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Abstract In this chapter we study reparametrization invariant Sobolev metrics on
spaces of regular curves. We discuss their completeness properties and the resulting
usability for applications in shape analysis. In particular, we will argue, that the
development of efficient numerical methods for higher order Sobolev type metrics
is an extremely desirable goal.

1 Introduction

Over the past decade Riemannian geometry on the infinite-dimensional spaces of
parametrized and unparametrized curves has developed into an active research area.
The interest has been fueled by the important role of these spaces in the areas of
shape analysis and computer vision. Contributions in these fields include applica-
tions to medical image diagnostics [18], target and activity recognition in image
analysis [38], plant leaf classification [23] and protein structure analysis [26] or hu-
man motion analysis in computer graphics [17]. In these research areas one is inter-
ested in studying the variability within a certain class of shapes. As a consequence
an important goal is the development of statistical tools for these spaces.
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Riemannian metrics provide the additional structure, that is needed to capture the
nonlinearity of the space and at the same time linearize it sufficiently to enable com-
putations. In this chapter we want to acquaint the reader with some of the metrics,
that can be defined on the space of curves and discuss their properties with a view
towards applications in shape analysis. We will concentrate particularly on com-
pleteness properties: do geodesics exist, when do they stop existing and how does it
depend on the metric. For a more wide-ranging overview of Riemannian metrics on
spaces of functions, see [9].

Parametrized Curves In this chapter we will discuss Riemannian metrics on two
different spaces: first, the space of smooth, regular, closed curves in Rn

Imm(S1,Rd) =
{

c ∈C∞(S1,Rd) : c′(θ) 6= 0, ∀θ ∈ S1
}

; (1)

here Imm stands for immersion. This is an open set in the Fréchet space C∞(S1,Rd)
of all smooth functions and as such it is itself a Fréchet manifold. As an open
subset of a vector space, its tangent space at any curve is the vector space itself,
T Imm(S1,Rd)∼= Imm(S1,Rd)×C∞(S1,Rd). A Riemannian metric on Imm(S1,Rd)
is a smooth map

G : Imm(S1,Rd)×C∞(S1,Rd)×C∞(S1,Rd)→ R ,

such that Gc(·, ·) is a symmetric, positive definite bilinear form for all curves c.
An example of a Riemannian metric is the L2-metric Gc(h,k) =

∫
S1〈h,k〉|c′|dθ ,

which we will look at more closely in Sect. 2. When studying particular Rieman-
nian metrics, it will be useful to consider larger spaces of less regular curves, but
Imm(S1,Rd) will always be the common core.

Unparametrized Curves The other space, that we will consider, is the space of un-
parametrized curves, sometimes also denoted shape space. There are several closely
related, but slightly differing ways to define this space mathematically. We will con-
sider an unparametrized curve or shape to be an equivalence class of parametrized
curves, that differ only by a reparametrization. In other words, c1 and c2 represent
the same shape, if c1 = c2 ◦ϕ for some reparametrization ϕ ∈Diff(S1); mathemati-
cally Diff(S1) is the diffeomorphism group of the circle, that is, the set of all smooth
invertible maps ϕ : S1→ S1. With this definition the space of unparametrized curves
is the quotient

B(S1,Rd) = Imm(S1,Rd)/Diff(S1) .

Apart from isolated singular points, the space B(S1,Rd) is also an infinite-dimen-
sional manifold and the projection p : c→ [c] assigning each curve its equivalence
class is a submersion.1

1 In applications one often wants to consider curves and shapes modulo Euclidean motions, lead-
ing to the spaces Imm(S1,Rd)/Mot and B(S1,Rd)/Mot, where Mot = SO(d)nRd denotes the
Euclidean motion group. All metrics discussed in this chapter are invariant under the motion group
and therefore induce a Riemannian metric on the quotients Imm(S1,Rd)/Mot and B(S1,Rd)/Mot.
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Reparametrization Invariant Metrics To define a Riemannian metric on the
space B(S1,Rd) we will start with a Riemannian metric G on Imm(S1,Rd), that
is invariant under the action of Diff(S1); such metrics are called reparametrization
invariant. This means, G has to satisfy

Gc◦ϕ(h◦ϕ,k ◦ϕ) = Gc(h,k) ,

for all curves c, tangent vectors h,k and reparametrizations ϕ . Then we can use the
formula

G[c](X ,X) = inf{Gc(h,h) : Tc p.h = X} ,

to define a Riemannian metric on shape space B(S1,Rd), such that the projection p
is a Riemannian submersion.

