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ABSTRACT 

Heat stress and dehydration pose a severe challenge to physiological function and 

the capability to perform physical work. There is, however, limited knowledge on 

the regional haemodynamic and metabolic responses to strenuous exercise in 

environmentally stressful conditions. The primary aim of this thesis was to 

examine whether dehydration and heat stress compromise brain, muscle and 

systemic blood flow and metabolism, and whether depressed brain and muscle 

oxygen delivery underpin reduced exercise capacity during graded incremental 

and prolonged exercise. This thesis makes an original contribution to the 

knowledge by showing for the first time that dehydration markedly accelerates the 

decline in cerebral blood flow during maximal incremental (Chapter 4) and 

prolonged sub-maximal exercise (Chapter 5) in the heat. Cerebral metabolism, 

however, is preserved by compensatory increases in substrate extraction. Falling 

carbon dioxide tension underpinned the decline in CBF. However, a distinct 

regional distribution of blood flow across the head was observed, suggesting that 

different mechanisms are responsible for the regulation of regional blood flow 

within the head. A reduced cerebral metabolism is therefore an unlikely factor 

explaining the compromised exercise capacity in physiologically stressful hot 

environments. Rather, restrictions in active muscle blood flow and oxygen supply, 

which are not apparent during sub-maximal exercise, may explain the reduced 

maximal aerobic power in heat stressed conditions. For the first time we have 

manipulated skin and core temperature to show that combined internal and skin 

hyperthermia reduces maximal aerobic power in association with restrictions in 

limb, brain and systemic blood flow and skeletal muscle metabolism (Chapter 6). 

Overall, the findings of the present thesis provide novel information on how 

circulatory limitations across contracting skeletal muscle, brain and systemic 

tissues and organs might underpin the impairment in exercise capacity in 

physiologically taxing environments evoking significant dehydration and 

hyperthermia.  
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“For a person in a winter climate, to drink 4000 cc. of 

fluids per day is a distinct discomfort…for a person in 

the desert, to drink less is a violent discomfort.” 

 

           (Adolph & Dill, 1938) 
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DEFINITION OF TERMS 

Arterial to venous difference: the difference in content of a given substance in 

arterial and venous blood. Differences allow for calculation of exchange of 

molecules across a given tissue e.g. brain, limb. In this thesis a-v differences were 

obtained for oxygen, carbon dioxide, lactate, glucose, ATP and catecholamines.  

 

Basilar artery: major artery of the brain which supplies the cerebellum, pons and 

the majority of the posterior lobes. 

 

Blood velocity (cm·s-1): the speed of blood through the lumen of the vessel under 

observation.  

 

Carbon dioxide reactivity (% change in CBF·mmHg change in CO2): the extent 

to which cerebral vessel diameter increases or decreases in response to 

alterations in the partial pressure of blood CO2.  

 

Cardiac Output (Q̇, l·min-1): the volume (in litres) of blood ejected by the left 

ventricle in one minute. 

 

Cardiovascular strain: alterations in systemic cardiovascular function associated 

with a given intervention. In the present thesis this refers to the impact of heat 

stress and dehydration during exercise. Strain in this context is often observed as 

progressive reductions in SV, CBV, Q̇ and MAP, concomitant with a marked 

increase in HR. 

 

Cerebral autoregulation (CA): theoretical observation of the maintenance of CBF 

over wide range of cerebral perfusion pressures. Act to prevent under/over 

perfusion, thus limiting the risk of haemorrhage or ischemia.   

 

Cerebral blood flow (CBF, l·min-1):  rate of perfusion of the cerebral tissue. 

Normal value = ~50 ml·min-1 ·100g (or ~750 ml·min-1). 

 

Cerebrovascular conductance (CVC, ml·min-1·mmHg): ratio of ICA blood flow 

or MCA Vmean to mean arterial blood pressure. 
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Cerebral glucose uptake/Cerebral metabolic rate for glucose (CMR[Glu], 

mmol·min-1): rate of glucose uptake by the brain. 

 

Cerebral lactate uptake/Cerebral metabolic rate for lactate (CMR[La], 

mmol·min-1): rate of lactate uptake by the brain. 

 

Cerebral metabolic rate for oxygen (CMRO2, ml·min-1): rate of oxygen 

consumed by the brain.  

 

Cerebrovascular resistance (CVR, mmHg·ml·min-1): the inverse of CVC. 

 

Common carotid artery (CCA): major conduit artery supplying blood to the head. 

In the present thesis, measurements of the CCA were made in the right CCA 

which originates at the brachiocephalic trunk from the aortic arch.  

 

Compensable heat stress: conditions whereby thermal balance (i.e. core 

temperature) is established by appropriate heat loss mechanisms, despite 

increased metabolic heat production.  

 

Content of oxygen in blood (ctO2/CaO2/CvO2, ml·l-1): the sum of the 

concentration of haemoglobin-bound oxygen and physically dissolved oxygen in 

arterial/venous blood.  

 

Content of carbon dioxide in blood (ctCO2/CaO2/CvCO2, ml·l-1): the sum of the 

concentration of bound and unbound carbon dioxide in arterial/venous blood.  

 

Dehydration (DE): the process of excessive water loss from the body through 

sweating and to a minor extent respiration.  

 

Diastole: phase of cardiac relaxation during the cardiac cycle. 

 

End-tidal CO2 (PETCO2, mmHg): an index of PaCO2 as measured in the expired 

air at the level of the mouth. 
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External carotid artery (ECA): major branch of the CCA, supplying tissues of the 

head (except for the brain itself). 

 

Finometer: non-invasive method of assessing arterial blood pressure via the 

recreated brachial pressure waveform from finger plethysmography.  

 

Haemoconcentation: a consequence of dehydration, defined as a reduction in 

the ratio of plasma volume to red blood cell volume; thus an increase in circulating 

red blood cells per unit of blood volume.  

 

Haemodynamics: the study of blood flow to/through a given tissue. 

 

Heat stress: Exposure to a markedly hot exogenous temperature. In the present 

thesis this is achieved through the application of a hot water perfused suit.  

 

Hypercapnia: elevated PaCO2. Results in vasodilation of the cerebral arteries (see 

PaCO2). 

 

Hyperthermia: a high core body temperature, usually described as 1°C increase 

from normal resting body temperature.   

 

Hypervolaemia: abnormal increase in blood volume. 

 

Hypocapnia: reduction in PaCO2 in the blood. At the cerebral level reductions in 

PaCO2 cause cerebral arteriole/pial vessel vasoconstriction and reductions in CBF. 

 

Hypohydration: state of body water deficit which can be the result of dehydration. 

 

Hypovolaemia: abnormal decrease in blood volume. 

 

Internal carotid artery (ICA): the second branch of the common carotid artery. 

Supplies blood to the cerebrum (~75-85%) and lateral parts of the temporal, 

parietal and frontal lobes. Subsequent branches include the ophthalmic artery 

(blood supply to the eyes), anterior and middle cerebral arteries.   
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Leg blood flow (LBF, ml·min-1): the rate of blood flowing to the whole leg 

vasculature per unit time. 

 

Leg oxygen uptake (Leg V̇O2, ml·min-1): the volume of oxygen taken up by the 

leg (primarily skeletal muscle during exercise). 

 

Limb vascular conductance (ml·mmHg-1·min-1): measure of the ease at which 

blood flows through a given vessel. Calculated as limb blood flow/limb perfusion 

pressure.  

 

Mean arterial pressure (MAP, mmHg): the average blood pressure in the arterial 

system during the cardiac cycle. Estimated as one third systolic and two thirds 

diastolic pressure. 

 

Middle cerebral artery (MCA): intra-cranial branch of the internal carotid artery.  

 

MCA blood flow velocity (MCA Vmean, cm·s-1): an estimation of cerebral blood 

flow. The MCA perfuses 75% of the cerebellum. 

 

Model flow analysis: Wessling method of estimating stroke volume from the 

reconstructed brachial artery pressure waveform from finger plethysmography.  

 

Neurovascular coupling (NVC): mechanism of matching local flow to local 

metabolic needs. 

 

Noradrenaline spillover: an inferred reflection of regional sympathetic nerve 

activity derived from concentration difference of noradrenaline in the artery and 

vein. In the present thesis, noradrenaline spillover across the brain was estimated 

from the [NA] difference in the brachial artery and left internal jugular vein.     

 

Partial pressure of CO2 (PCO2, mmHg): a measure of free, i.e. unbound, CO2 in 

the plasma. CO2 buffered (to HCO3-) or bound in the form of carboxyhaemoglobin 

do not exert a pressure within the blood vessel. Additionally, PCO2 plays a major 

role in cerebral blood flow regulation (see hypo/hyper-capnia). 
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Partial pressure of O2 (PO2, mmHg): a measure of free, i.e. unbound, O2 in the 

plasma. The vast majority (~99%) of O2 is bound to haemoglobin and by extension 

does not exert a pressure within the blood vessel. 

 

Perfusion pressure or perfusion pressure gradient (mmHg): measure of the 

pressure differential between the arterial and the venous circulations, required to 

supply blood to a given region. Calculated as the difference between mean arterial 

pressure and local venous pressure (e.g. internal jugular and femoral venous 

pressure). 

 

Posterior cerebral artery (PCA): cerebral artery perfusing the posterior portion of 

the brain including the occipital lobe and thalamus. 

 

Pulse-wave Doppler: mode of ultrasound used for the assessment of blood 

velocity.  

 

Q10 temperature coefficient (Arrhenius activation law): describes the increase in 

rate of biological reactions for a given increase in temperature. The CMRO2 is 

thought to increase by 5-10%/1 °C increase in core temperature (Bain et al. 2014). 

 

Specific heat: physical quantity of heat energy required to change the 

temperature of an object by a given amount (energy required to increase 

temperature by 1 °C measured in Joules). 

 

Specific gravity: ratio of a given substance to a standard equivalent. The specific 

gravity of blood and water/saline are used in the present thesis. 

 

Stroke volume (SV, ml): volume of blood ejected by the left ventricle in one 

heartbeat.  

 

Systemic haemodynamics: umbrella term for whole-body blood displacement. 

Parameters include heart rate (HR), stroke volume (SV), cardiac output (Q) and, 

systolic, diastolic and mean arterial blood pressures.    
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Systemic vascular conductance (ml·min-1·mmHg): measurement of the ease of 

which blood flows through the vessels in the whole-body. In the present thesis, 

SVC was estimated from the linear relationship with limb vascular conductance.   

 

Systole: phase of contraction of the cardiac cycle. 

 

Uncompensable heat stress: Conditions whereby thermal balance (i.e. core 

temperature) is not achieved and core temperature continues to rise in association 

with a mismatch between metabolic/internal heat production and heat dissipation.  

 

Venous pressure (mmHg): the force blood exerts on the walls of the vessels as 

measured in the internal jugular and femoral vein.  

 

Vertebral artery: vessel supplying oxygenated blood to the posterior part of the 

brain. Originating at the sub-clavian artery the vertebral artery travels to the 

cranium through the transverse processes of the vertebrae. The left and right 

vertebral arteries branch to supply the spinal cord, brainstem and latterly combine 

to form the basilar artery (see above). 

 

V̇O2: volume of oxygen uptake per unit time. Normally expressed as absolute 

(l·min-1) or relative to body mass (ml·kg·min-1). 
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 Study context  1.1

Dehydration and hyperthermia induce “impressive behaviors[sic] and sensations” 

in the active man in the desert (Adolph & Dill 1938), and can severely impede 

athletic and maximal work performance (Rowell et al. 1966; Rowell et al. 1969b; 

Rowell 1974; Montain & Coyle 1992b; Rowell.1993; González-Alonso et al. 2008; 

Cheuvront & Kenefick 2014). Moreover, exogenous heat stress results in a 

marked circulatory strain which could impair appropriate physiological functioning; 

however, there remains a paucity of knowledge on the precise circulatory 

mechanisms underpinning an impaired aerobic exercise capacity under 

dehydration-induced hyperthermia and heat stressed conditions.  

 

Numerous studies have explored the effects of body fluid losses (dehydration) on 

the capacity to perform strenuous exercise (Saltin 1964; Rowell et al. 1966; Rowell 

et al. 1969; Rowell et al. 1970; Rowell 1973; Rowell 1974; Sawka et al. 1979; 

Montain & Coyle 1992b; González-Alonso et al. 1995; González-Alonso et al. 

1997; González-Alonso et al. 1998; González-Alonso 1998; González-Alonso et 

al. 2000; González-Alonso et al. 2008; Crandall & González-Alonso 2010). The 

development of dehydration during prolonged exercise in the heat attenuates skin 

blood flow, increases the rate of body heat storage and leads to a significant core 

hyperthermia and reductions in systemic and active muscle blood flow (González-

Alonso et al. 1995; González-Alonso et al. 1997; González-Alonso et al. 1998; 

González-Alonso 1998; González-Alonso et al. 1999). The cardiovascular strain 

could compromise cerebral metabolism, which might play a role in the early fatigue 

during exercise in hot environments. However, no study to date has explored the 

impact of dehydration and hyperthermia on regional blood flow across the head 

and on cerebral metabolism during strenuous exercise.  

 

A substantial increase in skin temperature, through the application of exogenous 

heat stress, degrades aerobic exercise capacity (González-Alonso & Calbet 2003; 

Ely et al. 2009; Ely et al. 2010; Sawka et al. 2012a). Despite further observations 

that heat stress reduces V̇O2max, in part by altering systemic blood flow dynamics 

(Rowell et al. 1966; Rowell et al. 1969b; Nybo et al. 2001; Arngrimsson et al. 

2004), there is surprisingly little information on the integrative processes 

underpinning this decline. Moreover, there is some discordance as to whether a 

heightened skin temperature, or the combined development of a concomitant core 
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hyperthermia, is the primary factor compromising aerobic capacity in hot 

environments (Nielsen et al. 1993; Nybo & Nielsen 2001a; Ely et al. 2009; Sawka 

et al. 2012a). To date no study has systematically addressed the role of different 

extents of heat stress exposure on whole-body haemodynamics during graded 

exercise.  

 

Collectively, investigating the impact of heat stress on the brain, systemic and 

active limb metabolism during strenuous exercise will provide new insight into the 

circulatory limits to strenuous exercise. Additionally, information on the regulation 

of regional blood flow during exercise in the heat will help physiologists find 

strategies to negate or ameliorate the impact of stressful environments on athletic 

performance. To this end, the purpose of the present thesis was to further explore 

the regulatory factors underpinning an impaired exercise capacity in the heat 

stressed and dehydrated human. Specifically, the aims were; 1) to understand the 

effects of dehydration on cerebral blood flow and metabolism during graded 

exercise to volitional exhaustion (Chapter 4), 2) to explore the consequences of 

progressive dehydration on cerebral and extra-cranial haemodynamics and 

cerebral metabolism during prolonged exercise (Chapter 5), and 3) to provide 

insight into the brain, limb and systemic haemodynamics and metabolism in 

response to graded exercise with different extents of heat stress (Chapter 6). 

Three integrative experiments were performed at the Centre for Sports Medicine 

and Human Performance, Brunel University London, from June 2012 to February 

2014.  
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 Introduction 2.1

Dehydration and hyperthermia which are frequently experienced by humans 

exercising in hot environments are major physiological stressors that can severely 

hinder general physiological function, and athletic and work performance (Rowell 

et al. 1966; Rowell et al. 1969b; Rowell 1974; Sawka et al. 1985a; Sawka et al. 

1985b; Rowell.1993; González-Alonso et al. 2008; Cheuvront et al. 2010; 

Cheuvront & Kenefick 2014). In strenuous environmental conditions, the strain 

invoked on the circulatory system by strenuous exercise challenges the 

maintenance of peripheral blood flow and may explain early fatigue. There is, 

however, limited knowledge of the precise mechanisms leading to impaired 

cardiovascular function and aerobic exercise capacity under dehydrated and 

hyperthermic conditions. In particular the challenge to the cerebral circulation is 

not well characterised or fully understood.  

 

The following review first explores the literature pertinent to the effects of 

dehydration and concomitant hyperthermia on circulatory function during 

strenuous prolonged and maximal incremental exercise. Focal exploration of the 

cerebral haemodynamic and metabolic adjustments to strenuous exercise and the 

possible influences on cardiovascular capacity are discussed in section 2.3. In 

section 2.4 the effects of acute exposure to heat stress and the circulatory 

adjustments to exercise are explored. In section 2.5 the circulatory limitations to 

maximal aerobic power are explored. Lastly, the aims and research hypotheses of 

the current thesis are presented. 

 

 Dehydration and circulatory function during strenuous 2.2

exercise in the heat 

Performing sustained exercise in high ambient temperatures stimulates 

thermoregulatory sweating that can lead to the development of dehydration, when 

fluid intake is not proportional to fluid losses (Sawka et al. 1985b; Galloway & 

Maughan 1997; Maughan & Shirreffs 2004; Maughan & Shirreffs 2004; American 

College of Sports Medicine et al. 2007; Sawka et al. 2011; Cheuvront & Kenefick 

2014). Depending on the type and extent of the dehydration, fluid loss can occur 

from the intracellular and extracellular space (Cheuvront & Kenefick 2014).  

Excessive sweating reduces circulating blood volume and an increase in plasma 
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osmolality, which is normally determined by measurements of haematocrit 

(Cheuvront & Kenefick 2014). Exercise delays the onset of sweating to a higher 

core body temperature (Charkoudian 2003; González-Alonso et al. 2008), and 

dehydration further leads to an increased rate of body heat storage by blunting the 

steady-state exercise sweat rate and cutaneous blood flow (Nadel et al. 1980; 

Fortney et al. 1981; Fortney et al. 1984; Fortney et al. 1988). This chain of events 

further compounds the thermoregulatory strain. Taken together, available 

evidence indicates that dehydration accrued during strenuous exercise in the heat 

poses a marked challenge to cardiovascular function (Rowell et al. 1966; Nadel et 

al. 1980; Fortney et al. 1981; Fortney et al. 1984; González-Alonso et al. 1995; 

González-Alonso et al. 1997; González-Alonso et al. 1998; González-Alonso 

1998; Coyle & González-Alonso 2001; González-Alonso & Calbet 2003; González-

Alonso et al. 2008; Mortensen et al. 2008). However, the mechanisms 

underpinning this phenomenon remain unresolved. 

 

2.2.1 The effects of dehydration and hyperthermia on exercise capacity 

Aerobic power and exercise capacity (i.e. time trial or time-to-exhaustion) are 

substantially reduced during whole-body prolonged exercise in the heat  (Nielsen 

et al. 1993; Galloway & Maughan 1997; González-Alonso et al. 1999; González-

Alonso et al. 2000; Cheuvront et al. 2010; Ely et al. 2010; Kenefick et al. 2010b; 

Sawka et al. 2012a). For example, Galloway & Maughan (1997) observed a ~45% 

decline in time to exhaustion when ambient air temperature was increased from 11 

°C to 31 °C. When dehydration is permitted to develop, beyond a threshold 

purported to be equivalent to a 2% body mass deficit (American College of Sports 

Medicine et al. 2007), the capacity to continue prolonged exercise in the heat is 

markedly attenuated, in association with markedly suppressed circulatory function 

and concomitant hyperthermia (Sawka 1992; Below et al. 1995; González-Alonso 

et al. 1995; González-Alonso et al. 1997; González-Alonso et al. 1998; González-

Alonso 1998; González-Alonso et al. 1999).  

 

It has been shown that dehydration does not universally impair circulatory function 

among a range of exercise paradigms and environmental conditions. For example, 

during single-limb exercise where a relatively small muscle mass is engaged, 

dehydration reduces exercise duration (Montain et al. 1998b), but not due to a 

compromised active muscle blood flow (Pearson et al. 2013) or muscle markers of 
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fatigue (Montain et al. 1998b). During moderate whole-body exercise in a cold 

environment, where thermoregulatory demand for a high skin blood flow is 

dampened, dehydration leads to only negligible alterations in central 

haemodynamics (e.g. cardiac output and mean arterial pressure), when compared 

to a euhydrated equivalent (González-Alonso et al. 2000; Kenefick et al. 2004; 

Kenefick et al. 2010a; Cheuvront & Kenefick 2014). A similar stabilisation of 

central and peripheral haemodynamics, body temperature and exercise capacity is 

observed when participants match their sweat loss with a proportional intake of 

fluids (González-Alonso et al. 1995; González-Alonso et al. 1997; González-

Alonso et al. 1998; Kenefick et al. 2010a). Collectively, these findings suggest that 

when the physiological strain on the circulatory system is low (i.e. during isolated 

limb exercise, exercise in cold environments, and during exercise in the heat with 

appropriate fluid intake), dehydration does not negatively affect exercise capacity. 

In contrast, dynamic whole-body exercise in the heat, particularly of a long (> 1 h) 

duration, would be considered a paradigm by which circulatory function is impaired 

with dehydration (González-Alonso et al. 2008).   

 

The independent effects of dehydration on maximal aerobic power are less clear, 

predominantly due to the non-uniformity of protocols and variations in the levels of 

dehydration investigated. Studies using an exercise-induced dehydration protocol 

show reductions in V̇O2max ranging from 6 to 16%, depending on the temperature 

of the ambient air (Buskirk et al. 1958; Nybo et al. 2001; Ganio et al. 2006). Nybo 

and colleagues observed a ~25% decline in constant power maximal exercise 

duration, concomitant with a 6% reduction in V̇O2max, when participants were 

dehydrated (4% body mass loss) versus euhydrated. In this exercise bout body 

temperatures were maintained low (skin and peak core temperature of ~31 and 

38.4 °C, respectively). Contrastingly, with simultaneous dehydration and 

hyperthermia (ambient temperature = 44 °C), a 16% reduction in V̇O2max and 

~53% reduction in performance time was demonstrated (Nybo et al. 2001). In 

another investigation, dehydration without noticeable hyperthermia substantially 

reduced the duration of constant load maximal exercise (~34% across three 

different dehydration protocols), but did not significantly compromise V̇O2max (Saltin 

1964). The reduced exercise time likely reflected the attainment of maximal work 

capacity given that peak heart rate in the dehydration trial was similar to that of the 

euhydration/control maximal test. Equally, in this context, it appears that relatively 
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small decrements in V̇O2max are observed when body mass loss is less than 2-3%, 

when core hyperthermia is not endangered or if participants are well trained and 

experienced to performing exercise under physiologically stressful conditions 

(Saltin 1964; Ganio et al. 2006). Similarly, it has been shown that diuretic-induced 

moderate dehydration (~2%) does not affect cardiovascular function (evidenced by 

differences in heart rate, haematocrit and core temperature), nor does it impair 

maximal sprint and vertical jump (i.e. explosive power) performance when 

performing in thermoneutral environments (Watson et al. 2005). Nevertheless, in 

the heat, significant dehydration modifies the development of hyperthermia and 

can lead to a significant reduction on V̇O2max.  

 

2.2.2 Mechanisms by which dehydration impairs physiological function 

during strenuous exercise  

Fatigue during prolonged exercise is often associated with critical reductions in 

muscle glycogen stores (Hermansen et al. 1967; Coyle et al. 1986), however the 

decline in exercise capacity with exercise-induced hyperthermia appears not to be 

associated with earlier substrate depletion, as muscle glycogen is not typically 

depleted at exhaustion (Nielsen et al. 1990; Nielsen et al. 1993; Febbraio et al. 

1996; González-Alonso et al. 1999; Maughan et al. 2007). It is also apparent that 

blood flow and substrate delivery to the exercising skeletal muscle is not a limiting 

factor, as both are maintained compared to normothermic environmental 

temperatures (Savard et al. 1988; Nielsen et al. 1990). 

 

Instead, the inability to sustain exercise in hot environments has been attributed to 

the attainment of a high core temperature, as the development of fatigue was 

observed to coincide with a core temperature of ~40 °C (Nielsen et al. 1993; 

González-Alonso et al. 2008). This idea is supported by a number of observations 

made when the initial core temperature was manipulated either by heat 

acclimation (Nielsen et al. 1993), with pre-heating and pre-cooling (González-

Alonso et al. 1999) or when the rate of rise in core temperature was manipulated 

(González-Alonso et al. 1999). The assumption of these findings was that a high 

‘critical’ core temperature was a crucial factor limiting exercise in the heat. More 

specifically, because brain temperature is normally higher (+~0.2 °C) than 

core/arterial blood temperature (Nybo et al. 2002), temperature-dependent 

processes at the level of the central nervous system might restrict motor output 
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and explain early fatigue in the heat (Nielsen et al. 2001; Nybo & Nielsen 2001a; 

Nybo et al. 2002; Nielsen & Nybo 2003; Nybo 2003). On the other hand, the 

observed ‘critical’ temperatures were below that considered to be critical (e.g. ~43 

°C) for neuronal and cell damage (White et al. 2012).  

 

Dehydration compounds the circulatory challenge to exercise in the heat, altering 

cardiovascular function in association with reductions in systemic and active 

muscle blood flow and changes in metabolic and neurohumoral responses; 

generally termed ‘cardiovascular drift’ (Figure 2-1) (Coyle & González-Alonso 

2001; González-Alonso et al. 2008). In the heat, dehydration reduces cutaneous 

blood flow and accentuates the rise in heart rate and core body temperature 

(González-Alonso et al. 2000). The cardiac tachycardia, coupled with the 

combined effect of the declining blood volume and hyperthermia, and an 

attenuated stroke volume are all important features underpinning the observed 

cardiovascular drift during prolonged exercise (González-Alonso et al. 1998; 

Fritzsche et al. 1999; González-Alonso et al. 1999; González-Alonso et al. 1999; 

Coyle & González-Alonso 2001).  

 

A crucial observation is that the decline in systemic blood flow with dehydration 

during prolonged exercise in the heat is not entirely accounted for by the decline in 

active and non-active limb and cutaneous blood flow. It is therefore possible that 

blood flow to other body segments, including the cerebral circulation, is also 

compromised under such conditions. Because reductions in CBF normally lead to 

symptoms of pre-syncope (dizziness, faintness and blurred vision), reduced CBF 

is thought to be an important mechanism for the observed early curtailment of 

prolonged strenuous exercise, particularly in hot environments (Nielsen & Nybo 

2003). However, the hard evidence proving this hypothesis is still lacking. 

 

2.2.3 Impact of hyperthermia on cerebral blood flow and metabolism during 

strenuous exercise 

Knowledge of the cerebral circulatory alterations to strenuous exercise in the heat 

is currently limited. It has recently been shown, however, that CBF declines with 

passive heat stress (Brothers et al. 2009a; Nelson et al. 2011; Bain et al. 2013; 

Ogoh et al. 2013b) and when exercise becomes strenuous (Jorgensen et al. 

1992b; Hellstrom et al. 1996; Nybo & Nielsen 2001b; Nybo et al. 2002; Secher et 
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al. 2008; Sato et al. 2011). Cerebral perfusion, estimated by measurements of 

velocity in the middle cerebral artery (MCA Vmean), is maintained during prolonged 

exercise in cool conditions, but declines with uncompensable heat stress (Nybo & 

Nielsen 2001b; Nybo et al. 2002). Dehydration might further accentuate the 

decline in CBF, in line with its well-established effects on cardiovascular strain, 

although current findings are equivocal (Carter et al. 2006; Fan et al. 2008; 

Romero et al. 2011; Moralez et al. 2012). Nevertheless, reductions in CBF with 

exercise-dehydration hyperthermia could also lead to the attainment of a critically 

high brain temperature, which would contribute to the development of central 

fatigue (Nybo et al. 2002; Nybo et al. 2002; Nielsen & Nybo 2003).  

 

 

Figure 2-1. Cardiovascular consequences of dehydration during prolonged exercise in the 

heat. Heart rate, and systemic and leg oxygen uptake increase progressively with dehydration from 

values at 20 min (top panel). As dehydration develops, stroke volume, cardiac output, and blood 

pressure decline and non-active tissue blood flow and systemic catecholamines increase 

substantially (bottom panel); indicative of an increase in global sympathetic vasoconstrictor activity. 

From (González-Alonso et al. 2008). 
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Summary 

Available evidence suggests that marked dehydration and hyperthermia induced 

through strenuous exercise in the heat advance circulatory strain and fatigue. The 

impact of a negative hydration status on maximal aerobic exercise remains 

equivocal. Furthermore, evidence suggests that dehydration does not necessarily 

affect circulatory function or exercise capacity. However, in combination with heat 

stress, it is capable of attenuating V̇O2max. Blood flow to the brain might also be 

compromised with dehydration; however, the precise regional haemodynamic 

alterations in response to exercise with dehydration and hyperthermia remain 

underexplored.   

 

 Regulation of cerebral and extra-cranial blood flow during 2.3

strenuous exercise 

Despite its relatively small contribution to total body weight, the brain normally has 

a resting blood flow of ~750 ml·min-1 (~53 ml·100g-1 ·min-1 based on a brain weight 

of 1.4 kg) (Lassen 1985), thus accounting for ~15% of the resting cardiac output 

(Kety & Schmidt 1948b; Lassen 1985; Madsen et al. 1993; Madsen et al. 1993; 

Nybo et al. 2014). Due to the high cerebral metabolic rate and the inability to store 

oxygen within the brain, maintaining the appropriate blood flow is of the upmost 

importance for the adequate supply of O2 and removal of CO2, as exemplified by 

the onset of syncope within minutes of large reductions in CBF (Zauner 1997; Van 

Lieshout et al. 2003; Willie et al. 2014). 

 

Oxygenated blood is directed towards the head through two major bilateral 

common arteries supplying both the anterior and the posterior portions of the 

brain. In the anterior circulation, the right and left common carotid arteries are 

equally sized and provide equal volumes of blood flow, despite their differing 

origins. As the vessels ascend the neck, the common arteries divide at the carotid 

bifurcation into the external and internal carotid arteries (the ECA and ICA, 

respectively; Figure 2-2). The external artery is notably smaller in diameter and 

continues to traverse the anterior face and neck regions, branching into the 

superficial temporal and maxillary arteries. The larger internal carotid arteries, 

supplying ~75% of total CBF, continue upwards to the brain and terminate at the 

middle cerebral artery junction of the Circle of Willis. On the other hand, the 

posterior part of the brain is, to a lesser extent, also perfused by two vertebral 
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arteries (distributing ~25% of total CBF) (Schoning et al. 1994). The two bilateral 

vertebral arteries combine to form the basilar artery, branching at many intervals 

before forming the posterior portion of the Circle of Willis (Figure 2-3).  

 

 

Figure 2-2. Image of the anterior neck arteries. The right common carotid artery branches from 

the brachiocephalic trunk and ascends the neck to the carotid sinus (location of pressure 

monitoring baroreceptors) before dividing into the internal and external-carotid arteries.  

 

The arrangement of arteries within the brain constitutes a pathway to preserve 

CBF in the presence of a restricted/blocked artery. This is often the case at vessel 

bifurcations, particularly at the carotid sinus, which represents a common location 

for the development of plaques and stenoses (Thrush & Hartshorne 2010). 

Oxygenated blood traverses the deep capillary network into pial arterioles, and 

latterly to parenchymal arterioles which play an important role in the regulation of 

regional blood flow and are the location of substrate exchange between the blood 

and activated neurons. Oxygen and substrate exchange occurs across a unique 

feature of the cerebral circulation, a closed physical barrier between the capillaries 

and cerebral tissue (the blood-brain barrier) formed from an extension of the 

astrocyte end-feet between the basal lamina of the endothelium and the axons 

(Reese & Karnovsky 1967). This arrangement allows for the regulation of 

substrate exchange, preventing larger molecules (including noradrenaline) from 

entering the brain and allowing transfer of specific substances (including glucose 

and lactate) via specific transporter channels. The deoxygenated blood is drained 

through branches of the sagittal superior sinus, subsequently anastomosing at the 

transverse sinus before draining into two bilateral internal jugular veins, which 

parallel the common carotid arteries on their return to the central circulation 

(Zauner 1997).  
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Figure 2-3. Arteries of the cerebral circulation. Blood flow to the brain is supplied through the 

two internal carotid and vertebral arteries, before anastomosing at the Circle of Willis. The 

arrangement of arteries allows for efficient redistribution of blood to metabolic active areas of the 

brain and provides a compensatory mechanism for flow restrictions.  

 

 

2.3.1 Cerebral blood flow during exercise 

Dynamic exercise requires a substantial activation of motor and cardiorespiratory 

neurons, and the ensuing enhanced regional metabolic demand for oxygen and 

glucose is generally thought to necessitate increases in regional CBF (rCBF) 

(Buxton & Frank 1997; Secher et al. 2008). However, it was previously suggested 

that CBF remained stable across a wide range of perfusion pressures (which 

generally increase with whole-body exercise), within the autoregulatory zone (see 

regulation of cerebral blood flow; (Lassen 1959; Ide & Secher 2000)). Recent 

evidence, however, opposes this early finding by showing that both rCBF and 

global CBF are elevated at the onset of dynamic exercise (Jorgensen et al. 1992c; 

Hellstrom et al. 1996; Nybo & Nielsen 2001b; González-Alonso et al. 2004; Sato et 

al. 2011).  
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The assumption of a stable CBF was initially supported by measurements made at 

the global level using the Kety-Schmidt method (Kety & Schmidt 1946; Kety & 

Schmidt 1948b; Scheinberg et al. 1953; Scheinberg et al. 1954; Hedlund et al. 

1962; Madsen et al. 1993; Rowell.1993; Ide & Secher 2000; Secher et al. 2008; 

Ogoh & Ainslie 2009a). Using this method, the cerebral tissue is first saturated 

with an inert gas (e.g. N2O), and CBF is determined as the ratio between the rate 

of N2O uptake and the arterial to internal-jugular venous N2O difference (Ide & 

Secher 2000). A number of limitations, however, undermine the accuracy of this 

measurement and its application to short duration dynamic exercise. First, the 

venous drainage of the brain is potentially heterogeneous as each of the internal 

jugular veins drains different proportions of the brain (Ferrier et al. 1993). Second, 

the internal jugular vein can become partially collapsed during exercise in the 

upright position which potentially may affect the sampling of venous blood draining 

the brain (Madsen et al. 1993; Rowell.1993; Secher et al. 2008). Lastly, the 

technique requires a steady state CBF which is likely not to be the case during 

dynamic exercise of high or severe intensity (Ide & Secher 2000). Measuring 

cerebral blood flow regionally, or with methods displaying a good temporal 

resolution, is therefore critical for the assessment of cerebral haemodynamics 

during exercise.  

 

In contrast, modern methodological approaches show that the onset of exercise 

induces a significant increase in rCBF of approximately 25% (Secher et al. 2008), 

in both miniature swine (Delp et al. 2001) and humans (Jorgensen et al. 1992a; 

Jorgensen et al. 1992b; Hellstrom et al. 1996; Sato et al. 2011). Unilateral 

handgrip exercise instigates an increase in rCBF of the contralateral hemisphere, 

as measured using the initial slope index of the 133Xe washout (Olesen et al. 1971; 

Olesen 1971; Herholz et al. 1987; Jorgensen et al. 1992a). Further support for the 

dynamic increases in rCBF, across a range of exercise and pharmacological 

investigations, was provided by the assessment of blood velocity in the middle 

cerebral artery (MCA Vmean; Jorgensen et al. 1992a; Jorgensen et al. 1992b), 

functional magnetic resonance imaging (fMRI) and positron emission tomography 

(PET) (Ide et al. 2000). In particular, the development of trans-cranial Doppler 

ultrasonography (TCD) for the assessment of MCA Vmean has proven to be a 

useful tool for the assessment of regional cerebral perfusion during dynamic 

whole-body exercise (Aaslid et al. 1982; Madsen et al. 1993; Jorgensen 1995; 



15 
 

Linkis et al. 1995; Pott et al. 1997; Ide et al. 1998). TCD assesses the maximum 

envelope of the velocity through the middle cerebral artery and can detect acute 

changes in rCBF; ideal for measurements of cerebral perfusion during short bouts 

of dynamic whole-body exercise. 

 

 

Figure 2-4. Relationship between TCD derived MCA Vmean and the initial slope index (ISI). 

Cerebral blood flow increases up to ~50% peak power before attenuating/declining towards 

baseline values. From (Jorgensen et al. 1992a) and (Secher et al. 2008). 

 

Transcranial Doppler measurements of MCA Vmean are not without technical 

considerations, chiefly the fact that vessel diameter remains unknown. In 

accordance with Poiseuille’s Law, volume flow is highly dependent on the fourth 

power of the radius, i.e. large changes in vessel diameter would have a substantial 

effect on the calculated volume flow, irrespective of the Vmean. Therefore, cerebral 

perfusion is only correctly assessed when the calibre of the vessel remains 

unchanged, which may not be the case across many different experimental 

conditions (Willie et al. 2011; Willie et al. 2012). Recently, technological 

developments have offset the limitations of the transcranial Doppler. Duplex 

ultrasonography of the internal-carotid artery (Hellstrom et al. 1996; Sato et al. 

2011) allows for continuous measurement of flow velocity and vessel calibre, 

providing absolute blood flow of the basal cerebral arteries. Nevertheless, under 

most physiological exercise conditions MCA Vmean and duplex ultrasonography 

derived rCBF reproducibly show a ~25% increase in perfusion up to sub-maximal 

exercise intensities.  
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When exercise becomes strenuous there is a paradoxical decline in CBF, posing a 

challenge to the convective oxygen delivery to the brain. It has been shown that 

during graded exercise above ~60% WRmax (Hellstrom et al. 1996; Sato et al. 

2011), global and rCBF plateau or decline to baseline values prior to volitional 

exhaustion (Madsen et al. 1993; Moraine et al. 1993; Hellstrom et al. 1996; Ide & 

Secher 2000; González-Alonso et al. 2004)(Figure 2-4). This still limited number of 

studies suggests that convective O2 delivery to the brain is reduced and, in 

accordance with the Fick equation, brain oxygen uptake could decline unless 

cerebral oxygen extraction compensates for the reduced flow. In this context, it is 

unknown whether the severe physiological strain evoked by dehydration and 

hyperthermia further accentuate the decline in CBF during both graded and 

prolonged exercise to the extent that brain metabolism is compromised. 

 

2.3.2 Posterior and extra-cranial blood flow during exercise 

As discussed above, in addition to the two anterior arteries (two ICAs, latterly 

forming the two MCAs), the posterior portion of the brain is perfused by two 

vertebral arteries located within the spinal column, anastomosing to form the 

basilar artery. Whilst these arteries supply a smaller proportion of the total CBF, 

recently it has been observed that blood flow in the vertebral arteries (VA) 

increases with exercise intensity (Sato et al. 2011). Furthermore, hypoxia induces 

larger relative increases in VA flow compared to that in the ICA (Ogoh et al. 

2013a; Lewis et al. 2014b), suggesting that the regulation of blood flow to the 

posterior portion of the brain might be prioritised at high exercise intensities. These 

findings are consistent with observations of enhanced rCBF to the posterior 

circulation (Spinal cord, Cerebellar Ventral Vermis and Medulla) in miniature swine 

during increasing exercise intensity (Delp et al. 2001).   

 

The external-carotid artery is formed at the branch of the carotid bulb and ascends 

the neck with a similar, but superficial, trajectory when compared to the internal 

carotid artery. Subsequent branches perfuse the outer cranium (superficial 

temporal, posterior auricular and occipital artery) and the face and neck (facial, 

superior thyroid, lingual and maxillary arteries).  Resting blood flow to the regions 

supplied by the ECA equate to ~250 to 300 ml·min-1, raising the total head blood 

flow under normal resting conditions to 1 l·min-1. Whilst a decline in cerebral 

perfusion is evident at high exercise intensities, blood flow to the extra-cranial 



17 
 

circulation increases linearly from rest to intense exercise (Hellstrom et al. 1996; 

Sato et al. 2011). The study of Sato et al. shows a doubling in ECA blood flow 

from rest to 80% WRmax during semi-recumbent cycling, supported by an elevation 

in blood flow through the common carotid artery. A 2-3 fold increase in ECA blood 

flow is also observed with passive heat stress (Bain et al. 2013), which may be 

indicative of a role for extra-cranial blood flow in local thermoregulation.  

 

Summary 

Although once considered to remain constant during exercise, rCBF responds 

dynamically to increasing work rate. This response may be important for the 

maintenance of oxygen and substrate delivery to active regions of the brain. 

Beyond moderate exercise, global CBF declines towards baseline values which 

could potentially challenge cerebral metabolism and contribute to impaired 

physiological function unless compensatory adjustments occur. In contrast, extra-

cranial flow appears to increase linearly with increasing exercise intensity to near 

maximal levels. The physiological explanations for the apparent differential 

regional responses remain as yet unclear. No study to date has explored the 

cerebral and extra-cranial circulatory dynamics during exhaustive prolonged and 

maximal exercise in the heat. 

 

2.3.3 Cerebral metabolism during exercise  

Accentuating the decline in cerebral and limb blood flow could compromise local 

aerobic metabolism because, unlike the skeletal muscle, the brain has a negligible 

oxygen storage capacity. Transient reduction in blood flow to the brain with head-

up tilt and upon standing, with cardiac insufficiency, cause symptoms of syncope 

and a risk of total loss of consciousness (Ide et al. 1999a; Van Lieshout et al. 

2003).  

 

At rest the brain consumes approximately 3.5 ml O2·min-1·100g-1, equating to 

~20% of whole-body oxygen uptake for a normal adult brain size of 1.4 kg (Kety & 

Schmidt 1946). The nomenclature for the rate of oxygen uptake at the level of the 

brain is the cerebral metabolic rate for oxygen (CMRO2). As with the traditional 

measures of CBF, the change (or lack thereof) in the CMRO2 is largely dependent 

on the method of measurement used. Regional and global increases in the 

CMRO2 are observed with positron-emission tomography (PET) during intense 
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visualisation tasks (Fox & Raichle 1986; Roland et al. 1987), hand movement 

(Raichle et al. 1976), and with prolonged exercise with hyperthermia (Nybo et al. 

2002). On the other hand, others report a relatively stable aerobic metabolism 

(Scheinberg et al. 1954; Madsen et al. 1993; Ide & Secher 2000) during light 

exercise, which presumably engages higher level of neuronal activity compared to 

rest (Secher et al. 2008). To this end it is plausible that the increased CBF is 

proportionally matched by a lower oxygen extraction (González-Alonso et al. 2004; 

Fisher et al. 2013). It remains unclear as to whether the CMRO2 would be 

enhanced, remain stable or be compromised with a significant reduction in CBF 

when dehydration and hyperthermia are superimposed on strenuous exercise in 

heat stress conditions.   

 

It has been shown that the brain takes up large amounts of carbohydrate during 

strenuous exercise (Dalsgaard et al. 2004a; Dalsgaard et al. 2004b; González-

Alonso et al. 2004; Dalsgaard 2006; van Hall et al. 2009; Volianitis & Secher 

2009). At rest and during intense exercise the brain displays an RQ of ~1 

(Dalsgaard et al. 2004), indicating that carbohydrates, mainly blood glucose, are 

the primary fuel of the astrocytes and neurons (Mintun et al. 2001; Dienel 2012a; 

Dienel 2012b). On the other hand, lactate is considered to be an important 

metabolic substrate within the brain. This is demonstrated by astrocytes in culture 

which display an affinity for lactate as a primary fuel (Bouzier-Sore et al. 2003), 

and the observation that the cerebral uptake of lactate is substantially enhanced 

during strenuous exercise in humans (Quistorff et al. 2008; van Hall et al. 2009).  

Specifically, at rest, the ratio of oxygen to glucose uptake (oxygen-glucose index) 

is 6:1 (that is, 6 O2 + 1 C6H12O6 produces 6 H2O + 6 CO2), more commonly 

observed to be ~5.7 with some “anaerobic contribution” (Dalsgaard et al. 2004; 

Dalsgaard et al. 2004). However, during intense cerebral activation, such as very 

strenuous exercise engaging a large muscle mass, the ratio of oxygen-to-

carbohydrate uptake can decline to very low levels (Dalsgaard et al. 2004; Secher 

et al. 2008; Volianitis & Secher 2009). This indicates that the uptake of 

carbohydrate, be it glucose and/or lactate, is in ‘excess’ of the oxidative rate 

(Dalsgaard et al. 2002; Dalsgaard et al. 2004a; Dalsgaard 2006). Uncertainty 

remains on the precise function of the imbalance in oxidative metabolism during 

strenuous exercise; however, its extensive decline prior to fatigue during exercise 

is suggested to be associated with a ‘central’ metabolic fatigue (Dalsgaard 2006). 
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It is unclear whether dehydration and hyperthermia constitute a metabolic 

challenge to the brain, similar to that observed during very intense whole-body 

exercise.  

