level 

aspects of cognition (e.g., use of strategies). It 

consists of perception facilities for interacting with 

the external world, short-term memory stores (in 

particular, visual and verbal memory stores), a 

long-term memory store, and associated 

mechanisms for problem solving. Short-term 

memory in CHREST contains references to chunks 

held in long-term memory, which are recognised 

through the discrimination network from 

information acquired by the perception system. 

(See fig. 1 for an overview of the different parts of 

CHREST.) 

Learning is seen as the acquisition of a network 

of nodes (chunks), which also become connected as 

a function of the similarity of their contents. 

Chunks can be seen as clusters of information that 

can be used as units of perception and meaning (the 

chunks in the simulations below will be fragments 

of chess positions). As in EPAM, long-term 

memory is represented as a discrimination network, 

which sorts and stores chunks.  

Patterns that recur often in the environment 

make it possible for chunks to evolve into more 

complex data structures, known as templates [15]. 

Templates are schema-like structures that have slots 

allowing values to be encoded rapidly. 

Simulations are carried out by allowing the 

model to acquire knowledge by receiving stimuli 

representative of the domain under study. For 

example, during the learning phase of the chess 

simulations, the program incrementally acquires 

chunks and templates by scanning a large database 

of positions taken from master-level games. This 

makes it possible to create networks of various 

sizes, and so to simulate the behaviour of players of 

different skill levels. Taken together with the 

presence of time and capacity parameters, this



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. An overview of the components of CHREST. The environment is investigated through a perceptual process which is guided by the 

contents of STM and heuristics. STM may contain a limited number of references to chunks stored in LTM. LTM consists of a 

discrimination network of chunks (up to 300,000 in our simulations), connected by tests. 

 

enables CHREST to make unambiguous and  

quantitative predictions.  

A significant aspect of CHREST is the 

importance it places on the perception process. 

Rather than passively collecting information from 

the environment, the process of information 

gathering is directed by knowledge already learned; 

this, in turn, affects the knowledge that is captured, 

resulting in complex emergent behaviour. In the 

case of chess experiments, perception is equated 

with eye movements (approximately corresponding 

to attention), which are directed by chunks held in 

memory and heuristics. 

An important requirement of any model that is 

claimed to simulate human cognition is that it not 

assume any abilities exceeding those of a human 

[16]. Thus, the parameters of the CHREST model 

are restricted to the human limits as understood by 

our current comprehension of human psychology. 

For example, by default the size of visual short-

term memory is limited to four items, and the time 

required for moving the eye (known as a 

“saccade”), is set to 30 ms. 

The majority of the variables in CHREST are 

time-related, so an internal clock is used to keep 

track of them. Each time an action is simulated by 

the system that is understood to take real time, such 

as mentally moving a piece, the clock is 

incremented by that period of time, as measured or 

estimated (note that this time representation is 

independent of the time taken to simulate the event; 

the actual processing time may be shorter or 

longer). Thus, time-restricted problems (such as the 

experiments we describe here) can be simulated. 

The architecture has closely simulated 

phenomena in several domains, including chess 

expertise [13, 14, 17]; memory for computer 

programs [18], the use of multiple representations 

in physics [19], verbal learning [20], concept 

formation [21], children’s acquisition of vocabulary 

[22] and children’s acquisition of syntactic 

categories in four different languages [23].  

A number of chess simulations are of interest in 

the context of the effects of age on expert 

performance. With perception, CHREST has 

simulated the eye movements during the first 5 

seconds of the presentation of a position, as well as 

the rapid recognition of chunks and templates. With 

memory, CHREST accounts for the effect of 

various types of position modification and 

randomisation, the role of presentation time in 

memory, the type of errors made and the type of 

chunks replaced. It can also simulate the detail of 

how novices acquire chunks and templates. Here 

we use it to model how ageing affects the recall of 

chess positions. 

 

3 Simulations of Ageing and Expertise 

In previous simulations, CHREST’s various 

parameters were kept constant, except for those 

parameters that are supposed to differ between 

experts and novices (e.g., the time required to move 



a piece in the mind’s eye). CHREST can then be 

seen as implementing the typical configuration of a 

chess player. The key effects of the simulations 

were obtained by changes in the input (e.g., recall 

of typical game positions or meaningless random 

positions) or by changes in the number of chunks 

and templates acquired as a way to simulate the 

level of expertise.  

