Special Issue on Testing, Analysis, and Debugging of Concurrent Programs

This special issue concerns a range of issues related to the development of
concurrent programs. This is an important topic, since many systems are now
either multi-threaded or distributed, and it is well-known that concurrency
makes testing, analysis, and debugging significantly more complicated.
Essentially, the alternative interleavings of events can lead to different
behaviours and so any analysis, debugging, or testing technique must consider
these interleavings. The interest in this topic is reflected in the larger than
normal issue, which contains five papers. The papers fall into three groups: we
start with a paper on debugging, then have two on static analysis techniques, and
finally have two on testing. All papers were reviewed in the normal way.

In the article “UNICORN: A unified approach for localizing non-deadlock
concurrency bugs,” Park et al. address the topic of concurrent program
correctness. The authors devise an automated approach based on a set of 17
memory access patterns. The approach detects non-deadlock concurrency bugs,
including order violations and both single-variable and multi-variable atomicity
violations. The authors compare UNICORN with CCI and Bugaboo, and conclude
that their approach is effective and easy to use.

There are many different techniques to address the detection of race bugs in
concurrent programs. The article “A survey of race bug detection techniques for
multithreaded programmes,” by Hong and Kim, classifies 43 race bug detection
techniques and propose a formal execution model that uniformly represent
those techniques and enables their comparison.

The article “Object-sensitive cost analysis for concurrent objects,” by Albert et al.,
proposes a novel cost analysis framework to automatically approximate the
resource consumption of executing a program in terms of its input parameters.
The framework proposal is based on object-sensitive recurrence equations that
use cost centres in order to keep the resource usage assigned to the different
components separate. This work is evaluated with several classical examples of
concurrent and distributed programming.

Concurrent programs have large interleaving state spaces, which are hard to
cover in testing. In the article “Advances in noise-based testing of concurrent
software,” Fiedor et al.,, address this issue by using noise-based testing
techniques. These influence the scheduling so that different interleavings of
concurrent actions are witnessed. The authors make a thorough evaluation of
the coverage metrics and new noise-injection heuristics for both the seeding
(how to generate the noise) and the placement (where to inject noise).

The article “Empirical evaluation of a new composite approach to the coverage
criteria and reachability testing of concurrent programs,” by Souza et al.,
addresses the problem of the large number of infeasible synchronization
sequences that occur when doing structural testing of concurrent programs. The
authors propose a new composite approach that uses reachability testing to



guide the selection of the synchronization sequences according to a specific
structural testing criterion and evaluate the effectiveness of their proposal.

Finally, we would like to thank all those who contributed to this special issue.
The special issue could not have existed without the hard work of the authors
and reviewers. We are also indebted to Wiley’s editorial staff and also the STVR
joint Editor-in-Chief, Professor Jeff Offutt, for his advice and patience.

Guest Editors

Eitan Farchi, Robert M. Hierons, and Joao Lourenco