 

In addition to the potential role of a reduction in the CMR in so-called “central” 

fatigue, reductions in oxygen delivery to the brain might constitute a scenario 

whereby a reduced cerebral function precipitates the attainment of fatigue during 

intense exercise (Rasmussen et al., 2007b; Nybo & Rasmussen, 2007; Subudhi et 

al., 2008, 2009). Strenuous exercise enhances cerebral metabolic demand (Delp 

et al., 2001; Secher et al., 2008) and, coupled with a reduction in cerebral 

perfusion, might lower the cerebral mitochondrial oxygen tension (PmitoO2) to 

levels (e.g. > that 5mmHg reduction) that are commensurate to a cerebral oxygen 

deficit that compromises cerebral function (Rasmussen et al., 2007a). However, 

this is unlikely during maximal exercise at sea level where the PmitoO2 is not 

lowered to such “critical levels” (Nybo & Rasmussen, 2007; Fisher et al., 2013).  

 

Hypoxia impairs exercise performance, perhaps through central cerebral 

mechanisms as the administration of supplementary oxygen during maximal 

exercise in hypoxia restores cerebral oxygenation and restores exercise capacity 

(Subudhi et al., 2008, 2009); however it is unclear as to whether this in itself 

reflects a salient mechanism by which hypoxia leads to fatigue as oxygen 

interventions are not localised solely to the cerebral tissue (Olin et al., 2011; 

Subudhi et al., 2011). Interpretation of these findings may also be hindered by the 

employment of near-infrared spectroscopy (NIRS) of the frontal cortex as an 

indicator of cerebral oxygenation (Subudhi et al., 2008, 2009), as measure one 

local region may not reflect the metabolic conditions of the brain as a whole. 

Additionally, it might not be that reduced perfusion of this region of the brain is 

necessarily a precursor to fatigue. In this light it has been shown that this region is 

normally associated with a reduced perfusion (Delp et al., 2001), which may be 

interpreted to mean that activity of the frontal cortex is not overtly required for 

exercise performance (whereas activity and blood flow to areas associated with 

cardiovascular control may yet be; see (Delp et al., 2001). Lastly, manipulation of 

CO2 within the blood, through carbon dioxide inhalation, normalises cerebral 

oxygen delivery but leads to similar (if not slightly attenuated) exercise capacity 

(Subudhi et al., 2011). It seems more likely that attenuated systemic and 
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locomotor muscle O2 delivery are more important factors preceding fatigue during 

maximal exercise (González-Alonso et al., 2004; Nybo & Rasmussen, 2007; 

Subudhi et al., 2011).   

 

2.3.4 Regulation of cerebral blood flow 

For an organ that is not capable of storing large amounts of oxygen, the brain is 

fully dependent on the tight regulation of blood flow to maintain O2 supply. A 

number of mechanisms have been implicated in the control of rCBF at rest and 

during dynamic exercise including, but not limited to, autoregulation, blood gasses 

and sympathetic activity (Faraci & Heistad 1998; Querido & Sheel 2007; Secher et 

al. 2008; Ogoh & Ainslie 2009a; Ogoh & Ainslie 2009b; Ainslie & Ogoh 2010; 

Willie et al. 2014). Dehydration and hyperthermia could lead to significant 

alterations in blood flow and thus these mechanisms may play a role in adjusting 

vascular tone to ensure adequate perfusion during stressful environmental 

conditions. 

 

Blood flow, perfusion pressure and vascular resistance. The supply of blood 

to a given region of the circulation is dependent on the balance between the 

“driving force” of blood from the central circulation (determined by the perfusion 

pressure gradient), and local resistance to flow. The interplay between blood flow, 

pressure, and resistance is derived from Ohm’s Law (Volts = Current x resistance) 

applied to the circulation and at the local level is; 

 

Blood flow = Perfusion pressure/Vascular resistance 

 

The perfusion pressure gradient is determined from the subtraction of intracranial 

pressure (ICP) at the level of the brain (Zauner 1997), and femoral venous 

pressure at the level of the leg, from mean arterial blood pressure. With respect to 

the brain it is often not possible to obtain direct measures of intra-cranial pressure 

as this is reserved for clinical practice and surgery related to the brain. Although 

not ideal, jugular venous pressure can be used as a substitute, if it is deemed to 

be greater than, or similar to, the expected ICP.  

 

The aforementioned determination can be considered simplistic as it does not 

consider the possible changes in blood viscosity, and the complex arrangements 

https://paperpile.com/c/oWZ9bg/MMDn7+nt0y5+LPUnw
https://paperpile.com/c/oWZ9bg/MMDn7+nt0y5+LPUnw
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of blood vessels in some regions (e.g. the brain). Hagen-Poiseuille’s Law more 

comprehensively considers these factors, where P is pressure, µ is viscosity, l is 

length and r is the radius; 

CBF = P / [8 - µl) / (r4)] 

Central processes contribute to increased cerebral perfusion pressure and support 

the rise in blood flow; however, given the importance of vessel radius, factors 

altering local vascular tone can have a more significant bearing on the regulation 

of blood flow, particularly during exercise and environmental stress. 

 

Cerebral blood flow, autoregulation and central haemodynamics 

The first observations that CBF remained stable during exercise gave rise to the 

concept of ‘cerebral autoregulation’ (CA). In the work of Lassen (1959), existing 

data from a range of physiological perturbations were used to assess the 

relationship between CBF and arterial blood pressure (Figure 2-5). From this work 

the principle that CBF was maintained stable across a wide range of cerebral 

perfusion pressures was postulated, eventually becoming the prevailing theory to 

explain the apparent stability of CBF (Lassen 1959; Lassen 1974; Paulson et al. 

1990). This classic dogma, however, has recently been challenged because these 

findings were from multiple subsets of participants and often did not control for the 

confounding effects of CO2 and drug administration (on the cerebrovascular 

responses to changes in perfusion pressure) (Secher et al. 2008; Lucas et al. 

2010; Willie et al. 2014). A further confounding factor is that changes in MCA 

vessel diameter can obscure the accurate determination of CA (Lucas et al. 2010; 

Willie et al. 2014). 

 

Figure 2-5. Cerebral autoregulatory curves based on classical and current observations. The 

traditional autoregulatory curve depicted in the left panel displays the consistency of CBF over a 

wide range of perfusion pressures. On the right panel, the more recent depiction of a much smaller 

autoregulatory range. Furthermore the slope of the response is now considered to be unequal with 

hypotension and hypertension, respectively. (From Willie et al. 2014). 
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Alterations in mean arterial blood pressure (MAP) do not appear to influence 

changes in rCBF. This is highlighted by observations that cerebral perfusion 

declines back to resting baseline levels despite the maintenance of a high MAP 

during post-exercise muscle ischemia (Aaslid et al. 1989; Jorgensen et al. 1992b). 

On the other hand, the increase in cardiac output seems to be very important for 

the rise in CBF. This is supported by observations that the magnitude of rise in 

MCA Vmean is blunted with pharmacological β1-adrenergic block and in patients 

with atrial fibrillation (Ide et al. 1998; Ide et al. 1999a; Ide et al. 2000). In addition, 

manipulating Q̇ and central venous pressure (CVP) with serum albumin infusion 

and lower body negative pressure (LBNP) increases and reduces cerebral 

perfusion, respectively (Ogoh et al. 2005a). Techniques which preserve central 

blood volume (e.g. muscle tensing) attenuates the decline in cerebral perfusion 

when assuming a standing position (van Lieshout et al. 2001). Moreover, heat 

stress reduces central blood volume and induces a significant hyperventilation 

which in combination can lead to reductions in CBF, symptoms of pre-syncope 

and orthostatic intolerance (Wilson et al. 2006). In the context of the present thesis 

it is not known whether reductions in MAP and Q̇ during exercise with dehydration 

and hyperthermia are important for the effective regulation of CBF. 

 

Local regulation of cerebrovascular tone during exercise 

Local processes dictating vasoactive tone, either by acting directly or externally on 

the endothelium to regulate vessel calibre, are of fundamental importance to the 

appropriate regulation of CBF (Faraci & Heistad 1998; Ogoh & Ainslie 2009b). 

Perhaps the most influential factor causing alterations in cerebrovascular tone is 

respiratory-induced changes in the partial pressure of carbon dioxide in arterial 

blood (PaCO2). It has long been known that raising PaCO2 through CO2 

administration induces cerebral ‘expansion[sic]’ in dogs (Roy & Sherrington 1890), 

a finding that was subsequently confirmed in healthy humans (Kety & Schmidt 

1948a). It is now established that increasing PaCO2 (hypercapnia) induces cerebral 

vasodilation, whereas reducing PaCO2 (hypocapnia) causes cerebral 

vasoconstriction (Ainslie et al. 2005; Querido & Sheel 2007; Secher et al. 2008; 

Ogoh & Ainslie 2009b; Willie et al. 2012; Willie et al. 2014). The significant role of 

changes in arterial blood gas tensions was recently addressed in the meritorious 

study of Willie and colleagues who, through independent manipulations of inhaled 

CO2, demonstrated that wide ranging elevations and reductions in PaCO2 induce 
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corresponding cerebral vasodilation and constriction, respectively (Figure 2-6) 

(Willie et al. 2012). The latter study also refutes the dogma that only downstream 

pial vessels participate in cerebrovascular tone (Fog 1938), by showing an ~8% 

change in internal carotid artery diameter across the hypocapnic/hypercapnic 

range, and in doing so support similar findings from animal models (Faraci et al. 

1987). Under resting conditions the change in CBF is shown to be ~3-4%/mmHg 

change in PaCO2 (the ‘CO2 reactivity’)(Linkis et al. 1995; Willie et al. 2012) and the 

slope of the relationship increases with exercise-hyperthermia (Rasmussen et al. 

2006). As is apparent in Figure 2-6, the reactivity to CO2 is lower in the posterior 

circulation compared to the anterior (i.e. ICA) circulation (~2% vs. 3-4% per mmHg 

change in PaCO2). No relationship between CO2 and vascular tone is observed in 

the external-carotid circulation or in other peripheral arteries, and thus the role of 

CO2 in blood flow regulation is therefore confined to the cerebral vasculature 

(Ainslie et al. 2005; Sato et al. 2012).  

 

 

Figure 2-6. Anterior (ICA) and posterior (VA) CBF during progressive hypocapnia and 

hypercapnia. Baseline PaCO2 is ~40 mmHg. Note that the reactivity to CO2 (i.e. slope of the 

CO2/flow relationship) is steeper in the hypercapnic vs. hypocapnic range. From Willie et al. 2012, 

2014). 

 

From rest to sub-maximal exercise, a slight rise in PaCO2 in response to cerebral 

metabolic CO2 production contributes to the increase in rCBF (Kontos et al. 1978; 

Faraci & Heistad 1998; Secher et al. 2008). As exercise progresses to levels 

beyond the respiratory compensation point, a substantial decline in PaCO2, 

induced in response to thermal and non-metabolic stimulated hyperventilation, are 

thought to be the primary mechanism underpinning the cerebral vasoconstriction 

and the decline in CBF (White & Cabanac 1996; Nielsen et al. 2002; Secher et al. 
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2008; Willie et al. 2012). CO2 can interact intravascularly in conjunction with 

endothelium derived vasoactive substances (NO, EDHF, PGI2) or, due to its ability 

to readily cross the blood-brain-barrier, can act extravascularly or stimulate reflex 

control of smooth muscle tone via alterations in cerebral spinal fluid pH (Sokoloff 

1960; Yoon et al. 2012).  

 

Other than CO2, control of cerebrovascular tone has been ascribed to 

sympathetic-mediated pathways (Lee et al. 1976; Mitchell et al. 2009; Ogoh & 

Ainslie 2009a; Seifert & Secher 2011). This observation is supported by the 

findings of enhanced noradrenaline spillover from the cerebral vasculature with 

pharmacological manipulations of sympathetic activity (Mitchell et al. 2009). 

Sympathetic activity might be important to modulate potentially large surges in 

perfusion pressure (Ogoh et al. 2008; Ainslie 2009; Tzeng & Ainslie 2013); 

however, the direct physiological role during exercise remains controversial 

(Strandgaard & Sigurdsson 2008b; van Lieshout & Secher 2008b). 

 

Summary 

The balance between appropriate CBF and metabolic substrate demand is 

precisely regulated by a number of important mechanisms; most notably PaCO2. 

These mechanisms may be of particular importance during exercise with 

dehydration and heat stress because of the expected large alterations to the 

central circulation and respiratory pattern. This is not to say that other mechanisms 

(e.g. sympathetic activity, PO2, neurovascular coupling and peripheral reflexes) 

are not influential on cerebrovascular tone.  

 

 Heat stress and circulatory function during strenuous 2.4

exercise 

It is well established that high intensity exercise in uncompensable heat stress 

conditions induces a marked physiological strain that includes high levels of 

hyperthermia (Rowell et al. 1969a; Rowell et al. 1970; Detry et al. 1972; Rowell 

1993). Importantly, exercise heat stress can lead to similar severe hyperthermia 

and physiological instability in the exercising human, as described above for 

exercise-induced dehydration. The following section outlines the cardiovascular 

responses to heat stress and its impact on maximal aerobic power. 
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2.4.1 Circulatory adjustments to heat stress at rest 

Under resting conditions a substantial increase in environmental temperature 

leads to numerous cardiovascular adjustments, in response to enhanced 

thermoregulatory demand. Heat exposure sufficient to increase skin and core 

temperature induces a marked cutaneous vasodilation, estimated indirectly to 

increase skin blood flow from resting values of ~300 ml·min-1 to a peak of 7-8 

l·min-1 (Rowell et al. 1970; Rowell 1974; Brengelmann et al. 1977; Nielsen et al. 

1984; Rowell 1984; Rowell 1993; Crandall & González-Alonso 2010; Johnson & 

Kellogg 2010). The rise in skin blood flow in response to elevations in local 

temperature is mediated by both the withdrawal of vasoconstrictor tone and 

cutaneous active vasodilation (Johnson & Kellogg 2010). Specifically, cutaneous 

vascular tone is altered through an initial axon-reflex and subsequently through a 

slower acting nitric-oxide (NO) dependent vasodilation (Kellogg et al. 1998; 

Charkoudian 2010; Johnson & Kellogg 2010). 

 

The increase in skin capacitance requires a large increase in cardiac output, 

brought forth predominantly by increases in heart rate and to a lesser extent the 

sympathetically-mediated redistribution of central blood volume (Rowell et al. 

1969a; Rowell et al. 1971; Niimi et al. 1997; Minson et al. 1998; Wilson et al. 

2007). Cardiac output doubles from resting normothermic conditions, with the 

majority of the increase hypothesised to be directed to the skin 

(Figure 2-7)(Roddie et al. 1956; Rowell et al. 1970; Niimi et al. 1997; Crandall et 

al. 2008; Crandall & González-Alonso 2010). Blood flow requirements are further 

met by visceral and splanchnic vasoconstriction (Figure 2-7) (Rowell et al. 1965; 

Rowell et al. 1968; Rowell et al. 1970; Crandall et al. 2008). It is currently unclear 

whether a brief exposure to heat stress, sufficient to raise skin temperature but not 

core temperature, augments cardiac output at rest and if so whether cardiac 

output remains elevated during incremental exercise. 

 

The redistribution of blood to the skin and evaporative heat loss through sweating 

serves as the primary (if not only) mechanism of substantial heat liberation from 

the body during heat stress (Rowell.1993). At rest and during sub-maximal 

exercise, blood flow redistribution (contributing ~1 l.min-1) (Minson et al. 1998) and 

an elevation in cardiac output (~2-4) l.min-1, proportional to the invoked heat 

stress, is capable of balancing the simultaneous demands for thermoregulation 
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and active muscle substrate supply, whilst maintaining arterial blood pressure 

(Kenney et al. 2014). However, when exercise becomes strenuous, the blood flow 

requirements of the active muscles are prioritised and the rise in skin blood flow is 

attenuated (González-Alonso et al. 2000; González-Alonso et al. 2008). 

 

 

Figure 2-7. Elevations in cardiac output and reductions in central blood volume during 

severe heat stress inducing marked increases in both core and skin temperatures. Note that 

the blood flow values in the top graph are theoretical values. From Rowell 1986, Crandall et al. 

2008. 

 

2.4.2 Impact of external heat stress on exercise capacity  

It has generally been observed that V̇O2max is suppressed in the heat, but previous 

findings have been equivocal. Initially it was shown that V̇O2max was not discernibly 

lower, despite a markedly reduced Q̇max, in hot ambient conditions (Rowell et al. 

Rowell, 1986 

Crandall et al. 2008 
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1965; Rowell et al. 1966). In these studies it is possible that the prolonged period 

of data collection (5 months), and changes in the participant characteristics, might 

have mitigated the impact of the heat exposure. Subsequently, Rowell et al. 

observed a small but significant decline in V̇O2max of 1.6 ml·kg-1·min-1 (-3%) in 

participants who performed graded treadmill running to volitional exhaustion in hot 

(43.3 °C) and cool (25.6 °C) ambient environments (Rowell et al. 1969b). Small 

declines of 4–7% have also been shown across a range of environmental 

temperatures (35–49 °C) (Klausen et al. 1967; Pirnay et al. 1970; Sawka et al. 

1985a; Arngrimsson et al. 2004). These findings were generally observed in non-

acclimated men and began without any pre-heating induced elevations in core 

temperature. When the trials were preceded with exercise or passively induced 

pre-heating, the decline in V̇O2max is shown to be far more substantial (~20-25%) 

(Pirnay et al. 1970; Nybo et al. 2001; Arngrimsson et al. 2004; Lafrenz et al. 2008). 

Only Arngrimsson and colleagues (2004) explored the reduction in V̇O2max across 

a range of experimental temperatures during graded exercise using a within-

subject design, though a consistent finding from these studies was that brief 

periods of heat exposure during short-duration graded exercise are unlikely to 

suppress V̇O2max to any great extent.  

 

On the other hand, evidence has suggested that high skin temperature, 

independent of core temperature, is an important mechanism by which exercise 

capacity is reduced in hot environments (Ely et al. 2010; Kenefick et al. 2010a; 

Sawka et al. 2011; Sawka et al. 2012a; Nybo et al. 2014). High skin blood 

temperatures narrow the core-to-skin temperature gradient and thus the 

maintenance of convective heat loss requires a larger increase in cutaneous blood 

flow (Sawka et al. 2012a). Ely and colleagues found that a high skin temperature 

is associated with degraded aerobic performance during a 15 min time trial, with 

only a modest increase in core temperature (Ely et al. 2010). This interpretation is 

in contrast to previous findings of a minimal effect of transient elevations in skin 

temperature on V̇O2max (Arngrimsson et al. 2004), which is an important indicator 

of aerobic performance. Nevertheless, in the self-paced paradigm, increasing skin 

temperature induces behavioural thermoregulatory changes (pacing, reducing 

cadence, gear changes, etc.) that might contribute to the performance decrement 

with skin hyperthermia. No study to date has explored the haemodynamic 
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alterations underpinning maximal incremental exercise, with different extents of 

heat stress exposure. 

 

2.4.3 Mechanisms by which heat stress impairs physiological function 

during maximal incremental exercise  

Despite the observations that maximal aerobic power is reduced in the heat in the 

majority of the studies, there is limited understanding of the primary mechanisms 

explaining such a decline. It has been theorised that the inability to achieve a 

V̇O2max equivalent to cool ambient conditions is a consequence of reductions in 

peripheral blood flow due to an attenuated cardiac output at high exercise 

intensities, secondary to a reduced stroke volume (Figure 2-8; (Rowell.1993). 

Stroke volume and cardiac output, however, are not reduced in trained individuals, 

exercising at maximal intensities in the heat (González-Alonso & Calbet 2003). 

This latter finding argues against the premise that high skin blood flow 

requirements and a decline in central blood volume, as postulated by Rowell, are 

the primary factor reducing maximal aerobic power in the heat. Instead, 

subsequent evidence suggests that heat stress and dehydration perpetuate 

reductions in cardiac filling and end-diastolic volume, and the increasing heart rate 

further restricts end-diastolic filling through a shortened cardiac cycle (Nadel 1980; 

González-Alonso & Calbet 2003; Stöhr et al. 2011b; Trinity et al. 2012). 

Collectively, it appears that heat stress advances the attainment of the 

cardiovascular regulatory limit which may explain the attenuated exercise capacity 

in the maximally active human (González-Alonso et al. 2008). 

 

Attenuated systemic blood flow in the heat may reflect an inadequate brain and 

active muscle perfusion and thus oxygen and substrate supply. Whilst no studies 

have directly manipulated temperature to investigate brain and active limb 

haemodynamics during graded exercise, evidence from constant-load maximal 

exercise supports the premise that systemic, limb blood flow (González-Alonso & 

Calbet 2003) and cerebral blood flow velocity (González-Alonso et al. 2004) 

decline at a faster rate in the heat stress conditions. It remains unknown whether 

the decline in V̇O2max is attributed to a similar attenuation in blood flow during 

graded exercise to volitional exhaustion.  
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Figure 2-8. Distribution of cardiac output in untrained individuals during graded exercise in 

cool (25.6 °C) and hot (43.3 °C) conditions. Note that these regional blood flow data are 

theoretical estimations from untrained participants. V̇O2max is proposed to be reduced concomitantly 

with a lower peripheral blood flow. From Rowell, 1974. 

 

Passive heating augments limb blood flow, due predominantly to enhanced 

cutaneous thermoregulatory demand (Roddie et al. 1956; Rowell et al. 1969a). 

There is evidence that muscle vasodilation also contributes to the elevations in 

limb blood flow (Heinonen et al. 2011; Pearson et al. 2011). The superimposition 

of heat stress during prolonged exercise appears not to alter limb blood flow 

during isolated limb (Savard et al. 1988) and dynamic exercise (Nielsen et al. 

1990). During constant intensity maximal exercise, however, limb blood flow 

declines at a faster rate in the heat, and is an important factor in the compromised 

exercise duration when limb oxygen extraction can no longer increase (González-

Alonso & Calbet 2003). Surprisingly, however, there remains a paucity of data on 

the cerebral, systemic and active muscle haemodynamic responses to graded 

exercise to volitional exhaustion under heat-stressed conditions.  
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 Circulatory adjustments to incremental aerobic exercise 2.5

Dynamic whole-body exercise poses a marked challenge to physiological 

regulation and requires a vast integrative circulatory response to meet the 

metabolic requirements of the active musculature (Krogh & Lindhard 1913; 

Rowell.1993; Wagner 1996; Hughson & Tschakovsky 1999). This regulation can 

be compromised in conditions of a high exogenous heat stress; however, the 

precise circulatory adjustments are not well characterised or understood. The 

following section outlines the known circulatory adjustments to exercise and 

proposed limitations to maximal oxygen uptake; with possible implications for 

exercise heat stress. 

 

2.5.1 Circulatory adjustments to exercise  

At the onset of graded exercise neural control of the cardiovascular system 

(‘central command’ and peripheral reflexes) acts to meet the metabolic demands 

of the active skeletal musculature (Rowell 1992; Raven et al. 2006; Boushel 2010; 

Raven 2012; Fadel 2013). Central command and reflex feedback are responsible 

for the rapid elevations in minute ventilation (V̇E), of importance for the 

maintenance of resting blood gas tensions, and for maintaining the pressure 

gradient for O2 to support oxygen transport from the lung to the pulmonary 

circulation (Romer & Polkey 2008; Forster et al. 2012).  

 

At the central circulatory level vagal withdrawal (up to ~100 beats·min-1) and 

sympathetically-mediated activation of β1-adrenergic receptors (Rowell.1993) act 

to increase heart rate in a linear fashion until exhaustion. Increased ventricular 

filling pressure raises stroke volume up to submaximal exercise intensities (Hill & 

Lupton 1923; Astrand et al. 1964; Higginbotham et al. 1986; Rowell.1993) and, 

together with the rising heart rate, serve to increase cardiac output at a rate of ~6 

l·min-1 for every 1 l·min-1 increase in oxygen uptake (Andersen & Saltin 1985; 

Rowell et al. 1986; Delp & Laughlin 1998; González-Alonso et al. 2002; Mortensen 

et al. 2005; Mortensen et al. 2008). Systemic and limb vascular conductance 

increase to permit the large increase in the required blood flow and oxygen 

delivery (Hughson & Tschakovsky 1999; Mortensen et al. 2008), with the 

concomitant elevations in blood pressure proposed to be mediated by baroreflex 

‘resetting’ to a heightened level in line with the exercise hyperaemia (Raven et al. 
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2006). A widening of the systemic arterio-venous oxygen difference accessing the 

resting ‘oxygen reserve’, coupled with enhanced central output, permits the rise in 

systemic oxygen uptake (V̇O2), reflecting an increased aerobic metabolism (Hill & 

Lupton 1923; Rowell et al. 1969b; Rowell et al. 1969; Rowell 1974; Rowell 1993).  

 

These acute circulatory alterations to exercise are elegantly described by the Fick 

equation where oxygen consumption (V̇O2) is the product of the cardiac output (Q̇) 

and systemic oxygen extraction (a-vO2diff); 

 

V̇O2 = Q̇ x a-vO2diff 

 

Overall, these well-defined responses to the onset of exercise sufficiently support 

skeletal muscle V̇O2 during exercise, with and without heat stress and dehydration, 

with a small muscle mass, or during exercise up to sub-maximal intensities 

(Andersen & Saltin 1985; Richardson et al. 1993; Mortensen et al. 2005; 

Mortensen et al. 2008). Beyond sub-maximal intensities, this regulation is 

challenged by the functional limitations of the cardiovascular system; it may yet be 

that the circulatory challenge of superimposed heat stress is of significant 

consequence and explains the compromised incremental exercise capacity in the 

heat.  

 

2.5.2 Circulatory determinants of maximal aerobic exercise 

Given the vast integrative physiological response to exercise, identification of a 

single factor underpinning maximal aerobic power is a clear oversimplification of 

the myriad of regulatory networks underpinning whole systems regulation and has 

therefore been strongly debated (Richardson et al. 1993; Rowell.1993; Wagner 

1996; Bassett & Howley 2000; Richardson et al. 2000; Calbet et al. 2004; Saltin & 

Calbet 2006). The primary role of the circulation in the exercising human is to 

supply oxygen to the active muscles at a rate congruent to local metabolic 

demand. Limitations to oxygen transport can occur throughout the oxygen 

transport cascade (Wagner 1996) and are broadly described as either convective 

or diffusive limitations (Figure 2-9).  

 

Whilst traditionally viewed as being overbuilt for exercise (Dempsey 1986; 

Rowell.1993), mechanisms across the respiratory system have the potential to 
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limit to O2 transport (Richardson et al. 1993; Wagner 1996; Wagner 2011). The 

primary role of the respiratory system is to elevate minute ventilation (V̇E), which 

increases with exercise intensity (Casaburi et al. 1989), in order to elevate alveolar 

ventilation at a rate concurrent to metabolic demand. In some elite athletes, 

however, alveolar ventilation may limit V̇O2max when a marked arterial hypoxemia 

develops, characterised by a decline in alveolar PO2 congruent to a lack of a fall in 

PCO2; thereby endangering the O2 diffusive gradient (Step 1; Figure 2-9) 

(Dempsey & Wagner 1999). This is exemplified when reducing the inspired O2 

(FiO2), and PO2 with hypoxia (Amann & Calbet 2008; Lundby et al. 2008; Vogiatzis 

et al. 2008; Calbet et al. 2009). The capacity of the muscle mitochondria to extract 

and utilise O2 would also be affected by the reduced PO2 gradient; however, 

mitochondrial respiratory rate is not thought to be an important factor (Andersen & 

Saltin 1985) as it has been shown to exceed pulmonary V̇O2 at maximal work 

rates (Boushel et al. 2011). 

 

 

Figure 2-9. Simplified depiction of the functional limitations to oxygen transport. The 

transport of oxygen from the air to the muscle mitochondrion can be limited at the level of the lung 

(1), central circulation (2), capillary diffusion (3) and by mitochondrial capacity (4). Adapted from 

(Rowell.1993; Richardson et al. 2000). 

 

The observation that neither alveolar-to-arterial and capillary-to-mitochondria O2 

diffusion are factors  normally contributing to maximal oxygen uptake in humans at 
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sea level (Rowell.1993; Saltin & Calbet 2006; Boushel et al. 2011), lead the 

following review to focus on the components of the Fick principle as a major factor 

limiting circulatory function during maximal exercise. 

 

Central circulatory limitations to V̇O2max  

From a central circulatory standpoint (Step 2; Figure 2-9), the maximum oxygen 

uptake (V̇O2max) is bound by the maximally attainable heart rate, stroke volume 

and systemic arterial-venous O2 difference (Rowell.1993); 

 

V̇O2max = Q̇max x a-vO2diff max 

 

Assuming that pulmonary and oxygen extraction capacity is upheld during 

maximal exercise, maximal cardiac output and reductions in active muscle 

perfusion are considered to be a primary factor restricting maximal aerobic power 

in normally active individuals at sea level (Amann & Calbet 2008; Calbet et al. 

2009). This assertion is supported by the findings that the recruitment of greater 

muscle mass during strenuous exercise does not raise cardiac output further 

(Secher et al. 1977; Calbet et al. 2007), and active muscle blood flow can attain 

substantially greater levels during isolated limb exercise when the systemic 

circulatory strain is minimal (Andersen & Saltin 1985; Calbet et al. 2004; 

Mortensen et al. 2005; Mortensen et al. 2008). It has been shown that the linear 

increase in cardiac output, supporting whole-body metabolism during light 

exercise, is lost prior to volitional exhaustion during whole-body incremental 

cycling exercise in normothermic conditions (Mortensen et al. 2005; Mortensen et 

al. 2008; Stöhr et al. 2011a; Trinity et al. 2012). 
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Figure 2-10. Systemic and limb blood flow, vascular conductances and O2 delivery during 

incremental exercise. Note that the rate of rise in Q̇ (filled circles) and LBF (open circles) is 

attenuated, concomitant to a declining systemic and limb vascular conductance. The rise in both 

systemic and leg O2 delivery is attenuated above ~50% of maximal oxygen uptake. From 

(Mortensen et al. 2005). 
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Figure 2-11. Systemic haemodynamics and metabolism (left panels) and the relationship 

between active muscle O2 demand and supply (right panels). During small muscle mass 

exercise (open circles), cardiac output increases linearly with increasing work rate and one-legged 

oxygen uptake increases linearly with demand. However, when greater muscle mass is employed 

during dynamic whole-body exercise (filled triangles), limb blood flow is curtailed with an attenuated 

local vascular conductance, causing an attenuation in limb muscle oxygen uptake compared to the 

metabolic demand (or power output). From (Mortensen et al. 2008).  
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The circulatory challenge of performing dynamic whole body exercise is 

exemplified by the observation that systemic and active limb O2 delivery is 

markedly attenuated at high intensities (Figure 2-10) (Mortensen et al. 2005). That 

is, the relationship between limb V̇O2 and exercise intensity is blunted (from 12 

ml.W-1.min-1 to 9 ml.W-1.min-1 beyond ~50% WRmax), concomitant to a plateau in 

systemic and limb O2 delivery. The disparate O2 supply was confirmed in a follow 

up study that included constant maximal exercise at a substantially higher (≈110% 

WRmax) work rate (Figure 2-11) (Mortensen et al. 2008). An interesting observation 

in the same study was that limb vascular conductance was attenuated (above 

~50% peak power) during both single-leg knee extensor and whole body exercise 

(Figure 2-11; middle right graph), but blood flow was still matched to demand with 

single limb exercise (Figure 2-11; lower right graph). Critically, despite augmenting 

metabolic demand, leg and systemic blood flow and O2 uptake were not elevated 

above that observed during incremental exercise; indicating a circulatory limit to 

convective oxygen supply during strenuous exercise eliciting maximal aerobic 

power.  

 

On further investigation of the factors underpinning V̇O2max, a commendable study 

utilised atrial heart pacing to investigate whether heart rate instilled a limit on 

raising cardiac output and systemic/limb oxygen supply during incremental 

exercise (Munch et al. 2014). It was shown that elevating heart rate above levels 

normally observed during incremental exercise did not influence systemic and limb 

perfusion (Figure 2-12), through concomitant reductions in stroke volume. Taken 

together, mechanisms restricting stroke volume appear to be a major determinant 

of maximal aerobic power by compromising convective O2 transport 

(Higginbotham et al. 1986; Rowell, 1993; Calbet et al. 2007; Stöhr et al. 2011b; 

Bada et al. 2012; Munch et al. 2013). Notwithstanding, O2 demand and the vast 

increase in peripheral (active limb) blood flow, are considered to be highly 

influential in the decline in venous return and stroke volume (Mortensen et al. 

2007; González-Alonso et al. 2008; Bada et al. 2012; Munch et al. 2014). There is 

currently no information on the circulatory adjustments to incremental exercise to 

volitional exhaustion under heat stress conditions. 



37 
 

 

Figure 2-12. Systemic, leg and upper body O2 delivery and O2 uptake during incremental 

exercise, with and without heart pacing. Note that haemodynamics and metabolism were 

unaffected by increasing heart rate by 20 beats·min
-1

 with atrial pacing. From (Munch et al. 2014). 

 

Summary 

There is still much debate on the primary factor/s underpinning maximal aerobic 

power. Restrictions at each level of the oxygen transport chain could play a role in 

limiting V̇O2max. It is, however, evident that a compromised limb blood flow prior to 

exhaustion, attenuates active muscle V̇O2 and thus appears to be a major factor in 

the chain of events leading to fatigue during maximal incremental exercise. 

Because heat stress and dehydration further challenge circulatory function, 

specifically cardiac output, investigating the haemodynamic and metabolic 

alterations to incremental exercise in the heat will provide further understanding of 

the processes limiting maximal aerobic power.  
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 Overall summary 2.6

Exercise induced dehydration and exercise heat stress can both lead to core 

hyperthermia that can impair physiological function and reduce exercise capacity. 

Dehydration and concomitant hyperthermia accelerates the decline in active limb 

blood flow during prolonged exercise in the heat. It could be that reductions in 

cerebral blood flow, and a compromised cerebral metabolism, contribute to the 

reduced exercise capacity and early fatigue in the heat; however, no study to date 

has investigated the circulatory responses across the head during prolonged 

exercise with heat stress and dehydration. An attenuated active muscle blood flow, 

secondary to a reduced stroke volume, appears to underpin the decline in maximal 

aerobic power. However, the precise circulatory and metabolic alterations remain 

to be fully elucidated. Investigating the cerebral and active muscle circulatory 

adjustments to strenuous exercise in the heat, with and without dehydration, will 

provide new knowledge and understanding of the mechanisms restricting exercise 

capacity under environmentally stressful conditions.    
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 Thesis aims and hypotheses 2.7

No study has systematically examined the impact of dehydration-induced 

hyperthermia and heat stress on brain, muscle and systemic haemodynamic and 

metabolic dynamics during strenuous incremental and prolonged exercise. The 

subsequent chapters address the primary aims of the thesis that are outlined 

below; 

 

Chapter 4 aims; 

1. To determine whether dehydration accelerates the attenuation in cerebral 

blood flow normally occurring during graded incremental exercise to 

exhaustion and whether subsequent rehydration reverses these effects. 

2. To identify whether cerebral metabolism is compromised prior to volitional 

exhaustion during graded incremental exercise.  

 

Chapter 4 research hypotheses; 

1. Dehydration will reduce maximal aerobic power in the heat concomitant to 

early reductions in cerebral blood flow during graded incremental exercise to 

exhaustion.  

2. The cerebral metabolism will be maintained through compensatory increases 

in substrate metabolism. 

 

Chapter 5 aims;  

1. To determine whether dehydration reduces brain and extra-cranial blood flow 

during prolonged submaximal exercise in the heat and whether rehydration 

reverses these responses. 

2. To determine whether alterations in regional haemodynamics are associated 

with impaired cerebral metabolism. 

 

Chapter 5 research hypotheses; 

1. Dehydration will accentuate the increase in internal temperature and lead to 

early exhaustion with concomitant reductions in cerebral and extra-cranial 

blood flow.  

2. Maintaining hydration status will blunt the rise in internal temperature, prolong 

submaximal exercise capacity and attenuate or prevent the decline in regional 

blood flow across the head. 
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Chapter 6 aims;  

1. To determine whether a combined elevation in internal and skin hyperthermia 

with moderate heat stress is associated with compromised maximal aerobic 

capacity and attenuated brain, muscle and systemic blood flow during maximal 

incremental exercise. 

3. To determine whether high skin hyperthermia alone or conversely combined 

skin and internal hyperthermia, impair brain, muscle and systemic 

haemodynamics during maximal incremental exercise in trained humans.  

 

Chapter 6 research hypotheses; 

1. Combined elevations in internal and skin hyperthermia with moderate heat 

stress exposure will reduce maximal aerobic capacity with an associated 

attenuation of brain, muscle and systemic blood flow. 

2. Elevations in skin hyperthermia alone will not be a sufficient stimulus to alter 

circulatory dynamics or compromise maximal aerobic capacity during maximal 

incremental exercise. 
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CHAPTER 3 –GENERAL METHODOLOGY 
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 Introduction  3.1

The following chapter describes the general methodology utilised in studies 1 

(Chapters 4 and 5) and 2 (Chapter 6), respectively. The pre-experimental methods 

are first outlined, followed by detailed descriptions of the methods used. Finally the 

general statistical analysis procedures are outlined. Specific methods and 

protocols used in the individual studies are presented in Chapters 4 to 6.  

 

 Pre-experimental methods 3.2

3.2.1 Ethics 

For the studies presented in this thesis, ethical approval was obtained from the 

School of Sport and Education Research Ethics Committee and the Brunel 

University Research Ethics Committee (Appendix I - Ethical approval). All research 

procedures adhered to the ethical principles for medical research using human 

participants, in accordance with the guidelines presented by the World Medical 

Association (Declaration of Helsinki). 

 

3.2.2 Participant recruitment 

The participants who enrolled in each of the studies chose to do so of their own 

free will. Recruitment posters, blog and website postings and direct contact with 

cycling and triathlon clubs were the principal means for recruitment. After initial 

contact was made, descriptive information sheets (Appendix I - Ethical approval) 

were provided to the participants. All participants who took part were non-smokers 

and free from cardio-respiratory, metabolic and neurological disease as 

established by the completion of a pre-participation health questionnaire consent 

form (Appendix III – Health Questionnaire). After a reflective period and an 

opportunity to ask questions related to the studies, participants provided their 

written consent (Appendix IV - Consent form) to participate. Owing to the invasive 

nature and time commitments of the studies, appropriate remuneration was 

provided. 

 

3.2.3 Anthropometry 

In all studies, participant’s height and mass were assessed using a combined 

stadiometer and scales (Seca 798, Gmbh & Co, Germany). The scales were 

regularly calibrated in accordance with manufacturer recommendations. 
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Descriptive measurements are located within the methods section of each study 

and are presented in metric units (kg, cm, m, etc.).    

 

3.2.4 Assessment of maximal work rate 

Chapters 4 & 5 – for the assessment of each individual’s maximal work rate 

(WRmax), participants performed an incremental step test to the limit of tolerance in 

a semi-recumbent cycling position (Figure 3-1). Tests were conducted one week 

prior to the first familiarisation session and were performed on an electronically 

braked cycle ergometer (Lode Angio, Groningen, Netherlands) with a backrest 

inclination of ~45 °. The test began with an initial work rate of 20 W for 3 min 

followed by step increments of 60 W/3 min until the limit of tolerance was reached.  

 

 

Figure 3-1. Semi-recumbent cycling position employed in chapters 4 & 5. 

 

Chapter 6 – for the assessment of WRmax, participants performed an incremental 

step test to the limit of tolerance on an electronically braked cycle ergometer in the 

upright position (Lode Excalibur, Groningen, Netherlands). The test began with an 

initial work rate at 50% of individual’s predicted maximal aerobic power (estimated 

using Hansen’s rule), for 2.5 min, followed by step increments of 10% 

predicted/2.5 min until the limit of tolerance was reached.    
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In both studies, WRmax was established by the addition of the power output at the 

final fully completed stage, to the fraction of work performed in any subsequent 

partially completed stage. Participants maintained a constant cadence throughout 

the incremental test within a range of between 70-90 r.p.m. and the test was 

terminated when cadence declined to <60 r.p.m. for more than 3 s, despite strong 

verbal encouragement to continue.   

 

 

Figure 3-2. Experimental arrangement for Chapter 6. 

 

 Testing methodology  3.3

3.3.1 Fundamentals of ultrasound and B-mode imaging 

The use of ultrasonography of the carotid arteries as a means of investigating 

atherosclerotic plaques and stenosis is a common procedure in the clinical setting 

(Grant et al. 2003). It is a relatively cost-effective method of investigating medical 

conditions non-invasively and, in recent years, its application to physiological 

research has expanded and been validated at rest and during a variety of exercise 

conditions, for cervical arteries (Schoning et al. 1994; Hellstrom et al. 1996; 

Schoning & Scheel 1996; Sato & Sadamoto 2010; Sato et al. 2011) and peripheral 

arteries (Rådegran 1997; Shoemaker et al. 1997). The following sections describe 

the fundamental principles of both ultrasound imaging and Doppler ultrasound, 
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each with a description of how these techniques were used for the measurement 

of blood flow. 

 

 

Basics of ultrasound 

Ultrasonography uses high frequency sound waves to measure the displacement 

of particles through a given medium, which in this application refers to the 

displacement of sound through muscle, blood and blood vessels (Thrush & 

Hartshorne 2010). Sound is defined by its frequency (f) which is the number of 

displacement cycles (sampling rate) passing through a point in a given media in 1 

s. It is also described by its wavelength () which is the distance between two 

consecutive points of a waveform, of identical magnitude and direction. The time 

taken for the sound wave to move through a given medium by one wavelength is 

known as the period (Ʈ). The amplitude of a sound wave is the observed maximal 

positive deflection point and velocity is a measure of the rate and change of an 

object’s position.  

 

Figure 3-3. Graphical representation of the physics of wavelength and frequency. In 

reference to ultrasound, the displacement of particles (y) and the depth of a given media (x) and 

the wavelength (). 

 

The speed of the emitted sound waves is required to distinguish the depth of 

different media located in the scan area (e.g. bone, muscle, blood, etc.). The 

speed of a sound wave (c; m·s-1) is a product of its wavelength and frequency; c = 

f. Most ultrasound systems consider c to be an average of all soft tissues (i.e. 

~1540 m·s-1), that is despite the observable differences in the speed of sound 

through the different tissues (Table 3-1. Speed of sound in media within the body).  
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Table 3-1. Speed of sound in media within the body. 

Media Speed of sound 

Air 330 

Water 1480 

Fat 1450 

Blood 1570 

Muscle 1580 

Bone 3500 

The speed of sound is dependent on the density of the tissues it travels through. Adapted from 

Thrush & Hartshorne 2010). 

 

In the present thesis, a linear array transducer (10L; GE Healthcare, Horton, 

Norway) was used to generate ultrasound waveforms. The transducer converts 

electrical energy into ultrasound via the mechanical vibration of 128 piezoelectric 

crystals when a given voltage is passed through them. The converted energy, 

emitted as sound waves, travels through the tissues of the body towards the 

region of interest (artery) and, depending on the characteristics of the medium, are 

reflected, scattered or absorbed. Reflected sound waves are detected by the 

transducer and processed. The label provided to the transducer (10L) refers to the 

output frequency (i.e. 10 MHz). The choice of operating frequency depends on the 

depth of the area of interest. Higher frequency probes provide a high-resolution 

image at shallow depths, whereas low frequency probes have greater penetration 

but a compromised image resolution, with most medical ultrasound scanners 

operating between 2 and 20 MHz (Thrush & Hartshorne 2010). To image a region 

of interest, the ultrasound waves are released in pulses. This is important as it 

allows time for the reflected sound to return back for processing within the system. 