Our goal in this paper is slightly different. We 

are interested in whether, and how, changes in 

some CHREST parameters can simulate ageing. 

Thus, our strategy will be to systematically vary 

some key parameters in order to establish whether 

their manipulation can reproduce a key result in the 

literature on ageing and expertise. 

 

2.1 CHREST Configuration 

The CHREST system was set up to model the 

expertise of chess players. To represent different 

levels of chess skill, discrimination networks of 

different sizes were grown (as described above) by 

allowing the system to learn from a set of 76,420 

chess positions until the desired number of chunks 

were acquired. 

Due to the impracticalities of manipulating a 

large number of different variables, the relevant 

parameters of CHREST were grouped according to 

similarity, producing six bundles as described 

below: 

 

• Capacity, the size of STM 

• Learning, the time taken to update information 

held in LTM, such as to add information to a 

chunk or create a new chunk 

• Discrimination, the rate at which chunks are 

recognised from LTM 

• STM-Template, the speed of storage and 

updating of chunks in STM 

• Eye Movement, the time taken to “physically” 

move the eye 

• Mind’s Eye, the delay required to mentally 

focus on a square 

 

These bundles were each allocated a meta-

variable to act as a coefficient to each of the 

member variables of the set, thus allowing all of the 

values of a bundle to be modified simultaneously. 

For example, the parameters that make up the 

“Discrimination” bundle includes the time required 

to begin the discrimination process, set to 10 ms, 

and the time taken per node discriminated, also set 

to 10 ms. Setting the associated coefficient to 1.5 

would adjust the value of both variables to 15 ms. 

 

2.2 Simulation 1 

In the experiment, CHREST was presented with a 

chess position for a fixed length of time. During 

this period, eye movements and the consequent 

assimilation of features into memory were 

modelled. An attempt was then made to reconstruct 

the position using the contents of CHREST’s 

memory, which was assessed for accuracy (the 

model also makes predictions about number of 

chunks used, size of the largest chunks, number of 

errors by omission, and number of errors by 

commission, but these results are not reported here 

due to space limitations). In each case, the 

experiment was performed with 10 subjects (the 

same number selected in Charness’s experiment), 

and each subject was assessed on 50 game positions 

independent of the training data. 

We carried out the experiment under a number 

of conditions to simulate the effects of ageing. 

Using the system of bundles as described above, the 

meta-variables were systematically changed for 

each experiment. A coefficient of 1.0 was used to 

simulated the putative time parameters of a young 

chess player, whereas a value of 4.0 represented the 

slow down due to ageing (with respect to Capacity, 

1.0 was used as the control value, and .25 the aged 

value). The aged value chosen is toward the upper 

limit of biological plausibility and was chosen to 

demonstrate the qualitative effect of the variable.  

The variables were necessarily restricted to two 

values each due to a potential combinatorial 

explosion; the number of possible combinations is 

given by n
x
, where n is the number of values and x 

is the number of variables. Our 6 meta-variables, 

with (for example) 7 values each, may be combined 

in 117,649 experiments; with 2 values this number 

is reduced to 64. 

The experiment was repeated with each possible 

combination of values with exposure times of 1 

second and 5 seconds. 

The results of the experiment were collated in a 

matrix with each dimension corresponding to a 

variable: 6 meta-variables, presentation time, 

discrimination network size, and subject, for a total 

of 9 dimensions. In all, 7,680 experiments (each 

considering 50 positions) were performed. 

Our interest in this particular simulation is the 

extent to which CHREST can replicate the key 

interaction between presentation time and age that 

was found in Charness’s experiment. We chose the 

network of 1,000 chunks to approximate the skill of 

Charness’s participants, who were Class C players 

(good club players, but 3 standard deviations below 

Master-level players).  

In the following analyses we will investigate the  

 



Table I 

Results of the Analysis of Variance for Experiment I, Focussing 

on the Main Effects of Age 

Proxy for Age MSE F Value p value 

Capacity 31955 7751.2 < .001 

Learning 2.4 0.1 ns 

Discrimination 36 0.9 ns 

STM-Template 1656 44.5 < .001 

Eye 

movements 

202 5.3 <.05 

Mind’s eye 735 19.5 <.001 

Notes: The degrees of freedom are 1 and 1,276 for all cases. 