Geodesic Distance An important concept in shape analysis is the notion of distance
between two curves or shapes. A Riemannian metric leads to a natural distance func-
tion, the induced geodesic distance. The distance measures the length of the shortest
path between two curves. If c0,c1 ∈ Imm(S1,Rd) are two parametrized curves, the
distance between them is defined as

distI(c0,c1) = inf
γ(0)=c0
γ(1)=c1

∫ 1

0

√
Gγ(t)(γt(t),γt(t))dt ,

where the infimum is taken over all smooth paths γ , that connect the curves c0 and
c1. Whether there exists a path, realizing this infimum, is an interesting and non-
trivial question in Riemannian geometry.

If we start with a reparametrization invariant metric G and it induces a Rieman-
nian metric on shape space B(S1,Rd), then we will be interested in computing the
geodesic distance on B(S1,Rd). The geodesic distances for parametrized and un-
parametrized curves are related by

distB([c0], [c1]) = inf
ϕ∈Diff(S1)

distI(c0,c1 ◦ϕ) . (2)

For applications in shape analysis it is important to find a stable and fast method to
numerically compute this quantity for arbitrary shapes [c0] and [c1]. We will com-
ment in the later sections, for which metrics a reparametrization ϕ , realizing the
above infimum, exists, and what the obstructions to its existence are in other cases.

Organization We will look at three families of metrics: first, the L2-metric in
Sect. 2, which is among the simplest reparametrization invariant metrics, but unfor-
tunately unsuitable for shape analysis; then, first order Sobolev metrics in Sect. 3,
which are very well suited for numerical computations and therefore among the
most widely used Riemannian metrics in applications; finally, we will look at higher
order Sobolev metrics in Sect. 4 and argue, why their theoretical properties make

In Sect. 3 we will encounter metrics, that live naturally on the space Imm(S1,Rd)/Tra of curves
modulo translations.
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them good candidates for use in shape analysis. At the end we will explain, how
these metrics can be generalized to spaces of parametrized and unparametrized sur-
faces.

2 The L2-Metric

The arguably simplest Riemannian metric on the space of smooth, regular curves,
that is invariant under reparametrizations, is the L2-metric

Gc(h,k) =
∫

S1
〈h,k〉ds ,

where we use ds = |c′|dθ to denote arc length integration. It is integration with
respect to ds rather than dθ , that makes this metric reparametrization invariant, as
can be seen from the following calculation,

Gc◦ϕ(h◦ϕ,k ◦ϕ) =
∫

S1
〈h◦ϕ,k ◦ϕ〉(|c′| ◦ϕ)ϕ

′ dθ = Gc(h,k) .

Similarly, if we wanted to include derivatives of h,k in the metric and keep the met-
ric reparametrization invariant, we would need to use the arc length differentiation
Dsh = 1

|c′|h
′ rather that h′ = ∂θ h.

Geodesic Equation The geodesic equation of the L2-metric is a nonlinear, second
order PDE for the path c(t,θ). It has the form

(|cθ |ct)t =−
1
2

(
|ct |2

|cθ |
cθ

)
θ

. (3)

where cθ = ∂θ c = c′ and ct = ∂tc denote the partial derivatives. While the equation
is as simple as one can hope for—the geodesic equations for higher order metrics
have many more terms—there are currently no existence results available for it.

Open Question. Given a pair of an initial curve and an initial velocity (c0,u0) ∈
T Imm(S1,Rd), does the geodesic equation admit short time solutions with the given
initial conditions?

We know, that we cannot hope for long time existence, since it is possible to shrink
a circle along a geodesic path down to a point in finite time. Numerical evidence
in [29, Sect. 5.3] suggest that geodesics should exist as long as the curvature of the
curve remains bounded.

Geodesic Distance The lack of existence results for the geodesic equation is not
the biggest problem of the L2-metric. The crucial property, that makes it unsuitable
for applications in shape analysis, is that the induced geodesic distance vanishes.

The geodesic distance between two curves c0,c1 ∈ Imm(S1,Rd) is defined as the
infimum over the lengths of all paths γ , connecting the two curves, i.e.
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distI(c0,c1) = inf
γ(0)=c0
γ(1)=c1

∫ 1

0

√
Gγ(t)(γt(t),γt(t))dt .