Furthermore, the use of pulsed ultrasound provides a clear measure of the depth 

of the target/region of interest using the equation; d = tc/2 where the distance (d) is 

determined if the time (t) between the transmission and reception of a signal and 

the velocity (c) of the sound wave are known. The pulsed ultrasound signal is 

made up of several sine waves operating at different frequencies, with the final 

signal a summation of multiple waves having different periods and amplitudes.    
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For optimal 2-D imaging of the intended artery or vein, the transducer is 

maintained perpendicular to the vessel to ensure that a high proportion of the 

transmitted sound waves are reflected back to the transducer for processing. Any 

deviation from a perpendicular angle, such as an oblique angle in Figure 3-5, 

would result in either a lack of sound returning to the transducer (reflection 

proportional to the angle of incidence) or refraction (sound travelling along a 

different path to the emitted sound), depending on a difference in the speed of 

sound across a tissue boundary, where the ultrasound beam is bent beyond the 

boundary (Thrush & Hartshorne 2010). The imaging of arteries relies on specular 

reflection of the ultrasound emitted from the transducers. A physical boundary 

such as the vessel wall and lumen of an artery provide low acoustic impedance 

and generate strong echoes returning to the transducers, providing a clear image. 

The clarity of the image is also dependent on the potential barriers between the 

probe and the region of interest. The extent of this barrier is termed acoustic 

impedance, and can be affected by skin (subcutaneous fat) and muscle thickness. 

Blood cells absorb less sound and specular reflection occurs in all direction due to 

their rough edges, resulting in fewer returning signals at the transducer and 

explaining the non-visible vessel lumen. All of the aforementioned considerations 

(specular and scattering reflection, refraction, and acoustic impedance) can 

reduce the intensity of the returning signals (attenuation) (Thrush & Hartshorne 

2010).  

 

The ultrasound transducer operates in a multi-array function which allows for the 

formation of many scan lines; that is, the 128 piezoelectric crystals can be grouped 

to produce separate outputs. This arrangement results in the easy analysis of 

multiple vessels of interest for example at the bifurcation of the carotid artery 

where the different branches appear clear, despite differing positions and depths. 

Given the aforementioned attenuation of ultrasound through a variety of media, 

two possible methods help to improve the amplitude of returning signals and thus 

improve image resolution. Firstly, output power of the transducer can be enhanced 

(i.e. apply a greater voltage). Prolonged exposure to high power outputs may lead 

to thermal (TI) or mechanical (MI) injury, both of which can cause structural 

damage of the capillaries and bleeding. In regards to output power, the general 

rule of “as low as reasonably achievable (ALARA)” was adhered to. An alternative 

method of enhancing the received signals is to amplify the returning waves. Often 
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this is useful for the identification of similar tissue boundaries at different depths, 

where the deeper structures pose a greater attenuation than shallow boundaries 

due to the longer time required for the transmission and reflection of the signal. 

Time gain compensation (TGC) dials can be used to amplify signals across the 

depth of the image to enhance signals from deeper structures. This can also be 

used to improve the contrast between tissue boundaries, such as artery vessel 

walls and the lumen (Thrush & Hartshorne 2010). Again, caution must be taken 

using this approach as enhancing the gain to high levels may cause the reflected 

signal to be indistinguishable from noise. Signal (and thus image) quality can also 

be enhanced through the focussing of the ultrasound beam to a specific region, or 

depth of interest. By varying/delaying the excitation of the aforementioned groups 

of crystals across the transducer, transmitted scan lines interfere to focus on a 

given position. This electrical delay is also utilised to steer beams originating from 

different groupings across the transducer, which subsequently overlap to enhance 

the image (compound imaging). The principles of beam forming and the ability to 

produce groups along the transducer are also crucial for the generation of an 

appropriate Doppler angle for velocity measurements (Thrush & Hartshorne 2010). 

 

 

Figure 3-4. Vivid 7 ultrasound system used in the present thesis. 
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2D B-mode measurements of CCA, ICA and ECA diameter 

Prior to the experimental day, initial measurements of the right common, internal 

and external carotid arteries for vessel diameter were made in brightness-mode 

(B-mode) imaging using a ultrasound unit (Figure 3-4; Vivid 7 Dimension, GE 

Healthcare, Horton, Norway) and a linear array transducer (10L, GE). Carotid 

artery imaging was made on the right lateral cervical region. An assumption is 

made forthwith that the right and left cervical arteries are homogenous, in spite of 

their differing anatomical origins, and this is substantiated by research indicating 

that there appears to be no side-to-side differences in vessel diameters (Krejza et 

al., 2006). An example b-mode image is presented in Figure 3-5 and with colour 

imaging to indicate blood flow (Figure 3-6).  

 

 

Figure 3-5. Example image of the carotid bifurcation. The common carotid artery splits into the 

internal (lower vessel) and external (upper vessel) carotid arteries. Note that the internal carotid 

artery is more often located superior to the external carotid. 
 

In the majority of cases it was not possible to view the bifurcation as clear as in the 

presented image, and in the majority of participants measurements of vessel 

diameter were made in each vessel sequentially. For diameter measurements the 

vessel was maintained at a perpendicular angle to the transducer to ensure 

maximal reflection of sound waves for the production of clear and accurate images 
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of the vessel walls (clear visualisation of the intimae, media and adventitia). To 

ensure a reliable measurement of vessel diameters, an experienced sonographer 

used callipers to identify the leading edge of the near wall and the leading edge of 

the far wall (Hellstrom et al., 1996).  

 

 

Figure 3-6. 2D image with colour overlay. Red colouring indicates blood arterial blood flow from 

right to left. Image also shows clearly defined vessel walls including the distal intima (white line at 

2cm depth), media (thin dark band below intima) and adventitia. 

 

Vessel diameter was calculated from the B-mode images taken at rest and during 

each exercise condition and were weighted more to diastole (2/3) than systole 

(1/3) as previously described (Hellstrom et al. 1996; Rådegran 1997; Sato et al. 

2011). 

CSA = π (mean diameter/2)2 

 

3.3.2 Fundamentals of Doppler ultrasonography 

The Doppler Effect (Christian Doppler, 1842) is described as the change in the 

observed frequency of sound due to the relative motion of an observer, object or 

both. Common examples of the Doppler Effect in a real world setting are the 

observed change in pitch of a siren or the sound of a bee in flight as it is travels 

towards and beyond you. If the source of the sound and the observer remain 
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stationary, the observed sound has the same frequency as the transmitted sound. 

If the observer moves closer to the sound, the observer will cross the emitted 

waves faster than when stationary and thus a higher frequency is interpreted than 

is emitted. The opposite is true when the observer moves away from the sound 

source. If the source of sound moves towards a stationary observer, as often is 

with the siren example, the wavelength will shorten and the observer will hear a 

higher frequency. Again, the opposite case is true when the source moves away 

the wavelength becomes longer resulting in a lower observed frequency of sound. 

This change in frequency is defined as the Doppler shift and is proportional to the 

speed of the source and observer.   

 

Basics of Doppler 

In its application to vascular ultrasound, the Doppler Effect is used to assess the 

velocity of blood through a given vessel. The transducer first acts as the stationary 

sound source whereas the blood cells are the moving receivers of the sound. 

Upon reflection of the sound, the blood becomes the moving source of sound and 

the transducer is the stationary observer. The Doppler shift observed is dependent 

on the velocity of the moving blood and the frequency of the sound waves initially 

transmitted from the transducer. The accurate interpretation of the observed 

frequency of the moving blood is intimately related to the angle of the observer 

(i.e. the angle of the ultrasound beam/transducer). The Doppler shift frequency (fd) 

is then calculated as; fd = 2vft cosθ/c where; v is blood velocity, ft = transmitted 

frequency and cosθ is the cosine of the angle between the ultrasound beam and 

the direction of blood flow. The latter is known as the angle of insonation and, 

when used incorrectly, is a main source of error in blood velocity measurements 

(Figure 3-7). Preferably the cosθ would be 0° (i.e. the ultrasound beam is directly 

behind the flow of the blood) as this would provide the maximal detectable Doppler 

shift frequency. Conversely, if the cosθ were at 90°, no Doppler shift would be 

detectable. The Doppler shift is extracted from the returning signal, usually through 

a process of demodulation which involves calculation of the product of the 

transmitted signal by the received signal, which is then filtered to reveal the “true” 

Doppler signal (Thrush & Hartshorne, 2010).  
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Figure 3-7. Graphical representation of the error associated with altering the angle of 

insonation. 

 

Once the signal is produced, blood velocity can be extracted by spectral analysis. 

That is, the Doppler signal is broken down into its component frequencies (which 

will vary with the differing velocities of blood across the luminal space over time) 

and presented as a frequency spectra (Figure 3-8). The spectra can then be 

analysed and a velocity is then attributed to the obtained frequencies. Signals in 

the present study were obtained in pulse-wave (PW) mode which operates by; 1) 

emitting a pulse, 2) waiting for a given time period, 3) receiving the returning pulse 

and 4) waiting before emitting the next pulse. The length of time taken for this 

process to occur depends on the depth and sample volume of the region of 

interest. To measure the frequencies of the blood flow in a vessel, thousands of 

pulses at a given frequency are propagated along the beam path every second 

(Pulse repetition frequency, PRF). Given that the PW mode requires time to emit 

and receive the Doppler signal, there is an upper limit of the PRF as the system 

must wait until the emitted pulses return before a new pulse is deployed.   
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Figure 3-8. Representative distribution of Doppler derived frequencies over time. From 

(Thrush & Hartshorne 2010). 

 

The constantly changing blood velocity and a good range resolution (information of 

the depth of the returning signals) make PW mode the most appropriate for blood 

flow measurements. However, there is an upper limit in PW mode that can lead to 

error in the measured frequencies (and thus blood flow velocity errors). This is the 

Nyquist limit which states that the PRF must be more than twice the maximum 

Doppler shift frequency (or blood velocity) to be measured. A PRF that is less than 

twice the Doppler shift frequency will cause aliasing, leading to an underestimation 

of the measured signal (Figure 3-9). It is possible to make small adjustments to the 

PRF to avoid aliasing, but there remains an upper limit. The physical depth of the 

region of interest is the most likely cause of aliasing in a signal when 

measurements are made in PW mode. For most measurements of blood flow 

velocity in human studies, appropriate use of the PRF and adjustments to the 

ultrasound system can often negate these problems.   
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Figure 3-9. Impact of aliasing of derived Doppler signal. Note that use of a low PRF (lower 

panel) underestimates the Doppler shift. 

 

Pulse-wave Doppler velocity measurements 

PW (4.5 MHz) velocity measurements were made in duplex mode; allowing for 

both B-mode and PW mode images to be obtained simultaneously. This helps to 

ensure the correct placement of the sample volume, angle of insonation and 

vessel alignment through continuous visual inspection during blood flow velocity 

measurements. Blood velocity was calculated using the rearranged Doppler shift 

frequency equation; 

V = fdc/2ft cosθ 

 

Velocity waveforms from 10-20 cardiac cycles were obtained in pulse-wave (PW) 

mode for a measure of time averaged mean blood flow velocity (TAM V; cm·s-1). 

This average was taken to eliminate any irregular artefacts associated with 

dynamic changes in breathing pattern during intense exercise. Care was taken to 

ensure that the transducer was in a stable position on the skin and that the angle 

of insonation was as low as possible and always maintained below 60°. In all 

measurements it was ensured that the sample volume was placed in the centre of 

the vessel of interest, in line with the direction of blood flow, and adjusted to cover 

the entirety of the lumen. This was to account for the different velocities of the 

centre of the lumen compared to the velocity at the vessel walls.      
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Calculation of blood flow 

Blood flow was calculated as the product of vessel cross sectional area, as 

described previously, and time averaged mean velocity (multiplied by 60 for 

conversion to ml·min-1), where; 

Blood Flow = TAMV x CSA x 60 

 

Measurements of both diameter and velocity were made ~1.0-2.0 cm proximal to 

the carotid bifurcation for the CCA and, ~1.0-1.5 cm distal to the carotid bifurcation 

in the ICA to avoid the turbulent flow apparent in this area (Sato et al., 2011).  

 

Prior to the first study, a series of coefficient of variation experiments were 

performed to ensure the intra-observer variability of the researchers was in 

accordance with accepted values. Eight participants visited the laboratory on two 

occasions, the first for resting measurements and the second for exercise 

measurements. Three resting measurements of the CCA, ECA and the ICA were 

made non-consecutively on the same day. Average variation during exercise was 

calculated from measurements made at three exercise intensities. The Coefficient 

of Variation (CV) values for diameter and flow for each vessel are presented in 

Table 3-2. 

 

3.3.3 Cerebral blood velocity 

As a surrogate estimation of alterations in cerebral blood flow, mean blood velocity 

of the middle cerebral artery (MCA Vmean) was obtained continuously and non-

invasively using a transcranial Doppler ultrasound system (DWL Doppler, Singen, 

Germany). Due to the impedance of the skull, the intra-cerebral arteries cannot be 

imaged effectively using a higher resolution system and thus 2D B-mode imaging 

of the vessel are not possible. Any changes in velocity through the insonated 

vessel were assumed to be reflective of changes in blood flow, as vessel diameter 

is thought to be constant in the majority of cases (Bishop et al. 1986; Serrador et 

al. 2000; Peebles et al. 2008), but less so in others (Wilson et al. 2011). This 

technique is validated and reliably used to quantify blood velocities in the cerebral 

arteries. 

 

 



56 
 

Table 3-2. Coefficient of variations for CCA, ICA and ECA. 

Measurement Condition CV (%) 

CCA Diameter 

 

 

CCA Flow 

 

 

ICA Diameter 

 

 

ICA Flow 

 

 

ECA Diameter 

 

 

ECA Flow 

Rest 

Exercise 

 

Rest 

Exercise 

 

Rest 

Exercise 

 

Rest 

Exercise 

 

Rest 

Exercise 

 

Rest 

Exercise 

1.2 + 0.4 

0.6 + 0.3 

 

4.3 + 1.0 

5.3 + 1.6 

 

1.4 + 0.6 

0.6 + 0.4 

 

2.8 + 0.9 

5.0 + 1.6 

 

1.8 + 1.0 

4.0 ± 1.5  

 

2.1 ± 1.1 

5.1 ± 1.4 

 

Values are mean ± SEM. 

 

  

A 2 MHz frequency transducer was used to assess blood velocity in the MCA, as 

high frequencies do not penetrate the skull bones effectively (Aaslid et al. 1982). In 

initial investigations of the participants, a hand-held transducer was used to 

identify the MCA. The transducer was placed on the transtemporal window 

(Figure 3-10; Aaslid et al., 1986b) and was adjusted with minute movements until 

a clear Doppler signal and best signal-to-noise ratio were achieved (Aaslid et al. 

1982). With a transtemporal approach, the MCA is best viewed in the anterior 

plane, as the angle of insonation is close to zero, allowing absolute velocity values 

to be obtained (Willie et al. 2011).  
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Figure 3-10. Positioning of TCD transducer for the adequate measurements of MCA Vmean.    

F = frontal, A = anterior, M = medial and P = Posterior. Adapted from; Fujioka & Douville, Anatomy 

and freehand examination. In Newell, D. W. and Aaslid, R: Trancranial Doppler, Raven Press, New 

York, 1992. 

 

The depth setting was maintained between 45 and 60 mm, maximising the 

potential of identifying the MCA, with the MCA often observed at a depth of ~50 

mm (Willie et al. 2011). A custom-made TCD headset (DiaMon, DWL, 

Compumedics, Singen, Germany) was then attached to the participants, housing a 

similar transducer, and was fixed in place for the entirety of the exercise 

conditions. To ensure reproducibility of the placement of the TCD probe and a 

similar angle of insonation, photographs of the participants were obtained in the 

initial visit and used to guide placement on subsequent visits. MCA Vmean was 

measured continuously using an appropriate software package (QL 2.6.1, 

Compumedics DWL, Singen, Germany). 

 

3.3.4 Leg blood flow (Chapter 6) 

Blood flow during incremental exercise was determined using the constant-

infusion thermodilution method (Ganz et al. 1964; Andersen & Saltin 1985; 

González-Alonso et al. 1998; González-Alonso et al. 2000). Briefly, a quad lumen 

catheter, with three side ports to aid with saline/blood mixing during the infusions, 

was inserted anterograde into the right common femoral vein. Infusate and venous 

blood temperatures were measured continuously during the infusion of cold saline 

(~20 s, 120-160 ml·min-1; Harvard pump, Harvard Apparatus, Millis, MA, USA). 

Blood temperature was measured using a thermister (T204a, PhysiTemp, Clifton, 

New Jersey, USA) inserted through the catheter, ~10 cm beyond the tip whereas, 

saline infusate temperature was measured using a flow-through housing unit 
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positioned at the entrance of the catheter. Infusate temperature was corrected 

across the range of infusion rates used (1.0 °C at rest at 120 ml·min-1 and 0.6 °C 

during maximal exercise at 160 ml·min-1) accounting for the elevation in infusate 

temperature as it travels through the catheter. Leg blood flow was then calculated 

using the following heat balance equation; 

 

LBF = VI x [SICI/SBCB] x [(TB-TI/TB-TM)-1] 

 

where, VI is the rate of saline infusion (ml·min-1), TB is blood temperature prior to 

saline infusion, TI is the temperature of the saline and TM is the mixed blood and 

saline temperature at steady state. SI and SB (1.005 and 1.045 g·cm-3) and, CI and 

CB (4.173 and 3.600 J·g-1°·C-1) are the specific gravities and specific heat of the 

blood and infusate, respectively (producing a constant of 1.115 for LBF 

calculations).                           

   

3.3.5 Tissue oxygenation 

Cerebral oxygenation of the pre-frontal cortex was measured using near-infrared 

spectroscopy (NIRS, INVOS, Somanetics, Troy, MI, USA) (Madsen & Secher 

1999; Rasmussen et al. 2007). A pair of NIRS optodes, containing an infrared light 

emitter and two receiving detectors, spaced 30 mm and 40 mm from the light 

source respectively, were placed on the skin of the forehead covering the frontal 

cortex. Near-infrared light (730-810 nm) is intermittently passed through the 

tissues and either absorbed, by oxy- and de-oxyhaemoglobin, or scattered back to 

the detector, whereby the total concentrations of oxyhaemoglobin can be 

determined. Care was taken to avoid placing the NIRS pads too close to the 

superior sagittal sinus which prevents the infrared light from entering the cranial 

tissue.  
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Figure 3-11. Graphic depicting the use of near-infrared spectroscopy to determine 

oxygenation of the frontal lobe. (Courtesy of Somanetics Inc.). 

 

The optodes were securely fastened to the forehead using adhesive tape and 

were held in place using a modified headset, which also housed the TCD 

transducer. Care was also taken to ensure no external light was allowed to enter 

the optode which can interfere with the data collected. 

 

3.3.6 Ventilatory and metabolic parameters  

Pulmonary and gas exchange and ventilation were measured breath-by-breath at 

the level of the mouth using an online, portable metabolic cart (Quark b2, Cosmed, 

Italy). With their nose occluded, participants breathed into a mouthpiece containing 

a digital turbine transducer for the measurement of inspired and expired volumes. 

O2 and CO2 concentrations of the sampled air were obtained from analyser cells 

within the metabolic cart. The analyser was calibrated prior to each exercise test 

using certified gas concentrations (CO2 = 5%, O2 = 15%; balanced with N2). 

Breath-by-breath data were obtained from each test and pulmonary gas exchange 

indices included; minute ventilation (V̇E), tidal volume (V̇T), oxygen uptake (V̇O2) 

and carbon dioxide output (V̇CO2).    

 

3.3.7 Catheterisation 

Arterial and venous blood samples were withdrawn simultaneously from catheters 

inserted percutaneously under local anaesthesia. All catheter insertions were 
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performed by a medically trained anaesthetist, with many years of experience. All 

insertions were made under sterile conditions with appropriate dressings used to 

maintain catheter position and participant comfort throughout the protocols.  

 

Arterial catheterisation  

For arterial blood samples and pressure measurements in studies one and two 

respectively, a catheter (1.1 mm internal diameter, 20 gauge) was inserted 

percutaneously into the brachial artery of the non-dominant arm.  

 

Venous catheterisation  

Chapters 4 & 5 – for venous blood samples and pressure measurements a central 

venous catheter (16 gauge, 2.3 mm ID; Multi-Med M2716HE, Edwards 

Lifesciences, USA) was inserted retrograde, using the Seldinger technique, into 

the left internal jugular vein and subsequently advanced ~15 cm to its bulb at the 

base of the skull to ensure no contamination of blood from extra-cerebral sources 

(Jakobsen & Enevoldsen 1989). Participants lay supine in a slight Trendelenburg 

position to maintain an open and full jugular vein. Successful placement was 

indicated by a resting jugular venous pressure of <~10 mmHg, a steady flow of 

blood and easy flushing of saline through the catheter.     

 

Figure 3-12. Depiction of IJV catheterisation. Catheter was inserted and subsequently advanced 

to the base of the skull (asterix). IJV = internal jugular vein, MB = mastoid bone, RV = 

retromandibular vein and CCA = common carotid. From (Jakobsen & Enevoldsen, 1989). 
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Chapter 6 – for venous blood samples, pressure measurements and saline 

infusion a central venous catheter (Logicath Quad lumen, 18 gauge, 2.3 mm ID; 

MXA234X16X85, Smiths Medical International LTD) was inserted anterograde, 

using the Seldinger technique, into the right common femoral vein.  

Catheterisations were made under local anaesthetic (1% lidocaine) and were 

guided by real-time ultrasound imaging to ensure correct placement as advised by 

the National Institute for Clinical Excellence (National Institute for Clinical 

Excellence 2002). 

 

Arterial and jugular venous pressure waveforms were recorded using transducers 

(Pressure Monitoring Kit, TruWave, Edwards Lifesciences, Germany) zeroed at 

the level of the right atrium in the midaxillary line (arterial) and at the level of the tip 

of the catheter (jugular and femoral venous). Pressure waveforms were sampled 

at 1000 Hz, amplified (BP amp, ADInstruments, Oxfordshire, UK) and connected 

to a data acquisition unit (Powerlab 16/30, ADInstruments, Bella Vista, NSW, 

Australia) for offline analysis. 

 

 

Non-invasive blood pressure 

Arterial catheterisations were not possible in the control trials for studies 1 and 2. 

Blood pressure waveforms and subsequent derived variables (see model flow 

method below) were obtained from the finger using a non-invasive blood pressure 

system (Finometer® Pro, Finapress Medical Systems, The Netherlands). This 

system uses an inflatable finger cuff with inbuilt photo-electric plethysmography to 

detect finger pulse pressure waveforms. The shape of pulse waves and pressure 

levels obtained at the finger are inherently different to that of the brachial artery 

due to wave distortion and changes in pressure gradients. To ensure comparison 

to the invasive measurements, corrections were made to ensure a reliable and 

valid estimate of brachial artery pulse pressure and derived values. Firstly, the 

finger cuff was corrected for its distance below the heart using a height sensor that 

was nulled at the finger and subsequently positioned at the level of the heart. 

Following this, a return-to-flow (RTF) correction was used to correct the measured 

finger pulse pressures to reflect brachial artery pulse pressures. This process 

involved a protocol of stepwise arm cuff occlusion, to suprasystolic levels, followed 

by gradual deflation. The first pulsation measured at the finger during cuff deflation 
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is referred to as RTF; at which point a simultaneous measure of arm cuff pressure 

allows for the RTF correction, and thus a reconstructed brachial artery pressure 

pulse wave, to be applied. Waveform corrections resulted in derived systolic, 

mean and diastolic pressures falling in line with the Association for the 

Advancement of Medical Instrumentation (AAMI) recommendations.  

 

Prior to calibration and the commencement of measurements, individuals age, 

height, weight and gender were input. After the height and RTF corrections, finger 

pulse-pressure measurements began after a manufacturer determined calibration 

period, where the finger cuff obtained pulse waves were zeroed repeatedly over 

10, 20, and 30 s time windows, respectively. After this initial calibration, the system 

calibrated every 60 s, allowing for the collection of representative pulse waves 

over a prolonged duration, whilst maintaining proper functioning. Beat-to-beat 

reconstructed BAP waveforms, heart rate, stroke volume and cardiac output were 

recorded (Powerlab 16/30, ADinstruments, Bella Vista, NSW, Australia) and stored 

for offline analysis.  

 

Model flow method  

Estimates of stroke volume were obtained from direct blood pressure (catheter 

derived) and reconstructed brachial artery pressure waveforms (rBAP; Finometer), 

and waveforms were analysed using appropriate software (Beatscope 1.1a, FMS 

BV, Amsterdam, The Netherlands). A three-element model (Wessling et al., 1993) 

was used to compute aortic flow using principle haemodynamic properties of the 

arterial system: 1) non-linear pressure dependent aortic compliance (how effective 

the aorta and arterial system are able to store the elastic energy derived from the 

left ventricle upon contraction); 2) characteristic impedance of the aorta (extent to 

which the aorta impedes pulsatile flow); 3) time-dependent systemic vascular 

resistance (sum total of the resistance of all vascular beds). Using the 

aforementioned characteristics, the model flow method calculates aortic flow over 

time (thus estimating stroke volume). Cardiac output derived from the Modelflow 

calculation is comparable to other methods during exercise (Sugawara et al. 

2003). 
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3.3.8 Heart rate 

Heart rate was obtained by telemetry using a chest strap and recordable monitor 

(Team 2, Polar Electro, Kempele, Finland). Files were downloaded and analysed 

offline.   

 

3.3.9 Blood parameters  

Blood samples were withdrawn simultaneously from the arterial and venous 

catheters into pre-heparinised syringes (Pico 50, Radiometer, Copenhagen, 

Denmark). Samples were purged of atmospheric content and immediately 

analysed for a variety of haemodynamic variables (pH, Sa/vO2, a/v ctO2, PO2, 

PCO2, [Hb] and [La-]). Analyses were made using a blood gas analyser (ABL 800 

Flex, Radiometer, Copenhagen, Denmark).    

 

Prior to sample analysis, the system was calibrated for accuracy. Firstly, four 

quality control AutoCheck (Radiometer, Copenhagen, Denmark) ampoules were 

run to assess the drift and range of the system. Following this, two calibration 

programs were systematically run to ensure reliability of results. A 1-point 

calibration was processed, whereby each parameter is assessed against a 

solution/gas of known composition. If the obtained drift (how much the known 

solution differs from that which is analysed) is within an acceptable range the 

calibration is passed. A second 2-point calibration, run more infrequently, is similar 

to the 1-point calibration, but instead uses two known solutions/gases to assess 

the reliability of the measured values. 1-point (every 30 min) and 2-point (every 4 

h) were run regularly to maintain the system.  

 

Additional samples were collected directly into stop solution containing S-(4-

nitrobenzyl)-6-thioinosine (NBTI; 5 nM), 3-isobutyl-1-methylxanthine (IBMX; 100 

µM), forskolin (10 µM), EDTA (4.15 mM), NaCl (118 mM), KCl (5 mM), and tricine 

buffer (40 mM), to prevent further metabolism of ATP within the sample, prior to 

being placed into plastic tubes and centrifuged for 3 min at 4000 g to separate the 

supernatant (Gorman et al. 2003). ATP levels in the supernatant were assessed 

using an ATP kit (BioThema AB, Dalarö, Sweden). Plasma ATP was determined in 

duplicate at room temperature (20-22 °C) by the luciferin-luciferase technique 

using a luminometer with three automatic injectors (Orion Microplate Luminometer, 
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Berthold Detection System, GmbH, Pforzheim, Germany). The following equation 

describes the bioluminescence analysis; 

 

ATP + D-luciferin + O2      
luciferase

      AMP + PPi + oxyluciferin + CO2 + light 

 

Luciferin reacts with ATP, which subsequently reacts with luciferase with the 

addition of O2. This compound readily disassociates to release light and it is the 

extent to which light emitted is proportional to the ATP contained in the sample, 

when compared against a pre-determined calibration curve of standards contained 

in the ATP kit. Detection thresholds provided by the manufacturer are 10-12 mol·l-1 

(minimum) and 10-6 mol·l-1 (maximum). Haemoglobin concentration was obtained 

to assess the degree of haemolysis in the sample which, if of a high level, can 

influence the final derived values.     

 

Plasma catecholamines 

Arterial and venous blood samples were collected in 2 ml syringes and transferred 

to EDTA tubes, centrifuged at 3000 r.p.m. and 4 °C for 10 min. After separation, 

plasma was extracted and immediately placed into Eppendorf tubes and stored in 

liquid nitrogen before transfer to a -80 °C freezer for storage and later analysis. 

Plasma adrenaline and noradrenaline was determined using an enzyme 

immunoassay kit (DEE6500 2-CAT, Demeditec Diagnostics GmbH, Germany). 

Briefly, adrenaline and noradrenaline were extracted using a cis-diol-specific 

affinity gel, acylated and then enzymatically derived. In the present study, the 

microtiter plate format was used for the competitive enzyme-linked immunosorbent 

assay (ELISA). Plasma samples, standards and controls were first acylated and 

acid extracted before they were then added to microtiter 96 well plate coated with 

antibodies for adrenaline and noradrenaline. Anti-rabbit IgG conjugated with 

peroxidase was added and after periods of mixing and washing, a colourless 

substrate (Tetramethylbenzidine; TMB) was added to the wells and incubated with 

the samples. The enzyme conjugates which are bound to the antigens cause a 

colour change to blue, a process which is then prevented by the addition of stop 

solution causing a further colour change to yellow. The extent of colour change 

(and thus concentration determined from the calibration curve) is dependent on 

the number of enzyme conjugates that are bound to the antigens on the base of 
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the well. That is, if there is a high concentration of a given protein (or 

adrenaline/noradrenaline in this thesis) in the plasma sample, more will bind to the 

antigens than that of the enzyme conjugated protein, which will produce less 

colour change and vice versa. The absorbance of the wells was then assessed 

using a microplate reader set at a 450 nm. Controls and standards were used for 

the determination of calibration curves which define the final concentration of 

adrenaline and noradrenaline within the samples. Derived adrenaline and 

noradrenaline values are comparable to UK control values using HPLC (r = 0.96, 

0.99, respectively).  

 

Regional noradrenaline (NE) spillover was estimated and assessed in line with 

published methods (Hardebo & Owman 1980; Esler et al. 1984; Eisenhofer et al. 

1988; Esler et al. 1988; Esler et al. 1990; Mitchell et al. 2009). Regional net 

spillover of noradrenaline from a given organ is calculated using the Fick principle, 

i.e. the product of arteriovenous difference in plasma NE concentration, and 

plasma flow. Across most organs noradrenaline flux is bi-directional and there is a 

required knowledge of the regional fractional extraction of NE from arterial blood. 

However due to the presence of a blood-brain-barrier (BBB), NE uptake is 

unidirectional and thus spill-over detected in the internal jugular vein is thought to 

originate primarily from the sympathetic nervous activity of the cerebral 

vasculature (Hardebo & Owman 1980; Esler et al. 1988; Mitchell et al. 2009). 

Thus, estimated increases in sympathetic nerve activity through measurements of 

the spillover of noradrenaline into plasma were made using the Fick principle.    

 

3.3.10 Calculated variables  

Vascular conductance for the leg, brain and systemic circulations was calculated 

as flow divided by perfusion pressure (MAP-jugular/femoral venous blood 

pressure). Arterial and venous oxygen content was obtained and used to calculate 

a-vO2 difference and oxygen extraction (a-vO2 diff/CaCO2) across the leg and 

brain. The cerebral metabolic rate for oxygen (CMRO2), leg V̇O2, and glucose and 

lactate uptake were calculated as the product of flow and substrate a-v difference. 

Further calculations relative to each study can be found in the respective chapters. 

   



66 
 

3.3.11 Core, skin and blood temperature 

Core temperature was assessed using different methods in the two studies. 

Intestinal temperature (Chapters 4 & 5) was obtained using an ingestible telemetry 

pill (CorTemp, HQInc, Palmetto, Florida, USA) and data recorder, linked to an 

analogue-to-digital converter and data acquisition hardware/software (Powerlab). 

Each telemetry pill was individually calibrated prior to ingestion. Briefly each pill 

was activated and immersed, for at least 6 min, in water baths set at varying 

temperatures (36, 38, 40 and 42 °C) in the region of normal core body 

temperatures. Comparisons were made between the sensor and a calibrated 

mercury thermometer with individual regression plots were created for each pill, to 

obtain a correction factor for observed temperatures (Byrne & Lim 2007; Hunt & 

Stewart 2008). The sensors were consumed by the participants in the late evening 

(~21:00), preferably with a meal, to ensure correct placement in the 

gastrointestinal tract in accordance with manufacturer and published 

recommendations (Goodman et al. 2009). The telemetry pill was used due to its 

more rapid response time when compared with a standard rectal thermister (Byrne 

& Lim 2007). Oesophageal temperature (Chapter 6) was obtained using a 

thermistor (PhysiTemp, NJ) inserted through the nasal passage and into the 

oesophagus at ¼ standing height. A small volume (<0.8 ml) of anaesthetic gel 

(Lidocaine Hydrochloride, Instillagel, CliniMed, UK) was self-applied to the nasal 

passage to reduce discomfort associated with the insertion procedure. 

 

Skin temperature was obtained using cabled thermistors (Chapters 4 & 5; Type T 

thermocouple, PhysiTemp, NJ) and wireless data loggers (Chapter 6; iButton®, 

Maxim Integrated, California, USA; Figure 3-13), located at four sites (forearm, 

chest, thigh and calf (Ramanathan 1964; Mitchell & Wyndham 1969). Weighted 

skin temperature was then calculated using the following equation;  

 

0.3 (Tchest + Tforearm) + 0.2 (Tthigh + Tcalf) 

 

This method of calculating mean skin temperature has strong agreement with 

other methods and was used in the present study due to the logistical limitations of 

the numerous other measurements taken (Mitchell & Wyndham 1969).  



67 
 

 

Figure 3-13. Thermochron iButton
®
. 

 

Blood temperature in the internal jugular vein (Chapters 4 & 5) and common 

femoral vein (Chapter 6) was obtained by the insertion of a thermistor (T-204D, 

PhysiTemp, Clifton, NJ) through the catheter and beyond its tip. All cabled 

thermistors were connected to a thermocouple meter (TC-2000, Sable Systems, 

Las Vegas, NV, USA) and converted to an online acquisition unit (Powerlab 16/30, 

ADinstruments, Bella Vista, NSW, Australia).   

 

3.3.12 Statistical analysis  

Data presented in the present thesis were examined using a statistical software 

package (SPSS Version 20, IBM Corporation, Armonk, NY, USA). The alpha level 

was set at P < 0.05 for the rejection of the null hypothesis. Coefficient of 

determination (R2) was used to assess the relationship between given variables. 

The specific tests used to analyse the data are presented in the individual 

chapters.  
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CHAPTER 4 – Dehydration affects cerebral blood 

flow but not its metabolic rate for oxygen during 

maximal exercise in trained humans 
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 Summary  4.1

Intense exercise is associated with a reduction in cerebral blood flow (CBF), but 

regulation of CBF during strenuous exercise in the heat with dehydration is 

unclear. We assessed internal (ICA) and common-carotid artery (CCA) 

haemodynamics (indicative of CBF and extra-cranial blood flow), middle cerebral 

artery velocity (MCA Vmean), a-v differences, and blood temperature in 10 trained 

males during incremental cycling to exhaustion in the heat (35 °C) in control, 

dehydrated and rehydrated states. Dehydration reduced body mass (75.8 ± 3 vs. 

78.2 ± 3 kg), increased internal temperature (38.3 ± 0.1 vs. 36.8 ± 0.1 °C), 

impaired exercise capacity (269 ± 11 vs. 336 ± 14 W), and lowered ICA and MCA 

Vmean by 12-23% without compromising CCA blood flow. During euhydrated 

incremental exercise on a separate day, however, exercise capacity and ICA, 

MCA Vmean and CCA dynamics were preserved. The fast decline in cerebral 

perfusion with dehydration was accompanied by increased O2 extraction (P < 

0.05), resulting in a maintained cerebral metabolic rate for oxygen (CMRO2). In all 

conditions, reductions in ICA and MCA Vmean were associated with declining 

cerebral vascular conductance, increasing jugular venous noradrenaline, and 

falling PaCO2 (R2 ≥ 0.41, P ≤ 0.01) whereas CCA flow and conductance were 

related to elevated blood temperature. In conclusion, dehydration accelerated the 

decline in CBF by decreasing PaCO2 and enhancing vasoconstrictor activity. 

However, the circulatory strain on the human brain during maximal exercise does 

not compromise CMRO2 because of compensatory increases in O2 extraction.  
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 Introduction  4.2

Heat-stress, with or without dehydration, compromises blood flow to active 

muscles and skin during strenuous exercise as the systemic circulation becomes 

compromised (González-Alonso & Calbet 2003; González-Alonso et al. 2008; 

Crandall & González-Alonso 2010). Intense exercise in the heat is also associated 

with a marked decline in middle cerebral artery blood velocity (MCA Vmean), 

suggesting attenuated cerebral perfusion (Nybo & Nielsen 2001a; 2001b; 

González-Alonso et al. 2004). Changes in MCA Vmean, however, may not reflect 

alterations in cerebral blood flow (CBF) as the vessel cross sectional area remains 

unknown (Madsen et al. 1993; Jorgensen 1995; Wilson et al. 2011; Willie et al. 

2012). Additionally, dehydration intensifies the effect of heat stress on active 

muscle blood flow and increases the rate of heat storage in part by attenuating 

skin perfusion (Sawka et al. 1985b; González-Alonso et al. 1995; González-Alonso 

et al. 1998; Montain et al. 1998a; Cheuvront et al. 2010). It remains, however, 

unknown whether dehydration affects CBF during maximal incremental exercise in 

the heat. 

 

On the transition from rest to moderate exercise, regional and global CBF increase 

to support neuronal activity (Ide & Secher 2000; Secher et al. 2008; Ogoh & 

Ainslie 2009a). However, CBF reaches a plateau or declines to baseline values 

prior to the attainment of maximal work rate (Madsen et al. 1993; Moraine et al. 

1993; Hellstrom et al. 1996; Ide & Secher 2000; Sato et al. 2011). During intense 

exercise, restricted cerebral perfusion could challenge the cerebral metabolic rate 

for oxygen (CMRO2) (Nybo & Rasmussen 2007; Rasmussen et al. 2010) and in 

part explain the orthostatic intolerance and reduced motor output with heat stress 

(Van Lieshout et al. 2003; Wilson et al. 2006; Brothers et al. 2009c; Nelson et al. 

2011; Ross et al. 2012; Bain et al. 2013). Alternatively, reduced CBF can be 

compensated by increased oxygen extraction such that CMRO2 is maintained or 

increased (Nybo et al. 2002; González-Alonso et al. 2004). Whether the CMRO2 

remains adequate during strenuous exercise in the heat with concomitant 

dehydration is yet unknown.  

 

Understanding the mechanisms restricting CBF in intensely exercising humans is 

important for devising strategies that could ameliorate or delay its potential 

deleterious effects. During exercise, attenuation of CBF is in part due to cerebral 
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vessel vasoconstriction, concomitantly with an increased systemic and regional 

cerebral sympathetic activity, increasing body temperature, and reduced arterial 

carbon dioxide tension (PaCO2) (Wilson et al. 2002; Querido & Sheel 2007; Fan et 

al. 2008; Secher et al. 2008; Seifert & Secher 2011). The cerebral vasculature is 

highly sensitive to changes in PaCO2, with elevations resulting in vasodilation and 

reductions leading to vasoconstriction (Kety & Schmidt 1948a; Ogoh & Ainslie 

2009b; Willie et al. 2012). At rest, these responses are of importance for 

maintenance of a stable pH across the brain and reflect the sensitivity of the 

brainstem to acute changes in CO2. However, PaCO2 only accounts for ~7% of the 

CO2 transported from the cerebral tissue whereas the majority of CO2 is bound to 

haemoglobin (23%) or buffered as bicarbonate (70%). If local tissue pH balance is 

important for regulation of CBF, blood CO2 content (ctCO2) could account for the 

alterations in cerebrovascular tone. It is also evident that changes in CO2 are not 

associated with changes in conduit artery and extra-cranial (i.e. common (CCA) 

and external carotid (ECA)) tone and perfusion, as blood flow in these vessels 

increases progressively with exercise intensity (Hellstrom et al. 1996; Sato et al. 

2011). Extra-cranial blood flow is likely to be controlled by thermoregulatory, rather 

than pH regulatory mechanisms (Fan et al. 2008; Sato et al. 2011; Sato et al. 

2012; Bain et al. 2013; Ogoh et al. 2013b); yet direct evidence for a relationship 

between flow and blood temperature is lacking. While evidence indicates 

differences in blood flow responses to exercise at the vascular beds perfusing the 

head, the impact of dehydration on graded exercise in the heat and the potential 

role of ctCO2, PaCO2 and blood temperature on these responses, have not been 

investigated.  

 

The purpose of this study was to investigate cerebral and extra-cranial blood flow 

and CMRO2 during incremental exercise to exhaustion in the heat, with and 

without dehydration, and to provide insights into the vascular mechanisms 

underpinning these responses. CBF was measured using Doppler 

ultrasonography, and arterial to internal jugular venous differences for oxygen, 

CO2 and noradrenaline were measured for assessment of the exchange of these 

substances across the brain. We hypothesised that dehydration would accelerate 

the attainment of maximal CCA blood flow but also accentuate the reduction in 

CBF during exercise in association with the lowering of PaCO2 and ctCO2 and the 



72 
 

increase in sympathetic activity, and yet increased O2 extraction would maintain or 

enhance CMRO2. 

 

 Methods 4.3

4.3.1 Ethical approval 

Fully informed, written consent was obtained from the participants prior to the 

study. All procedures were approved by the Brunel University Research Ethics 

Committee (RE07-11) and conformed to the guidelines of the declaration of 

Helsinki. 

 

4.3.2 Participants 

Ten healthy experienced cyclists (mean ± SD; age 29 ± 5 years, stature 183 ± 5 

cm, mass 78 ± 9 kg and V̇O2peak 59 ± 6 ml·kg-1·min-1) participated in the study. All 

participants were non-smokers and free from cardio-respiratory, metabolic and 

neurological disease. Participants arrived at the laboratory postprandial with a 

normal hydration status and were required to have abstained from strenuous 

exercise and alcohol intake for 24 h and caffeine consumption for 12 h. 

 

4.3.3 Experimental design 

The participants visited the laboratory for 3 preliminary sessions followed by 2 

experimental sessions, each separated by at least one week. On the first session 

the participants were introduced to the experimental set-up and familiarised with 

the methodology. Investigation of the extra-cranial arteries and MCA Vmean Doppler 

spectra determined the reliability of images and identified the temporal ultrasound 

window and the position for the best signal-to-noise ratio. Participants performed 

incremental exercise on a semi-recumbent cycle ergometer (Lode Angio, 

Groningen, Netherlands) with a backrest inclination of 45o, to establish the 

maximal work rate (WRmax), maximal heart rate, and V̇O2peak. The initial work rate 

was 20 W for 3 min, followed by step increments of 60 W every 3 min until the limit 

of tolerance. Pedal cadence was maintained between 70 and 90 r.p.m. and the 

test was terminated when it dropped below 60 r.p.m., for more than 3 s, despite 

strong verbal encouragement to continue. On the second and third visits, 

participants cycled in an environmental chamber set at 35 °C (relative humidity 
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50%) in the semi-recumbent position for 2 h at 55% WRmax with heart rate and 

intestinal temperature recorded. No fluid consumption was permitted during 

exercise and body mass was recorded before and immediately post exercise. 