MSE = Mean Square Error, ns = Not Significant. 

 

Table II 
Results of the Analysis of Variance for Experiment I, Focussing 

on the Interaction between Presentation Time and Age 

Proxy for Age MSE F Value p value 

Capacity 11993 2909.1 < .001 

Learning 5    0.1 ns 

Discrimination 0 0 ns 

STM-Template 27 0.7 ns 

Eye 

movements 

0.6 0 ns 

Mind’s eye 461 12.3 < .001 

Notes: The degrees of freedom are 1 and 1,276 for all cases. 

MSE = Mean Square Error, ns = Not Significant. 

 

main effects of age and the interaction between age 

and presentation time by assuming that age is 

mainly mediated by the effect of a single bundle of 

parameters we have describe above. In turn, we 

investigate each of the six bundles of parameters. 

Table I presents the results of the analysis of 

variance, focussing on the main effect of the age 

proxy, and Table II focuses on the key interaction 

between age proxy and presentation time. To 

simulate Charness’s data, one needs both a main 

effect of the proxy of age and a statistically 

significant interaction between the proxy of age and 

presentation time, where the difference between the 

‘old’ and ‘young’ models should be larger with the 

long presentation time (5 s). Figs. 2 to 7 illustrate 

how a given bundle and presentation time jointly 

affected recall performance. 

Only two variables showed the required 

interaction (Capacity and Mind’s Eye). 

Furthermore, as can be seen from Figs. 2 and 7, 

Capacity shows the correct interaction (the 

difference between the ‘young’ and ‘old’ models is 

larger with 5 seconds), while Mind’s Eye shows the 

wrong pattern (the difference is actually smaller 

with 5 seconds). Note that, for all variables, there 

was a main effect of presentation time (not shown 

in the Tables). 

Of the remaining variables, it was expected a 

priori that the learning bundle would have a 

negligible effect: minimal learning is expected to 

occur during a short experiment; however, it is 

useful to have experimental evidence of this. 

To review, the outcome of this experiment is 

that Capacity was the only bundle of variables that 

was able to simulate the key results of Charness. In 

the next simulation, we investigate whether the 

same pattern holds across a wide range of skill 

levels, modelled by networks of 100 nodes to 

300,000 nodes. 

 

2.3 Simulation 2 

The method was the same as for Experiment 1, with 

the difference that networks of varying sizes were 

used, and the analysis will focus on the Capacity 

variable. 

As can be seen in Table III, all main effects 

were statistically significant. As Network Size gets 

larger, recall performance increases. As 

Presentation Time increases, so does recall 

performance. And as Capacity increases, so does 

recall performance (this main effect is crucial with 

respect to Charness’s results). Similarly, all 

interactions were statistically significant. The 

interaction between Network Size and Presentation 

Time (illustrated in Fig. 8) indicates that the 

difference between the 1 second and 5 second 

presentations gets larger with larger networks. The 

interaction between Network Size and Capacity 

(see Fig. 9) is due to the fact that the difference 

between the .25 and 1 capacities increases from 

7.6% to 13.2% from the 100-node network to the 

10,000-node network, and then stays stable at about 

13%. The interaction between Presentation Time 

and Capacity (crucial in simulating Charness’s 

results) is due to the fact that the result we have 

reported with 1,000 nodes generalises to all 

network sizes: as the presentation time increases, so 

does the difference in recall between the .25 and 1 

capacity levels.  

 

 

Table III 

Results of the Analysis of Variance for Experiment II 

Source df Mean 

Square 

F Sig. 

Corrected 

Model 

23 73251.644 3052.813 .000 

Intercept 1 3385083 141075.7 .000 

NET 5 129777.7 5408.576 .000 

PRESTIME 1 538965.6 22461.767 .000 

CAPACITY 1 255898.2 10664.736 .000 

NET * 

PRESTIME 

5 30917.898 1288.525 .000 

NET * 

CAPACITY 

5 1643.098 68.477 .000 

PRESTIME * 

CAPACITY 

1 76938.226 3206.454 .000 

NET * 

PRESTIME * 

CAPACITY 

5 258.452 10.771 .000 

Error 7856 23.995   

Total 7680    

Corrected 

Total 

7679    

Dependent Variable: PERCENT 



Fig. 2 The effect of Capacity and Presentation Time on recall 

ability. 