It was found [29, 28, 4] that for the L2-metric the geodesic distance between any
two curves is zero.2 What does this mean? If γ is a smooth, non-constant path, then
∂tγ(t) cannot be identically zero and so the length

∫ 1
0
√

Gγ(γt ,γt)dt will be strictly
positive. The meaning of distI(c0,c1) = 0 is that we can find arbitrary short paths
connecting c0 and c1. No path will have zero length, but given any ε > 0, we can find
a path with length < ε . How do these paths look like? They are easier to visualize for
the geodesic distance on the space of unparametrized curves, which we will describe
next.

For the L2-metric the geodesic distance between the unparametrized curves
[c0], [c1] ∈ B(S1,Rd), represented by c0,c1 can be computed as the following in-
fimum,

distB([c0], [c1]) = inf
γ

∫ 1

0

√
Gγ(γ⊥t ,γ⊥t )dt ;

here γ(t) is a path starting at c0 and ending at any curve in the equivalence class [c1],
that is γ(1) = c1 ◦ϕ for some ϕ ∈ Diff(S1). We denote by γ⊥t = γt −〈γt ,v〉v, with
v = Dsγ , the projection of the vector γt(t,θ) ∈ Rd to the subspace orthogonal to the
curve γ(t) at θ .

γ⊥t

〈γt ,v〉
γt

Fig. 1 Left side: a short curve with respect to the L2-metric in the space B(S1,R2) of un-
parametrized curves connecting two concentric circles. We see that the intermediate curves are
sawtooth-shaped. Right side: Along a sawtooth the tangential component 〈γt ,v〉v is large, while
the normal component γ⊥ becomes small, the steeper the slope of the sawtooth.

A short path connecting two concentric circles can be seen in Fig. 1. The key
observation is that the sawtooth-shaped curves have a large tangential velocity, but
only a small normal velocity. Since for the geodesic distance on B(S1,Rd) we only

2 We encounter the vanishing of the geodesic distance for L2-metrics on several spaces: on the
space Imm(M,N) of immersions between two manifolds M, N of arbitrary dimension, M compact;
on the Virasoro–Bott group [4]; and even for Sobolev metrics on the diffeomorphism group of a
compact manifold, provided the order of the metric is < 1

2 [5, 8].
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measure the normal part of the velocity vector, these paths have a short length. The
more teeth we use, the smaller the normal component of the velocity and the smaller
the length of these paths.

The vanishing of the geodesic distance started the search for stronger metrics,
that would be more useful to shape analysis.

Almost Local Metrics One class of metrics, designed to have non-vanishing dis-
tance, while being as simple as possible, is the class of almost local metrics. The
motivating idea behind almost local metrics was the observation that for paths with
short length in the L2-metric, the intermediate curves are long and have large curva-
ture. Thus one hopes that by adding weights, that depend on length and curvature, to
the metric, these paths will be sufficiently penalized and the geodesic distance will
become non-zero. Almost local metrics3 are metrics of the form

Gc(h,k) =
∫

S1
Φ(`c,κ)〈h,k〉ds , (4)

with Φ some function of the two variables `c =
∫

S1 ds (length) and κ (curvature). If
Φ depends only on `c, the resulting metric Gc(h,k) = Φ(`c)

∫
S1〈h,k〉ds is a confor-

mal rescaling of the L2-metric [41, 34]. Other choices for Φ include Φ(κ)= 1+Aκ2

with A a positive constant [29] or the scale invariant metric Φ(`c,κ) =
1
`3

c
+ κ2`c

[30].
For all these metrics it has been shown that they induce a point-separating dis-

tance function4 on the space B(S1,Rd) of unparametrized curves. However, simi-
larly to the L2-metric, little is known about solutions of the geodesic equation and
while the geodesic distance is point-separating on the space B(S1,Rd), it is not
point-separating on the space Imm(S1,Rd) of parametrized curves. In the next two
sections we will discuss a different strategy to strengthen the L2-metric, leading to
the class of Sobolev metrics.