 

The experimental days (visits 4 and 5) included three semi-recumbent incremental 

cycling exercise tests consisting of five, 3 min stages of increasing intensities to 

WRmax (Figure 4-1). On the first experimental trial, incremental cycling was 

completed in the following conditions: 1) in a ‘control’ hydrated state, 2) 

‘dehydrated’ (DEH) ~5 min after 2 h of sub-maximal cycling without fluid ingestion 

and 3) ‘rehydrated’ REH after 1 h recovery with full fluid replacement. Work rates 

for control and REH were the same (67 ± 3, 134 ± 5, 202 ± 8, 269 ± 11 and 336 ± 

14 W, corresponding to 20, 40, 60, 80, and 100% of WRmax) but in anticipation of a 

reduced exercise capacity when dehydrated, WR in DEH was reduced by 20% to 

maintain the same number of exercise stages and test duration with work rates set 

at 54 ± 2, 108 ± 4, 161 ± 7, 215 ± 9 and 269 ± 11 W, respectively. On the second 

experimental trial (i.e., euhydration trial), carried out on a separate day, 

participants completed the same incremental and prolonged exercise protocols, 

but hydration was maintained through fluid ingestion according to the body mass 

loss. Fluid was provided in aliquots of ~160 ml every 10 min during the 2 h of sub-

maximal exercise and also pre- and post-incremental exercise at the same work 

rates. The euhydration trial was used to isolate the effect of dehydration on the 

observed haemodynamic responses to incremental exercise and to control for the 

effect of repeated exercise (Figure 4-5). In both trials, incremental exercise was 

performed in the heat (35 oC, RH 50%) with pedal cadence maintained at 70-90 

r.p.m. Participants were exposed to the environmental conditions for 1 h prior to 

commencement of the protocol. 

 

In the dehydration trial, cerebral haemodynamics and blood samples from the 

brachial artery and left internal jugular vein were obtained simultaneously in the 

final minute of each exercise stage (Figure 4-2). Intestinal, skin, and jugular 

venous temperatures and arterial and jugular venous pressures were recorded. 

The same measures were collected in the euhydration trial, except for the arterio-

venous (a-v) blood sampling and jugular venous temperatures and pressures. 

 

 



 

 7
4
 

 

 

Figure 4-1. Experimental design of the present study. Participants completed 2 trials (i.e. dehydration and euhydration trials) separated by at least one week. Each trial 

consisted of 3 incremental cycle ergometer exercise tests until volitional exhaustion. The incremental exercise consisted of five, 3 min stages at 20, 40, 60, 80 and 100% of 

WRmax. In the dehydration trial, WRmax was approximately 20% lower when participants were dehydrated compared to when they were euhydrated or rehydrated (269 ± 

11 vs. 336 ± 14 W). In the euhydration trial, however, WRmax was the same in the 3 incremental exercise tests. 
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Figure 4-2. Experimental set up and ultrasound recording. The photo shows one of the 

participants in the study performing an incremental cycling test on a semi-recumbent cycle 

ergometer (Lode Angio, Groningen, Netherlands) with a backrest inclination of 45
o
, while 

measurements of ICA and CCA blood flow were obtained at each stage. Representative images of 

real time ICA blood velocity recordings at rest, submaximal and peak exercise are shown. 

 

4.3.4 Cerebral haemodynamics  

Blood flow was obtained sequentially from the right CCA and internal carotid 

arteries (ICA) at rest and in the final minute of each work rate using an ultrasound 

system (Vivid 7 Dimension, GE Healthcare, UK) equipped with a 10 MHz linear 

array transducer. Measurements were performed by an experienced sonographer 

with care taken to maintain sampling site and vessel insonation angle. Participants 

were seated on the cycle ergometer and encouraged to maintain a consistent 

head position for optimal ultrasound scanning. ICA and CCA measurements were 

typically taken ~1.0-1.5 cm above and ~1.5 cm below the carotid bifurcation, 
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respectively (Sato et al. 2011; Willie et al. 2012) with settings maintained across 

the protocol. Test-retest reliability was assessed during pilot studies and the 

coefficient of variation for CCA and ICA volume flow measurements at rest were 

2.8 ± 0.9% and 4.3 ± 1.0%, and during exercise were 5.3 ± 1.6% and 5.0 ± 1.6%, 

respectively. For calculation of blood flow, two-dimensional brightness mode 

images for CCA and ICA diameter were taken, followed by pulse-wave 

measurements for the assessment of time-averaged mean velocity. Systolic and 

diastolic diameters were measured with the mean diameter calculated as systolic 

diameter X 1/3 + diastolic diameter X 2/3. 

 

Time-averaged mean flow velocity (TAM Vmean; cm·s-1) was measured in pulse-

wave mode, taken as the average of three continuous 12 s periods. Average 

diameter and flow velocity profiles were made from ≥15 cardiac cycles to attenuate 

respiration artefacts. The sample volume was maintained at the centre of the 

vessel lumen and adjusted to cover its width. Care was taken to ensure a 

consistent insonation angle below 60°. Mean flow velocity profiles were traced 

automatically and analysed offline for determination of TAM V (EchoPAC BT12, 

Version: 112 GE Healthcare, Norway). Blood flow (ml·min-1) was then calculated 

by mean flow velocity times cross sectional area (CSA: π x (mean diameter/2)2);  

Blood flow = TAM V x CSA x 60. Due to technical limitations, blood flow 

measurements were made in all work rates except the 100% stage in control and 

rehydration conditions. Blood flow in these stages was estimated using the 

individual % decline in MCA Vmean from 80-100%. MCA Vmean was measured using 

2 MHz pulsed trans-cranial Doppler ultrasound (Doppler-Box, Compumedics DWL, 

Singen, Germany). The right MCA was insonated through the temporal ultrasound 

window at a depth of 45-60 mm. Signal quality was optimised according to Aaslid 

et al. (1982).  

 

4.3.5 Catheter placement and blood sampling   

While resting with a slight head-down tilt; catheters for blood sampling, blood 

pressure (MAP), internal jugular venous pressure and blood temperature were 

inserted into the brachial artery of the non-dominant arm and after local 

anaesthesia (2% lidocaine) in the left internal jugular vein (Double Lumen 

Catheter, 16 gauge, 2.3 mm; Multi-Med M2716HE, Edwards Lifesciences, USA), 
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using the Seldinger technique, and advanced to the jugular bulb. For 

measurement of jugular venous blood temperature, a thermistor (T204D, 

PhysiTemp, Clifton, New Jersey, USA) was inserted through the catheter and 

connected to a thermocouple meter (TC-2000, Sable Systems, NV, USA). The 

internal jugular catheter was inserted under ultrasound guidance and catheters 

were regularly flushed with 0.9% saline to maintain patency. The time from 

catheterisation to the commencement of resting measurements was ~1 h. 

 

4.3.6 Blood variables 

Arterial and jugular venous blood samples were drawn into pre-heparinised 

syringes and analysed immediately for blood gas variables (ABL 800 FLEX, 

Radiometer, Copenhagen, Denmark). Internal jugular venous blood temperature 

was input for samples to be autocorrected temperature. The analyser was 

calibrated at regular intervals in accordance with manufacturer guidelines. 

Additional arterial and jugular venous blood was collected in 2 ml syringes and 

transferred to EDTA tubes, centrifuged and separated. Plasma adrenaline and 

noradrenaline was subsequently determined using an enzyme immunoassay kit 

(DEE6500 2-CAT, Demeditec Diagnostics GmbH, Germany). Blood samples were 

also collected directly in stop solution (Gorman et al. 2003; Kalsi & González-

Alonso 2012). Plasma ATP was then determined using the luciferin-luciferase 

technique by a luminometer with three automatic injectors (Orion Microplate 

Luminometer, Bethold Detection System GmbH, Pforzheim, Germany).  

 

4.3.7 Heart rate, blood pressure and temperatures 

Heart rate was obtained from a chest strap (Polar Electro, Kempele, Finland). 

Arterial and internal jugular venous pressure waveforms were recorded using 

transducers (Pressure Monitoring Kit, TruWave, Edwards Lifesciences, Germany) 

zeroed at the level of the right atrium in the midaxillary line (arterial) and at the 

level of the tip of the catheter (jugular venous). Arterial pressure waveforms were 

sampled at 1000 Hz, amplified (BP amp, ADInstruments, Oxfordshire, UK) and 

connected to a data acquisition unit (Powerlab 16/30, ADInstruments) for offline 

analysis. Intestinal temperature was measured using an ingestible telemetry pill 

(HQInc, Palmetto, Florida, USA) and mean skin temperature from four sites 

(standard weightings of chest, abdomen, thigh and calf (Ramanathan 1964)) was 
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obtained using a wired thermocouple system (TC-2000, Sable Systems, NV, 

USA). 

 

4.3.8 Calculations 

Cerebral vascular conductance (CVC) indices were calculated by dividing blood 

flow in the ICA and CCA, and MCA Vmean by cerebral perfusion pressure 

(difference between MAP and jugular venous pressure). Arterial oxygen content 

was used to quantify O2 delivery through the MCA and ICA, respectively. CMRO2 

and CO2 production indexes were calculated as 2 x ICA flow multiplied by the a-v 

O2 difference and/or, v-aCO2 difference. Whole blood CO2 content (ctCO2) was 

also calculated (Douglas et al. 1988). 

 

4.3.9 Data analysis 

A one-way repeated-measures ANOVA was used for the assessment of changes 

over time (i.e. rest and increasing exercise intensities). Where significant 

differences were found, appropriate post hoc analysis were made using the Dunn-

Sidak correction. Where applicable, measured variables between conditions were 

analysed using a two-way repeated-measures ANOVA in which condition (Control, 

DEH and REH) and exercise phase (rest, 20, 40, 60, 80 and 100%) were the main 

factors. Multiple regressions for within-subject repeated measures were used for 

the analysis of the relationship between blood flow and blood gas variables and 

temperatures (Bland & Altman, 1995; Slinker & Glantz, 2008). Statistical 

significance was set at P < 0.05 and all analyses were made using IBM SPSS 

Statistics (Version 20, IBM Corporation, Armonk, NY, USA). 

 

 Results  4.4

4.4.1 Hydration and temperature 

In the dehydration trial (Figure 4-1), body mass in DEH was lower compared to 

control (75.8 ± 2.7 vs. 78.2 ± 2.7 kg, corresponding to a 3.1 ± 0.3% body mass 

loss, P < 0.01), and was restored in REH (77.7 ± 2.9 kg). DEH was accompanied 

by an increased arterial and venous [Hb] (P < 0.01; Table 4-2), indicative of a 

reduction in blood volume, whereas REH reversed these responses. Prior to 

exercise, intestinal and internal jugular venous temperatures were higher in DEH 



 

79 
 

compared to control (38.3 ± 0.1 vs. 36.8 ± 0.1 and 37.7 ± 0.1 vs. 36.5 ± 0.1 °C, 

respectively, both P < 0.001; Figure 4-7 C), but were restored to control values in 

REH (36.5-36.8 °C). In DEH, both intestinal and blood temperature remained 

elevated and increased with work rate to a peak of 38.2 ± 0.1 °C (P < 0.01; 

Figure 4-7 C). In control, intestinal and internal jugular venous temperature 

increased progressively to 37.4 ± 0.1 and 37.9 ± 0.1 °C, with similar responses 

observed during REH. Mean skin temperature ( T̅ sk) was unchanged across 

exercise intensities and between incremental conditions (33.8 ± 0.3, 32.6 ± 0.4 

and 33.1 ± 0.3 °C in control, DEH and REH, respectively) (Table 4-1). Heart rate 

followed the same pattern with peak values being similar in all three conditions 

(179 ± 4, 184 ± 2 and 179 ± 3 beats·min-1 in control, DEH and REH, respectively).  

 

In the euhydration trial, body mass was the same at the start of each of the three 

incremental cycling tests. Prior to exercise intestinal temperature was higher in the 

second and third test, compared to the first control test (37.8 ± 0.2 and 37.2 ± 0.1 

vs. 37.0 ± 0.1 °C; P < 0.05). During exercise, intestinal temperature increased with 

exercise intensity and reached 37.8 ± 0.1, 37.5 ± 0.1 and 37.4 ± 0.1 °C, at 

exhaustion. Similarly to the dehydration trial, mean T̅sk was unchanged across 

exercise intensities and between incremental tests (33.3 ± 0.2, 32.7 ± 0.3 and 33.3 

± 0.2 °C respectively). Heart rate was elevated prior to the second test compared 

to first, but peak heart rate was not different (176 ± 2, 176 ± 3 and 177 ± 3 

beats·min-1, in the first, second and third tests, respectively). 

 

4.4.2 Brain haemodynamics and metabolism 

During control exercise on the dehydration trial, ICA blood flow and MCA Vmean 

increased by ~17 ± 2% from rest to submaximal exercise and thereafter declined 

to resting values (both P < 0.05; Figure 4-3 A & D). Conversely during DEH, ICA 

blood flow did not increase from rest to moderate exercise, but declined to below 

resting values at WRmax (-11% vs. Rest, P < 0.05). ICA blood flow responses to 

REH were similar to control. In all conditions, the decline in blood flow at high 

exercise intensities was associated with reductions in vessel diameter and blood 

velocity. In contrast to ICA blood flow, CCA blood flow did not change during low 

intensity exercise in control, but increased progressively with further increases in 

exercise intensity (Rest = 0.47 ± 0.02 vs. 0.60 ± 0.02 l·min-1, P < 0.01) (Figure 4-3 
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C). During DEH, CCA blood flow was elevated (P < 0.05) at the start of exercise 

and did not change throughout incremental exercise. CCA blood flow responses to 

REH incremental exercise were similar to control. The increases in CCA blood 

flow in control and REH were associated with increases in blood velocity (P < 

0.05). In the euhydration trial, ICA and CCA blood flow, and MCA Vmean were 

similar at rest and during incremental exercise (Figure 4-5).  

 

At rest, ICA O2 delivery, a-vO2 and v-aCO2 difference, and CMRO2 and brain rate 

of CO2 production (V̇CO2) indices were not significantly different across the three 

experimental conditions of the dehydration trial. From rest to sub-maximal exercise 

(40% WRmax) in control, ICA O2 delivery increased, v-aCO2 difference decreased, 

while the a-vO2 difference was unchanged (Figure 4-3 B,E & F). When exercise 

intensity became strenuous (≥ 60%), ICA O2 delivery declined to baseline values, 

as with ICA blood flow, and v-aCO2 and a-vO2 difference increased progressively 

to exhaustion (~32% increase vs. rest, P < 0.05). Additionally, there was a 

progressive increase in brain V̇CO2 index up to WRmax (Figure 4-3 G). During DEH, 

ICA O2 delivery remained constant up to 60% WRmax, before declining to below 

resting values. Moreover, v-aCO2 difference, a-vO2 difference and brain V̇CO2index 

were elevated at WRmax (P < 0.05). ICA O2 delivery was somewhat restored in 

REH whereas v-aCO2 and a-vO2 difference, and brain V̇CO2 index were similar to 

CON. Overall, these responses resulted in a maintained CMRO2 index at rest and 

throughout exercise to exhaustion (Figure 4-3 H). Brain glucose uptake was also 

maintained across all exercise intensities and hydration conditions, whereas brain 

lactate uptake increased at high exercise intensities (Figure 4-4). 

 

4.4.3 Blood pressure and vascular conductance 

At rest and during incremental exercise in the dehydration trial, MAP was lower in 

DEH compared to control whereas jugular venous pressure was not different 

across incremental exercise conditions (P < 0.01; Figure 4-6). Brain perfusion 

pressure was therefore lower in DEH compared to control (P < 0.01). 

Concurrently, ICA, CCA and MCA vascular conductance were higher in DEH, 

compared to control and REH, at rest (P < 0.01; Figure 4-6). However, in all 

incremental exercise conditions, ICA and MCA vascular conductances were not 

different at sub-maximal exercise intensities before declining at WRmax (P < 0.05). 
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During control, CCA vascular conductance declined from rest to sub-maximal 

exercise intensities before recovering to baseline values at WRmax, whereas in 

DEH CCA vascular conductance continued to decline. In contrast to the 

haemodynamic alterations seen in the dehydration trial, in the euhydration trial 

MAP and ICA, CCA, and MCA vascular conductance were similar at rest and 

throughout the three exercise tests. 

 

 

Table 4-1. Temperature responses to incremental exercise in different hydration 
states. 
    Incremental cycling exercise (% WRmax in Control) 
         
   Rest 20% 40% 60% 80% 100% 
         
Intestinal  
temperature 
(°C) 

Control 
 

 36.8±0.1 36.8±0.1 36.9±0.1* 37.0±0.1* 37.2±0.1* 37.4±0.1*
†
 

Dehydration 
 

 38.3±0.1 38.0±0.1* 38.0±0.1* 38.1±0.1* 38.2±0.1*
†
 - 

Rehydration 
 

 36.8±0.2 36.8±0.2 36.9±0.2* 37.1±0.2* 37.3±0.2*
†
 - 

Blood  
temperature 
(°C) 

Control 
 

 36.5±0.1 36.5±0.2 36.8±0.2* 37.1±0.2* 37.5±0.1* 37.9±0.1* 

Dehydration 
 

 37.7±0.1 37.8±0.1 37.9±0.1 38.1±0.1* 38.2±0.1* - 

Rehydration  36.4±0.2 36.4±0.2 36.7±0.2* 37.0±0.2* 37.3±0.2* - 
         
Mean skin  
temperature 
(°C) 

Control 
 

 34.1±0.3 33.7±0.3 33.9±0.3 33.9±0.3 33.5±0.3 33.3±0.3 

Dehydration 
 

 32.9±0.3 32.6±0.4 32.6±0.5 32.6±0.3 32.6±0.3 - 

Rehydration  33.3±0.2 
 

33.3±0.3 33.2±0.3 33.0±0.3 32.7±0.3 - 

Values are mean ± SEM for 10 participants. * different from rest P < 0.05, † different from previous 

intensity. 
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Table 4-2. Blood variable responses to incremental exercise in different hydration states (i.e., control, dehydration and rehydration). 

 
   Incremental cycling exercise (% WRmax in Control) 

  Rest 20% 40% 60% 80% 100% 

Hb 

(g·l-1) 

Control a 141 ± 5 145 ± 4* 147 ± 4* 149 ± 4* 154 ± 4* 158 ± 4* 

 v 140 ± 5 144 ± 4* 146 ± 4* 148 ± 4* 152 ± 4* 156 ± 4* 

Dehydration a 152 ± 4 151 ± 4 152 ± 4 154 ± 4* 156 ± 4* - 

  v 152 ± 4 148 ± 3 149 ± 3 149 ± 4 152 ± 3
†
 - 

 Rehydration a 140 ± 3 141 ± 3 142 ± 3 146 ± 3* 149 ± 2* 148 ± 4* 
  v 140 ± 4 139 ± 3 142 ± 3 147 ± 3* 147 ± 3* 148 ± 4* 

SO2 
(%) 

Control a 98.5 ± 0.2 97.7 ± 0.1* 97.8 ± 0.2* 97.5 ± 0.3* 97.3 ± 0.4* 96.6 ± 0.4* 

 v 64.7 ± 1.0 66.0 ± 1.5 68.7 ± 1.0* 67.0 ± 1.1 64.9 ± 1.5
†
 61.0 ± 2.1

†
 

 Dehydration a 98.1 ± 0.4 97.4 ± 0.1 97.4 ± 0.1 97.5 ± 0.4 97.9 ± 0.2 - 
  v 65.7 ± 0.8 63.2 ± 1.2* 64.0 ± 0.9 63.9 ± 1.3 63.4 ± 2.0 - 
 Rehydration a 98.5 ± 0.1 97.2 ± 0.5* 97.4 ± 0.2* 97.2 ± 0.1* 97.2 ± 0.3* 97.0 ± 0.7* 
  v 65.9 ± 1.4 65.0 ± 1.5 65.4 ± 2.2 65.7 ± 1.9 65.6 ± 3.2 65.9 ± 6.3 

PO2 
(mmHg) 

Control a 99 ± 3 90 ± 2* 94 ± 3 94 ± 4 96 ± 4 97 ± 4 
 v 36 ± 1 36 ± 1 38 ± 1* 38 ± 1* 39 ± 1* 40 ± 1* 

 Dehydration a 101 ± 4 91 ± 2 90 ± 2 94 ± 4 96 ± 2 - 
  v 40 ± 1 37 ± 1* 37 ± 1* 39 ± 2* 38 ± 1* - 
 Rehydration a 105 ± 2 93 ± 3* 89 ± 2* 89 ± 2* 91 ± 3* 96 ± 8* 
  v 37 ± 1 36 ± 1 36 ± 1 38 ± 1 38 ± 2 38 ± 2 

ctO2 

(ml·l-1) 
Control a 192 ± 6 195 ± 6 199 ± 5* 201 ± 5* 206 ± 5* 211 ± 6* 

 v 127 ± 4 131 ± 5 138 ± 5
†
 137 ± 4 136 ± 5 131 ± 5 

 Dehydration a 206 ± 5 203 ± 5 203 ± 5 207 ± 6 210 ± 5* - 
  v 140 ± 2 134 ± 6 131 ± 3 132 ± 3 133 ± 4 - 
 Rehydration a 191 ± 4 189 ± 4 191 ± 4 195 ± 4* 200 ± 3* 203 ± 5* 
  v 127 ± 2 124 ± 2 127 ± 3 132 ± 3 132 ± 6 124 ± 4 

pH 
Control a 7.39 ± 0.01 7.38 ± 0.01* 7.36 ± 0.01* 7.36 ± 0.01* 7.36 ± 0.01 7.31 ± 0.01* 
 v 7.33 ± 0.01 7.32 ± 0.02 7.32 ± 0.01 7.32 ± 0.01 7.32 ± 0.01 7.26 ± 0.01* 

 Dehydration a 7.40 ± 0.01 7.38 ± 0.01 7.38 ± 0.01 7.38 ± 0.03 7.41 ± 0.02 - 
  v 7.34 ± 0.01 7.32 ± 0.01 7.30 ± 0.03 7.33 ± 0.02 7.38 ± 0.01* - 
 Rehydration a 7.38 ± 0.01 7.37 ± 0.01 7.37 ± 0.01 7.37 ± 0.01 7.37 ± 0.01 7.34 ± 0.03 
  v 7.33 ± 0.01 7.32 ± 0.02 7.32 ± 0.01 7.32 ± 0.01 7.33 ± 0.01 7.32 ± 0.02 

 

Values are mean ± SEM for 10 participants. Haemoglobin (Hb), oxygen saturation (SO2, %), partial pressures of oxygen (PO2) and oxygen content (ctO2) for arterial (a)  

and internal jugular venous (v) blood. Rehydration values at 100% are n=5. * different from rest P < 0.05, † different from previous intensity. 
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Figure 4-3. Cerebral haemodynamics and oxygen parameters during incremental exercise in 

different hydration states. Left panel; Internal carotid artery blood flow (A), ICA oxygen delivery 

(B), common carotid artery blood flow (C) and middle cerebral artery velocity (D). Right panel; 

jugular venous to arterial CO2 difference (v-aCO2; E), arterial to jugular venous oxygen difference 

(a-vO2; F), brain CO2 release (G), and brain oxygen uptake (CMRO2; H) for control (open circles), 

dehydration (closed circles) and rehydration (open squares) conditions. Values are mean ± SEM. P 

values represent ANOVA results. * is P < 0.05 vs. rest, # is P < 0.05 vs. sub-maximal exercise (i.e. 

~40% WRmax). 
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Table 4-3. Blood gases and metabolite responses to incremental exercise in different hydration states. 
    Incremental cycling exercise (% WRmax in Control) 

  Rest 20% 40% 60% 80% 100% 
PCO2  
(mmHg) 

Control a 39 ± 1 42 ± 1* 43 ± 1* 42 ± 1* 40 ± 1* 36 ± 1*
†
 

 v 50 ± 1 52 ± 1 52 ± 1 53 ± 1* 52 ± 1 50 ± 1
†
 

Dehydration a 37 ± 2 39 ± 1 39 ± 1  40 ± 2 37 ± 1
†
 - 

  v 49 ± 1 50 ± 1 48 ± 2 47 ± 3 48 ± 2 - 
 Rehydration a 38 ± 1 39 ± 1 39 ± 1 39 ± 1 36 ± 1

†
 33 ± 1

†
 

  v 49 ± 1 49 ± 1 49 ± 1 50 ± 1* 48 ± 2
†
 45 ± 4

†
 

[HCO3
-
] 

(mmol·l
-1

) 
Control a 23.5 ± 0.7 24.0 ± 0.6 23.1 ± 0.7

†
 23.0 ± 0.6 22.2 ± 0.6 18.7 ± 0.8 

 v 23.6 ± 0.8 23.1 ± 1.1 23.6 ± 0.6 23.6 ± 0.7 23.2 ± 0.8 19.3 ± 0.5 
 Dehydration a 23.9 ± 0.7 23.2 ± 1.0 23.0 ± 0.9 23.1 ± 1.3 23.7 ± 1.1 - 
  v 23.6 ± 0.8 23.1 ± 1.0 21.6 ± 1.6 23.4 ± 1.6 26.5 ± 0.6 - 
 Rehydration a 22.5 ± 0.6 22.4 ± 0.6 22.4 ± 0.6 22.2 ± 0.7 21.6 ± 0.7 19.2 ± 0.9 
  v 23.1 ± 0.6 22.7 ± 0.6 22.7 ± 0.7 23.0 ± 0.7 20.5 ± 1.9 21.2 ± 0.4 

cBase (ECF) 
(mmol·l

-1
) 

Control a -1.1 ± 0.9 -0.3 ± 0.7 -1.3 ± 0.8
†
 -1.5 ± 0.8 -2.7 ± 0.7 -7.4 ± 1.0 

 v 0.7 ± 1.0 0.3 ± 1.2 1.0 ± 0.7 1.0 ± 0.9 0.4 ± 1.0 -4.3 ± 0.5 
 Dehydration a -1.7 ± 0.9 -1.7 ± 1.3 -1.9 ± 1.2 -2.0 ± 1.7 -1.4 ± 1.3 - 
  v 0.6 ± 0.9 0.0 ± 1.2 -2.0 ± 2.1 -1.1 ± 2.2 2.7 ± 1.4 - 
 Rehydration a -2.4 ± 0.7 -2.3 ± 0.8 -2.4 ± 0.8 -2.8 ± 0.9 -3.7 ± 0.9 -6.9 ± 1.0 
  v 0.1 ± 0.8 -0.4 ± 0.8 -0.3 ± 0.8 0.0 ± 0.8 -3.4 ± 2.4 -2.6 ± 0.8 
Lactate  

(mmol·l
-1

) 
Control a 0.8 ± 0.1 1.3 ± 0.1*

†
 1.7 ± 0.1*

†
 2.8 ± 0.2*

†
 5.6 ± 0.4*

†
 11.3 ± 0.7*

†
 

 v 0.9 ± 0.1 1.3 ± 0.1*
†
 1.6 ± 0.1*

†
 2.6 ± 0.2*

†
 5.0 ± 0.4*

†
 10.1 ± 0.6*

†
 

 Dehydration a 2.1 ± 0.2 1.9 ± 0.2*
†
 1.6 ± 0.2*

†
 1.7 ± 0.2* 2.6 ± 0.2*

†
 - 

  v 2.2 ± 0.2 1.9 ± 0.2*
†
 1.7 ± 0.2*

†
 1.7 ± 0.2*

†
 2.4 ± 0.2

†
 - 

 Rehydration a 3.3 ± 0.3 2.9 ± 0.2*
†
 2.5 ± 0.2*

†
 2.8 ± 0.2 4.8 ± 0.2*

†
 8.8 ± 0.3*

†
 

  v 3.3 ± 0.3 2.9 ± 0.2*
†
 2.5 ± 0.2*

†
 2.9 ± 0.2

†
 4.3 ± 0.2*

†
 8.2 ± 0.3*

†
 

Glucose 
(mmol·l

-1
) 

Control a 6.0 ± 0.2 6.0 ± 0.2 6.0 ± 0.2 5.9 ± 0.2 5.8 ± 0.2
†
 5.7 ± 0.2 

 v 5.4 ± 0.2 5.4 ± 0.2 5.4 ± 0.2 5.3 ± 0.2
†
 5.2 ± 0.2

†
 5.0 ± 0.2

†
 

 Dehydration a 6.0 ± 0.2 5.6 ± 0.3*
†
 5.2 ± 0.3*

†
 5.0 ± 0.3*

†
 4.7 ± 0.2*

†
 - 

  v 5.4 ± 0.2 4.9 ± 0.2*
†
 4.6 ± 0.2*

†
 4.2 ± 0.3*

†
 4.0 ± 0.3*

†
 - 

 Rehydration a 12.0 ± 0.7 11.2 ± 0.8*
†
 10.6 ± 0.8*

†
 9.7 ± 0.7*

†
 8.3 ± 0.7*

†
 6.6 ± 0.9*

†
 

  v 11.0 ± 0.5 10.0 ± 0.5*
†
 9.4 ± 0.5*

†
 8.6 ± 0.5*

†
 7.4 ± 0.5*

†
 6.2 ± 0.5*

†
 

 

Values are mean ± SEM for 10 participants. Partial pressure of CO2 (PCO2), sodium bicarbonate ([HCO3
-
]), Acid-base excess (ABE), lactate and glucose for arterial (a) and internal  

jugular venous (v) blood. Rehydration values at 100% are n=5. * different from rest P < 0.05, † different from previous intensity. 
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Figure 4-4. Brain a-v difference (A,B) and exchange/uptake (C,D) for lactate and glucose 

during control, dehydration and rehydration incremental exercise. Both the a-v lactate 

concentration [La] differences and the lactate exchange across the brain remained stable in the 3 

trials up to 80% WRmax, but they increased significantly at maximal exercise in the control and 

rehydration trials. Similarly, the a-v glucose concentration [Glu] differences and the glucose uptake 

across the brain remained stable during the 3 incremental tests. Exchange calculated as the 

product of 2x ICA blood flow and a-v differences. Data are means ± SEM for 7 subjects. * different 

from rest P < 0.05, # P < 0.05 vs. sub-maximal exercise. 
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Figure 4-5. Blood flow responses during three incremental exercise tests on the euhydration 

trial. Common carotid (CCA), calculated external carotid (ECA), internal carotid (ICA) artery blood 

flow and middle cerebral artery velocity are presented. There were no significant differences for 

condition (i.e. INC 1, INC 2 and INC 3) for all variables, except calculated ECA blood flow which 

was significantly higher at rest and sub-maximal, but not at near maximal intensities. Values are 

mean ± SEM. P values represent ANOVA results. * is P < 0.05 vs. rest, # is P < 0.05 vs. sub-

maximal exercise (i.e. ~40% WRmax). 
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Figure 4-6. Cerebral vascular conductance and perfusion pressure during incremental 

exercise in different hydration states. Mean arterial and jugular venous pressures (A), internal 

carotid, common carotid and middle cerebral artery vascular conductance indices (B-D) for control 

(open circles), dehydration (closed circles) and rehydration (open squares) conditions. Values are 

mean ± SEM. P values represent ANOVA results. * is P < 0.05 vs. rest, # is P < 0.05 vs. sub-

maximal exercise (i.e. ~40% WRmax). Significance for control and rehydration were similar in fig A, 

B and D. 
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4.4.4 Cerebral blood flow, PCO2, ctCO2 and temperature 

At rest, PaCO2 was not different across conditions. The transition from rest to 

exercise resulted in an increase in PaCO2 in all incremental exercise conditions 

that continued up to 40% WRmax in control, whereas in DEH and REH PaCO2 was 

unchanged above 20% WRmax. Beyond sub-maximal intensities PaCO2 rapidly 

declined, by 6-7 mmHg, to below resting values in control (and REH), and by 3 

mmHg in DEH (P < 0.05; Figure 4-7 A). PvCO2 increased from rest to 60% WRmax 

in control conditions before declining to baseline values at WRmax, whereas in DEH 

and REH PvCO2 was unchanged throughout exercise (Table 4-3). At rest arterial 

CO2 content was lower in DEH compared to control and REH (479 ± 22 vs. 507 ± 

17 and 495 ± 6 ml·l-1; Figure 4-7 B). From rest to WRmax, arterial CO2 content 

declined to below resting values in control (and REH; P < 0.05), but a similar 

decline was not apparent in DEH. Jugular venous CO2 content declined from rest 

to WRmax (581 ± 15 to 463 ± 11 ml·l-1; P < 0.05) in control conditions, whereas in 

DEH and REH CvO2 content was unchanged throughout exercise (~553 ± 4 ml·l-1). 

 

4.4.5 Relationships between cerebral blood flow and PCO2, ctCO2, pH and 

temperature 

At rest and throughout incremental exercise in all conditions, ICA blood flow (R2 = 

0.41: Figure 4-7 D) and MCA Vmean (R
 2 = 0.42: Figure 4-7 E) were correlated to 

changes in PaCO2 (both P < 0.01). In contrast, only non-significant correlations 

were observed for CaCO2 (R
 2 = 0.16), PvCO2 (R

 2 = 0.15) and CvCO2 (R
 2 = 0.19; 

P = 0.15-0.85). Also, CCA (R 2 = 0.05) and ICA (R 2 = 0.13) blood flow, in all 

conditions, were not correlated to jugular venous pH (both P > 0.05). Lastly, CCA 

blood flow in control and REH was correlated to changes in jugular venous 

temperature (R 2 = 0.68; P < 0.001: Figure 4-7 F), but not in DEH (R 2 = 0.00; P = 

0.74).   

 

4.4.6 Plasma catecholamines and ATP 

At rest in DEH, arterial and jugular venous [NA] was higher than control and 

rehydration (13 ± 4 vs. 3 ± 1 and 3 ± 1 nmol·l-1 and 12 ± 4 vs. 2 ± 0.2 and 6 ± 2 

nmol·l-1, respectively; P < 0.05). From rest to WRmax, arterial and jugular venous 

[NA] increased exponentially in all conditions to a peak of 43 ± 10, 69 ± 19 and 82 

± 21 nmol·l-1, and 36 ± 8, 39 ± 10 and 27 ± 5 nmol·l-1 in dehydration, control and 
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rehydration, respectively. The reductions in ICA vascular conductance were 

correlated to an increased jugular venous [NA] (control R 2 = -0.79, dehydration 

and rehydration R 2 = -0.66; P < 0.05: Figure 4-8 B). On the other hand, arterial 

and jugular venous [A] was not different among conditions at rest (1.1 ± 0.3 vs. 0.8 

± 0.2 and 0.8 ± 0.2 nmol·l-1 and 1.0 ± 0.3 vs. 0.7 ± 0.1 and 0.6 ± 0.1 nmol·l-1, 

respectively). Yet, from rest to WRmax in dehydration, control and rehydration 

conditions, [A] increased to a peak of 5.5 ± 1.9, 9.1 ± 2.2 and 7.7 ± 2.8 nmol·l-1 in 

arterial and 6.5 ± 2.4, 8.5 ± 3.6 and 3.3 ± 1.1 nmol·l-1 in venous plasma 

respectively (all P < 0.05). Lastly, arterial plasma [ATP] increased in a curvilinear 

manner from similar values at rest (1058 ± 177 vs. 938 ± 128 and 1027 ± 199 

nmol·l-1) to WRmax, and was higher in dehydration compared to control and 

rehydration at maximal intensities (1641 ± 189 vs. 1403 ± 221 and 1274 ± 188 

nmol·l-1; P < 0.05).  
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Figure 4-7. Relationships between cerebral perfusion and blood PCO2 and temperature. Left 

panel; PaCO2 (A), arterial CO2 content (B), and jugular venous temperature responses to 

incremental exercise (C). Right panel; ICA blood flow and MCA Vmean group mean correlations with 

PaCO2 (D-E), and CCA blood flow group mean correlation to jugular venous temperature (F) in 

control (open circles), dehydration (closed circles) and rehydration (open squares). * is P < 0.05 vs. 

rest, # is P < 0.05 vs. sub-maximal exercise (i.e. ~40% WRmax). Unless presented, significance for 

control and rehydration were similar. 
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Figure 4-8. Jugular venous [NA] during incremental exercise and relationship of ICA 

vascular conductance and jugular venous [NA]. Jugular venous [NA] and the relationship 

between ICA vascular conductance and jugular venous [NA] in control (open circles), dehydration 

(closed circles) and rehydration (open squares). * is P < 0.05 vs. rest, # is P < 0.05 vs. sub-

maximal exercise (i.e. ~40% WRmax). Unless presented, significance for control and rehydration 

were similar.  

 

 

Figure 4-9. Brain [NA] exchange during incremental exercise. The a-v noradrenaline 

concentration [NA] differences and exchange across the brain remained stable in the 3 trials up to 

80% WRmax. Exchange calculated as the product of 2x ICA blood flow and a-v differences. Data 

are means ± SEM for 7 subjects.  
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 Discussion 4.5

The novel findings of the present study were threefold. Firstly, during exercise in 

control conditions cerebral perfusion increased from rest to moderate exercise in 

the heat, before declining to baseline values prior to exhaustion. Secondly, 

dehydration accelerated the declines in blood flow and O2 delivery to the brain 

during incremental cycling exercise to exhaustion in association with a blunted 

perfusion pressure, reductions in PaCO2 and increases in internal jugular venous 

NA. In contrast to the evident cerebral circulatory strain during the intense exercise 

stages, common carotid artery blood flow increased from rest to peak exercise in 

the control and rehydration conditions and remained unchanged with dehydration, 

indicating that blood flow to extra-cranial tissues increase was related to the 

increase in temperature (jugular blood). Finally, compensatory increases in brain 

O2 extraction maintained CMRO2 throughout exercise in association with a stable 

or increasing CO2 production. Collectively these findings suggest that the 

circulatory strain on the human brain during maximal exercise in the heat, even 

with dehydration does not compromise CMRO2. 

 

Hydration and perfusion of the head 

The current study demonstrates that CBF, blood velocity and O2 delivery are 

attenuated prior to the attainment of maximal work rate and that dehydration 

accelerates this restriction in cerebral perfusion. The decline in cerebral perfusion 

is in agreement with investigations in humans during graded incremental exercise 

(Moraine et al. 1993; Hellstrom et al. 1996; Sato et al. 2011) and intense constant 

load exercise, with and without heat stress (Nybo & Nielsen 2001b; Nybo et al. 

2002; González-Alonso et al. 2004). We have extended these findings by 

obtaining direct measurements of anterior CBF under conditions that challenge the 

cardiovascular system to its capacity and examined the functional consequences 

of a diminished flow on CMRO2 during strenuous exercise. 

 

The common carotid artery forms a major part of the extra-cranial circulation 

through to the ECA. During all incremental exercise conditions extra-cranial 

perfusion (CCA and calculated ECA flow; CCA-ICA) increased or was maintained. 

Strikingly, at rest prior to the dehydration test CCA blood flow was elevated by 

25% whereas ICA blood flow was only modestly increased (~6%), indicating a 

substantially augmented ECA blood flow compared to control when participants’ 
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jugular venous and core temperatures were elevated by 1.2-1.5 °C. Additionally, 

ECA blood flow increased by ~50% from baseline to 80% WRmax (217 ± 30 to 307 

± 22 ml·min-1) and achieved a similar peak value across interventions. These 

findings are consistent with an elevated extra-cranial blood flow with graded 

exercise in normothermic conditions (Hellstrom et al. 1996; Sato et al. 2011) and 

with passive heating at rest (Fan et al. 2008; Ogoh et al. 2013b). Heat stress, with 

and without concomitant dehydration, results in a distinct cardiovascular strain 

(Sawka et al. 1979; Montain & Coyle 1992a; 1992b; González-Alonso et al. 1997; 

González-Alonso 1998) and promotes redistribution of blood flow to the skin 

vascular beds for thermoregulatory purposes (Crandall et al. 2008; Crandall & 

González-Alonso 2010; Johnson & Kellogg 2010). Given that the ECA supplies the 

majority of the cutaneous circulation of the face and neck, an elevated blood flow 

to these regions is important for local convective heat exchange. Collectively these 

findings show contrasting blood flow adjustments across the different vascular 

beds of the head during strenuous exercise in the heat with both dehydration and 

euhydration.  

 

Mechanisms of cerebral and extra-cranial blood flow control  

In all incremental exercise conditions attenuation in cerebral perfusion was 

coupled to a decline in cerebral-vascular conductance, indicative of 

vasoconstriction and thus diminished vessel diameter (Figure 4-6 B, D). 

Alterations in PaCO2 and blood CO2 content, increased sympathetic nerve activity 

and concurrent changes in the intra- and extravascular milieu of vasoconstrictor 

and vasodilator signals may all play a role in restricting CBF (Paulson et al. 1990; 

Ide & Secher 2000; Secher et al. 2008; Ogoh & Ainslie 2009b). During strenuous 

exercise cerebral perfusion was associated with the decrease in PaCO2 

(Figure 4-7 A, D-E). Given that free CO2 accounts for only a minor portion of the 

CO2 in blood, we reasoned that ctCO2 would indicate whether plasma and/or blood 

CO2 is important for the decline in cerebral perfusion. In contrast to the prominent 

association with PaCO2, the correlation with arterial or jugular venous blood ctCO2 

was non-significant, indicating that the cerebral circulation is sensitive to changes 

in free blood PCO2 rather than to changes in CO2 bound to haemoglobin or 

buffered as bicarbonate in the arterial or venous vasculature. There is also 

controversy in regards to the role of cerebral venous versus arterial PCO2 on 

regulation of brain blood flow (Peebles et al. 2007). The current study shows that 
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the relationship between brain flow and PvCO2 was not significant because of the 

maintenance or minimal changes in jugular PvCO2. Furthermore, the impact of 

arterial PO2 and HbO2 saturation on CBF is negligible in the present conditions 

because the changes in these variables during incremental exercise were too 

small to activate the oxygen sensitive pathways of local CBF control (Willie et al. 

2012). CO2 readily crosses the blood brain barrier, altering the extracellular and 

cerebral spinal fluid (CSF) pH and PCO2 and there is compelling evidence to 

suggest that pH has an independent and local effect on cerebral vessel 

vasoconstriction (with acidosis leading to cerebral vasodilation and alkalosis 

leading to cerebral vasoconstriction; Kontos et al. 1977a,b). However, there was 

no relationship between blood flow to the brain and jugular venous pH. Jugular 

venous pH may or may not reflect the environment of the extracellular space of the 

cerebral vasculature and the results suggest that pH is well maintained across the 

brain. The balance of pH (through the direct effects of CO2 and the buffering 

capacity of blood) is therefore important for the CBF response (Willie et al. 2014). 

Together, these findings point to a predominant influence of the arterial over that 

of the venous and thereby tissue CO2 in the regulation of CBF. 

 

The present observations are consistent with the concept that the cerebral 

vasculature is highly sensitive to alterations in PaCO2 (Jorgensen et al. 1992b; 

Secher et al. 2008), as evidenced by the ~4% change in global and regional CBF 

per mmHg change in PaCO2 (expressed as the “cerebral CO2 reactivity”) (Madsen 

et al. 1993; Linkis et al. 1995; Willie et al. 2012), similar to that observed for 

regional CBF in the present study. The decline in PaCO2 beyond moderate 

exercise intensities occurs in combination with the exponential increase in 

ventilation, which is accelerated under conditions that induce whole-body 

hyperthermia (Nybo & Nielsen 2001b; Nybo et al. 2002; Wilson et al. 2006; 

Brothers et al. 2009b; Brothers et al. 2009c; Nelson et al. 2011; Ross et al. 2012). 

An important question is whether changing PaCO2 levels independently, or in 

combination with other related vasoconstrictor signals, are restricting CBF during 

intense exercise. We found that the decline in cerebral vascular conductance was 

associated with the large increase in jugular venous [NA]. An increase in 

circulating [NA] may influence cerebrovascular tone (Lee et al. 1976; Mitchell et al. 

2009; Ogoh & Ainslie 2009a; Seifert & Secher 2011) and is associated with 

enhanced CMRO2 (King et al. 1952; Nemoto et al. 1996): however, controversy 
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remains on its role within the cerebral vasculature (Strandgaard & Sigurdsson 

2008b; van Lieshout & Secher 2008b). Irrespective of hydration status it appears 

that increasing jugular venous [NA] during intense exercise reflects increased local 

sympathetic vasoconstrictor activity and may explain some of the decline in CBF. 

However, increased circulating [NA] may not directly result in local 

vasoconstriction and the importance of sympathetic activity above and beyond the 

role of PaCO2 remains unclear. 

 

In contrast to the close coupling between reductions in PaCO2 and cerebral 

perfusion, the relationship does not hold for the extra-cranial circulation (Sato et al. 