 

Fig. 3 The effect of Learning and Presentation Time on recall 

ability. 

 

Fig. 4 The effect of Discrimination and Presentation Time on 

recall ability. 

 

Fig. 5 The effect of STM-Template and Presentation Time on 

recall ability. 

 

Finally, the 3-way interaction is due to the fact 

that, at a capacity level of .25, the small networks 

(below 100,000 nodes) barely take advantage of the 

longer presentation time, while the larger networks 

do; by contrast, at a capacity of 1, all networks 

obtain better recall performance with increased 

presentation time. Thus, the prediction of the model 

is that the effects observed by Charness with a 

sample of Class C players should generalise to all 

skill levels. We are not aware of data sets where 

this prediction has been tested. 

4 Discussion and Further Work 

Within the scope of the processes modelled by the 

system, and based on Charness’s results, we have 

found evidence that the age-related degradation in 

the ability to recall chess positions is due primarily 

to decreased visual short-term memory capacity. 

We note that although the other variable bundles 

that were modelled affected the recall ability 

negatively when artificially aged, STM capacity 

was the only one that exhibited the required 

increased difference between age groups with a 

longer presentation time; we therefore conclude 

that reduced STM capacity is the variable with the 

most significant effect. 

While Capacity, STM-Template, Eye 

movements and Mind’s eye all showed a main 

effect of age, Capacity was the only bundle to 

exhibit the interaction found in Charness’s study. 

Thus our conclusion is slightly different to that 

obtained by Charness [7], as in his model the 

slowing down parameter explaining the critical 

interaction had a general effect and in particular 

affected perception as well (what he called “salient 

piece detection”). The finding that several 

parameters used as a proxy for ageing affected 

memory in our simulations is certainly in line with 

what is known about ageing [1].  The critical role of 

memory capacity for explaining Charness’s 

interaction is also consistent with other studies on 

ageing  [24, 25], which show that age and visual 

short-term interact in complex ways with 

presentation time, as well as other variables such as 

stimulus complexity. 



Fig. 6 The effect of Eye Movement and presentation time on 

recall ability. 

 

Fig. 7 The effect of Mind’s Eye and Presentation Time on recall 

ability. 

Fig. 8 The effect of Network Size and Presentation Time on 

recall ability. 

 

Fig. 9 The effect of Network Size and Capacity on recall ability. 

 

We can further predict that players who show 

reduced performance in the capacities captured by 

the bundles STM-Template, Eye Movements, and 

Mind’s Eye will perform less well in the recall test, 

though the effect of the mind’s eye getting updated 

more slowly should be marginal at longer 

presentation times. Little or no difference will be 

seen in those players with slower Learning or 

Discrimination abilities. (Admittedly, it is not easy 

to experimentally verify these predictions with 

respect to some bundles.) 

In view of potential future work, we have 

focused our analysis here on the overall effects of 

the variable bundles on recall abilities, but of 

potentially more interest is the extent of the 

interactions between the variable bundles; for 

example, to what extent variables can compensate 

for each other. Deeper analysis of our data, and 

possibly further experiments, would be needed to 

investigate this. 

Having found indications of the importance of 

STM capacity, further experiments into the effects 

of this variable are needed. We note that because 

the model used to make these predictions is based 

on known processes and is using psychologically 

plausible human parameters, we could at this point 

make some tentative quantitative predictions as to 

the expected actual recall ability of a player under 

set conditions with a measured STM capacity. 

However, we believe we need to investigate the 

effects of a wider and more finely-grained range of 

values for the parameter in order to get an accurate 

estimate. 

To conclude, we have shown how the CHREST 

computational model captures ageing effects 

through the modification of its capacity constraints.  

To show this, we used the model to simulate the 

recall of information acquired through experience. 

The CHREST model captures, in detail, the 

important processes of data acquisition, comparison 

and storage which occur in humans.  In other work, 

CHREST has been shown to handle a range of 

memory and performance tasks.  We suggest that 

CHREST’s internal processes and chunking 

network provide a firm basis by which 

computational systems could exhibit some of the 

memory requirements of intelligent behaviour. 
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