2012; Ogoh et al. 2013b), similar to that of peripheral vessels (Ainslie et al. 2005; 

Sato et al. 2012). The contrasting responses between the two vascular beds 

during exercise are interpreted to mean that blood flow is redistributed from the 

cerebral to the extra-cranial circulation (Sato et al. 2011). However, this is an 

unlikely scenario as preventing the decline in cerebral perfusion during passive 

hyperthermia through the clamping of end-tidal CO2 does not alter extra-cranial 

blood flow (Bain et al. 2013). Equally, reducing extra-cranial perfusion, through 

face cooling, appears to not influence MCA Vmean at rest or during light exercise 

(Miyazawa et al. 2012). Whilst PaCO2 may not play an important role in the 

regulation of blood flow to the extra-cranial circulation, mechanisms involving 

temperature sensitive pathways seem to do so. We observed for the first time a 

strong correlation between increases in common carotid artery blood flow and 

internal jugular venous temperature during control and REH incremental exercise 

(Figure 4-7 F). Additionally, with a rising blood temperature during incremental 

exercise in all three exercise conditions (up to 1.1 °C), the plasma concentration of 

the potent intravascular vasodilator ATP increased in arterial blood; a potential 

mechanism for the temperature-related increase in regional perfusion (Pearson et 

al. 2011; González-Alonso 2012; Kalsi & González-Alonso 2012). Irrespective of 

the mechanisms, the progressive increase in extra-cranial perfusion may be an 

important pathway by which heat is locally dissipated to regulate temperature of 

the tissues within the head (Sato et al. 2011). Collectively, these data suggest that 

cerebral perfusion is restricted with a declining cerebral vascular conductance via 

a net increase in vasoconstrictor activity. Alterations in PaCO2 appear to be the 

primary mechanism for regulation of cerebrovascular tone, but not extra-cranial 

vessel conductance.  
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Is brain oxygen consumption compromised with dehydration during 

maximal incremental exercise?  

An important question is whether central nervous system activity and thus cerebral 

metabolic demand rise sufficiently during strenuous exercise to increase CMRO2 

and whether reductions in flow result in a compromised CMRO2. A major finding of 

the present study was that CMRO2 was not compromised throughout incremental 

exercise across exercise conditions in spite of an attenuated perfusion at maximal 

intensities. This response was met by an increased O2 extraction during maximal 

exercise, a response enhanced with dehydration. Our findings of an enhanced O2 

extraction and a maintained CMRO2 are similar to observations during constant 

load sub-maximal (Ide & Secher 2000; Nybo et al. 2002; González-Alonso et al. 

2004; Secher et al. 2008) and maximal exercise (Scheinberg et al. 1954; 

González-Alonso et al. 2004). Nevertheless, the possibility exists that CMRO2 is 

somewhat suppressed during maximal exercise and dehydration due to reduced 

O2 supply. In this respect, strenuous exercise with hyperthermia increases 

CMRO2, a response attributed to the requirement of an increased neuronal activity 

associated with mental effort and the Arrhenius (Q10) effect of temperature on 

brain metabolism (Nybo et al. 2002). A marked reduction in O2 supply might lower 

intracellular PO2 to the extent that affects metabolic fluxes and challenge cerebral 

metabolism and motor function (Gjedde et al. 2005; Nybo & Rasmussen 2007; 

Rasmussen et al. 2007; Seifert et al. 2009; Rasmussen et al. 2010). Moreover, in 

accordance with the Q10 effect, a rise in core temperature by 2 °C would be 

expected to raise the CMRO2 by ~15%; whereas, the CMRO2 is observed to be 

only one half of the expected (Rasmussen et al. 2010).  However, in spite of the 

20% reductions in perfusion observed across conditions from submaximal to 

maximal exercise, it is unlikely that the capillary to intracellular PO2 gradient was 

reduced to the extent that would compromise CMRO2 given that fractional oxygen 

extraction increased from 34% at rest to 39% at maximal exercise and was 

thereby within the range of adequate cerebral tissue oxygenation (Gjedde et al. 

2005). This notion is consistent with the parallel observations that brain glucose 

uptake was well-maintained across exercise intensities and hydration conditions 

and lactate uptake was maintained or elevated (Figure 4-4). Whilst it is difficult to 

speculate on the alterations within the deep structures of the brain, the current 

data suggest that brain oxygen consumption is not reduced during intense 

exercise in the heat, with and without concomitant dehydration.  
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Methodological considerations  

There are several methodological considerations in the present study. Firstly, 

blood flow measurements were made in the right CCA and ICA, whereas the 

vessels on the left hand side of the anterior circulation and the vessels of posterior 

circulation were not measured. In regard to the anterior circulation, side-to-side 

blood flows at rest and during exercise are similar (Schoning et al. 1994; Sato et 

al. 2011; Willie et al. 2012). Secondly, blood flow measurements were made by 

one sonographer. Upon the transition from CCA to ICA ultrasound scans, a 

temporal lag and minor shift in sample area may occur. Care was taken to ensure 

a consistent measuring site for each participant and the use of duplex ultrasound 

allowed the continued monitoring of sample position. Thirdly, in contrast to 

previous literature observing the right internal jugular vein, we obtained venous 

blood samples from the left internal jugular vein. Asymmetry may exist in the 

venous drainage of the brain with the often larger right-internal jugular vein 

draining the hemispheres and the left-internal jugular vein draining the subcortical 

areas (Seifert & Secher 2011). However, similar resting values for blood 

parameters and a-vO2 difference values are reported in the two jugular veins 

(Gibbs et al. 1942; Munck & Lassen 1957). Moreover, comparable a-vO2 

difference dynamics is observed during incremental exercise based on right 

jugular vein blood samples (Ide et al. 1999b). We therefore assumed equal blood 

flow and O2 extraction in the left and right sides of the brain to estimate the 

CMRO2 index. Thirdly, the CMRO2 index underestimates the global CMRO2 

because blood flow through the posterior circulation is not considered. The 

posterior portion of the brain is supplied by the two vertebral arteries (VA) that 

anastomose to form the basilar artery before joining the circle of Willis, and their 

contribution to total brain blood flow is ~20% at rest (Zauner et al. 1997). VA flow 

increases progressively with graded exercise intensities, in contrast to the anterior 

circulation (ICA) (González-Alonso et al. 2004; Sato et al. 2011; Sato et al. 2012). 

Thus, if we assume that VA blood flow increases, or follows the same pattern as 

the ICA, CMRO2 would remain unchanged during exercise in the conditions of the 

present study. Finally, we were unable to obtain satisfactory ultrasound images 

during the final stage (100%) in control and rehydration conditions. Blood flow in 

these stages, used for the calculation of CMRO2, was estimated using the percent 

decline in MCA Vmean from the 80 to 100% work rate. This assumption has been 
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used to assess changes in flow and CMRO2 during maximal exercise (Fisher et al. 

2013).  

 

 Conclusion  4.6

The present findings demonstrate that dehydration restricts CBF during strenuous 

exercise. The blunted CBF was associated with a decline in vascular conductance 

and PaCO2 and an in increase in systemic and jugular venous noradrenaline, 

indications of an enhanced vasoconstrictor activity. Cerebral oxygen extraction 

was increased during strenuous exercise, more so when perfusion was challenged 

with dehydration. In contrast, extra-cranial perfusion increased, mirrored by 

increases in blood temperature. Thus, reductions in cerebral perfusion and 

cerebral vascular conductance during maximal exercise in different hydration 

states does not appear to negatively impact CMRO2 because of compensatory 

increases in cerebral oxygen extraction.  
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CHAPTER 5 – Dehydration accelerates the 

reduction in cerebral and extra-cranial blood flow 

during prolonged exercise in the heat 
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 Summary 5.1

Reductions in oxygen and substrate supply can compromise organ and tissue 

metabolism during severe stress. Here, we examined whether dehydration during 

prolonged strenuous exercise in the heat impairs cerebral and extra-cranial blood 

flow and cerebral metabolism in trained humans. Ten cyclists cycled in a hot 

environment for ~2 h with and without fluid replacement while measurements of 

cerebral (internal; ICA) and external (ECA) carotid artery blood flow, arterial and 

internal jugular venous blood samples and core and blood temperature were 

obtained. After a rise at the onset of exercise, ICA blood flow declined to baseline 

values with progressive dehydration (P < 0.05). However, cerebral metabolism 

remained stable through enhanced oxygen extraction and glucose uptake (P < 

0.05). ECA blood flow increased from rest to 60 min but declined prior to 

exhaustion. Fluid ingestion sufficient to prevent dehydration maintained cerebral 

and extra-cranial blood flow throughout non-fatiguing exercise. In conclusion, 

dehydration during prolonged exercise in the heat induces a circulatory strain on 

the human brain characterised by a blunted cerebral and extra-cranial blood flow, 

which is prevented or delayed when hydration is maintained. However, cerebral 

metabolism is maintained through increases in oxygen and substrate extraction 

from blood circulating in the brain. 
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 Introduction  5.2

Dehydration and hyperthermia accrued during prolonged exercise in the heat pose 

a severe challenge to cardiovascular regulation, evidenced by reductions in stroke 

volume, contracting skeletal muscle perfusion, skin blood flow, cardiac output (Q̇) 

and to a lesser extent mean arterial pressure (Montain & Coyle 1992b; González-

Alonso et al. 1995; González-Alonso et al. 1998). This acute cardiovascular strain 

might also encompass reductions in cerebral blood flow (CBF) as orthostatic 

challenges (Ogoh et al. 2005b) and pharmacological interventions that depress Q̇ 

(Ide et al. 2000), severe passive heat stress (Nelson et al. 2011; Bain et al. 2013), 

and combined heat stress with exercise (Nybo & Nielsen 2001b) compromise 

cerebral perfusion. In the previous chapter (4), it was shown that dehydration led 

to earlier reductions in CBF during graded exercise to exhaustion, but that 

compensatory increases in oxygen extraction sufficiently preserved cerebral 

aerobic metabolism. Thus, during short bouts of high intensity exercise, attenuated 

cerebral oxygen delivery is unlikely to hinder cerebral function. It is, however, 

possible that exercise-induced dehydration over a prolonged period may yet impair 

CBF and metabolism, and might constitute a scenario whereby exercise capacity 

is reduced by central cerebral mechanisms. However, no study has systematically 

manipulated hydration status to characterise the effects of prolonged exercise-

induced dehydration on the human brain circulation. 

 

Thermoregulatory processes modify the distribution of blood flow, favoring the 

enhancement of cutaneous perfusion (Crandall et al. 2008), to regulate body 

temperature during exercise, particularly in conditions of heat stress (González-

Alonso et al. 2008). Exercise (Sato et al. 2011) and heat stress (Bain et al. 2013; 

Ogoh et al. 2013b) have been shown to independently induce disparate blood flow 

responses across the head. In light of the possible contrasting distribution of 

regional blood flow across the head, the mechanisms regulating CBF and extra-

cranial blood flow also appear to differ. Altered perfusion pressure, blood gas 

tensions (particularly the partial pressure of CO2; PaCO2) (Willie et al. 2012) and 

sympathetic activity (Mitchell et al. 2009) have been implicated in the control of 

CBF whereas, body temperature is purported to influence extra-cranial flow (Sato 

et al. 2011; Sato et al. 2012; Ogoh et al. 2013b).  
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Reductions in oxygen and substrate supply can compromise organ and tissue 

metabolism during severe stress (González-Alonso et al. 1998) and the circulatory 

strain induced by dehydration during prolonged exercise in a hot environment may 

compromise cerebral substrate delivery to the extent that it impairs cerebral 

metabolism. Alternatively, cerebral metabolism may be maintained through 

compensatory increases in O2 extraction (González-Alonso et al. 2004) as 

evidenced by previous reports showing an enhanced (Nybo et al. 2002) or stable 

(Trangmar et al. 2014) cerebral metabolic rate for oxygen (CMRO2) during 

strenuous exercise. Whether a dehydration-induced challenge to cerebral 

metabolism is an important factor causing early fatigue during prolonged exercise 

in the heat remains to be determined. 

 

The aim of this study was to assess the effect of dehydration on cerebral and 

extra-cranial haemodynamics, and cerebral metabolism during prolonged exercise 

in the heat. A second aim was to gain insight into the mechanisms regulating 

cerebral and extra-cranial blood flow during prolonged exercise. We hypothesised 

that dehydration accrued during prolonged exercise in the heat would reduce CBF 

whereas extra-cerebral blood flow would increase; responses that would be 

prevented with the maintenance of hydration. Furthermore, we hypothesised that 

compensatory adjustments in oxygen and substrate extraction from blood would 

enable the maintenance of the CMRO2 and carbohydrate uptake across the brain. 

 

 

 Materials and methods 5.3

5.3.1 Participants  

The participants who took part in the present study were those in the study 

described in Chapter 4.  

 

5.3.2 Experimental design  

The present study formed part of a previous investigation on the effects of 

dehydration on CBF and metabolism during maximal incremental cycling exercise 

(Chapter 4; Trangmar et al. 2014). Aspects of the experimental design and 

methodological procedures which are unique to the present chapter are outlined; 

the reader may refer to Chapter’s 3 and 4 for more details where relevant. As 
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previously outlined, participants visited the laboratory for 3 preliminary sessions 

followed by 2 experimental sessions, each separated by at least one week.  

 

After the three preliminary (familiarisation) sessions, participants returned to 

complete two experimental days (visits 4 and 5). On the first experimental trial, 

participants cycled continuously for two hours and were not permitted to consume 

fluid whereas, on the second experimental trial (i.e., control trial), participants 

completed the same exercise protocol, but hydration was maintained through fluid 

ingestions according to the participant’s body mass loss during the previous visit. 

Fluid was provided in aliquots of ~160 ml every 10 min during exercise. Both 

experimental trials were performed in the heat (same conditions as in the 

familiarisation sessions) and pedal cadence was maintained consistently between 

70-90 r.p.m.   

 

In the dehydration trial, cerebral haemodynamics and blood samples from the 

brachial artery and left internal jugular vein were obtained simultaneously at rest 

and every 30 min during prolonged exercise. Core, skin and jugular venous 

temperatures and arterial and jugular venous pressures were recorded 

continuously. The same measures were collected in the control trial, except for the 

arterial and internal jugular venous blood sampling and intra-arterial/venous blood 

pressures.  

 

5.3.3 Cerebral haemodynamics 

Measurement of vessel blood flow, obtained by a single experienced sonographer, 

were obtained sequentially at rest and every 30 min from the right internal (ICA), 

external (ECA) and common carotid arteries (CCA) using an ultrasound system 

(Vivid 7 Dimension, GE Healthcare, UK) equipped with a 10 MHz linear array 

transducer. ICA, ECA and CCA measurements were typically taken ~1.0-1.5 cm 

above and ~1.5 cm below the carotid bifurcation, respectively (Sato et al. 2011; 

Willie et al. 2012; Ogoh et al. 2013b), and the coefficient of variations for 

measurements of ICA, ECA and CCA vessel diameter and volume flow at rest (2.8 

± 0.9%, 2.1 ± 1.1% and 4.3 ± 1.0%), and during exercise (5.3 ± 1.6%, 5.1 ± 1.4% 

and 5.0 ± 1.6%) were considered within acceptable ranges. Calculations of vessel 

diameter and volume flow were made as previously outlined (see Chapter’s 3 and 
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4). MCA Vmean was measured using a 2MHz pulsed trans-cranial Doppler 

ultrasound system (DWL, Sipplingen, Germany). The right MCA was insonated 

through the temporal ultrasound window, distal to the MCA-anterior cerebral artery 

bifurcation, at a depth of 45-60 mm. Signal quality was optimised according to 

published standards (Aaslid et al. 1982).  

 

5.3.4 Catheter placement and blood sampling 

Catheters for blood sampling, blood pressure (MAP), internal jugular venous 

pressure and blood temperature were inserted into the brachial artery of the non-

dominant arm and, after local anaesthesia (2% lidocaine), in the left internal 

jugular vein (Double Lumen Catheter, 16 gauge, 2.3 mm; Multi-Med M2716HE, 

Edwards Lifesciences, USA) as previously outlined (see Chapter 4). 

 

5.3.5 Blood parameters 

Arterial and jugular venous blood gas variables (ABL 800 FLEX, Radiometer, 

Copenhagen, Denmark) and plasma adrenaline and noradrenaline concentrations 

were determined as previously outlined (see Chapter 4).  

 

5.3.6 Heart rate, blood pressure and temperatures 

Heart rate (Polar Electro, Kempele, Finland), arterial and internal jugular venous 

pressures (Pressure Monitoring Kit, TruWave, Edwards Lifesciences, Germany), 

intestinal temperature (HQInc, Palmetto, Florida, USA) and mean skin temperature 

(TC-2000, Sable Systems, NV, USA) were obtained and analysed as previously 

outlined (see Chapter 4). 

5.3.7 Calculations 

Cerebral vascular conductance (CVC) indices, arterial oxygen content, the 

cerebral metabolic rate for oxygen  (CMRO2) and cerebral glucose and lactate 

uptake were calculated as previously outlined (see Chapter 4). The molar ratio of 

oxygen to glucose (O2/glucose index: OGI) and oxygen to carbohydrate 

(O2/glucose + ½lactate index: OCI) and whole blood CO2 content (Douglas et al. 

1988) were also calculated.  
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5.3.8 Data analysis  

All analyses were made using IBM SPSS Statistics (Version 20, IBM Corporation, 

Armonk, NY, USA). A one-way repeated-measures ANOVA was used for the 

assessment of changes over time. Where applicable, measured variables between 

conditions were analysed using two-way repeated-measures ANOVA in which 

condition (dehydration and control) and exercise phase (rest, 30, 60, 90 and 120 

min) were the main factors. Multiple regressions for within-subject repeated 

measures were used for the analysis of the relationship between blood flow and 

blood gas variables and temperatures (Bland & Altman 1995).  All data are 

presented as mean ± SEM and the alpha level for statistical significance was set 

at P < 0.05.  

 

 Results 5.4

5.4.1 Temperature response to prolonged exercise 

Dehydration exercise resulted in a 3% body mass reduction (78.2 ± 2.7 to 75.8 ± 

2.7 kg) and a 10 min reduction in exercise duration (110 ± 8 vs. 120 min in control; 

both P < 0.001). Body mass in the control exercise trial was maintained at pre-

exercise levels (79 ± 3 kg) through the consumption of fluid at a rate of ~1.2 l·h-1. 

The decline in body mass with dehydration was accompanied by concomitant 

increases in arterial and venous [Hb] (P <0.05: Table 5-2); indicative of blood 

volume reductions. Intestinal temperature increased progressively in both trials; 

but was higher at end exercise in dehydration compared to control (38.6 ± 0.2 vs. 

38.1 ± 0.1 °C; P < 0.05: Table 5-1). Internal jugular venous blood temperature 

mirrored the rise in intestinal temperature in the dehydration trial (Figure 5-5 B). 

Mean skin temperature (T̅sk) was maintained stable throughout exercise in both the 

dehydration and control trials (33.0 ± 0.3 and 32.8 ± 0.3 °C: Table 5-1). Heart rate 

was similar at rest but during exercise was maintained ~12 beats·min-1 higher in 

the dehydration compared to the control trial (P < 0.05: Table 5-1).  

 

 

 

 

 

 



 

106 
 

Table 5-1. Cardiovascular and temperature responses during prolonged exercise. 
 Prolonged cycling time (min) 

Rest 30 60 90 110/120 

TI  
(°C) 

Dehydration  37.4 ± 0.1 38.0 ± 0.1* 38.4 ± 0.1* 38.6 ± 0.1* 38.7 ± 0.1* 
       

 Control  37.3 ± 0.1 37.9 ± 0.1* 38.1 ± 0.1* 38.2 ± 0.1* 38.2 ± 0.2* 
 
TB  
(°C) 

 
Dehydration 

  
36.9 ± 0.1 

 
37.9 ± 0.1* 

 
38.2 ± 0.1* 

 
38.5 ± 0.1* 

 
38.7 ± 0.1* 

       
 

T̅sk  

(°C) 

 
Dehydration 

  
34.0 ± 0.3 

 
33.1 ± 0.4 

 
32.7 ± 0.4 

 
32.8 ± 0.4 

 
32.6 ± 0.3 

       

 Control  33.5 ± 0.3 32.6 ± 0.3 32.6 ± 0.3 32.8 ± 0.3 32.3 ± 0.3 
    

 
    

HR  
(beats·min

-1
) 

Dehydration  80 ± 3 148 ± 2* 157 ± 2*† 163 ± 2*† 166 ± 3*† 
       

 Control  77 ± 2 142 ± 3* 145 ± 3* 149 ± 3*† 149 ± 3*† 
        

Values are mean ± SEM for 10 subjects. TI, intestinal temperature; TB, blood temperature; T̅sk, mean skin 

temperature; HR, heart rate. Data are from the dehydration trial only. * P < 0.05 vs. rest, † P < 0.05 vs. 30 min. 



 

 

1
0
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Table 5-2. Haematological responses during prolonged exercise. 
 Prolonged cycling time (min) 

Rest 30 60 90 120 
Hb  
(g·l

-1
) 

Dehydration a 140 ± 4 149 ± 4* 151 ± 4* 153 ± 4* 152 ± 4* 
 v 140 ± 4 148 ± 4* 151 ± 4* 153 ± 4* 152 ± 4* 

        
O2 Sat 
(%) 

Dehydration a 97.6 ± 0.2 97.3 ± 0.3 97.3 ± 0.3 97.7 ± 0.2 97.7 ± 0.2 
 v 58.8 ± 1.0 63.6 ± 1.1* 62.9 ± 2.3 61.7 ± 1.8 61.0 ± 0.7 

        
PO2  
(mmHg) 

Dehydration a 96 ± 4 94 ± 3 93 ± 3 97 ± 2 96 ± 2 
 v 36 ± 2 40 ± 2* 41 ± 3 40 ± 2 39 ± 2* 

        
ctO2  

(ml·l
-1

) 
Dehydration a 184 ± 5 196 ± 6* 200 ± 5*† 203 ± 4*† 206 ± 5*† 
 v 112 ± 3 127 ± 4* 128 ± 7 127 ± 6 126 ± 4 

        
pH Dehydration a 7.39 ± 0.01 7.40 ± 0.01 7.40 ± 0.02 7.44 ± 0.01† 7.45 ± 0.01† 

 v 7.34 ± 0.01 7.35 ± 0.01 7.37 ± 0.02 7.38 ± 0.01 7.39 ± 0.01 
        
PCO2  
(mmHg) 

Dehydration a 39 ± 1 40 ± 2 39 ± 1 38 ± 1† 37 ± 1† 
 v 49 ± 1 50 ± 1 48 ± 2 48 ± 2 49 ± 1 

        
[HCO3

-
] 

(mmol·l
-1

)  
Dehydration a 23.6 ± 0.6 23.7 ± 0.5 23.6 ± 0.9 24.6 ± 0.6* 24.9 ± 0.6* 
 v 23.4 ± 0.6 24.0 ± 0.5 23.9 ± 0. 24.6 ± 0.9 25.0 ± 0.7 

 
cBase(ECF) 
(mmol·l

 -1
) 

Dehydration a -1.1 ± 0.7 -1.0 ± 0.7 -1.3 ± 1.1 -0.3 ± 0.8* 0.1 ± 0.7 
 v 0.5 ± 0.6 1.1 ± 0.6 0.8 ± 0.8 1.5 ± 1.2 2.2 ± 0.8 

 

Values are mean ± SEM for 10 participants. Haemoglobin (Hb), oxygen saturation (O2 sat %), partial pressures of oxygen (PO2) and oxygen content (ctO2) for arterial (a) and  

internal jugular venous (v) blood. * different from rest P < 0.05, † different from 30 min value. 
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Figure 5-1. Cerebral and extra-cerebral haemodynamics and oxygen parameters during 

prolonged exercise.  Values are means±SEM for 10 subjects. Dehydration and control exercise 

trials are represented for haemodynamics but not O2/CO2 parameters. * different from rest P < 

0.05, † different from 30 min value. 
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5.4.2 Brain and extra-cranial haemodynamics and metabolism 

In the dehydration trial, ICA blood flow and MCA Vmean were increased by ~12% at 

30 min (P < 0.05), before declining progressively to baseline values at the end of 

exercise (P < 0.05: Figure 5-1 A & D). The decline in ICA blood flow was 

associated with a marked reduction in blood flow velocity (P < 0.05), but not vessel 

diameter. On the other hand in the control trial, ICA blood flow and MCA Vmean 

increased and remained stable throughout exercise. During the dehydration trial, 

extra-cranial (CCA and ECA) blood flow increased from rest to 60 min before 

declining at the end of exercise (P < 0.05: Figure 5-1 B & C). In contrast during the 

control trial, extra-cranial flow increased and was subsequently maintained 

throughout exercise. 

 

The decline in ICA blood flow at the end of dehydration exercise was accompanied 

by an increased a-vO2 difference (P < 0.05), but no changes in a-vCO2 difference 

or brain V̇CO2 index. Thus, CMRO2 was stable throughout exercise. Both arterial 

and jugular venous [Glu] gradually declined throughout prolonged exercise (5.4 ± 

0.2 to 5.1 ± 0.2 and 5.4 ± 0.2 to 4.4 ± 0.2 mmol·l-1, respectively; P < 0.05). Brain a-

v [Glu] difference was stable during the early stages of exercise, before increasing 

prior to the end of exercise (Peak value of 0.7 mmol·l-1; P < 0.05: Figure 5-2 A), 

whilst the brain glucose uptake initially increased (0.33 to 0.43 mmol·min-1; P < 

0.05: Figure 5-2 B) before remaining stable.  

 

At rest the brain released a small amount of lactate (0.2 ± 0.05 mmol·l-1) and 

during prolonged exercise with dehydration, arterial and jugular venous [La] 

gradually declined (3.4 ± to 2.4 ± 0.3 and 3.6 ± 0.5 to 2.4 ± 0.3 mmol·l-1; P < 0.05). 

Brain a-v [La] difference was maintained throughout exercise, as was lactate 

exchange (Figure 5-2 E). The molar ratio of O2 to glucose, reflective of the partial 

and total cerebral carbohydrate metabolism, declined at the onset of exercise (6.1 

± 0.5 vs. 4.5 ± 0.3 mmol·l-1; P < 0.05: Figure 5-2 C) and thereafter remained 

stable, with a similar response observed when lactate metabolism was accounted 

for (Figure 5-2 F). 
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5.4.3 Brain and extra-cranial vascular conductance 

In the dehydration trial, MAP increased ~18% from rest to 30 min, before declining 

progressively until exercise termination (P < 0.05:  

Table 5-1). Jugular venous blood pressure was maintained stable throughout 

dehydration exercise. During prolonged exercise, ICA and MCA Vmean vascular 

conductance were lower in the dehydration compared to the control trial (P < 

0.05). At the end of exercise in dehydration, both ICA and MCA Vmean vascular 

conductance were reduced (P < 0.05: Figure 5-4) whereas both were unchanged 

throughout control exercise. CCA and ECA vascular conductance were similar 

between trials during early exercise, but were reduced at the end of exercise in 

dehydration, compared to control (P < 0.05: Figure 5-4). 

 

5.4.4 Blood flow and PaCO2, plasma catecholamines and temperature 

In the dehydration trial, PaCO2 was maintained stable through the early stages of 

exercise before declining to below baseline values at the end of exercise (~6% 

reduction from peak value; P < 0.05: Figure 5-5) whereas PvCO2 remained 

unchanged throughout exercise. During exercise, the decline in both ICA blood 

flow (R2 = 0.44; Fig. 5-5 D) and MCA Vmean (R
2 = 0.5) were correlated to reduced 

PaCO2 (both, P < 0.01) and to a weaker extent to arterial [NA] (R2 = 0.15; P < 

0.05), but not to jugular venous [NA] (R2 = 0.02; P = 0.58). 

 

In the dehydration trial, arterial adrenaline concentration ([A]) increased from rest 

to 30 min (0.7 ± 0.2 to 1.1 ± 0.2 nmol·l-1; P < 0.05), before remaining stable 

throughout exercise (Range 1.1-2.7 nmol·l-1; P < 0.05 vs. rest) whereas, jugular 

venous [A] did not increase until after 90 min of exercise (120 min = 2.25 ± 0.74 

nmol·l-1; P < 0.05 vs. rest). Arterial [Na] increased in a curvilinear manner to a 

peak of 33 ± 8.2 nmol·l-1 (P < 0.05 vs. rest: Figure 5-5 C) whereas, jugular venous 

[NA], after increasing initially at the onset of exercise (5.6 ± 2.2 to 19.4 ± 4.9 

nmol·l-1; P < 0.01), was not different from rest at exhaustion. The increases in ECA 

blood flow and vascular conductance were closely associated with increases in 

arterial [NA] and internal jugular venous blood temperature (R2 = 0.64; P < 0.01: 

Figure 5-5 B and E and R2 = 0.48; P < 0.01: Figure 5-5 F, respectively). However, 

a consistent relationship was not observed beyond 90 min where the 7% decline in 
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ECA blood flow (and conductance) was matched with an increased arterial [NA] 

and blood temperature (Figure 5-5 B & C). 

 

 

Figure 5-2. Cerebral lactate and glucose variables during prolonged exercise.  

Values are means±SEM for 10 subjects. Data presented are from the dehydration trial only. * 

different from rest P < 0.05, † different from 30 min value.  
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Figure 5-3. Mean arterial and jugular venous pressure during prolonged exercise. Values are 

means±SEM for 10 subjects. Data presented are from the dehydration trial. * P < 0.05 vs. rest, † P 

< 0.05 vs. 30 min value.  

 

 

Figure 5-4. Cerebral and extra-cerebral vascular conductance during prolonged exercise. 

Values are means±SEM for 10 subjects. Dehydration and control exercise trials are represented. 

VC calculated using MAP/JVP in dehydration and MAP only during control. * different from rest P < 

0.05, † different from 30 min value. 
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Figure 5-5. Blood temperature, PaCO2, systemic noradrenaline concentration and 

relationships with blood flow during prolonged exercise. Values are means±SEM for 10 

subjects. Data presented are from the dehydration trial only. * different from rest P < 0.05, † 

different from 30 min value. 
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 Discussion 5.5

The main finding of the present study is that dehydration impaired prolonged 

exercise capacity in the heat in association with an accelerated reduction in CBF. 

However, in spite of the reduced perfusion, cerebral metabolism was preserved as 

supported by observed elevations in oxygen and glucose extraction from the 

blood. A second novel finding was that the rise in extra-cranial blood flow in both 

experimental trials was attenuated prior to volitional exhaustion. Lastly, reductions 

in CBF were related to a reduced PaCO2 and blunted cerebral perfusion pressure, 

whereas increased extra-cranial conductance was associated with increasing 

internal temperature and enhanced sympathetic activity as indicated by plasma 

[NA]. These findings suggest that dehydration, accrued during prolonged 

strenuous exercise in the heat, affects the regional cranial circulation without 

impairing cerebral metabolism.     

 

Cerebral and extra-cranial haemodynamics 

A first aim of the present study was to characterise the haemodynamic responses 

of the cerebral and extra-cranial circulations to dehydration and prolonged 

exercise in the heat. Interestingly, we found that following the well-established 

increase upon the onset of exercise, CBF and MCA Vmean declined gradually to 

resting values at the point of volitional exhaustion concomitantly with the 

development of dehydration. Conversely, when hydration was maintained during 

similar duration exercise, CBF did not decline. These findings with and without 

dehydration are in agreement with prolonged exercise literature. CBF remains 

stable during prolonged exercise in thermoneutral environments when the degree 

of dehydration is negligible (Nybo & Nielsen 2001b; Nybo et al. 2002; Nybo et al. 

2002). However, when exercise in a warm environment causes severe 

hyperthermia and cardiovascular strain, CBF declines to resting values (Nybo & 

Nielsen 2001b). These early studies, however, did not establish whether 

hyperthermia, dehydration, or other factors underpinning volitional exhaustion are 

responsible for the fall in CBF. Taken together, cerebral perfusion declines with 

dehydration during strenuous exercise, yet maintenance of euhydration and a 

stable core temperature slows the rate of CBF decline late in fatiguing exercise.  

  

Another pertinent finding was that blood flow to the extra-cranial tissues displayed 

a distinct temporal dynamic response to that of the cerebral circulation, but was 
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also blunted late in exercise in the dehydrated condition. Yet these findings agree 

with reported 2-3 fold increases in ECA blood flow in response to passive heat 

stress (Bain et al. 2013; Ogoh et al. 2013b) and incremental exercise (Sato et al. 

2011). The ECA primarily supplies blood to the skin circulation of the face and 

neck. In this light, the enhanced ECA perfusion observed in the present and recent 

reports may be part of the circulatory adjustments required to meet the 

thermoregulatory demands for heat transfer to the environment surrounding the 

head (Ogoh et al. 2013b). Collectively, these data suggest dehydration 

accentuates the rise in internal temperature, reduces extra-cranial blood flow at 

the point of exhaustion, accelerates the decline in cerebral perfusion, and leads to 

early exhaustion during prolonged exercise in the heat. 

 

Regional regulation of blood flow 

Both local and systemic factors are implicated in regulation of CBF through the 

modulation of vascular conductance and cerebral perfusion pressure. The decline 

in perfusion in the dehydration trial was accompanied by a falling cerebrovascular 

conductance, indicative of augmented net vasoconstriction. Changes in blood 

gases (Willie et al. 2012) and sympathetic nerve activity (Mitchell et al. 2009) are 

thought to play a dominant role in local control of CBF during conditions including 

exercise (see Chapter 4 for further discussion). In particular, CO2 is a potent 

vasoactive substance within the cerebral vasculature with reductions in PaCO2 

inducing cerebral vasoconstriction and increases leading to vasodilation (Kety & 

Schmidt 1948a; Willie et al. 2012; Bain et al. 2013). In support of a role of PaCO2, 

the decline in vascular conductance with dehydration was associated with 

reductions in PaCO2 (R2 = 0.44; P < 0.01; Fig. 5-5 D) and cerebral perfusion 

pressure, but unrelated to the stable arterial and internal jugular venous vascular 

blood oxygen parameters (Table 5-2). PaCO2, however, accounted for less than 

one half of the variance in vascular conductance, suggesting that other factors 

contributed to local vasoconstriction. In this light, we observed a modest 

relationship between CBF and cerebral perfusion pressure (R2 = 0.18, P < 0.05). 

Another potential contributing factor for regulation of CBF is enhanced sympathetic 

nerve activity. The cerebral vasculature is richly innervated with sympathetic 

nerves and observations of noradrenaline spillover into the internal jugular venous 

outflow, as seen here with dehydration, may reflect sympathetic-mediated 

vasoconstriction of the cerebral vessels (Zhang et al. 2002; Mitchell et al. 2009). 
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Despite increases in arterial and jugular venous plasma [NA], the relationships 

between cerebrovascular tone and plasma NA were weak rendering its role 

inconclusive (Strandgaard & Sigurdsson 2008a; van Lieshout & Secher 2008a; 

Willie et al. 2014). The current findings suggest that dehydration induced 

reductions in CBF are dominated by a decline in PaCO2 and to a lesser extent 

cerebral perfusion pressure.  

 

The distinct dynamics of the extra-cranial circulation might involve different 

regulatory mechanisms. There was a close coupling between the increase in ECA 

blood flow/conductance and the rise in internal jugular blood temperature (R2 = 

0.64, P < 0.01) and arterial plasma [NA] (R2 = 0.48, P < 0.01) (Fig. 5-5 E and F). 

We did not seek to investigate the control of skin blood flow. However, 

mechanisms associated with increases in local and core temperature are thought 

to play an important role in cutaneous blood flow regulation. Increases in local 

tissue temperature elevate skin blood flow, initially through an axon reflex and 

subsequently via a slower acting NOS mediated pathway (Johnson & Kellogg 

2010). NO also enhances α1-adrenoreceptor sensitivity, promoting involvement of 

sympathetic mediated vasodilation (Houghton et al. 2006; Charkoudian 2010). The 

role of sympathetic activity in the overall response to local and internal 

temperature changes is substantiated by a marked elevation in skin and muscle 

sympathetic nerve activity (Niimi et al. 1997; Crandall et al. 2008), promoting 

cutaneous blood distribution and sudomotor function (Kellogg et al. 1995; 

Charkoudian 2010). With the similar ECA profile in both trials, it is more likely that 

exercise per se attenuates cutaneous perfusion as rising internal temperature 

(above 38 °C) is not matched by further increases in skin perfusion (Brengelmann 

et al. 1977; González-Alonso et al. 1999). Dehydration also limits maximal skin 

perfusion during exercise (Nadel et al. 1980) and enhances systemic vascular 

resistance (González-Alonso et al. 1995), leading to attenuated cutaneous blood 

flow (Kellogg et al. 1990). Taken together, elevations in extra-cranial blood flow, in 

contrast to the CBF response, and the strong correlations observed support that 

blood flow to these vascular beds is influenced by local and internal temperature 

and enhanced sympathetic nerve activity. The attenuation in cutaneous blood flow 

before fatigue is likely due to the development of both dehydration and core 

hyperthermia.  
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Impact of dehydration on cerebral metabolism  

Reductions in oxygen supply can compromise organ and tissue metabolism, as 

shown in contracting skeletal muscle with progressive dehydration and 

hyperthermia during prolonged exercise in the heat (González-Alonso et al. 1998). 

Here, we asked whether the stress of prolonged fatiguing exercise and 

dehydration is sufficient to compromise cerebral metabolism. Similar to findings 

during maximal exercise (Trangmar et al. 2014), the decline in CBF was met by an 

equal increase in oxygen extraction such that CMRO2 was maintained during 

prolonged exercise in the dehydrated state in agreement with other independent 

metabolic measures obtained in this study. All glucose uptake, cerebral lactate 

exchange, molar oxygen/glucose ratio (OGI), and the oxygen/carbohydrate index 

(OCI) remained unchanged, and the cerebral respiratory quotient (~1.03) was 

stable as previously reported (Dalsgaard et al. 2004a). There is contrasting 

evidence that CMRO2 might be elevated during strenuous exercise and severe 

hyperthermia compared to control exercise conditions (Nybo et al. 2002), thereby 

arguing that the metabolic demand of the brain increases during strenuous 

exercise. This conclusion, however, is based on two data points (Nybo et al. 

2002). To provide a more comprehensive account of the cerebral metabolic 

responses to exercise and establish whether CMRO2 is altered during fatiguing 

exercise, we plotted the anterior cerebral blood flow and a-vO2 difference data 

from the current prolonged exercise protocol together with the reported baseline 

and incremental exercise data obtained in the same individuals (Fig. 7-2). This 

analysis shows that CMRO2 remained stable across a variety of exercise 

intensities, exercise durations, hydration conditions and rest-to-exercise 

transitions, as variations in CBF were met by proportional changes in oxygen 

extraction. Therefore, although regional differences might still exist, the metabolic 

activity of the brain as a whole does not seem to be either enhanced or 

compromised during strenuous exercise in healthy trained people.   

 

Methodological considerations  

It was not possible to obtain simultaneous blood flow measurements in the CCA, 

ECA and ICA. Additionally measurements were obtained from the right side of the 

neck only and an assumption is made that the circulatory adjustments are similar 

to that of the left side. Venous blood samples were obtained from the left internal 
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jugular vein and asymmetry in the drainage of the brain may exist between the left 

and right jugular veins. Finally, blood flow in the posterior circulation (vertebro-

basilar system) was not assessed, which may result in underestimation of the 

calculated cerebral metabolic rate. The posterior circulation contributes a relatively 

small portion of the total cerebral blood flow (~20%); thus relatively large changes 

in perfusion (either substantial increase or decreases) would be needed to affect 

the calculated CMRO2.  

 

 Conclusion  5.6

In summary, our findings show that dehydration augments cardiovascular strain 

and negatively affects cerebral and extra-cranial perfusion during prolonged sub-

maximal exercise in the heat. However, despite the circulatory challenge induced 

by dehydration and the development of hyperthermia, cerebral metabolism is not 

impaired due to compensatory increases in oxygen and substrate extraction 

across the cerebral circulation. Thus, reduced cerebral metabolic function is 

unlikely to explain the reduced exercise capacity with dehydration during 

prolonged submaximal exercise in the heat. 
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CHAPTER 6 – Mechanisms restraining exercise 

capacity in heat stressed humans: contribution of 

body and skin hyperthermia to brain, limb and 

systemic circulatory strain 
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 Summary 6.1

Cardiovascular strain and hyperthermia are thought to be important factors limiting 

exercise capacity in heat-stressed humans, but the contribution of elevations in 

skin (T̅ sk) versus body temperature remains unknown. Here we assessed 

cardiovascular capacity and leg, brain and systemic haemodynamic responses to 

incremental cycling exercise to volitional exhaustion with elevated skin (mild heat-

stress; HSmild) and combined core and skin temperatures (moderate heat-stress; 

HSmod) to ascertain their relationships with the attainment of V̇O2max and the 

processes of fatigue. T̅sk and blood temperature (TB), V̇O2 and leg, brain and 

systemic haemodynamics and haematological parameters were measured. Both 

heat-stress conditions increased T̅sk vs. control (6.2 ± 0.2 °C; P < 0.001), however, 

only HSmod increased resting TB, blood flow to the legs and Q̇ (+0.9 ± 0.1 °C, + 1.1 

±0.1 l·min-1 and 4.8 l·min-1; P < 0.05). During incremental exercise, T̅sk remained 

elevated in both HS trials whereas only TB was greater in HSmod. At exhaustion, 

exercise capacity and V̇O2max were reduced in HSmod by 13 ± 1% and 6 ± 2% (P < 

0.05), in association with lower leg blood flow (-11 ± 3%), brain blood velocity (-9 ± 

6%), cardiac output (-8 ± 3%) and mean arterial pressure (-14 ± 1%; all P < 0.05) 

but similar maximal heart rate and TB. These findings demonstrate that whole-

body hyperthermia, but not skin hyperthermia alone, compromises exercise 

capacity in heat-stressed humans through the early attenuation of leg, brain and 

systemic blood flow. These findings help advance our knowledge and 

understanding of why exercise performance that involves different times of 

exposure to hot environments is not universally impaired across all sports and 

exercise modalities.  
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 Introduction 6.2

It is well documented that aerobic exercise capacity is reduced in hot 

environments (Rowell et al. 1966; Pirnay et al. 1970; Rowell 1974; Galloway & 

Maughan 1997; González-Alonso et al. 2008; Sawka et al. 2011). The precise 

mechanisms underpinning the attenuated exercise capacity in the heat remain 

debated, but may include reduced O2 delivery compromising muscle and brain 

metabolism, altered neurotransmitter activity, feedback/reflex mechanisms and 

attainment of critically high brain, internal and skin temperatures (Nybo & Nielsen 

2001a; Nybo et al. 2002; Nybo et al. 2002; González-Alonso et al. 2008; Sawka et 

al. 2012a; Nybo et al. 2014; Roelands & Meeusen 2010). It is well established that 

the contribution of each of the aforementioned factors to early fatigue in the heat is 

dependent on the task and intensity of the activity (Nybo et al. 2014). However, 

there is a paucity of information on the cardiovascular adjustments to differing 

extents of heat stress, and thus different levels of skin and body hyperthermia, 

during maximal incremental exercise to volitional exhaustion. In the first two 

studies of this thesis, the marked cardiovascular strain invoked by dehydration and 

a rising internal temperature did not impair cerebral aerobic metabolism. It 

therefore seems unlikely that metabolic restrictions across the brain contribute to 

fatigue during maximal incremental exercise (Nybo et al. 2014; Trangmar et al. 

2014).   

 

It is, however, possible that restrictions in active skeletal muscle perfusion might 

play an important role in the reduced maximal aerobic capacity in heat stress 

conditions. This is because tight regulation of skeletal muscle O2 delivery to 

metabolic demand during sub-maximal exercise (Andersen & Saltin 1985; Delp & 

Laughlin 1998; Saltin et al. 1998; González-Alonso et al. 2002; Delp & O'Leary 

2004) is lost at high intensities as, prior to volitional exhaustion, systemic and 

active muscle blood flow are reduced or restricted (González-Alonso & Calbet 

2003; Mortensen et al. 2005; Mortensen et al. 2008). The attenuated leg blood 

flow per unit of power when approaching maximal exercise intensities occurs 

concomitantly with enhanced local vasoconstrictor activity and reductions in stroke 

volume; with changes at the active skeletal muscle mediating these alterations 

(González-Alonso & Calbet 2003; Calbet et al. 2006; Calbet et al. 2007; 

Mortensen et al. 2008; Stöhr et al. 2011c; Bada et al. 2012; Munch et al. 2014). 

Nevertheless, a compromised local aerobic metabolism may ensue as maximal 
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skeletal muscle O2 extraction is achieved early in exercise (González-Alonso & 

Calbet 2003; González-Alonso et al. 2004), again in contrast to other regions of 

the body such the brain (Nybo et al. 2002; Trangmar et al. 2014; Chapter 4). Yet 

no study to date has assessed the integrative hemodynamic responses to 

incremental exercise with manipulations of body temperature designed to tax 

cardiovascular function and capacity.   

 

 

An early restriction in regional blood flow may underpin the reduced V̇O2max with 

heat stress. The magnitude of the decline in V̇O2max is, however, variable and 

largely dependent on the extent of the heat-stress induced increases in skin and 

body temperatures (Pirnay et al. 1970; Arngrimsson et al. 2004; Ely et al. 2010; 

Nybo et al. 2014). A critical question is which bodily temperature or combination of 

temperatures is most closely associated with the attenuation in aerobic capacity in 

heat stress conditions. On the one hand, brief exposure to heat that does not 

substantially elevate internal temperature is unlikely to cause a decline in V̇O2max 

or impair cardiovascular capacity (Arngrimsson et al. 2004). In contrast, a reduced 

aerobic capacity has recently been associated with the attainment of high skin 

temperatures without significant elevations in internal (core) temperature (Ely et al. 

2009; Ely et al. 2010; Lorenzo et al. 2010; Sawka et al. 2012a). High skin 

temperature has therefore been proposed to be a critical factor underpinning 

reduced aerobic capacity in the heat (Sawka et al. 2012a), but this hypothesis has 

not yet been systematically investigated. Assessment of the haemodynamic and 

metabolic dynamics during incremental exercise to exhaustion with different 

degrees of heat stress will elucidate the role of skin vs. combined skin and core 

temperature on exercise capacity and the underpinning cardiovascular, brain and 

skeletal muscle circulatory and metabolic responses. 

 

The aim of the present study was therefore to investigate the effect of two different 

grades of heat stress on cardiovascular capacity and brain, leg and systemic blood 

flow and metabolism during incremental cycling exercise to volitional exhaustion. 

Brain, leg and systemic haemodynamics and metabolism during incremental 

exercise were assessed; 1) after a significant heat exposure sufficient to elevate 

internal and skin temperature, 2) after a brief heat exposure sufficient to elevate 

skin temperature only and, 3) in control conditions. We hypothesised that 
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combined core and skin hyperthermia, but not skin hyperthermia alone, would 

compromise exercise capacity and V̇O2max through attenuated local vascular 

conductance and early reductions in regional perfusion.  

 

 Methods 6.3

6.3.1 Participants 

Nine healthy experienced cyclists (mean ± SD; age 26 ± 6 years, stature 181 ± 6 

cm, mass 76 ± 9 kg and V̇O2max 60 ± 6 ml·kg-1·min-1) participated in the present 

study. Participants arrived at the laboratory postprandial with a normal hydration 

status and were required to abstain from strenuous exercise and alcohol intake for 

24 h and caffeine consumption for 12 h. 

 

6.3.2 Experimental design 

To accomplish the aim of the study, participants visited the laboratory on 3 

occasions, comprising of a preliminary, a main experimental and a control visit. On 

the first visit (preliminary trial) participants were introduced to the experimental set-

up and familiarised with the test methodology. Participants then performed an 

incremental exercise test on a cycle ergometer (Lode Excalibur, Groningen, 

Netherlands) to establish WRmax, maximal heart rate and V̇O2max. The test began at 

a work rate equivalent to 50% of predicted (see General methods) V̇O2max, for 2.5 

min, followed by increments of 10% predicted every 2.5 min until the limit of 

tolerance. Participants were instructed to maintain a cadence between 70-90 

r.p.m. and the test was terminated when cycling speed dropped below 60 r.p.m. 

for more than 3 s, despite strong verbal encouragement to continue. After a 1 h 

recovery period, participants repeated the incremental test starting with an 

elevated core temperature, to establish heat stress WRmax.     

  

 

On the second visit (experimental trial), the participants completed three 

incremental cycling ergometer exercise tests in the upright position; 1) moderate 

heat stress (with moderate Tc and high T̅sk), 2) mild heat stress (with a high T̅sk 

only) and, 3) control conditions (Ta 18 °C; 36% RH; with fan cooling). In the third 

and final visit (control trial), the participants completed three incremental cycling 
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ergometer exercise tests in a thermoneutral environment (20°C; ≤ 50% RH; with 

fan cooling). Each of the incremental cycling tests consisted of 5 x 2.5 min stages 

at 20, 40, 60, 80 and 100% WRmax but owing to the reduced exercise capacity in 

the heat stress preliminary test the absolute work rates for moderate heat stress 

were; 64 ± 2, 128 ± 4, 193 ± 5, 257 ± 7 and 321 ± 9 W and for all other incremental 

tests were; 74 ± 2, 148 ± 4, 223 ± 7, 297 ± 9 and 371 ± 11 W. On both the 

experimental and control trials, each incremental test was separated by 1 h of 

passive recovery, hydration was maintained on each of the visits through the 

regular consumption of water and cycling pedal cadence during was maintained 

between 70-90 r.p.m. 

    

To induce the moderate and mild heat stress conditions, core and skin 

temperatures were elevated, under resting conditions, on the preliminary and 

experimental visits by the circulation of hot water (50 °C) through a tube lined suit 

worn by participants. The suit covered the arms, torso and legs at rest whereas, 

during exercise, only the upper body was heated. Rain trousers were worn to limit 

heat loss from the legs.  

 

On the experimental trial, brain, leg and systemic haemodynamics and blood 

samples from the brachial artery and femoral vein were obtained simultaneously at 

rest and in the final minute of each incremental exercise stage. Skin and femoral 

venous temperatures and arterial and femoral venous pressures were recorded 

continuously. The same measures were collected in the control visit, except for the 

arterio-venous blood sampling, LBF and blood pressure measurements, and with 

the addition of oesophageal temperature (Toes) (n=5).  

 

6.3.3 Leg, brain and systemic haemodynamics  

Leg blood flow during incremental exercise was determined using the constant-

infusion thermodilution method (Ganz et al. 1964; Andersen & Saltin 1985; 

González-Alonso et al. 1998; González-Alonso et al. 2000). Full description of the 

thermodilution method can be found in the General Methods section (3.3.4). At 

rest, constant-infusion thermodilution may provide inaccurate values. This is 

because the infusion of ice cold saline may cool the local tissues and not the blood 

alone (calculation of blood flow using thermodilution requires that temperature 
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changes are confined to the blood). Resting blood flow data were therefore 

obtained in 4 participants using duplex Doppler ultrasonography (Vivid 7, 

Dimension, GE Healthcare, UK). Resting blood flow in the remaining participants 

was estimated from the directly obtained a-vO2diff, and assuming similar resting leg 

V̇O2. 

 

MCA Vmean was measured using a 2MHz pulsed trans-cranial Doppler ultrasound 

system (DWL, Sipplingen, Germany). The right MCA was insonated through the 

temporal ultrasound window, distal to the MCA-anterior cerebral artery bifurcation, 

at a depth of 45-60 mm. Signal quality was optimised according to Aaslid et al. 

(1982). Cerebral oxygenation was also measured using near-infrared 

spectroscopy (NIRS) using a commercially available oxygenation monitor (INVOS, 

Somanetics, Troy, MI, USA). 

 

6.3.4 Catheter placement and blood sampling 

Participants rested with a slight head-down tilt whilst catheters for blood sampling, 

mean arterial pressure (MAP), femoral venous pressure and blood temperature 

were inserted after local anaesthesia (1% lidocaine) into the brachial artery of the 

non-dominant arm and anterograde into the right common femoral vein (Logicath 

Quad lumen, 18 gauge, 2.3 mm; MXA234X16X85, Smiths Medical International 

LTD), the latter using the Seldinger technique. Catheters were inserted by an 

experienced clinician under ultrasound guidance and were regularly flushed with 

normal saline (0.9% NaCl) to maintain patency. The time from catheterisation to 

the commencement of resting measurements was ~1 h to allow time for the 

restoration of normal haemodynamics. 

 

6.3.5 Blood variables 

Arterial and femoral venous blood samples were drawn into pre-heparinised 

syringes and analysed immediately for blood gas variables (ABL 800 FLEX, 

Radiometer, Copenhagen, Denmark) corrected to blood temperature in the 

femoral vein. The analyser was calibrated (one and two-point) at regular intervals 

in accordance with manufacturer guidelines.  
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6.3.6 Heart rate, blood pressure and temperatures  

Heart rate was obtained from a chest strap (Polar Electro, Kempele, Finland). 

Arterial and femoral venous pressure waveforms were recorded using pressure 

transducers (Pressure Monitoring Kit, TruWave, Edwards Lifesciences, Germany) 

and were zeroed at the level of the right atrium in the mid-axillary line (arterial) and 

at the level of the tip of the catheter (femoral venous). Arterial pressure waveforms 

were amplified (BP amp, ADIstruments) and sampled at 1000 Hz using a data 

acquisition unit (Powerlab 16/30, ADInstruments, Oxfordshire, UK) for offline 

analysis. For measurements of femoral venous blood temperature (TB), a 

thermistor (T204a, PhysiTemp, Clifton, New Jersey, USA) was inserted through 

the femoral venous catheter and connected to a thermocouple meter (TC-2000, 

Sable Systems, NV: USA) and routed through the data acquisition system. In the 

control trial, oesophageal temperature (Toes) was measured using a thermister 

(Physitemp, New England, USA), inserted pernasally into the oesophagus at a 

depth of ¼ standing height. Increases in core temperature during cycling exercise 

reflect the rise in femoral venous blood temperature, as TB and Toes have been 

shown to be within ~0.1 °C (González-Alonso et al. 1999). Mean skin temperature 

( T̅ sk) from four sites (standard weightings of chest, abdomen, thigh and calf; 

(Ramanathan 1964) was obtained using a wireless thermocouple system 

(iButtons®, Maxim Integrated, San José, CA, USA).   
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Figure 6-1. Mixed and femoral venous O2 saturation and PO2 responses to incremental 

exercise with different grades of heat stress. Pulmonary artery oxygen saturation (A) and PO2 

(B) were estimated from the femoral venous equivalent, corrected by the slope of the relationship 

(B and D) between femoral venous and mixed central venous haematological values obtained by 

Munch et al. (Munch et al. 2014). 

 

6.3.7 Calculations 

In the experimental trials, leg, brain and systemic vascular conductance (VC) 

indices were calculated by dividing leg blood flow, MCA Vmean and leg blood flow 

by perfusion pressure (MAP-FVP). To calculate cardiac output (Q̇) based on the 

Fick equation, pulmonary artery oxygen saturation and PO2 (Figure 6-1) were 

estimated from the femoral venous equivalent, corrected by the slope of the 

relationship between femoral venous and mixed central venous haematological 

values obtained by Munch et al. (2014). Systemic a-vO2 difference was then 
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calculated from the measured arterial oxygen content and the estimated mixed 

venous O2 content, using the directly measured haemoglobin concentration in 

venous blood and the estimated mixed venous oxygen saturations and PO2. Q̇ 

was subsequently calculated as the ratio of systemic V̇O2 and estimated mixed 

venous a-vO2 difference. Resting Q̇ was estimated using the Modelflow method 

(Wessling 1993). When leg blood flow measurements were not possible, LBF was 

calculated from the estimated Leg V̇O2 (assuming that the increase in pulmonary 

V̇O2 from baseline reflected only the increase in leg V̇O2) (Mortensen et al. 2005; 

Calbet et al. 2007; Mortensen et al. 2008; Munch et al. 2014) and directly 

measured leg arterial-to-femoral venous O2 difference. The agreement between 

measured LBF and estimated LBF in three participants is presented in Figure 6-2. 

 

 

Figure 6-2. Relationship between LBF measured by thermodilution and calculated from the 

estimated Leg V̇O2 in 3 participants. Estimations of leg V̇O2 were made using the linear 

relationship between leg and pulmonary V̇O2 from (Mortensen et al. 2008). LBF was then 

calculated as leg V̇O2 over the directly measured arterial-to-femoral venous O2 difference. The 

assumption that the increase in pulmonary V̇O2 from baseline reflects only the increase in two-leg 

V̇O2 was confirmed in the available data from 3 participants (mean difference between systemic 

and two-leg V̇O2 of ~0.5 l
.
min

-1
; P = 0.25). 
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6.3.8 Statistical analysis 

Differences between exercise conditions were assessed using two-way repeated-

measures ANOVA in which condition (Moderate heat stress, mild heat stress and 

control) and exercise phase (rest, 20, 40, 60, 80 and 100%) were the main factors. 

Where a significant main effect was found, pairwise comparisons were made using 

the Holm-Bonferroni procedure. Statistical significance was set at P < 0.05 and all 

analyses were made using IBM SPSS Statistics (Version 20, IBM Corporation, 

Armonk, NY, USA). 

 

 

 Results  6.4

6.4.1 Temperature and cardiorespiratory responses to moderate and mild 

heat stress  

Prior to incremental exercise, TB was by design elevated in HSmod compared to 

HSmild and control (37.5 ± 0.1 vs. 36.7 ± 0.1 and 37.0 ± 0.1 °C; P < 0.05), whereas 

T̅sk was equally elevated in both heat stress conditions compared to control (38.2 ± 

0.3 vs. 32.3 ± 0.4 °C; P < 0.001: Fig. 6-3 A & B). During incremental exercise in 

HSmod, TB was initially unchanged before increasing to a peak of 39.3 ± 0.1 °C (P < 

0.001 vs. rest) whereas, in HSmild and control, TB increased linearly from rest to 

WRmax (39.1 ± 0.1; P < 0.001) and was lower overall compare to HSmod. T̅sk was 

maintained elevated in both heat stress conditions (36.9 ± 0.4 vs. 32.0 ± 0.4 °C; P 

< 0.001) and was subsequently stable throughout exercise. Respiratory variables 

are presented in Table 6-1. Briefly, respiratory frequency, V̇CO2 and V̇E increased 

with exercise intensity and were lower in HSmod compared to HSmild and control 

(both P < 0.001). End-tidal O2 initially declined before increasing at WRmax, with the 

reverse response observed for CO2; however, there were no differences between 

the exercise test conditions (P = 0.492). Arterial and venous [Hb] and arterial 

oxygen content increased with incremental exercise in all conditions, despite a 

reduction in arterial oxygen saturation (all P < 0.05: Table 6-2 & Table 6-3). Arterial 

oxygen content was elevated by 6% in both heat stress conditions and was higher 

in HSmod compared to HSmild and control up to 60% WRmax (P < 0.05: Table 3).  

During the three incremental tests in the control trial, Toes increase from 36.6 ± 0.1 

to 38.3 ± 0.1 °C, but no differences were observed between incremental tests, 

including cardiorespiratory variables. 
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    Table 6-1. Respiratory responses to incremental exercise with different grades of heat stress. 

 
 

V̇E 

(l·min
-1

) 

 
fr 

(breaths·min
-1

) 

 
PetO2 

(mmHg) 

 
PetCO2 

(mmHg) 

 
V̇CO2 

(l·min
-1

) 

% WRmax (W)      

Moderate heat stress      

0 17 ± 2 18 ± 1 111 ± 3 33 ± 2 0.46 ± 0.05 

20 (64) 39 ± 2* 25 ± 2* 103 ± 2* 38 ± 2* 1.35 ± 0.07* 

40 (128) 55 ± 2* 29 ± 2* 102 ± 1* 40 ± 1* 1.99 ± 0.08* 

60 (193) 77 ± 3*‡ 32 ± 2* 106 ± 1 40 ± 1* 2.78 ± 0.07*‡ 

80 (257) 110 ± 5*‡† 41 ± 2* 111 ± 2 38 ± 1* 3.68 ± 0.11*‡† 

100% (321) 148 ± 7*‡† 51 ± 3* 115 ± 1* 34 ± 1 4.42 ± 0.08*‡† 

      

Mild heat stress      

0 14 ± 1 16 ± 2 108 ± 2 34 ± 1 0.39 ± 0.02 

20 (74) 39 ± 2* 25 ± 2* 100 ± 2* 39 ± 1* 1.14 ± 0.07* 

40 (149) 58 ± 2* 29 ± 2* 102 ± 1* 40 ± 1* 2.12 ± 0.07* 

60 (223) 86 ± 3*† 34 ± 2* 106 ± 1 40 ± 1* 3.05 ± 0.09*† 

80 (297) 126 ± 4*† 41 ± 2*† 113 ± 1 36 ± 1* 4.10 ± 0.10*† 

100% (371) 161 ± 7* 52 ± 3* 116 ± 1* 34 ± 1 4.73 ± 0.16* 

      

Control      

0 14 ± 1 17 ± 2 108 ± 3 33 ± 1 0.40 ± 0.03 

20 (74) 39 ± 2* 26 ± 2* 99 ± 1* 38 ± 1* 1.33 ± 0.08* 

40 (149) 57 ± 2* 29 ± 2* 102 ± 2* 40 ± 1* 2.06 ± 0.08* 

60 (223) 79 ± 3* 32 ± 2* 104 ± 2 40 ± 1* 2.88 ± 0.08* 

80 (297) 116 ± 6* 39 ± 2* 110 ± 2 38 ± 1* 3.88 ± 0.11* 

100% (371) 165 ± 7* 52 ± 3* 117 ± 1* 33 ± 1 4.73 ± 0.12* 

 

Values are mean ± SEM for 9 participants. Minute ventilation (V̇E), respiratory frequency (fr), end-tidal oxygen (PetO2) and carbon dioxide 

tension (PetCO2) and carbon dioxide production (V̇CO2), * different vs. rest P < 0.05, ‡ different vs. mild heat stress, † different vs. control. 

Presented symbols denote differences between conditions at the same relative percentage of WRmax. 
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6.4.2 Leg, brain and systemic haemodynamics, blood pressure and 

conductance 

At rest, heart rate (88 ± 3 vs. ~76 ± 5 beats·min-1), two-legged blood flow (2.1 ± 

0.1 vs. ~1 ± 0.1 l·min-1) and Q̇ (10.4 ± 1.9 vs. ~5.1 ± 0.8 l·min-1) were elevated in 

HSmod compared to HSmild and control, in association with an enhanced leg and 

systemic vascular conductance (all P < 0.05). From rest to sub-maximal exercise, 

heart rate, Q̇ and two-legged blood flow increased linearly with exercise intensity 

in all conditions (P < 0.05 vs. rest) and, in HSmod overall, two-legged blood flow 

and mean arterial pressure were lower (P < 0.05) and heart rate and systemic 

vascular conductance were higher (P < 0.05) compared to HSmild and control, 

whereas there were no differences between groups for Q̇. At exhaustion, heart 

rate increased to similar peak values (189 ± 4, 187 ± 3 and 184 ± 3 beats·min-1 in 

HSmod, HSmild and control, respectively) and, two-legged blood flow (18.5 ± 1.3, 

20.3 ± 1.0 and 21.3 ± 1.2 l·min-1), Q̇ (21.8 ± 1.4, 23.6 ± 1.1 and 24.7 ± 1.3 l·min-1) 

and MAP (124 ± 7, 139 ± 7 and 153 ± 7 mmHg) were reduced in HSmod compared 

to HSmild and control, respectively (all P < 0.05), in association with a blunted 

perfusion pressure. Cerebral perfusion (MCA Vmean) declined in all conditions, in 

association with a decline in cerebrovascular conductance, but was markedly 

reduced (9%) in HSmod compared to HSmild and control (P < 0.05). Furthermore, 

beyond 60% WRmax, mean arterial pressure and Q̇ were lower in HSmild compared 

to control conditions (Figure 6-5), associated with a further elevation in systemic 

vascular conductance (P < 0.05). Femoral venous pressure and leg vascular 

conductance increased with exercise intensity.  
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Table 6-2. Blood gases and metabolite responses to incremental exercise with different grades of heat stress. 
  

pH 
 
 

Hb 
(g·l

-1
) 

SO2 
(%) 

PO2 
(mmHg) 

PCO2 
(mmHg) 

% WRmax Arterial Venous Arterial Venous Arterial Venous Arterial Venous Arterial Venous 
           
Moderate heat 
stress 

          

Rest 7.46 ± 0.01‡† 7.44 ± 0.01‡† 148 ± 3‡† 151 ± 3‡† 97.5 ± 0.3 85.1 ± 1.3‡† 94.5 ± 2.9 51.8 ± 1.3‡† 38.2 ± 1.3 42.1 ± 1.8 

20 7.47 ± 0.01‡† 7.39 ± 0.01*‡† 154 ± 3*‡† 157 ± 3*‡† 98.0 ± 0.2 36.3 ± 1.2* 100.3 ± 2.8 24.1 ± 0.6*‡† 36.2 ± 1.8* 53.7 ± 2.8* 

40 7.45 ± 0.01*‡† 7.35 ± 0.01* 154 ± 3*‡† 157 ± 3*‡† 97.8 ± 0.2 25.9 ± 2.0* 99.4 ± 3.1 21.1 ± 0.8* 37.0 ± 1.5‡ 60.3 ± 2.7* 

60 7.42 ± 0.01*† 7.31 ± 0.01* 155 ± 3*‡† 158 ± 3*‡† 97.5 ± 0.2* 21.0 ± 2.3* 99.3 ± 2.2 20.2 ± 1.1* 38.1 ± 1.2 65.9 ± 2.1* 

80 7.40 ± 0.01*‡† 7.26 ± 0.01*‡ 156 ± 3* 159 ± 4*‡† 97.2 ± 0.2* 16.8 ± 1.9*‡ 98.2 ± 2.9 18.9 ± 1.1* 36.2 ± 0.9 72.1 ± 1.9* 

100% 7.36 ± 0.01*‡† 7.19 ± 0.01*‡ 157 ± 3* 161 ± 3*‡† 96.7 ± 0.2* 11.6 ± 1.3* 100.3 ± 2.4 17.8 ± 1.1* 33.7 ± 1.0* 78.1 ± 2.1* 

           

Mild heat stress           

Rest 7.44 ± 0.01 7.41 ± 0.01 141 ± 2† 143 ± 3 97.9 ± 0.1 71.5 ± 2.1 95.7 ± 2.2 38.2 ± 1.2 38.2 ± 1.0 44.3 ± 1.2 

20 7.44 ± 0.01 7.38 ± 0.01* 147 ± 3*† 149 ± 3*† 97.8 ± 0.1 32.4 ± 1.6* 95.1 ± 2.0 21.8 ± 0.5* 37.7 ± 1.1 52.5 ± 1.6* 

40 7.42 ± 0.01* 7.33 ± 0.01* 148 ± 3*† 150 ± 3*† 97.6 ± 0.2 23.4 ± 1.2* 95.9 ± 1.8 20.0 ± 0.5* 39.3 ± 0.9 61.4 ± 1.5* 

60 7.41 ± 0.00* 7.29 ± 0.00* 150 ± 3*† 153 ± 3*† 97.3 ± 0.1* 18.0 ± 1.2* 96.0 ± 1.7 18.6 ± 0.6* 38.6 ± 1.0 67.6 ± 1.2* 

80 7.38 ± 0.01* 7.23 ± 0.01*† 153 ± 3* 155 ± 3* 97.1 ± 0.2* 13.9 ± 1.4*† 97.3 ± 2.0 17.8 ± 1.0* 36.6 ± 1.2† 74.0 ± 1.5* 

100% 7.32 ± 0.01*† 7.15 ± 0.01*† 156 ± 3*† 152 ± 3*† 96.2 ± 0.3* 11.1 ± 1.2* 99.2 ± 2.5 17.9 ± 1.2* 33.3 ± 1.1* 79.0 ± 2.7* 

           

Control           

Rest 7.44 ± 0.01 7.41 ± 0.01 138 ± 3 140 ± 3 97.9 ± 0.1 66.6 ± 3.3 95.8 ± 1.6 36.4 ± 1.9 37.4 ± 1.0 43.9 ± 1.6 

20 7.44 ± 0.01 7.39 ± 0.01* 145 ± 3* 146 ± 3* 97.7 ± 0.2 32.3 ± 1.2* 93.5 ± 2.1 21.7 ± 0.3* 37.2 ± 1.0 50.2 ± 1.5* 

40 7.42 ± 0.00* 7.34 ± 0.01* 146 ± 3* 147 ± 3* 97.7 ± 0.2 23.0 ± 1.6* 97.5 ± 2.4 19.6 ± 0.6* 38.7 ± 1.0 59.5 ± 1.5* 

60 7.40 ± 0.00* 7.29 ± 0.00* 148 ± 3* 151 ± 3* 97.2 ± 0.2* 19.7 ± 1.6* 95.2 ± 1.8 19.2 ± 0.8* 39.4 ± 1.0* 66.0 ± 1.4* 

80 7.38 ± 0.01* 7.24 ± 0.01* 150 ± 3* 151 ± 3* 96.8 ± 0.2* 15.5 ± 1.5* 95.6 ± 2.5 18.6 ± 1.1* 38.3 ± 1.4 71.4 ± 1.6* 

100% 7.33 ± 0.01* 7.17 ± 0.01* 153 ± 3* 153 ± 3* 96.3 ± 0.3* 12.0 ± 1.2* 98.8 ± 2.6 17.9 ± 1.1* 34.3 ± 1.3* 76.7 ± 2.2* 

 

Values are mean ± SEM for 9 participants. pH, Haemoglobin (Hb), oxygen saturation (SO2%), partial pressures of oxygen (PO2) and carbon dioxide (PCO2) for arterial and 

femoral venous blood. * different vs. rest, ‡ different vs. mild heat stress, † different vs. control (all P < 0.05). Presented symbols denote differences between conditions at 

the same relative percentage of WRmax. 
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Figure 6-3. Temperature responses to incremental exercise with different grades of heat 

stress. Values Femoral venous blood (A) and mean skin (B) temperatures are reported. Values 

are means ± SEM for 9 subjects. Moderate (internal and skin), mild (skin only) heat stress and 

control trials are represented. * different vs. rest P < 0.05, ‡ different vs. mild heat stress, † 

different vs. control. Presented symbols denote differences between conditions at the same relative 

percentage of WRmax.  
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Table 6-3. Blood gases and metabolite responses to incremental exercise with different grades of heat stress. 
 ctO2 

(ml·l
-1

) 
[Lac] 

(mmol·l
-1

) 
[Glu] 

(mmol·l
-1

) 
[HCO3

-
] 

(mmol·l) 
cBase(ECF)(mmol·l

-1
) 

% of WRmax Arterial Venous Arterial Venous Arterial Venous Arterial Venous Arterial Venous 
           
Moderate heat stress           

Rest 199 ± 4‡† 176 ± 3‡† 1.0 ± 0.1 1.1 ± 0.1 5.8 ± 0.1 5.8 ± 0.2 27.3 ± 0.3‡† 27.7 ± 0.3‡† 3.0 ± 0.4‡† 4.1 ± 0.5† 

20 209 ± 4*‡† 79 ± 2*‡† 1.7 ± 0.2* 2.1 ± 0.3* 5.9 ± 0.2 5.8 ± 0.3 26.6 ± 0.3*† 27.5 ± 0.4† 2.0 ± 0.5*† 6.5 ± 0.5*† 

40 208 ± 4*‡† 56 ± 4* 2.2 ± 0.3* 2.4 ± 0.4* 6.0 ± 0.2 6.0 ± 0.3 26.1 ± 0.5*† 27.0 ± 0.5* 1.5 ± 0.6* 6.8 ± 0.6*† 

60 209 ± 4*‡† 46 ± 5* 3.0 ± 0.4* 3.3 ± 0.5* 6.1 ± 0.2‡† 6.0 ± 0.3‡† 25.2 ± 0.5*† 26.0 ± 0.6*† 0.5 ± 0.7* 6.1 ± 0.8*† 

80 210 ± 4* 37 ± 4* 4.8 ± 0.5* 5.4 ± 0.5* 6.1 ± 0.3‡† 6.0 ± 0.3‡† 23.3 ± 0.5*‡† 23.8 ± 0.6*‡† -1.9 ± 0.7*‡ 4.2 ± 0.8‡† 

100% 210 ± 4* 26 ± 3* 8.6 ± 0.6* 9.7 ± 0.5* 6.3 ± 0.3*‡† 6.3 ± 0.3*‡† 20.1 ± 0.6*‡† 20.3 ± 0.5*‡† -6.1 ± 0.8*‡† 0.4 ± 0.7* 

           

Mild heat stress           

Rest 191 ± 3† 140 ± 6 1.3 ± 0.2 1.5 ± 0.1 5.9 ± 0.2 5.7 ± 0.3 26.0 ± 0.3† 26.4 ± 0.3 1.7 ± 0.4† 3.4 ± 0.4 

20 198 ± 4*† 67 ± 4* 1.5 ± 0.2* 1.6 ± 0.2 5.9 ± 0.3 5.8 ± 0.3 26.0 ± 0.3 26.7 ± 0.3 1.6 ± 0.4 5.6 ± 0.4* 

40 199 ± 4*† 49 ± 2* 1.7 ± 0.2* 2.0 ± 0.3* 5.7 ± 0.3* 5.6 ± 0.3 25.7 ± 0.3* 26.3 ± 0.3 1.3 ± 0.4* 6.0 ± 0.5* 

60 202 ± 4*† 38 ± 3* 2.8 ± 0.3* 3.3 ± 0.4* 5.4 ± 0.2 5.3 ± 0.2 24.7 ± 0.3* 25.2 ± 0.4* -0.1 ± 0.5* 5.3 ± 0.5* 

80 205 ± 4* 30 ± 3*† 5.7 ± 0.6* 6.3 ± 0.7* 5.3 ± 0.2* 5.2 ± 0.3 22.2 ± 0.5*† 22.5 ± 0.5* -3.1 ± 0.7*† 2.7 ± 0.7 

100% 208 ± 4* 23 ± 2* 10.5 ± 0.8* 11.0 ± 0.8* 5.3 ± 0.3 5.2 ± 0.3 18.3 ± 0.5*† 18.8 ± 0.5* -8.3 ± 0.7*† -1.8 ± 0.8* 

           

Control           

Rest 187 ± 4 129 ± 9 1.4 ± 0.2 1.7 ± 0.2 6.1 ± 0.2 5.9 ± 0.1 25.5 ± 0.2 26.0 ± 0.3 1.0 ± 0.3 3.0 ± 0.5 

20 195 ± 4* 65 ± 3* 1.6 ± 0.2 1.7 ± 0.2 6.0 ± 0.1* 6.1 ± 0.1 25.5 ± 0.3 26.4 ± 0.3 1.0 ± 0.4 4.9 ± 0.5* 

40 197 ± 4* 47 ± 4* 1.7 ± 0.3 2.0 ± 0.3 5.9 ± 0.1 5.9 ± 0.2 25.4 ± 0.3 26.0 ± 0.4 0.9 ± 0.5 5.4 ± 0.6* 

60 198 ± 4* 41 ± 4* 2.6 ± 0.3* 3.2 ± 0.4* 5.6 ± 0.2* 5.5 ± 0.2* 24.5 ± 0.4* 24.9 ± 0.5* -0.1 ± 0.5* 4.8 ± 0.6* 

80 201 ± 4* 33 ± 3* 4.8 ± 0.5* 5.5 ± 0.6* 5.3 ± 0.2* 5.2 ± 0.3* 22.7 ± 0.5* 22.8 ± 0.6* -2.4± 0.8* 2.7 ± 0.8 

100% 203 ± 4* 26 ± 3*† 9.3 ± 0.6* 10.3 ± 0.9* 5.2 ± 0.3* 5.1 ± 0.3* 19.1 ± 0.5* 19.4 ± 0.6* -7.2± 0.8* -0.8 ± 0.8* 

 

Values are mean ± SEM for 9 participants. Oxygen content (ctO2), Lactate concentration ([Lac]), Glucose concentration ([Glu]), sodium bicarbonate concentration ([HCO3
-

])) and acid-base excess (ABE) for arterial and femoral venous blood. * different vs. rest P < 0.05, ‡ different vs. mild heat stress, † different vs. control. Presented symbols 

denote differences between conditions at the same relative percentage of WRmax. 
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Figure 6-4. Cerebral vascular conductance (VC) responses to incremental exercise with 

different grades of heat stress. Values are means ± SEM for 9 subjects. Cerebral perfusion 

(MCA Vmean) and cerebral vascular conductance (VC) index are presented. Moderate (internal and 

skin), mild (skin only) heat stress and control trials are represented. * different vs. rest P < 0.05, ‡ 

different vs. mild heat stress, † different vs. control. Presented symbols denote differences between 

conditions at the same relative percentage of WRmax. 
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Figure 6-5. Leg and systemic haemodynamic responses to incremental exercise with 

different grades of heat stress. Blood flow (A), systemic and local blood pressure (B) and 

vascular conductance (C). Values are means ± SEM for 9 subjects for moderate (internal and skin), 

mild (skin only) heat stress and control trial. Exercise elevated all variables vs. rest (not shown), ‡ 

different vs. mild heat stress, † different vs. control (all P < 0.05). Presented symbols denote 

differences between conditions at the same relative percentage of WRmax. 
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6.4.3 Leg and systemic oxygen supply and uptake  

At rest, leg a-vO2 difference (24 ± 3 vs. ~56 ± 7 ml·l-1) and oxygen extraction (12 ± 

1 vs. ~32 ± 3%) were lower whereas, leg O2 delivery (0.42 ± 0.03 vs. 0.18 ± 0.02 

l·min-1) was elevated in HSmod compared to HSmild and control. However, resting 

leg V̇O2 (~0.027 ± 0.003 l·min-1) was similar across conditions (P < 0.05; 

Figure 6-6) as was resting systemic V̇O2 (0.46 ± 0.03 l·min-1) (P = 0.47-0.84). 

During incremental exercise, leg a-vO2 difference, leg and systemic oxygen 

delivery and leg and systemic V̇O2 increased with intensity in all conditions (P < 

0.05). At exhaustion, leg a-vO2 difference and oxygen extraction (87-89%) were 

not different across conditions, however, leg and systemic O2 delivery and 

maximal leg and systemic V̇O2 were reduced in HSmod (P < 0.05) compared to 

HSmild and control exercise conditions. Lastly, cerebral oxygenation declined by 

~13 ± 5Δ% at WRmax, but no differences between experimental conditions were 

observed at exhaustion. 
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Figure 6-6. Leg and systemic oxygen parameter responses to incremental exercise with two 

different grades of heat stress. Values are means ± SEM for 9 subjects for moderate (internal 

and skin), mild (skin only) heat stress and control trial. Exercise elevated all variables vs. rest (not 

shown), ‡ different vs. mild heat stress, † different vs. control (all P < 0.05). Presented symbols 

denote differences between conditions at the same relative percentage of WRmax. 
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 Discussion 6.5

This is the first study to systematically alter skin and core temperatures, through 

different durations of heat stress exposure, to ascertain the role of whole-body vs. 

skin hyperthermia on incremental exercise capacity and gain insight into the 

potential underlying mechanisms. The novel findings of the present study were 

threefold. First, a moderate heat stress augmented resting limb blood flow and 

cardiac output; however, the haemodynamic responses during incremental 

exercise were similar among the experimental manipulations of skin and core 

temperatures. Second, only the combination of core and skin hyperthermia 

compromised maximal aerobic power and exercise capacity. Lastly, the restricted 

limb and systemic aerobic metabolism during intense exercise with combined core 

and skin hyperthermia were strongly related to attenuation in the rate of rise in 

limb perfusion, a plateau in leg and systemic vascular conductance and the 

attainment of ‘maximal’ leg O2 extraction. Taken together, these findings indicate 

that combined core and skin hyperthermia compromises cardiovascular function 

and aerobic metabolism during strenuous incremental exercise in trained humans.   

 

Regional and systemic haemodynamics and metabolism at rest and during 

graded exercise to sub-maximal intensities 

A major novel finding of the present study was that, despite the augmented whole-

body perfusion under resting core and skin hyperthermia conditions, systemic and 

limb blood flow increased at a similar rate during incremental exercise, irrespective 

of the temperature manipulation. Under resting conditions, a moderate heat stress, 

sufficient to raise core and skin temperature by ~0.8 and 7 °C respectively, 

resulted in marked elevation in heart rate (+12 beats·min-1), limb blood flow (0.7 

l·min-1) and an approximately two-fold increase in cardiac output (from 5 to 10.4 

l·min-1), with no elevation in whole-body oxygen uptake. These findings are 

consistent with the contention that severe passive heat stress invokes a 

hyperadrenergic state typified by augmented limb, cutaneous and systemic 

haemodynamics and a substantial thermoregulatory and sympathetic drive (Sawka 

et al. 1985a; Rowell.1993; Niimi et al. 1997; Crandall et al. 2008; Heinonen et al. 

2011), and are in general agreement with previous observations of augmented 

circulatory responses to prolonged passive heat stress (Roddie et al. 1956; Rowell 

et al. 1969a; Rowell et al. 1969; Rowell 1974; Crandall et al. 2008; Pearson et al. 

2011). In contrast, a brief (mild) heat exposure, with a skin temperature elevation 
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equivalent to that during moderate heat stress (~37 °C), was an insufficient 

stimulus to elevate whole-body blood flow compared to control conditions. This 

was an unexpected observation in the context of Rowell and colleagues’ idea that 

high skin temperature increases the thermoregulatory demand for skin blood flow 

(Figure 2-7; (Rowell et al. 1969a; Rowell 1993). The present data are consistent 

with the premise that increasing core temperature is the primary stimulus 

(weighting of 9:1) for the skin hyperaemia (Nadel et al. 1971), even though the 

effector response can be substantially modulated by skin temperature across a 

wide range of temperature manipulations (Sawka et al. 2011). 

 

An important finding of the present study was that during incremental exercise, 

and in contrast to the observations at rest, limb and systemic blood flow increased 

at a similar rate up to sub-maximal exercise intensities, irrespective of the 

temperature manipulation (Figure 6-5). This was the case despite a markedly 

suppressed mean arterial blood pressure and an elevated systemic vascular 

conductance. Previous findings on the impact of heat stress on systemic blood 

flow have been equivocal (Rowell et al. 1966; Rowell 1974; González-Alonso & 

Calbet 2003). On the one hand, it has been shown that stroke volume and cardiac 

output are substantially reduced at higher intensities during graded exercise 

(Rowell et al. 1966). The implication of this finding was that the competing demand 

for high skin blood flow compromised systemic (and active muscle) perfusion at 

high intensities. Contrastingly, during constant-load maximal exercise in the heat, 

cardiac output is equivalent (if not slightly higher) to normothermic conditions 

(González-Alonso & Calbet 2003), suggesting that factors other than enhanced 

skin blood flow per se are responsible for early fatigue in the heat. The differences 

in these findings are probably due to the training status of the participants 

(untrained vs. trained in Rowell et al. and González-Alonso et al. respectively). 

Notwithstanding, the current findings do support in part the estimations of Rowell 

(Figure 2-8) as it was observed that the attainment of maximal HR and a declining 

SV occurred at a lower absolute oxygen uptake; thus supporting the premise that 

severe heat stress advances the regulatory limit of the cardiovascular system, 

concurrently to an early plateau or attenuation in the rate of rise of systemic and 

limb blood flow prior to volitional exhaustion (Rowell 1974; González-Alonso & 

Calbet 2003). Moreover, our present findings demonstrate that a high skin 

temperature (and presumably high blood flow requirements) is unlikely to 
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compromise active muscle blood flow (Savard et al. 1988; Nielsen et al. 1990; 

González-Alonso et al. 1999) as cutaneous blood flow plateaus above 37-38 °C 

(achieved early during graded exercise, and in contrast to the continued elevation 

in core temperature)(Brengelmann et al. 1977) and the circulatory system is able 

to compensate with sympathetically-mediated redistribution of blood flow from 

non-active regions (Crandall et al. 2008; Kenney et al. 2014). Our data 

demonstrate for the first time that the duration of heat exposure is critical to 

whether cardiovascular function is impaired during strenuous exercise in the heat 

stressed human. The regulatory strain only becomes apparent with a combination 

of skin and core hyperthermia. 

 

Impact of heat stress on maximal aerobic power 

To our knowledge this is the first study to simultaneously investigate systemic, 

brain and active limb perfusion and limb muscle metabolism during incremental 

exercise in heat stressed individuals. A crucial finding of the present study was 

that the combination of core and skin hyperthermia prevented the attainment of a 

comparable V̇O2max to both cool ambient and skin hyperthermia conditions. We 

observed a reduction in V̇O2max with combined core and skin hyperthermia, but no 

impact of skin hyperthermia alone. The relative decline in maximal aerobic power 

(13%) with substantial core and skin hyperthermia is in general agreement with the 

existing literature (Pirnay et al. 1970; Nybo et al. 2001; Arngrimsson et al. 2004). 

In contrast, however, others have found a limited impact of heat stress on V̇O2max 

(decline of ~3-7%) when exercise was performed without a pre-heating protocol 

(Rowell et al. 1965; Rowell et al. 1966; Klausen et al. 1967; Pirnay et al. 1970). 

These differences are likely due to the different levels of hyperthermia (i.e. skin 

only vs. combined core and skin hyperthermia). Notwithstanding, we observed a 

similar maximal aerobic power, and systemic and limb haemodynamics and 

metabolism, with skin hyperthermia alone (Figure 6-5, Figure 6-6).  

 

The purported high skin blood flow requirements with skin heating have been 

taken to mean that skin temperature alone is an important determinant of aerobic 

exercise capacity (Ely et al. 2009; Ely et al. 2010; Lorenzo et al. 2010; Sawka et 

al. 2012b). However, it is more likely that a high skin temperature influences 

aerobic performance through behavioural reflexes associated with thermal 

comfort, leading to adjustments in power output (and pacing strategies), rather 
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than a function of circulatory strain per se (Schlader et al. 2009; Sawka et al. 2011; 

Nybo et al. 2014). Our present findings suggest that simply elevating skin 

temperature does not activate the cascade of events leading to compromised 

maximal aerobic power. This observation explains why exercise performance in 

hot environments is not universally impaired across all sports and exercise 

modalities. 

 

Mechanisms restricting aerobic power with core and skin hyperthermia  

In the present study, combined core and skin hyperthermia led to early fatigue 

during graded exercise in association with an 8% reduction in pulmonary and 

exercising limbs V̇O2. The lower leg V̇O2 was related to an attenuated limb O2 

delivery (3.9 ± 0.2 vs. 4.2 ± 0.2 l·min-1
), as ‘maximal’ leg O2 extraction (~88%) was 

similar among the 3 experimental conditions. In contrast, aerobic metabolism was 

maintained with skin only hyperthermia, with similar haemodynamic alterations 

compared to control incremental exercise. Whilst this is the first report of different 

manipulations of temperature on whole-body haemodynamics during incremental 

exercise, it has previously been shown that restrictions in limb and systemic 

perfusion, coupled with the simultaneous attainment of a maximal limb O2 

extraction (~90%), of a similar magnitude to that in the present study, markedly 

reduced leg aerobic metabolism and account for a reduced constant load exercise 

duration (~5.5 vs. 7.6 min) with a significant heat stress (González-Alonso & 

Calbet 2003; González-Alonso et al. 2004). These findings are also in general 

agreement with observations during normothermic incremental exercise of a 

marked plateau in limb and systemic vascular conductance and attenuated 

regional O2 delivery, eventually leading to a blunted aerobic metabolism and 

fatigue (Mortensen et al. 2005; Calbet et al. 2007; Mortensen et al. 2008). In the 

present study, moderate heat stress accentuated the rise in heart rate, to a similar 

peak value (186 beats.min-1) at reduced absolute work rate. Cardiac tachycardia 

during incremental exercise, with and without heat stress, can reduce filling time 

and further accentuates the plateau in stroke volume above 50% V̇O2max 

(Higginbotham et al. 1986; González-Alonso & Calbet 2003; Stöhr et al. 2011c). 

Moreover, it is possible that peripheral mechanisms restricting cardiac filling, 

rather than maximal heart rate per se, are responsible for the attenuated systemic 

and active muscle blood flow prior to exhaustion during high intensity exercise 

(Bada et al. 2012; Munch et al. 2014). Processes at the central nervous system, 
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particularly in regards to reductions in central drive, are thought to contribute to 

fatigue processes when heat stressed (Nielsen & Nybo 2003; Nybo & Secher 

2004; Todd et al. 2005; Nybo 2010; Ross et al. 2012; Nybo et al. 2014). However, 

it is unlikely that the moderate reductions in cerebral perfusion, seen here with skin 

and core hyperthermia and in previous studies (González-Alonso et al. 2004; 

Trangmar et al. 2014), are capable of compromising cerebral metabolism to the 

extent that can explain the reduced aerobic power with substantial  heat stressed 

conditions. Collectively, the present findings are consistent with the idea that a 

blunted rise in active muscle and systemic blood flow, compromising muscle 

aerobic metabolism, is a primary contributing factor in the chain of events leading 

to early fatigue with a significant whole-body hyperthermia.  

 

Methodological considerations 

Resting blood flow measurements were made using Doppler ultrasonography, 

rather than thermodilution. It is known that constant infusion thermodilution 

technique has limitations when determining LBF in resting conditions since a 

stable plateau in blood temperature is often not reached. Doppler ultrasound, 

however, does not have this limitation. Estimated systemic a-vO2 difference and 

leg V̇O2 were used to calculate cardiac output (all participants) and LBF (n=5), 

respectively. It is possible that these estimates may not reflect cardiac output and 

LBF values at each of the time points. However, a linear relationship is present 

between systemic and leg a-vO2 difference (for Q̇ estimation), as with systemic 

and leg V̇O2 (for LBF calculation) during graded exercise (Mortensen et al. 2008; 

Munch et al. 2014). We therefore consider our calculations valid under the 

exercise modality used in the current study. 

 

 Conclusion  6.6

In summary, the present findings show that cardiovascular capacity and maximal 

oxygen uptake are impaired in hot environments which cause both core and skin 

hyperthermia. The reduced aerobic power was associated with compromised 

active muscle metabolism due to reduced oxygen delivery. In contrast, skin 

hyperthermia alone does not hinder cardiovascular capacity, maximal oxygen 

uptake or exercise performance during strenuous whole-body dynamic exercise.  
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CHAPTER 7 – General discussion 
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 Introduction 7.1

The primary aim of the present thesis was to further understand the circulatory 

processes contributing to early fatigue in environmentally stressful hot conditions. 

Specifically, the three studies presented within examined the effects of exercise-

induced dehydration and environmental heat stress-mediated skin and body 

hyperthermia on cerebral, muscle and systemic haemodynamics and metabolism 

during strenuous exercise. In Chapter 4, cerebral blood flow and metabolism was 

assessed during maximal incremental exercise in control, dehydrated and 

rehydrated states. In Chapter 5, blood flow to the cerebral and extra-cranial 

regions, and cerebral metabolism were investigated during prolonged submaximal 

exercise with and without progressive dehydration. In Chapter 6, blood flow to the 

brain, leg and systemic circulations were investigated during maximal incremental 

cycling exercise to volitional exhaustion, under different grades of heat stress 

affording the precise manipulation of skin and body temperatures. The following 

chapter discusses the main findings of each of the three study chapters with 

integrative discussion of the novel findings in the context of the existing literature. 

Finally the potential future directions and methodological considerations are 

discussed. 

 

 Summary of main findings  7.2

7.2.1 Impact of dehydration and hyperthermia on CBF and metabolism 

The onset of dynamic exercise initiates a chain of events that typically augments 

regional and global cerebral blood flow; a response that is thought to be required 

to enhance substrate delivery to the brain and support the elevated neuronal 

activity (Gjedde et al. 2005; Secher et al. 2008; Buxton.2009; Rasmussen et al. 

2010). However, it has been shown that above moderate exercise intensities 

(Hellstrom et al. 1996; Sato et al. 2011) and during prolonged strenuous exercise 

in the heat (Nybo & Nielsen 2001b; Nybo et al. 2002), cerebral perfusion can 

decline towards baseline values. The reductions in O2 delivery could pose a critical 

challenge to cerebral metabolism that lead to reductions in central motor output 

(Nielsen & Nybo 2003; Todd et al. 2005; Nybo & Rasmussen 2007), thereby 

exerting an important role in the chain of events underpinning reduced maximal 

aerobic and prolonged strenuous exercise capacity with body hyperthermia. In 

particular, because the loss of body fluids with dehydration during strenuous 
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exercise in the heat places further strain on circulatory function and the 

maintenance of systemic and tissue blood flow (Sawka 1992; González-Alonso et 

al. 1995; González-Alonso et al. 1997; González-Alonso et al. 1998), it was 

hypothesised that dehydration would substantially attenuate CBF. 

 

The studies contained within this thesis are the first to assess the impact of 

dehydration on cerebral and extra-cranial blood flow during strenuous exercise in 

the heat. In Chapter 4, it was observed for the first time that dehydration markedly 

accelerates the reductions in CBF, above moderate exercise intensities, during 

graded incremental exercise. The reductions in CBF were accompanied by an 

increasing cerebral perfusion pressure but falling cerebrovascular  conductance, 

concomitantly with enhanced vasoconstrictor activity, suggesting that local net 

vasoconstriction underpinned a restricted cerebral blood flow during strenuous 

exercise. An original finding from Chapter 5 was that dehydration resulted in a 

progressive decline in CBF. On the other hand, extra-cranial blood flow, which 

perfuses the skin of the face and neck, increased progressively to 90 min before a 

plateau occurred. When hydration status was maintained through regular fluid 

ingestion, CBF was preserved whereas extra-cranial flow responded in a similar 

fashion. Importantly, the attenuated cerebral perfusion was strongly associated 

with the decline in PaCO2 which is purported to be the primary influencing cerebral 

vascular tone (Ogoh & Ainslie 2009a; Willie et al. 2012). Other factors including 

sympathetic activity, peripheral reflexes and central haemodynamics (i.e. Q̇) may 

also contribute to cerebrovascular regulation during strenuous exercise in the 

heat. 

 

No studies to date have explored the impact of dehydration on CBF and 

metabolism dynamics during strenuous maximal incremental and prolonged sub-

maximal exercise in the heat. By using a novel combination of volumetric 

‘absolute’ blood flow, using duplex Doppler ultrasonography, and internal-to-

jugular venous blood sampling it was possible to make a reasonable estimate of 

the absolute CMRO2 across a range of hydration states, exercise intensities and 

rest-to-exercise transitions. In spite of the circulatory challenge to the human brain 

during dynamic exercise in the heat, with and without dehydration, compensatory 

increases in the oxygen extraction fraction afforded a stable CMRO2, suggesting 
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that impaired aerobic metabolism of the brain as a whole is not a prerequisite for 

fatigue during intense exercise. 

 

7.2.2 Influence of body temperature on cerebral, systemic and active limb 

haemodynamics  

Uncompensable heat stress has been long known to degrade maximal aerobic 

power (Rowell 1974; Rowell 1993; González-Alonso & Calbet 2003; Arngrimsson 

et al. 2004). There is, however, discordance in the literature on the impact of high 

ambient temperatures on maximal exercise capacity; perhaps a consequence of 

the varied extent of the cardiovascular strain invoked by different manipulations of 

ambient temperature. It was previously unclear as to whether the reduced exercise 

capacity is modulated through a regulatory demand for high skin blood flow, due to 

a substantial elevation in skin temperature alone (Rowell et al. 1966; Rowell 1974; 

Sawka et al. 2012a), or whether the concurrent rise in core/internal body 

temperature is obligatory. Irrespective of heat stress, the attainment of maximal 

aerobic power during incremental exercise is associated with a marked attenuation 

in limb and systemic O2 delivery which compromise active skeletal muscle aerobic 

metabolism (González-Alonso & Calbet 2003; Mortensen et al. 2005; Mortensen et 

al. 2008; Bada et al. 2012; Munch et al. 2014). No study, however, has 

systematically assessed the precise regional haemodynamic and metabolic 

adjustments during maximal incremental exercise in the heat. 

 

In Chapter 6, body temperature was systematically manipulated to provide insight 

into the circulatory adjustments underpinning incremental exercise capacity under 

heat stressed conditions. For the first time it was observed that only the combined 

attainment of a high skin and core hyperthermia was sufficient stimulus to 

compromise V̇O2max. The lower maximal aerobic power was associated with a 

lower maximal brain, leg and systemic perfusion and a compromised limb aerobic 

metabolism. These data advance previous findings in normothermic environments 

(Mortensen et al. 2005; Mortensen et al. 2008) and during constant load exercise 

in the heat (González-Alonso & Calbet 2003). Taken together, these studies 

provide novel information on the circulatory alterations and metabolic 

consequences which may be important factors limiting strenuous exercise under 

severe physiological stress. The implications of the present findings are discussed 

in more detail in the following discussion.  
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7.2.3 Regional differences in perfusion across the head  

For the first time in this thesis, a focal exploration of the regional haemodynamic 

responses to dehydration across the head was made. In direct contrast to the 

cerebral circulation, blood flow to the extra-cranial regions was shown to be 

progressively enhanced with dehydration and hyperthermia during strenuous 

exercise. Yet, a plateau in ECA blood flow was observed before the end of 

prolonged exercise in the heat. The discrete extra-cranial blood flow response is 

mediated by different regulatory mechanisms; however, the physiological 

consequences for exercise capacity remain unclear.  

 

Extra-cranial blood flow, estimated in Chapter 4 and directly measured in Chapter 

5 increased by ~80% over the course of short duration maximal and prolonged 

sub-maximal exercise in the heat. Similar peak values were obtained irrespective 

of hydration status. The present findings are in congruence with the limited 

literature showing a linear increase in ECA flow during graded exercise (Sato et al. 

2011) and passive elevations in core body temperature (Ogoh et al. 2013b). It was 

suggested that the rise in body temperature associated with heat stress was 

important for such alterations. We have shown for the first time a strong 

relationship between the rise in ECA flow and increases in blood temperature and 

systemic sympathetic activity; hallmarks of the physiological adjustments to 

exercise hyperthermia. Substantial increases in local and internal body 

temperature enhance the active vasodilator system and induce a sympathetically-

mediated blood flow redistribution (Wallin & Charkoudian 2007; Charkoudian 

2010; Johnson et al. 2014). This, by extension, could be a mechanism by which 

the temperature of the tissues of the head is regulated. A further finding in Chapter 

5 was that the rise in ECA blood flow and vascular conductance plateaued after 

~90 min of exercise (Figure 5-4), concomitant to diminished relationships with the 

rising temperature and whole-body catecholamines (Figure 5-5). It is possible that 

the attenuated ECA blood flow, relative to the rising core temperature, is caused 

by the impact of both exercise and dehydration on cutaneous blood flow. In this 

light, is has been shown that exercise per se restricts skin blood flow above a core 

temperature of ~38 °C (Brengelmann et al. 1977; González-Alonso et al. 1999). 

Dehydration, or more specifically a concomitant hyperosmolality, delays the onset 

threshold for rising skin blood flow to a higher core temperature (Nadel et al. 1980; 

Shibasaki et al. 2009), and results in a lowers SKBF over the course of prolonged 
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exercise (González-Alonso et al. 1995). The precise mechanism by which 

dehydration restricts ECA blood flow prior to fatigue during prolonged exercise in 

the heat remains unclear, but could be enhanced vasoconstrictor or diminished 

active vasodilator activity (Kellogg et al. 1998; Charkoudian 2003; Charkoudian 

2010; Johnson et al. 2014). 

 

A speculative question is whether the increase in extra-cranial perfusion has any 

bearing on the temperature or haemodynamics of the brain. Face cooling elevates 

cerebral perfusion at rest and during exercise; however, these findings are 

confounded by alterations in cardiac output and mean arterial pressure (Miyazawa 

et al. 2012; Miyazawa et al. 2013). It is unlikely that ‘relieving’ the head cutaneous 

demands for blood flow affect in any way the cerebral circulation as preventing the 

decline in cerebral perfusion during passive hyperthermia does not lead to further 

elevations in extra-cranial blood flow (Bain et al. 2013). Additionally it remains 

unlikely that cooling the external surface of the head has an influence on the rise 

in brain tissue and blood temperature, despite apparent benefits on thermal 

perception and time to exhaustion (Tyler & Sunderland 2011). Humans do not 

demonstrate selective brain cooling and brain temperature (indicated by the 

arterial-to-internal jugular venous temperature difference) is not reduced by face 

fanning or intranasal cooling in humans (Nybo et al. 2002; Nybo 2010; Nybo et al. 

2014) or rats (Zhu et al. 2006; Zhu et al. 2009), suggesting that local skin cooling 

does not determine the absolute cerebral temperature (Nybo et al. 2014). 

Manipulating skin temperature with surface cooling strategies may simply alter the 

contribution of blood flow to temperature gradients in convective and conductive 

heat loss from the skin of the head, without affecting deep brain temperature. This 

phenomenon is well characterised for core temperature in humans exercising in 

environmental temperature ranging from 5 to 35 °C (Nielsen, 1938). Overall the 

findings from the present thesis show marked elevations in extra-cranial blood flow 

with increasing body temperature and systemic sympathetic activity; synonymous 

with exposure to a marked hyperthermia. The physiological significance of such a 

response remains to be fully elucidated.  
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 Mechanistic overview of the present findings 7.3

7.3.1 Circulatory limitations to strenuous exercise in the heat  

A primary focus of the present thesis was to provide further insight into the 

circulatory limitations explaining a compromised maximal and sub-maximal 

exercise capacity. By the use of heat stress and dehydration it was possible to 

induce a marked strain on cardiovascular function, compromising both maximal 

incremental and prolonged exercise capacity. On the basis of the findings of the 

present thesis, and literature pertinent to cerebral and active muscle blood flow 

during exercise in the heat, a model is presented pertaining to how elevations in 

core body temperature affect the integrative body systems prior to fatigue during 

dynamic cycling exercise (Figure 7-1). 
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Figure 7-1. Model of the integrative factors contributing to early exhaustion in the heat. 
Exercise in the heat eliciting high metabolic rates increases both skin and core body temperature 

and places a significant strain on all physiological systems. The rise in body temperature is 

dependent on numerous factors including hydration status, exercise intensity and mode and 

whether the environmental conditions are deemed compensable or uncompensable (Sawka et al. 

2011; Nybo et al. 2014). In the psychological domain, high body temperatures enhance thermal 

sensation and alter the perception of effort when compared to temperature environments (Gagge et 

al. 1969). Whilst not explored in the present thesis, hyperthermia is associated with a high 

ventilation rate under resting and exercising conditions (Haldane 1905; White 2006), which 

influences the perception of effort and alters cerebral O2 delivery via its effects on PaCO2. The 

findings of the present thesis, in relation to the constituents of the Fick principle, at the level of the 

brain and limb are highlighted in red and are explored further in the text. Modified from Nybo et al. 

(2014).   

 

In accordance with the Fick principle, the maximal convective O2 transport and O2 

extraction (a-vO2diff) set the upper limit for local and systemic aerobic metabolism 

(V̇O2). In light of the findings of chapters four through six, the impact of the present 

manipulations of body temperature and hydration on systemic and local perfusion 

is explored. Second, the present observations of different O2 extraction capacities 

and the impact on local aerobic metabolism are discussed. Lastly, an appreciation 

is made for the other integrative processes contributing to early fatigue in the heat.  

 



 

152 
 

Convective O2 transport 

A primary finding of the present thesis was that dehydration accelerated the 

decline in CBF and O2 delivery during maximal incremental and prolonged 

strenuous exercise in a hot environment (Chapters 4 & 5). Moreover, exercise in a 

high ambient temperature invoking combined skin and core hyperthermia 

substantially reduced maximal aerobic power, in association with and early 

attenuation in both systemic and active limb blood flow (Chapter 6). 

 

Reductions in systemic and regional blood flow can independently impair local 

aerobic metabolism through a decline in convective O2 transport. In the present 

thesis, both dehydration and hyperthermia invoked an early reduction (cerebral) or 

attenuation (limb) in convective oxygen transport which could impair local aerobic 

metabolism when the compensatory capacity to further extract oxygen from the 

arterial blood is exhausted. The present findings are in general agreement with 

previous observations that the rate of rise in active muscle blood flow is attenuated 

prior to exhaustion, concomitant to a substantial increase in sympathetic activity, 

blunted systemic and limb vascular conductance and an attenuation in central 

cardiovascular haemodynamics (Rosenmeier et al. 2004; Mortensen et al. 2005; 

Calbet et al. 2007; Mortensen et al. 2008; Stöhr et al. 2011c; Trinity et al. 2012). It 

is also clear that the cerebral circulation is similarly affected by a general reduction 

in systemic perfusion that manifests during exhaustive exercise in the heat (Nybo 

et al. 2001; Nybo & Nielsen 2001b; González-Alonso et al. 2004), or when 

dehydration is developed during prolonged sub-maximal exercise (González-

Alonso et al. 1995; González-Alonso et al. 1997; González-Alonso et al. 1998). 

The present thesis extends these findings by showing that 1) the decline in CBF at 

high intensities is markedly accelerated by the superimposition of dehydration and 

2) that core and skin hyperthermia accelerates the attainment of maximal 

circulatory adjustments which in part contributes to the reduced V̇O2max in hot 

ambient conditions.  

 

An interesting finding in Chapter 6 was that brief exposure to exogenous heat 

stress, without increasing core temperature, did not negatively impact on systemic 

and active limb blood flow or maximal exercise capacity during incremental 

exercise. In general, prolonged sub-maximal exercise invoking the attainment of a 

high (‘critical’) core temperature does not reduce systemic and active limb blood 
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flow compared to normothermic conditions (Savard et al. 1988; Nielsen et al. 

1990; Smolander & Louhevaara 1992; Nielsen et al. 1993; González-Alonso et al. 

1998). This suggests that, at least at sub-maximal exercise intensities, the 

additional circulatory demands requiring enhanced cutaneous blood flow are 

supported without compromising blood pressure (and flow) regulation (Rowell et 

al. 1966; Kenney et al. 2014). However, in similar exercise and environmental 

conditions, the progressive loss of body fluids with dehydration augments core 

temperature and reduces active muscle perfusion (González-Alonso et al. 1998). 

As shown for the first time in Chapter 5, progressive dehydration similarly 

compromises CBF during prolonged exercise in the heat whereas, when 

euhydrated, cerebral perfusion remains stable until such time that a substantial 

hyperthermia-induced hypocapnia develops (Nybo & Nielsen 2001b). At higher 

exercise intensities, approaching V̇O2max, Q̇ was shown to decline in untrained 

men during graded exercise in the heat (Rowell et al. 1966), leading to the 

hypothesis that high skin blood flow requirements compromise systemic (and 

therefore active muscle) O2 delivery (Rowell 1974). However, more recently, 

systemic perfusion is shown to be equivalent in both high and normothermic 

ambient conditions in trained athletes (González-Alonso & Calbet 2003). 

Nevertheless, when core and skin temperature rise considerably during exercise 

eliciting maximal aerobic power (as in Chapter 6), the regulatory limit of the 

cardiovascular system (i.e. maximal HR, Q̇ and O2 extraction) is attained more 

quickly and, in the novel findings of the present thesis, at a lower percentage of 

normothermic V̇O2max.     

 

Whilst subject to much debate, the findings of the present thesis are in general 

agreement with the view that the attainment of V̇O2max during dynamic exercise, 

with or without heat stress, involving a large muscle mass is preceded by an 

attenuation in systemic, brain and active muscle blood flow (González-Alonso & 

Calbet 2003; González-Alonso et al. 2004; Mortensen et al. 2005; González-

Alonso 2006; Saltin & Calbet 2006; Mortensen et al. 2008). It has long been 

shown that the maximal vasodilation of the skeletal muscle would ‘outstrip’ the 

pumping capacity of the heart, as maximal recruitment of more than half of the 

skeletal musculature is unattainable during a prolonged period in normally active 

individuals (Secher et al. 1977; Andersen & Saltin 1985; Rowell.1993; Mortensen 

et al. 2005; Calbet et al. 2007; González-Alonso et al. 2008; Mortensen et al. 
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2008). This premise is further evidenced by the observation that inspiratory 

loading and assisted ventilation reduce and increase respectively, blood flow to 

the active limbs (Harms et al. 1997; Harms et al. 1998); however, it is unlikely that 

the respiratory musculature is spared from the overall reduction in systemic 

perfusion during maximal whole-body exercise (Secher & Richardson 2009; 

Vogiatzis et al. 2009). In contrast to dynamic, whole-body exercise, when exercise 

is isolated to a small fraction of muscle systemic and active muscle blood flow has 

been shown to increase linearly with exercise intensity (Andersen & Saltin 1985; 

Mortensen et al. 2005; Mortensen et al. 2008), indicating that the volume of 

muscle mass recruited has a significant bearing on whether exercise capacity is 

reduced by a perfusion limitation. 

 

The mechanisms attributed to the decline in cerebral perfusion during maximal 

and prolong sub-maximal exercise were explored in detail in Chapters 4 and 5. 

The precise mechanisms regulating systemic and limb perfusion at high intensities 

remain to be fully elucidated in the context of the present thesis. Maximal heart 

rate appears  not to place a limiting influence on O2 delivery (Bada et al. 2012; 

Munch et al. 2014); however, because peripheral blood flow appears to be 

primarily controlled at the local level through the balance of vasodilator and 

vasoconstrictor activity (Mortensen et al. 2007; González-Alonso et al. 2008; 

Mortensen et al. 2009; Mortensen et al. 2009; González-Alonso 2012; Hellsten et 

al. 2012), it is possible that overriding vasoconstrictor activity at the active muscle 

vasculature is responsible for the compromised systemic perfusion (Bada et al. 

2012). Furthermore, both heat stress and maximal exercise independently 

augment systemic sympathetic activity concomitant to a reduced limb and 

systemic vascular conductance, even when only a small muscle mass exercise is 

employed (Mortensen et al. 2008). It is therefore possible that the early attenuation 

of systemic and active muscle perfusion with high core and skin temperatures in 

Chapter 6 is related to enhanced vasoconstrictor tone.   

 

In addition to the decline in Q̇, any reduction in arterial oxygen content will narrow 

the arterio-venous gradient and limit V̇O2max (Rowell.1993). Elevating CaO2 acutely 

via manipulation of red blood cell mass enhances maximal aerobic power and Q̇ 

(Ekblom et al. 1972; Ekblom et al. 1975; Ekblom et al. 1976; Gledhill et al. 1999), 

whereas reductions attenuate aerobic power (Calbet et al. 2009). Reductions in 
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arterial oxygen saturation can occur in maximally exercising elite athletes by 

alveolar-to-arterial diffusion limitations, intra-pulmonary shunt and ventilation 

perfusion mismatch (Wagner 1996; Dempsey et al. 2008a; Dempsey et al. 2008b; 

Wagner 2011); however, this is not a universal finding in normally active 

individuals exercising maximally with a normal inspired O2 fraction (Rowell.1993). 

As typically observed, dehydration and hyperthermia (Chapters 4 and 5), and 

exercise heat stress (Chapter 6), resulted in an arterial haemoconcentration, and 

with no clear arterial desaturation prior to volitional exhaustion it is unlikely that O2 

delivery in the heat was restricted through this mechanism.  

 

Oxygen extraction and local aerobic metabolism 

Because the active musculature (inclusive of respiratory, cardiac and skeletal 

muscle) accounts for ~90% (leg V̇O2 = ~84%) of the increase in systemic oxygen 

uptake during incremental exercise (Rowell.1993; Calbet et al. 2007), the 

attenuated and early decline in systemic, cerebral and active limb O2 delivery can 

compromise local aerobic metabolism. 

 

The observations in the present thesis argue against impairment of cerebral 

aerobic metabolism prior to volitional exhaustion, during maximal incremental and 

prolonged strenuous exercise in the heat, irrespective of hydration status. More 

specifically Chapters 4 and 5 have shown that fractional oxygen extraction 

increased to compensate for the decline in O2 delivery, regardless of hydration 

status. Moreover, on further analysis it is apparent that these acute alterations are 

proportional to the reduction in blood flow, such that the CMRO2 was not 

compromised before fatigue (Figure 7-2). 
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Figure 7-2. Relationship between cerebral perfusion and a-vO2 difference. Note that 

regardless of the exercise condition, the decline in anterior cerebral blood flow was equally 

compensated for by adjustments in oxygen extraction, such that CMRO2 was maintained at ~45 

ml·min
-1

. Data from dehydration during prolonged exercise, and in control and dehydration 

conditions during maximal incremental exercise. 

 

The capacity to enhance oxygen extraction in the face of a compromised O2 

delivery could be considered an important functional adaptation to ensure the 

appropriate and stable oxygenation of the brain. However, a contrasting theory 

has evolved suggesting that reductions in O2 delivery with hyperthermia can 

challenge the maintenance of cerebral oxygenation (Rasmussen et al. 2010). In 

the study by Rasmussen and colleagues it was observed that hyperthermia during 

prolonged exercise, 1) increased the CMRO2 by ~10% in association with the Q10 

effect, 2) concurrently, CBF declined by ~15% and, 3) oxygen extraction increased 

by ~8%. It was suggested that these events led to a reduction in mitochondrial 

oxygen tension (PmitoO2) which could impair cerebral oxygen availability; implying a 

diffusional limitation to O2 transport to the cerebral tissue (Gjedde et al. 1999; 

Gjedde et al. 2005). Whilst this is an attractive hypothesis, it is unlikely to explain 

the reduced exercise capacities in the present thesis. Despite the marked 

reductions in CBF observed in Chapters 4 and 5, a rise in CMRO2 was not evident, 

and the increase in O2 extraction (< 40%) was far below the ‘theoretically maximal’ 

levels at volitional exhaustion (McHenry et al. 1961; Bain & Ainslie 2014; Bain et 
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al. 2014; Lewis et al. 2014a). A reduction in CBF on the order of 50-60% is 

required to lower the PmitoO2 to below ~5 mmHg; a threshold that is considered not 

to be compensated for by further increases in O2 extraction (Gjedde et al. 2005; 

Nybo & Rasmussen 2007; Secher et al. 2008; Bain et al. 2014). Lastly, whilst 

cerebral oxygenation (indexed in the frontal cortex) is reduced with hypoxemia, 

restoration of cerebral O2 delivery with hyperoxia and CO2 clamping does not 

increase maximal incremental power (Subudhi et al. 2009; Subudhi et al. 2009; 

Olin et al. 2010; Olin et al. 2011; Subudhi et al. 2011; Subudhi et al. 2011). Taken 

together these findings support the premise that reductions in cerebral 

oxygenation are not a major factor explaining the reduction in maximal aerobic 

power with hyperthermia. 

 

In contrast, the findings in Chapter 6 provide evidence that attenuated oxygen 

delivery to the working muscles, which is advanced with high skin and core 

temperatures, can suppress active muscle V̇O2. Specifically we observed a 

marked reduction in maximal aerobic power, with combined skin and core 

hyperthermia, concomitant to a higher heart rate and core temperature 

(Figure 6-3), and lower systemic and active limb perfusion (Figure 6-5). The early 

attenuation in the rate of O2 delivery was temporally matched by a similar peak a-

vO2difference and oxygen extraction (~88%); that is, there was no increase in O2 

extraction above values observed under normothermic control conditions. The 

present findings are in congruence with previous observations during constant 

power maximal exercise in the heat where it was shown that a reduced exercise 

capacity occurred in the presence of a maximal oxygen extraction of ~90%; which 

again was similar to control conditions (González-Alonso & Calbet 2003).  Unlike 

the brain, therefore, active skeletal muscle aerobic metabolism is restricted prior to 

exhaustion by the transient attenuation in O2 supply (Figure 7-3). The present 

novel findings extend these observations by showing for the first time that whole-

body heat stress leads to the early attainment of the circulatory regulatory limit 

during maximal incremental exercise. Restricted active muscle aerobic 

metabolism, but not CMRO2, is an important factor contributing to the cascade of 

events leading to early fatigue during maximal aerobic exercise under heat 

stressed conditions. 
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Figure 7-3. Integrative systemic and regional blood flow and metabolism in studies 1-3. Note 

that maximal oxygen extraction across the limb and systemic circulations is achieved earlier in 

moderate heat stress compared to mild and control conditions (A), in association with an 

accelerated attenuation in limb and systemic blood flow per unit of power (C). Across the brain, 

peak oxygen extraction was ~40% irrespective of dehydration (A), and accompanied a similar fall in 

cerebral blood flow (B).   



 

159 
 

Other CNS factors 

In respect to the model presented in Figure 7-1, it remains possible that other 

processes are impaired by dehydration and hyperthermia and explain the early 

fatigue in hot environments. At the level of the central nervous system, elevations 

in core body temperature during prolonged exercise in the heat increase the rate 

of cerebral and body heat storage (Nybo et al. 2002). Cerebral tissue temperature 

during strenuous exercise is primarily influenced by the increasing arterial blood 

temperature and the reductions in cerebral blood flow (reducing convective heat 

transfer via the circulation), as heat loss through the cranium is minimal (Nybo et 

al. 2002; Zhu et al. 2006; Zhu et al. 2009). Although direct cerebral tissue 

temperature measurements are unsuitable in healthy, maximally exercising 

humans, it is possible that attainment of a high brain or hypothalamic temperature 

might be a mechanism by which central drive to the locomotor muscles is impaired 

with body hyperthermia; although the current associations are not causal (Nybo & 

Nielsen 2001c; Nielsen & Nybo 2003; Cheung & Sleivert 2004; Ross et al. 2012). 

This is, however, an unlikely scenario in the present thesis as the extent of body 

hyperthermia was lower, in comparison to other reports (Nybo & Nielsen 2001b; 

Nybo et al. 2002; Nybo et al. 2002).   

 

Reductions in brain glycogen stores might constitute a limiting factor for impaired 

metabolism during intense neuronal activation (Dalsgaard et al. 2004a; Dalsgaard 

& Secher 2007). During maximal exercise, glucose is taken up by the brain in 

surplus to the oxidative rate; it is considered that this occurs to replenish glycogen 

stores which be initially depleted during cerebral activation (Dalsgaard et al. 2002). 

There remains limited understanding of the contribution of these alterations to 

fatigue during exercise; however, limited data in rats suggests that the brain 

‘super-compensates’ glycogen stores after exercise in certain brain regions (e.g. 

hippocampus, cortex), and may constitute a metabolic adaptation to training 

(Matsui et al. 2012). A further possibility is that disturbances in brain 

neurotransmitters (e.g. dopamine and serotonin), that are associated with feelings 

of lethargy under heat stressed conditions, precipitate the development of ‘central 

fatigue’ and advance the early curtailment of exercise (Nielsen & Nybo 2003; 

Meeusen et al. 2006). Identification of the precise cerebral alterations that may be 

of importance for the development of fatigue during maximal or prolonged 

strenuous exercise remains challenging.   
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 Methodological considerations  7.4

Unilateral blood flow measurements were made in all studies. An assumption was 

made that extra-cranial volume flow measured on one side is similar to that of the 

contralateral side (Schoning et al. 1994). A limitation to CBF measurements in 

Chapters 4 & 5 was that it was only possible to assess anterior cerebral blood flow 

(i.e. the internal carotid artery). It is estimated that the two ICAs perfuse ~70-80% 

of the brain, with the remaining supplied by two vertebral arteries within the 

posterior circulation of the head. It is acknowledged that the VAs may have a 

different CO2 reactivity and respond in a different manner during graded exercise 

by increasing linearly up to 80% WRmax (Sato et al. 2011). This is possibly due to 

the enhanced metabolic demand of the regions perfused by the posterior 

circulation (for example the cardiorespiratory centre) which may become 

increasingly more active during high intensity exercise (Delp et al. 2001). It 

remains to be established whether this relationship holds with dehydration and 

during strenuous exercise in the heat. 

 

Changes in CBF were underestimated through the omission of measurements of 

VA blood flow (purported to contribute ~25% of total CBF), which in turn led to an 

underestimation of CMRO2. However, assuming a similar relative increase 

observed by Sato and colleagues, the relatively small changes in VA flow do not 

seem to influence the CMRO2 to an extent that would undermine the findings of 

the present thesis. It is important to point out that the present measures of CBF 

and the independently assessed a-vO2 differences were inversely related across a 

variety of conditions, providing assurance of the sensitivity of these measures. 

Notwithstanding this, it is acknowledged that there is evidence, although limited, 

that global CMRO2 may be augmented during strenuous exercise (Nybo et al. 

2002). Future studies should therefore aim to also measure VA flow as well as 

posterior venous blood oxygenation to conclusively establish whether CMRO2 

indeed remains stable or increases during exhaustive exercise.  

 

A final consideration from studies 1 and 2 was that jugular venous blood samples 

were obtained unilaterally from the left internal jugular vein. Despite an asymmetry 

existing in the venous drainage of the brain, comparable blood haematological and 

gas values have been reported in both the left and right internal jugular veins. 

Moreover, the jugular vein might be partially collapsed, in favour of the spinal 
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venous plexus (Gisolf et al. 2004; Olesen et al. 2014), and it therefore is possible 

that this influence the metabolic processes (Valdueza et al. 2000). It is, however, 

unlikely that the calculated CMRO2 would be altered substantially by sampling 

from the alternate vein (Gibbs et al. 1942; Munck & Lassen 1957). Moreover, 

comparable a-vO2 difference dynamics is observed during incremental exercise 

based on right jugular vein blood samples (Ide et al. 1999b). Placement of the 

catheter in the retrograde position to the jugular bulb is designed to preclude any 

extra-cerebral contamination, although this cannot be completely excluded.        

 

Lastly, estimations of mixed venous (pulmonary artery) PO2 and O2 saturation 

were made to calculate cardiac output in study 3. It is acknowledged that these 

estimations may not reflect the blood gas variables that would have been obtained 

in the present thesis. PO2 only contributes a negligible part of the calculated 

oxygen content whereas discrepancies in SO2 would significantly influence the 

estimation. There is a strong linear relationship (R2 = 0.99; P = 0.00) between 

femoral-venous and central mixed venous blood gases during incremental 

exercise (Munch et al. 2014), which make our current estimations reasonable in 

the circumstances of the present thesis.  
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 Significance of findings and future directions 7.5

For the first time this thesis has characterised the haemodynamic and metabolic 

responses to exercise-induced dehydration and heat stress-mediated skin and 

core hyperthermia and provides novel insight into the impact of reductions in 

convective O2 delivery on brain and active limb metabolism during both maximal 

and prolonged exercise in trained humans. These data further support the 

literature on the detrimental effects of dehydration and hyperthermia on 

physiological function and exercise capacity (González-Alonso et al. 1995; 

González-Alonso et al. 1997; González-Alonso et al. 1998; González-Alonso & 

Calbet 2003; González-Alonso et al. 2008; Cheuvront & Kenefick 2014; Nybo et al. 

2014). Understanding the physiological processes at the level of the brain and 

active limb are of upmost importance to understanding the functional limitations of 

the human body during severe stress. The ability to ‘cope’ with the circulatory 

strain imposed by such conditions appears to region specific, with the brain having 

a greater functional oxygen extraction reserve than the active skeletal muscles to 

offset dehydration and hyperthermia induced reductions in convective O2 delivery. 

Moreover, appreciation of the impact of dehydration and varying extents of heat 

stress are of great importance to athletes and coaches who are often exposed to 

similar environmental challenges during performance.   

 

Studies 1 and 2 have shown that the brain is able to use its ‘oxygen reserve’ to 

compensate for transient cerebral hypoperfusion. This provides further support for 

the fact that, at least in the exercise paradigms explored in the present thesis, the 

CMRO2 is largely unaltered. Others have suggested that reductions in CBF are 

capable of reducing the diffusive capacity for oxygen into the neuronal 

mitochondria and that cerebral oxygenation can become compromised (Gjedde et 

al. 1999; Rasmussen et al. 2007; Rasmussen et al. 2010). The latter mechanism, 

coupled with a reduction in the cerebral metabolic ratio (Dalsgaard & Secher 2007) 

could yet be a contributing factor to the development of central fatigue observed 

prior to exhaustion during dynamic whole-body exercise, particularly with 

additional challenges to convective O2 transport (e.g. hypoxia) (Nybo & 

Rasmussen 2007; Goodall et al. 2012). Further studies should try to delineate 

these distinct pathways and use novel techniques (e.g. arterial spin labelling with 

MRI, PET) to further explore the cerebral changes to dynamic exercise in stressful 
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conditions. Specifically, studies invoking significant challenges to CBF (for 

example severe hyperthermia, haemorrhage and orthostatic challenge) coupled 

with the advanced measurement techniques will further our understanding of the 

cerebral adjustments during physiological stress.  

 

Dehydration invokes whole-body fluid displacement and volume changes, which 

have also been shown to affect the brain (Kempton et al. 2009; Kempton et al. 

2011). To this end, dehydration invoked volume changes may influence neuronal 

function during cognitive tasks (Kempton et al. 2011). If it is considered that 

exercise, particularly with dehydration and concomitant hyperthermia, invokes 

changes in cerebral activation, it is possible that direct changes in cerebral 

morphology might negatively influence cerebral processes and contribute to 

fatigue. Combination magnetic resonance imaging (MRI) and arterial spin labelling 

(ASL), ultrasound and haematological measurements under such conditions could 

be an avenue to assess the deep structural changes at the level of the brain.  

 

Modest elevations in core temperature, invoking reductions in PaCO2 and CBF to 

levels less than those presented in the current thesis, have been shown to reduce 

voluntary activation during  sustained MVC (Nybo & Nielsen 2001a) and during 

cortical voluntary activation assessed with trans-cranial magnetic stimulation 

(Todd et al. 2005; Ross et al. 2012). As highlighted in Chapter 4, reduced 

convective O2 delivery does not negatively impact on the cerebral metabolic rate 

whereas, a high CNS temperature per se might influence central nervous drive to 

the muscles and could explain the ‘central fatigue’ associated with exercise 

hyperthermia. Future studies should combine exploration of central fatigue with 

hyperthermia, concomitantly with the assessment of cerebral haemodynamics and 

metabolism.   

 

There are still many unresolved questions on the regulation of cerebral blood flow 

during exercise. In particular, the functional role of sympathetic and cholinergic 

innervation within the cerebral vessels remains contested. Due to the clearly 

important role of PaCO2 on cerebral vasoconstriction, sympathetic activity may be 

a redundant mechanism. In Chapter 4 it was observed that cerebral catecholamine 

uptake was enhanced whereas, recent evidence of NA spillover from the brain has 

been shown (Mitchell et al. 2009; Seifert & Secher 2011). Designing a paradigm 
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whereby a critical role for sympathetic activity can be identified is challenging 

because of the influence of such manipulations on other factors that contribute to 

CBF (e.g. MAP and Q̇). Future studies, perhaps utilising direct/global α2-

adrenergic blockade (supressing sympathetic outflow) and cerebral NA spillover, 

combined with ultrasound derived measurements of vessel diameter, are required 

to further our knowledge of the role of sympathetic activity on the regulation of 

CBF. 

 

It has been considered that the increase in extra-cranial blood flow with heat 

stress, and during exercise, is related to thermoregulatory mechanisms (Sato et al. 

2011). This assumption is supported by the present and direct association with 

blood temperature during prolonged exercise; supported by indirect evidence of 

important elevations in ECA flow for local cutaneous perfusion (Miyazawa et al. 

2012; Ogoh et al. 2013b). Whilst we now highlight a clear relationship with blood 

temperature, the regulatory mechanisms underpinning the elevated extra-cranial 

flow remain unclear. Local and systemic increases in temperature initiate 

enhanced skin perfusion through neural (axon-reflex) and metabolic (i.e. NO) 

pathways (Kellogg et al. 1998; Charkoudian 2010; Johnson & Kellogg 2010; 

Johnson et al. 2014). Furthermore, a rising temperature per se stimulates the 

release of ATP from red blood cells (Kalsi & González-Alonso 2012), which has 

been shown to be a potent vasodilator at the active skeletal muscle in vivo 

(González-Alonso et al. 2008; Mortensen et al. 2009; González-Alonso 2012). It 

can be speculated that the head cutaneous vasculature is controlled by similar 

mechanisms. Whether elevations in ATP are important for the increase in extra-

cranial flow, or for alterations in CBF remain unknown. Further research to tease 

out the mechanisms underpinning regional head blood flow redistribution is 

warranted. 
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 Hypotheses 7.6

Chapter 4 - Dehydration will accelerate the attenuation in cerebral blood flow 

during graded incremental exercise to exhaustion, but not impair the cerebral 

metabolic rate for oxygen (Accepted)  

 

The cerebral metabolism would, however, be maintained through compensatory 

increases in substrate metabolism (Accepted) 

 

Chapter 5 - Dehydration would accentuate the increase in internal temperature 

and lead to early exhaustion with concomitant reductions in cerebral and extra-

cranial blood flow. (Accepted) 

 

Maintaining hydration status would prevent the rise in internal temperature, 

prolong submaximal exercise capacity and prevent the decline in regional blood 

flow and the potential for impaired metabolism. (Accepted) 

 

Chapter 6 - Combined elevations in internal and skin temperature would reduce 

maximal aerobic capacity with an associated attenuation of brain, muscle and 

systemic blood flow. (Accepted) 

 

Elevations in skin temperature alone would not be sufficient to reduce maximal 

aerobic capacity and constrain regional haemodynamics.  (Accepted) 
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 Summary 7.7

The present thesis provides new information on the impact of dehydration and 

hyperthermia on cardiovascular function during strenuous exercise in trained 

humans. In Chapter 4 it is shown that dehydration markedly accelerates the 

reduction in CBF, above sub-maximal exercise intensities. However, 

compensatory increases in O2 extraction preserved the CMRO2. A similar finding 

was observed in Chapter 5 when dehydration was progressively developed during 

prolonged sub-maximal exercise in the heat. Interestingly, the distribution of blood 

flow is different during prolonged exercise and seems to be governed by different 

regulatory mechanisms. In Chapter 6 it is shown that exogenous heat stress, 

sufficient to elevate core and skin temperature, reduces maximal aerobic power 

concomitant to reductions in systemic, brain and limb blood flow, leading to a 

blunting of exercising limb and systemic oxygen metabolism.  

 

Future studies should continue to explore the mechanisms regulating cerebral and 

active muscle blood flow to further understand the regulatory limits to human 

cardiovascular function and capacity. Understanding these mechanisms may help 

to develop strategies to prevent or delay the circulatory impairment in athletic 

performance, ageing and disease. 
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 Conclusion 7.8

The findings of the present study show that dehydration and hyperthermia induce 

a marked cardiovascular strain, characterised by reductions in blood flow to the 

brain and active skeletal muscle during strenuous exercise. In contrast to the 

exercising musculature, the brain displays a greater functional oxygen extraction 

reserve capacity to cope with reduced perfusion and therefore cerebral 

haemodynamic and metabolic disturbances do not appear to play a role in limiting 

aerobic exercise performance. However, a reduction in convective O2 transport to 

the exercising limb with whole-body hyperthermia is a crucial factor in the cascade 

of events underpinning reduced aerobic power in the heat. This is because the 

skeletal muscle oxygen extraction reserve is quickly exhausted in these settings.  
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Information for Research Participants – Part 1 

 

Title of the study 

The effects of dehydration on brain circulation and oxygenation during prolonged 

sub-maximal and graded incremental exercise in the heat. 

 

Study background 

When athletes exercise in a hot, humid environment for long durations they 

experience losses in body water through sweating and increases in core body 

temperature (dehydration and hyperthermia respectively). Research has shown 

that performing prolonged (~1-2hours) exercise in the heat, with dehydration, 

results in significant reductions in blood flow to the exercising muscles and brain. 

Intense exercise, with or without heat, also leads to similar reductions in blood flow 

to the brain that ultimately results in fatigue. Measuring these alterations will help 

our understanding of the body’s response to exercise in the heat and help us to 

develop methods to help prevent the early onset of fatigue. 

 

Objectives 

To investigate whether dehydration impairs blood flow and the delivery of oxygen 

to the brain during exhaustive exercise in the heat, and whether rehydration 

restores these alterations.  

 

Participation  

Your participation in this study will be voluntary and you will have the right to 

withdraw from it, at any point, without providing reason and without penalty. This 

study will require 12 healthy, active males aged 18-35. Ideally those training 

regularly in cycling or triathlon will be required. 

 

How long will the study last? 

The study will require participants to visit the lab on five occasions. The first three 

visits will involve familiarisation to exercise in the heat (1-2 hours of cycling at 70% 

V̇O2peak; Temp, 35oC; Humidity, 50%) and additional preliminary testing 
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(incremental exercise test to the limit of tolerance). The fourth visit will be the first 

experimental day lasting approximately six hours. During the experimental day you 

will perform the following; 

1. A semi-recumbent, incremental cycling test (5x3minute stages) to exhaustion 

followed by 30 minutes of passive rest. 

2. Two hours of semi-recumbent cycling in the heat at 70% max (Temp = 35oC, 

Humidity = 50%; without fluid ingestion), followed by five minutes passive rest 

and body mass measurement.  

3. A second semi-recumbent incremental test to exhaustion, followed by one 

hour of passive rest (which will include the ingestion of large volumes of 

carbohydrate-free fluid to restore hydration status). 

4. A third and final semi-recumbent incremental test to exhaustion. 

 

The fifth and final day will be the second experimental day and last approximately 

four hours. During this visit you will perform the same protocols as in visit 4, whilst 

maintaining hydration throughout. The two experimental days will be separated by 

a minimum of one week. For more information regarding the protocols involved in 

this study, please read; Information for Research Participants – Part 2.   

 

Data collection methods 

Measurements include the following; 

Blood pressure 

Blood samples 

Cardiac output 

Blood flow and velocity 

Cerebral oxygenation 

Core and skin temperature  

For more information regarding the data collection methods involved in this study, 

please read; Information for Research Participants – Part 2.   

 

Risks and hazards associated with the experiment 

All measurement techniques used in the study have been deemed to be low risk 

and a health check questionnaire must be completed prior to participation in the 

study. Detailed risks and hazards will be explained to you prior to you agreeing to 

take part. For more information regarding the risks and hazards involved in this 

study, please read; Information for Research Participants – Part 2.  

Benefit of participating in the study 

You will gain information on how your body adapts to heavy exercise in the heat. 

You will have the opportunity to experience exercise in hot, humid conditions 

which may be relevant to future competitions or training you may take part in. 

 

Will I be paid for my participation in the study? 

You will be compensated for time and expenses related to the study such as 

transportation and time off from work (up to £400).  
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Data collected 

Your personal information will remain confidential, and we will not disclose any of 

your personal information without your permission. For more information regarding 

data protection, please read part 2 of the information for research participants.  

 

 

Who should you contact if you wish to make a complaint about the study?  

You can contact the Chair of the School of Sport and Education Research Ethics 

Committee, Dr. Gary Armstrong (Gary.Armstrong@brunel.ac.uk).  

 

What if I have questions? 

If the information in Part 1 has interested you and you are considering 

participation, please read the additional information in Part 2 before making any 

decision. If you have any additional questions about this research project, please 

contact Steven Trangmar;  

Telephone: 07725358208; E-mail: steven.trangmar@brunel.ac.uk 

 

This research project has been approved by the School of Sport & Education 

Ethics Committee and the Brunel University Research Ethics Committee. 
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Information 

for Research Participants – Part 2 

 

Title of the study: The effects of dehydration on brain circulation and oxygenation 

during prolonged sub-maximal and graded incremental exercise.  

 

Participant Requirements 

Visit one:  

You will become familiarised with the experimental set-up, perform an incremental 

cycling test to the limit of tolerance in the semi-recumbent (seated) position. This 

will be used to assess your maximal exercise performance and heart rate which 

will in turn be used to set the workloads for the remaining lab visits. You will then 

perform 1 hour of cycling, at 60% V̇O2peak, in the heat (Temp, 35oC, Humidity, 

50%). 

 

Visits two and three: 

The second and third visit will be formed of two hours of semi-recumbent cycling in 

the heat at the same relative intensity and temperature conditions as visit one. A 

fan will be directed on you and you are permitted to listen to music and drink as 

much as you like throughout the familiarisation sessions. Core temperature will 

also be measured during these trials (see methods below). 

 

Visit four: 

This is the first experimental day. After arriving at the lab, catheters will be inserted 

into the jugular vein and brachial artery (see methods for full description) and you 

will rest in a seated position for 30 minutes where resting body mass and other 

measurements can be made. You will then move to the main laboratory and 

perform the following exercise protocol; 

1. A semi-recumbent, incremental cycling test to exhaustion followed by 30 

minutes of passive rest. 

 

2. 2 hours of semi-recumbent cycling in the heat at 60% max (without fluid 

ingestion), followed by five minutes passive rest and body mass 

measurement.  
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3. A second semi-recumbent incremental test to exhaustion, followed by one 

hour of passive rest (which will include the ingestion of large volumes of 

carbohydrate-free fluid to restore hydration status). 

 

4. A third and final semi-recumbent incremental test to exhaustion. 

 

Visit 5: 

The final visit will replicate the fourth visit with the exception of catheters and blood 

samples. During this visit you will remain hydrated throughout by consuming a 

carbohydrate-free electrolyte drink in proportion to your sweat rate. 

 

At the end of the trials, you will consume a small meal (a sandwich and fruit) and 

be provided with an isotonic sports drink. Trained clinicians who will place the 

catheter and withdraw samples will remain present with you for one hour after the 

end of the testing protocol to ensure you are ready to leave the laboratory. 

 

Data collection methods 

Blood pressure - measured in the brachial artery and jugular vein with transducers 

positioned at the level of the heart. The data are amplified and recorded on a data 

acquisition laptop. 

 

Blood sampling – blood samples (a maximum of 350ml in total) will be taken at 

rest and at the end of each incremental stage and; every 30 minutes during semi-

recumbent cycling exercise. These samples will be analysed for ATP, an important 

substance in the blood which may alter blood flow. Samples will also be analysed 

for blood gases (including oxygen saturation and acidity). Catheters will be placed 

in the internal jugular vein and the brachial artery (see diagrams below). A local 

anaesthetic gel (lidocaine) will be used at the site of catheter insertion to reduce 

sensations of pain.  

 

Cardiac output – the amount of blood pumped by the heart will be calculated from 

the arterial pressure waves measured directly from the catheters.    
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Cerebral blood velocity – measured non-invasively using a trans-cranial Doppler 

(TCD). A small ultrasound probe, fixed in place by a headpiece, will measure the 

speed of blood travelling through the middle cerebral artery. 

 
 

Cerebral oxygenation – measured non-invasively with two near-infrared saturation 

(NIRS) sensors attached to the forehead. The sensors emit an infrared light which, 

when reflected back to the probe, provide a measure of the oxygen saturation of 

the brain. 

 

Core temperature – measured throughout the protocol using an ingestible 

temperature sensor. You will consume the sensor orally, with a meal on the 

evening prior to the experimental day and it will normally be expelled within 24-36 

hours after consumption. 

 

 
Cerebral blood flow (CBF) – measured non-invasively using Doppler ultrasound. A 

sound emitting probe will be used to measure vessel diameter at rest, and blood 

velocity at rest and during exercise in the internal (ICA) and common carotid artery 

(CCA).  

 

Heart rate - measured with short-wave telemetry. A heart rate monitor (Polar) will 

be attached to the torso throughout the study, which will measure the electrical 

activity of the heart.  

 

Skin temperature – measured using skin thermisters attached to the surface of the 

skin and secured in place using an adhesive spray and medical tape.  

 

Risks and hazards associated with the experiment 

A thorough risk assessment has been conducted for this study. All measurement 

techniques used in the study have been deemed to be low risk. A health check 
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questionnaire must be completed prior to participation in the study. Any risks 

associated with maximal exercise will be limited by a thorough warm up and 

completion of the health check questionnaire. Arterial and venous catheterisation 

may incur the following risks and/or hazards: 

- Haematoma: a blue mark around the catheterised vessels occurs when 

blood escapes from the vessel and accumulates in the surrounding tissues. 

This happens in less than 8% of cases. Pressure will be applied by 

experienced clinicians after removal of the catheters to constrain the blood 

flow within the vessel and therefore minimise the chances of developing a 

haematoma. Moreover, you should refrain from performing intense exercise 

for 24 hours after the experiment. 

 

- Bleeding: occurs in less than 1% of cases and can be prevented by 

pressure application. 

 

- Infection: The risk of infection is present, as in all procedures which require 

puncture or cutting of the skin however, this risk is minimal when strict 

sterile procedures are followed. 

 

Additional risks include; 

- Dehydration and exercise in the heat: exercise in these conditions may 

increase the sensations of effort that are usually felt during heavy exercise. 

We will closely monitor your core temperature to ensure your safety 

throughout.  

 

Several members of the research team have extensive experience with the 

procedures used in this experiment as demonstrated by numerous publications in 

sports medicine and physiology journals. Moreover, clinicians, who are medically 

qualified anaesthetists, will perform all catheterisation procedures. 

 

Exclusion criteria 

- Current or chronic history of lower limb muscle, tendon, ligament or knee joint 

injury             

- Known cardiac diseases and / or cardiovascular risk factors 

- Smokers 

- Aversion to blood and needles 

- Under treatment for any disease 

- Known allergy to local anaesthetic drug 

 

Requirements or abstentions imposed upon the participants prior to and 

after the main experiment.  

You will be asked to refrain from: 

1. Strenuous physical activity 24 hours prior to the experiment 

2. alcohol ingestion 24 hours prior to the experiment 

3. caffeine intake at least 12 hours before the experiment 
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4. eating within 2 hours prior to the experiment (food intake will be assessed 

with a food diary for the 24hrs prior to the study). 

5. strenuous physical activity for 24-48 hours after the experiment 

6. Blood donations (NHS or other studies) six-eight weeks prior to and, eight 

weeks post participation. 

Pre-participation meals. 

On the day before the visits four and five we aim to standardise the meals you will 

consume. Below is a simple guide to what you should eat prior to the study; 

 

Evening meal (standard adult portions): 

Lean meat (e.g chicken, turkey) 

Carbohydrate (Pasta, potato, rice, couscous)  

Vegetables (any, mixed) 

 

Breakfast 

Cereal (e.g. porridge, weetabix) 

Juice (NO tea/coffee) 

Fruit (e.g. Banana, apple) 

  

Appreciate that you will have no opportunity to eat for the duration of the protocol 

and your choice of food should reflect this. Ensuring that you are well hydrated 

before the main experimental day is also important. We would suggest the 

approximate consumption of fluid to be in the region of 2-4 litres (inclusive of fluid 

in food) on the day before visit four and five.  

 

Pre-participation health check questionnaire.  

Health and safety within this investigation is of paramount importance. For this 

reason we need to be aware of your current health status before you begin any 

testing procedures. To identify whether you are eligible to participate in this 

investigation, we will ask you to fill in the pre-participation health check 

questionnaire included below. 

 

Data collected 

An identification code will be ascribed to each participant and all data collected will 

be electronically compiled anonymously. Your personal information will remain 

confidential, and we will not disclose any of your personal information without your 

permission. The data will be stored at the School of Sport and Education, Brunel 

University, London, for a maximum of 5 years. Results will be presented 

anonymously in scientific conferences and research articles.  

 

Benefit of participating in the study 

You will gain an insight into the limitations to maximal exercise and the regulation 

of brain blood flow and oxygenation during prolonged sub-maximal and graded 

incremental exercise. You will also benefit by gaining important information about 

your own individual maximal exercise capacity. You will also experience intense 
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exercise in the heat which may be of relevance for your training and athletic 

performance.  

 

Will I be paid for my participation in the study? 

You will be compensated for time and expenses related to the study such as 

transportation (£400). Partial or non-completion will result in a lower compensation 

amount. Payment will be made through the Payroll Department, Brunel University, 

and this requires you to complete a non-staff expenses form with your contact and 

bank account details.  

 

How can I get information about the study findings?  

You will get all information about your results and the study findings by contacting 

Steven Trangmar. 

 

Compensation arrangements for negligent and non-negligent harm 

Brunel University has an insurance policy (NHE-01CA29-0013) with public and 

products liabilities of £30m.  In the case of clinical trials the University maintains a 

comprehensive policy to cover negligent and no fault harm up to a maximum of 

£10 m. 

 

What if I have questions? 

If you have any questions about this research project, please contact: 

Steven Trangmar; telephone: 07725358208; email: steven.trangmar@brunel.ac.uk 

 

How is this research project funded? 

This study will be supported by a grant from PEPSICO, owners of the Gatorade 

Sport Science Institute. 

 

This research project has been approved by the School of Sport & Education 

Ethics Committee and the Brunel University Research Ethics Committee. 
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Information for Research Participants – Part 1 

 

Title of the study 

The role of skin and internal temperature on blood flow to the brain and muscles 

during incremental cycling exercise.  

 

Study background 

The limiting factors to maximal exercise have interested researchers for many 

years. Research has shown that reductions in blood returning to, and ejected from 

the heart, and blood flow to the brain and legs are reduced prior to fatigue during 

maximal exercise. Heat stress and subsequent exercise provides a major 

challenge to the body to ensure a stable internal temperature and exercise 

performance. Measuring the impact of heat stress during incremental cycling 

exercise will help our understanding of the maximal limits of human exercise 

performance.  

 

Objectives 

To investigate whether heat stress impairs muscle and brain blood flow and the 

delivery of oxygen to the exercising muscles during exhaustive exercise compared 

to control (normal) exercise conditions.  

 

Participation  

Your participation in this study will be voluntary and you will have the right to 

withdraw from it, at any point, without providing reason, without penalty and, 

without negative impact on your university grade (where applicable). This study 

will require 10 healthy, competitive active males aged 18-40. Ideally those who are 

motivated to achieve their best athletic performance that train regularly in cycling 

or triathlon will be required. 

 

How long will the study last? 

The study will require participants to visit the lab on three occasions. The first visit 

will last approximately 90 min and involve familiarisation to the exercise tests and 

additional preliminary testing (V̇O2max testing; a test to determine the maximum 
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amount of oxygen your body can consume and utilise during exercise). The 

second visit will be the control trial and involve the performance of 3 incremental 

exercise tests, separated by ~90 min of rest. This visit will last ~4 hours. The third 

and final visit will be the main experimental day and will last approximately six 

hours. During the experimental day you will perform the following; 

1. Passive rest with whole body heating. You will wear a tubed-lined suit whilst 

50°C water will be pumped through the tubing to increase core temperature 

by 1°C.   

 

2. An incremental cycling test (5 x 2.5 minute stages) to exhaustion, followed 

by 1 hour of passive rest. 

 

3. Approximately 10 minutes of passive rest with whole body heating, to 

increase skin temperature only, followed by a second incremental exercise 

text. 

 

4. One hour of passive rest followed by a third and final incremental test to 

exhaustion 

 

You will be permitted to drink as much as you want throughout the day (water 

only). For more information regarding the protocols involved in this study, please 

read; Information for Research Participants – Part 2.   

 

Data collection methods 

The following measurements will be obtained at rest and at the end of every 

exercise stage during each incremental test; 

Blood flow and velocity 

Blood pressure 

Blood samples 

Cardiac output 

Cerebral and muscle oxygenation 

Core and skin temperature  

Muscle activity 

 

Blood samples will be obtained using some invasive procedures; however these 

are deemed to carry limited risks. For more information regarding the data 

collection methods involved in this study, please read; Information for Research 

Participants – Part 2.   

 

Risks and hazards associated with the experiment 

All measurement techniques used in the study have been deemed to be low risk 

and a health check questionnaire must be completed prior to participation in the 

study. Detailed risks and hazards will be explained to you prior to you agreeing to 

take part. For more information regarding the risks and hazards involved in this 

study, please read; Information for Research Participants – Part 2.   
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Benefit of participating in the study 

You will gain information on how your body adapts to maximal incremental 

exercise in a normal environment and in the heat. You will have the opportunity to 

receive maximal power outputs, V̇O2max and, blood lactate levels which will aid 

training for future competitions. 

 

Will I be paid for my participation in the study? 

You will be compensated for time and expenses related to the study such as 

transportation and time off from work (up to £250). This remuneration is additional 

to receiving a consultancy report with your test data (normally priced at £199).  

 

Data collected 

Your personal information will remain confidential, and we will not disclose any of 

your personal information without your permission. For more information regarding 

data protection, please read part 2 of the information for research participants.  

 

Who should you contact if you wish to make a complaint about the study?  

You can contact the Chair of the School of Sport and Education Research Ethics 

Committee, Dr. Richard Godfrey (Richard.Godfrey@brunel.ac.uk).  

 

What if I have questions? 

If the information in Part 1 has interested you and you are considering 

participation, please read the additional information in Part 2 before making any 

decision. If you have any additional questions about this research project, please 

contact: Steven Trangmar; Telephone: 07725358208; E-mail: 

steven.trangmar@brunel.ac.uk 

 

This research project has been approved by the School of Sport & Education 

Ethics Committee and the Brunel University Research Ethics Committee. 

 

 

 

 

 

mailto:Richard.Godfrey@brunel.ac.uk
mailto:steven.trangmar@brunel.ac.uk
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Information for Research Participants – Part 2 

 

Title of the study: The role of skin and internal temperature on blood flow to the 

brain and muscles during incremental cycling exercise.  

Participant Requirements 

Visit 1:  

You will become familiarised with the experimental set-up and perform an 

incremental cycling test to the limit of tolerance on a cycle ergometer. This will be 

used to assess your maximal exercise performance, heart rate, and V̇O2max (a test 

to determine the maximum amount of oxygen your body can consume and utilise 

during exercise) which will in turn be used to set the workloads for the remaining 

lab visits. After a 30 minute recovery period you will then perform 8-10 short bouts 

of intense cycling exercise (90-110% of your peak power output), in the heat 

(Temp, 35oC, Humidity, 50%), to experience exercise whilst heated. This visit will 

take approximately 90 min to complete.  

Visit 2 (Control day): 

The second visit will be formed of three incremental cycling exercise tests, each 

separated by ~90 min of passive rest, at 20, 40, 60, 80 and 100% of WRmax from 

visit 1. This will take place in normal laboratory conditions (~20°C). This visit will 

take approximately 4 hr to complete. 

 

Visit 3 (Experimental day): 

This is the main experimental day. After arriving at the lab you will take your own 

measurement of nude body mass in a closed room. Subsequently, catheters will 

be inserted into the radial artery and the femoral vein in one leg (see methods for 

full description). You will rest in a seated position for 30 minutes before moving to 

the main laboratory and perform the following exercise protocols; 

 

1. Passive rest with whole body heating. You will wear a tubed-lined suit whilst 

50°C water will be pumped through the tubing to increase core temperature 

by 1°C.   
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2. An incremental cycling test (5 x 2.5 minute stages at 20, 40, 60, 80 and 

100% of maximal power from visit 1) to exhaustion. 

 

3. Approximately 10 minutes of passive rest wearing a tube-lined suit with a 

circulating water temperature of 50°C, to increase skin temperature only, 

followed by a second incremental exercise text. 

 

4. One hour of passive rest followed by a third and final incremental test to 

exhaustion 

 
At the end of the trials, you will consume a small meal (a sandwich and fruit) and 

be provided with an isotonic sports drink. Trained clinicians who will place the 

catheters and withdraw samples will remain present with you for one hour after the 

end of the testing protocol to ensure you are ready to leave the laboratory. This 

visit will take approximately 6 hr. 

 

Data collection methods 

Blood pressure - measured in the radial artery and femoral vein. The data are 

amplified and recorded on a data acquisition laptop. 

 

Blood sampling – blood samples (a maximum of 350 millilitres in total) will be 

taken at rest and at the end of each incremental stage. These samples will be 

analysed for ATP (an important energy source for muscle contraction), an 

important substance in the blood which may alter blood flow. Samples will also be 

analysed for blood gases (including oxygen saturation and acidity) and 

Catecholamines. Catheters will be placed in the femoral vein and, the radial artery 

of the non-dominant arm (see diagrams below). A local anaesthetic gel (lidocaine) 
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will be used at the site of catheter insertion to reduce sensations of pain. During 

the control trial, a small venous catheter will be placed in the median antecubital 

vein (small vein in the elbow crease).  

 

 
 

Cardiac output – the amount of blood pumped by the heart will be calculated from 

the arterial pressure waves measured directly from the catheters.    

 

Cerebral blood velocity – measured non-invasively using a trans-cranial Doppler 

(TCD). A small ultrasound probe, fixed in place by a headpiece, will measure the 

speed of blood travelling through the middle cerebral artery. 

 

 
 

Cerebral and muscle oxygenation – measured non-invasively with two near-

infrared saturation (NIRS) sensors attached to the forehead and thigh. The 

sensors emit an infrared light which, when reflected back to the probe, provide a 

measure of the oxygen saturation of the brain and muscle. 

 

Core temperature – measured throughout the protocol using an ingestible 

temperature sensor. You will consume the sensor orally, with a meal on the 

evening prior to the experimental day and it will normally be expelled within 24-36 
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hours after consumption. The consumed pill is disposable and you are not 

expected to retrieve it after use. 

 

 
Heart rate - measured with ECG (measurements of the electrical activity of the 

heart). Electrodes will be placed slightly below your collar bones and below the 

ribcage that will measure the electrical activity of the heart.  

 

Leg blood flow – measured using the constant-infusion thermodilution technique. 

Briefly, cold saline (water and salt) will be infused into the femoral venous catheter 

and the rate of change in temperature, from the point of infusion to the tip of the 

catheter, will be measured for the calculation of blood flow.  

 

Muscle activity – measured using EMG (measurements of the electrical activity of 

muscle contraction). Electrodes will be placed on your thigh muscles to measure 

the electrical activity of the muscle during exercise.  

 

Oxygen uptake – measured using a face mask covering the mouth and nose and 

attached to an analyser unit. Breathing through the mask, whilst unusual, should 

not impact your exercise performance.  

 

Skin temperature – measured using wireless data recorders (iButton®) attached to 

the surface of the skin and secured in place using medical tape.  

 

Risks and hazards associated with the experiment 

A thorough risk assessment has been conducted for this study. All measurement 

techniques used in the study have been deemed to be low risk. A health check 

questionnaire must be completed prior to participation in the study. Any risks 

associated with maximal exercise will be limited by a thorough warm up and 

completion of the health check questionnaire. Arterial and venous catheterisation 

may incur the following risks and/or hazards: 

- Haematoma: a blue mark around the catheterised vessels occurs when 

blood escapes from the vessel and accumulates in the surrounding tissues. 

This happens in less than 8% of cases. Pressure will be applied by 

experienced clinicians after removal of the catheters to constrain the blood 

flow within the vessel and therefore minimise the chances of developing a 
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haematoma. Moreover, you should refrain from performing intense exercise 

for 24 hours after the experiment. 

 

- Complications associated with arterial catheterisation: as with all invasive 

procedures, there is a risk associated with placement of an arterial catheter. 

These risks, though not exhaustive, include clotting of the blood (thrombus), 

restriction of blood supply and, bleeding. We have appointed a medically 

trained clinician with many years of experience in the placement of these 

catheters. Clinicians within our laboratory have placed arterial catheters in 

60 participants with no complications.  

 

- Bleeding: occurs in less than 1% of cases and can be prevented by 

pressure application. 

 

- Infection: the risk of infection is present, as in all procedures which require 

puncture or cutting of the skin however, this risk is minimal when strict 

sterile procedures are followed. 

Additional risks include; 

- Exercise in the heat: exercise in these conditions may increase the 

sensations of effort that are usually felt during heavy exercise. We will 

closely monitor your core temperature to ensure your safety throughout.  

 

Several members of the research team have extensive experience with the 

procedures used in this experiment as demonstrated by numerous publications 

in sports medicine and physiology journals. Moreover, clinicians, who are 

medically qualified anaesthetists, will perform all catheterisation procedures. 

 

Exclusion criteria 

- Current or chronic history of lower limb muscle, tendon, ligament or knee joint 

injury             

- Known cardiac diseases and / or cardiovascular risk factors 

- Smokers 

- Aversion to blood and needles 

- Under treatment for any disease 

- Known allergy to local anaesthetic drug 

 

Requirements or abstentions imposed upon the participants prior to and 

after the main experiment.  

You will be asked to refrain from: 

1. Strenuous physical activity 24 to 48 hours prior to the experiment – it 

is essential that you refrain from your normal training routine for at least one 

day prior to the two preliminary visits and two days prior to the main 

experimental visit as this could impact your performance in the trials.   

2. Cycling to, and from, the laboratory on the main experimental day. 

3. Alcohol ingestion 24 hours prior to the experiment 
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4. Caffeine intake at least 12 hours before the experiment. 

5. Eating within 2 hours prior to the experiment (food intake will be assessed 

with a food diary for the 24hrs prior to the study). 

6. Strenuous physical activity for 24-48 hours after the experiment. 

7. Manual (and ideally all) work in the hours after the experimental day.  

8. Blood donations (NHS or other studies) eight weeks prior to and, eight 

weeks post participation. 

 

Pre-participation meals. 

On the day before the main experimental visit we aim to standardise the meals 

you will consume. Below is a simple guide to what you should eat prior to the 

study; 

 

Evening meal (standard adult portions): 

 Lean meat (e.g chicken, turkey) 

 Carbohydrate (Pasta, potato, rice, couscous)  

 Vegetables (any, mixed) 

 

Breakfast 

 Cereal (e.g. porridge, weetabix) 

 Juice (NO tea/coffee or caffeine containing beverages) 

 Fruit (e.g. Banana, apple) 

  

Appreciate that you will have no opportunity to eat for the duration of the protocol 

and your choice of food should reflect this. Ensuring that you are well hydrated 

before the main experimental day is also important. We would suggest the 

approximate consumption of fluid to be in the region of 2-4 litres (inclusive of fluid 

in food) on the day before most visits. You will be supplied with three food diary’s 

to record your food intake prior to all sessions.  

 

Pre-participation health check questionnaire 

Health and safety within this investigation is of paramount importance. For this 

reason we need to be aware of your current health status before you begin any 

testing procedures. To identify whether you are eligible to participate in this 

investigation, we will ask you to fill in the pre-participation health check 

questionnaire included below. 

 

Data collected 

An identification code will be ascribed to each participant and all data collected will 

be electronically compiled anonymously. Your personal information will remain 

confidential, and we will not disclose any of your personal information without your 

permission. The data will be stored at the School of Sport and Education, Brunel 

University, London, for a maximum of 5 years. Results will be presented 

anonymously in scientific conferences and research articles.  
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Benefit of participating in the study 

You will gain information on how your body adapts to maximal incremental 

exercise in a normal environment and in the heat. You will have the opportunity to 

receive maximal power outputs, V̇O2max and, blood lactate levels which will aid 

training for future competitions. 

 

Will I be paid for my participation in the study? 

You will be compensated for time and expenses related to the study such as 

transportation and time off from work (up to £250). This remuneration is additional 

to receiving a consultancy report with your test data (normally priced at £199). 

Partial or non-completion will result in a lower compensation amount. Payment will 

be made through the Payroll Department, Brunel University, and this requires you 

to complete a non-staff expenses form with your contact and bank account details.  

 

How can I get information about the study findings?  

You will get all information about your results and the study findings by contacting 

Steven Trangmar. 

 

Compensation arrangements for negligent and non-negligent harm 

Brunel University has an insurance policy (NHE-01CA29-0013) with public and 

products liabilities of £30m.  In the case of clinical trials the University maintains a 

comprehensive policy to cover negligent and no fault harm up to a maximum of 

£10 m. 

 

What if I have questions? 

If you have any questions about this research project, please contact: 

Steven Trangmar; telephone: 07725358208; email: steven.trangmar@brunel.ac.uk 

 

How is this research project funded? 

This study will be supported by a grant from PEPSICO, owners of the Gatorade 

Sport Science Institute. 

 

This research project has been approved by the School of Sport & Education 

Ethics Committee and the Brunel University Research Ethics Committee. 

 

 

 

 

 

 

mailto:steven.trangmar@brunel.ac.uk
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Appendix III - Health Questionnaire 
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PRE-PARTICIPATION HEALTH CHECK QUESTIONNAIRE 
 

Health and safety within this investigation is of paramount importance. For this 
reason we need to be aware of your current health status before you begin any 
testing procedures. The questions below are designed to identify whether you are 
able to participate now or should obtain medical advice before undertaking this 
investigation, Whilst every care will be given to the best of the investigators ability, 
an individual must know his/her limitations. 
Subject 
name………………………………………………………………………………… 
Date of birth…...…………………………………………………………………..………….  
Emergency contact name and number 
……………………………………………………………………………………………….... 
 
Please answer the following questions:                           
                                 
1. Has your doctor ever diagnosed a heart condition or recommend  

only medically supervised exercise? 
2. Do you suffer from chest pains, heart palpitations or  
      tightness of the chest? 
3. Do you have known high blood pressure? If yes, please give details  

(i.e. medication) 
4. Do you have low blood pressure or often feel faint or have dizzy  
      spells? 
5. Do you have known hypercholesteremia? 
6. Have you ever had any bone or joint problems, which could be  
      aggravated by physical activity? 
7. Do you suffer from diabetes? If yes, are you insulin dependent? 
8. Do you suffer from any lung/chest problem,  

i.e. Asthma, bronchitis, emphysema? 
9. Do you suffer from epilepsy? If yes, when was the last incident? 
10. Are you taking any medication? 
11. Have you had any injuries in the past?  

E.g. back problems or muscle, tendon or ligament strains, etc… 
12.  Are you currently enrolled in any other studies?  
13.  I have already participated in a recent blood donation program 
14.  Are you a smoker? 
15.  Do you consider yourself to be a cyclist/triathlete of good club level  
       standard?      
16.  Describe your exercise routines (mode, frequency, intensity/speed, race times): 

 
If you feel at all unwell because of a temporary illness such as a cold or fever please 
inform the investigator. Please note if your health status changes so that you would 
subsequently answer YES to any of the above questions, please notify the investigator 
immediately. 
 
I have read and fully understand this questionnaire. I confirm that to the best of my 
knowledge, the answers are correct and accurate. I know of no reasons why I 
should not participate in physical activity and this investigation and I understand I 
will be taking part at my own risk. 
 

YES          NO 
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Appendix IV - Consent form 
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Consent Form 

 

Participant’s name & signature:      Date:                                     

Investigator’s name & signature:      Date:                                     

The participant should complete the whole of this sheet him/herself 

 Please tick the appropriate box 
  YES      NO 
Have you read the Information for Research Participants 
(Part 1 & 2)? 

Have you had an opportunity to ask questions and discuss 
this study? 

Have you received satisfactory answers to all your questions? 
 

Who have you spoken to? ………………………………………… 

Do you understand that you will not be referred to by name 
in any report concerning the study? 
 
Do you agree for your blood samples to be analysed and used in 
future studies that may not be detailed in the information provided? 
 
Do you provide consent for us to inform your GP of information  
Obtained from the study if deemed necessary by our clinicians? 
 
Do you understand that you are free to withdraw from the study: 
 
at any time 

without having to give a reason for withdrawing? 

without affecting your future care     
 

Do you agree to take part in this study? 

Signature of Research Participant:                                                             Date: 

Name in capitals: 

 

Witness statement 
‘I am satisfied that the above-named has given informed consent.’ 

Signature of Witness:                                                                                   Date: 

Name in capitals: 
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Appendix V - Publications and related 

commentaries 

  



 

229 
 

 

 

Editor’s choice (15th July 2014) 

 

Perspective – Anthony R. Bain and Philip N. Ainslie (2014). On the limits of 

cerebral oxygen extraction. The Journal of Physiology 592, 2917-2918. 
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Appendix VI - Conference abstracts 
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Are restrictions in blood flow and oxygen supply to the human brain a 
mechanism by which dehydration impairs maximal exercise capacity? 

 
Trangmar SJ.1, Chiesa ST. 1, Stock CG. 1, Kalsi KK. 1, Secher NH. 1,2, González-

Alonso J. 1 
 

1Centre for Sports Medicine and Human Performance, Brunel University, London 

(UK), 2Copenhagen Muscle Research Centre, Department of Anaesthesia, 
Rigshospitalet, University of Copenhagen, Denmark (Denmark). 

 

Introduction: During maximal exercise, a reduction in blood flow to the human 
brain may contribute to the development of fatigue by lowering O2 supply and 
diminishing cerebral O2 availability (1, 3). It is presently unknown if dehydration 
exacerbates the influence of circulatory strain upon the human brain sufficiently to 
compromise cerebral V

·
O2. We tested the hypothesis that dehydration accelerates 

the reductions in cerebral blood flow during incremental exercise, but without 

impairing brain V
·
O2. Methods: Ten cyclists (V

·
O2peak 59 ± 2 mL/kg/min) performed 

3 incremental cycle ergometer exercise tests in a warm environment (35oC) in the 
following conditions: 1) euhydrated (control; maximal work rate (WRmax) 336 ± 14 
W), 2) dehydrated after 2 hours of sub-maximal cycling without fluid ingestion 
(DEH; 3.1 ± 0.3 % body mass loss; 222 ± 10 W), and 3) rehydrated after 1 h 
passive recovery with full fluid replacement (REH; 294 ± 15 W). Cerebral blood 
flow and velocity were assessed in the internal carotid artery (CBF) and middle 
cerebral artery (MCA Vmean). Blood samples were obtained from the brachial artery 
and left internal jugular vein to measure a-vO2 differences and for the calculation 
of V

·
O2. Results: During control, CBF and MCA Vmean increased from rest to 40% 

WRmax (17±2%; P < 0.01) and declined gradually thereafter to baseline values. 
During DEH, CBF and MCA Vmean declined earlier and were 12-23% lower than at 
the same workload in control; however, the a-v O2 diff and O2 extraction were 
higher (P < 0.05), resulting in a similar brain V

·
O2 between conditions. The flow and 

oxygenation responses during REH were similar to control. In all trials, the 
declines in CBF and MCA Vmean and vascular conductance during intense and 
maximal exercise were strongly correlated to reductions in PaCO2 (R

2 ≥ 0.74, P ≤ 
0.01). This suggests PaCO2 has a role in the observed cerebral vasoconstriction 
(2,4). Discussion: The present findings demonstrate that dehydration accelerates 
the decline in blood flow and O2 supply to the human brain during incremental 
cycling exercise to the limit of tolerance. However, V

·
O2 was not compromised 

because of compensatory increases in cerebral O2 extraction. A compromised 
brain V

·
O2 is therefore an unlikely mechanism underpinning the impaired exercise 

capacity in dehydrated individuals. However, it remains possible that dehydration 
impairs maximal exercise capacity independently of disturbances in aerobic 
metabolism.  

 
References 
1) González-Alonso et al. (2004). J Physiol 557, 331-342; 2) Willie et al. (2012). J 
Physiol 590, 3261-3275; 3) Nybo et al. (2001). J Physiol 534, 279-286; 4) Sato et 
al. (2011). J Physiol 589, 2847-2856. 
 
Presented at the European College of Sports Science (ECSS) conference, 
Barcelona (June 2013). 
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Dehydration reduces blood flow to the human brain and increases oxygen 
extraction during prolonged exercise in humans 

 
Trangmar, SJ.1, Chiesa, ST.1, Kalsi, KK.1, Secher, NH.1, 2, González-Alonso, J.1 

 
1Centre for Sports Medicine and Human Performance, Brunel University, London 

(UK), 2Copenhagen Muscle Research Centre, Department of Anaesthesia, 

Rigshospitalet, University of Copenhagen, Denmark (Denmark). 
  

Background: Dehydration accrued during prolonged exercise in the heat induces 
significant cardiovascular strain on the human body characterised by reductions in 
cardiac output, active muscle and skin blood flow, arterial blood pressure, vascular 
conductance and an overall impaired exercise capacity (1). However, it is 
presently unknown whether progressive dehydration during exercise in the heat 
reduces blood flow to the brain, thereby impairing aerobic metabolism. A 
hyperthermic-hyperventilation induced lowering of the PaCO2 may reduce blood 

flow to the brain, assuming that reductions in middle cerebral artery velocity (MCA 
Vmean) reflect reductions in cerebral blood flow (CBF) (2,3,4,5). This study tested 
the hypothesis that progressive dehydration reduces CBF during prolonged 
exercise in the heat, in part through mechanisms associated with PaCO2, but 
without impairing brain V̇O2. Methods: We assessed blood flow in the internal 
carotid artery (CBF) using Doppler ultrasonography and middle cerebral artery 
velocity (MCA Vmean) in ten cyclists (V̇O2PEAK: 59 ± 2 ml/kg/min), who performed 
two hours of prolonged cycling exercise in a warm environment (182 ± 6W; 35oC), 
without fluids to induce moderate dehydration (DEH; 3.1 ± 0.3 % body mass loss). 
Subjects returned one week later to repeat the protocol, but with regular fluid 
ingestion to maintain hydration status (Control). Blood samples were obtained 
from the brachial artery and left internal jugular vein (DEH only) to measure a-vO2 
differences and for the calculation of brain V̇O2. All data are mean ± SEM and 
were compared with ANOVA and Pearson correlation (SPSS).Results: During 
dehydration CBF and MCA Vmean increased by 13% from rest to 30 min (P < 0.05). 
Thereafter CBF declined to resting values with flow at 120 min significantly lower 
than at 30, 60 and 90 min (P < 0.001). During control, CBF and MCA Vmean 
increased from rest to 30 min and were subsequently maintained throughout 
exercise (Increase ≥ 25%, P < 0.05). Reductions in CBF and MCA Vmean during 
DEH were accompanied with significant increases (P < 0.05) in a-vO2 diff resulting 
in an unchanged brain V̇O2. PaCO2 declined in accordance with flow and velocity 
(P < 0.05) with changes in flow correlated to changes in PaCO2 (R

2 = 0.75, P < 
0.001), suggesting a role for PaCO2 in cerebral vasoconstriction. Discussion: The 
present findings show that progressive dehydration during prolonged exercise 
results in a marked reduction in CBF, whereas in control CBF did not decline. 
Compensatory increases in cerebral oxygen extraction allow for the maintenance 
of brain V̇O2 throughout exhaustive exercise. These findings suggest that a 
reduction in brain V̇O2 is an unlikely mechanism underpinning exercise capacity 
during prolonged, exhaustive exercise with dehydration.  

 
This work was support by the Gatorade Sports Science Institute, PepsiCo, USA.   

 
Presented at the Internal Union of Physiological Sciences (IUPS) conference, 
Birmingham, UK (July 2013). 
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Brain oxygen consumption is maintained during prolonged exercise in the 
heat despite reductions in cerebral blood flow 

 
Trangmar, SJ.1, Chiesa, ST.1, Kalsi, KK.1, Secher, NH.1, 2, González-Alonso, J.1 

 
1Centre for Sports Medicine and Human Performance, Brunel University, London 

(UK), 2Copenhagen Muscle Research Centre, Department of Anaesthesia, 

Rigshospitalet, University of Copenhagen, Denmark (Denmark). 
  

Introduction: Exercise in the heat with concomitant dehydration induces a 
significant cardiovascular strain on the human body. Blood flow to the brain (CBF) 
and extra-cranial tissues including the skin may also be compromised, potentially 
challenging brain oxygen uptake (brain V̇O2) and local heat dissipation. Whether 
dehydration reduces regional blood flow across the head and reduces brain V̇O2 

during strenuous exercise in the heat remains unknown. Methods: We assessed 
CBF and extra-cranial blood flow in the internal, external and common carotid 

arteries (ICA, ECA and CCA) using Doppler ultrasonography in ten cyclists 
(V̇O2PEAK: 59 ± 2 ml/kg/min), who performed two hours of prolonged cycling 
exercise in a warm environment (182±6 W; 35 oC), without fluids, to induce 
moderate dehydration (DEH; 3.1 ± 0.3 % body mass loss). Blood samples were 
obtained from the brachial artery and left internal jugular vein for a-vO2 differences 
and calculation of brain V̇O2 using the Fick principle. Participants returned one 
week later to repeat the protocol whilst hydration was maintained with regular 
ingestions of a carbohydrate/electrolyte drink (Gatorade®). Results: In the 
dehydration trial, CBF was elevated after 30 min of strenuous exercise in the heat 
(+13% from rest to 30 min; P < 0.05), before declining to baseline values at 120 
min (P < 0.001). Extra-cranial blood flow increased from rest to 60 min before 
declining prior to exhaustion; overall an indication of a reduced total blood flow to 
the head. Reductions in CBF were accompanied by increases (P < 0.05) in a-vO2 
diff, resulting in a stable brain V̇O2. Fluid ingestion sufficient to prevent dehydration 
maintained CBF (≥ 25% increase vs. rest; P < 0.05) and extra-cranial blood flow 
throughout exercise. Conclusions: The present findings demonstrate that 
progressive dehydration during prolonged exercise in the heat results in a distinct 
circulatory strain on the brain. However, brain V̇O2 appears not to be compromised 
due to compensatory increases in cerebral oxygen extraction. Regular fluid 
ingestion precludes the reductions in blood flow to regional vascular beds in 
proximity to the brain.  
 
Supported by the Gatorade Sports Science Institute, PepsiCo Inc., USA.  
 
Presented at Training and Competing in the Heat, Aspetar, Doha, Qatar 
(March 2014).  
 
Winner of an Aspetar travel and accommodation grant. 
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Physiological mechanisms impairing cardiovascular function and exercise 
capacity in the heat stressed human: role of skin versus body temperature 

 
Trangmar SJ.1, Chiesa ST. 1, Kalsi KK. 1, Rakobowchuk M. 1, Secher NH. 1,2, 

González-Alonso J. 1 

 
1CSMHP (UK), 2CMRC (Denmark) 

 
Introduction: Cardiovascular strain and hyperthermia are thought to be important 
factors limiting exercise capacity in heat-stressed humans, but the contribution of 
elevations in skin (T̅sk) versus body temperature remains unknown. Here we tested 
the hypothesis that an increased body temperature would accelerate the 
attenuation in leg, brain and systemic perfusion leading to impaired exercise 
performance, but the sole increase in T̅ sk would not. Methods: Nine cyclists 
completed 3 incremental cycling tests after (a) ~30 min whole-body heating (H30), 
(b) ~10 min whole-body heating (H10), and (c) in control conditions. T̅sk and core 

temperature (Tc), heart rate (HR) and V̇O2 were measured continuously; whereas 
leg, brain and systemic haemodynamics and haematological parameters were 
assessed at the end of each exercise stage. To eliminate the effects of repeated 
exercise, the incremental tests were repeated, on a separate day, with each test 
performed in control conditions. Results:  Prior to exercise in H30, T̅sk, Tc and 
cardiac output were elevated by 6.2 ± 0.2 °C, 0.9 ± 0.1 °C and 4.8 L/min (P < 0.05) 
compared to control, whereas only T̅sk was elevated prior to exercise in H10 (6.0 ± 
0.2°C). During incremental exercise, T̅sk was maintained, yet Tc rose gradually to a 
similar peak value in the 3 conditions (39.2 ± 0.1 °C). Exercise capacity and 
V̇O2max were reduced in H30 by 13 ± 1% and 6 ± 2% (P < 0.05), but remained 
unchanged in H10. On the transition from rest to sub-maximal exercise, V̇O2, 
cardiac output and leg blood flow increased at a similar rate across conditions. In 
contrast, mean arterial pressure and brain blood velocity increased but were lower, 
whereas HR and leg a-vO2 difference were higher in H30 vs. H10 and control. At 
exhaustion, HRmax (~186 ± 3 beats/min) and leg a-vO2 difference (~182 ± 5 ml/L) 
were similar in the 3 conditions, whereas mean arterial pressure (-14 ± 1%), brain 
blood velocity (-16 ± 6%), leg blood flow (-11 ± 3 %) and cardiac output (-9 ± 3%; 
all P< 0.05) were lower in H30 compared to H10 and control. In the 3 control 
incremental tests, exercise capacity, V̇O2max, HRmax and Tc were similar. 
Discussion: These findings demonstrate that skin hyperthermia per se does not 
compromise cardiovascular capacity or incremental exercise performance. Rather, 
combined skin and internal body hyperthermia reduces V̇O2max and exercise 
capacity through the early attenuation of leg, brain and systemic blood flow. Our 
findings have important implications for understanding why athletic performance in 
warm environments is not universally impaired across all sports and exercise 
modalities.  
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