3 First Order Metrics and the Square Root Velocity Transform

One way to deal with the degeneracy of the L2-metric is by adding terms, that
involve first derivatives of the tangent vectors. Such metrics are called first order
Sobolev metrics or, short, H1-metrics. An example is the metric

Gc(h,k) =
∫

S1
〈h,k〉+ 〈Dsh,Dsk〉ds ,

3 These metrics are not local, because the length `c is not a local quantity, however it is only a mild
non-locality; hence the name “almost local” metrics.
4 A distance function d(·, ·) is point-separating, if d(x,y)> 0 whenever x 6= y. This is stronger than
non-vanishing, which would only require two points x,y with d(x,y) 6= 0.
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with Dsh = 1
|c′|h

′ denoting the arc length derivative and ds = |c′|dθ . If we omit
the L2-term, we arrive at Gc(h,k) =

∫
S1〈Dsh,Dsk〉ds, which is a metric on the space

Imm(S1,Rd)/Tra of regular curves modulo translations. The scale-invariant version
of this metric has been studied in [42, 43] and it has the remarkable property that
one can find explicit formulas for minimizing geodesics between any two curves.

We will concentrate in this section on a related metric, obtained by using different
weights for the tangential and normal components of Dsh,

Gc(h,k) =
∫

S1
〈Dsh⊥,Dsk⊥〉+

1
4
〈Dsh,v〉〈Dsk,v〉ds ; (5)

here v = Dsc = 1
|c′|c

′ is the unit length tangent vector along c and Dsh⊥ = Dsh−
〈Dsh,v〉v is the projection of Dsh to the subspace {v}⊥ orthogonal to the curve.
This is a Riemannian metric on Imm(S1,Rd)/Tra and it is the metric used in the
square root velocity (SRV) framework [37]. The reason for singling out this metric
is that the SRV framework has been used successfully in applications [38, 40, 23]
and the SRV transform has a simple and accessible form. We will comment on other
H1-metrics at the end of the section.

The Square Root Velocity Transform The square root velocity transform (SRVT)
is the map

R : Imm(S1,Rd)→C∞(S1,Rd) , c 7→ 1√
|c′|

c′ ,

assigning each curve c a function q = R(c).
Every vector space (V,〈·, ·〉) with an inner product can be regarded as a Rieman-

nian manifold: the Riemannian metric g at each point x ∈ V is simply the inner
product, gx(·, ·) = 〈·, ·〉. The SRVT is an isometry between the Riemannian mani-
fold

(
Imm(S1,Rd)/Tra,G

)
, where G is the Riemannian metric (5) and the space

C∞(S1,Rd) with the L2-inner product 〈u,v〉L2 =
∫

S1〈u,v〉dθ .

The SRVT for Open Curves Things are simple on the space of open curves
Imm([0,2π],Rd)/Tra. The SRVT is a one-to-one mapping between the space
Imm([0,2π],Rd)/Tra and the set C∞(S1,Rd \ {0}) of functions that don’t pass
through the origin in Rd . This is an open subset of all functions and thus geodesics
with respect to the metric (5) correspond to straight lines under the SRVT: the path
c(t) = R−1(q0 + th) is a geodesic in Imm([0,2π],R2)/Tra and given two curves
c0,c1, the geodesic connecting them is

c(t) = R−1((1− t)q0 + tq1) ,

with qi = R(ci).

The SRVT for Closed Curves Things are slightly more complicated for closed
curves. The inverse of the SRVT is given by the formula
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R−1(q)(θ) =
∫

θ

0
q|q|dσ ,

and we see that if we want the curve c = R−1(q) to be closed, i.e., c(0) = c(2π),
then we need

∫
S1 q|q|dσ = 0. Indeed the image of Imm([0,2π],Rd)/Tra under the

SRVT is the set

Im(R) =
{

q ∈C∞(S1,R2) : q(θ) 6= 0 and
∫

S1
|q|q dθ = 0

}
.

We have the condition q′(θ) 6= 0 as before to ensure that c′(θ) 6= 0 and an additional
constraint so that the curves c = R−1(q) are closed. Even though we don’t have
a closed expression for the geodesics, it is still possible to compute the geodesics
numerically without much difficulty.

Minimizing Geodesics for Parametrized Curves Let us first look at open curves.
In the SRV representation, qi = R(ci), the minimizing path between q0 and q1 is
the straight line q(t) = (1− t)q0 + tq1. In particular the minimizing path always
exists. It can happen, however, that the straight line between q0(θ) and q1(θ) passes
through the origin; at points (t,θ), where this happens the derivative of the curve
c(t,θ) = R−1(q(t))(θ) vanishes, i.e., c′(t,θ) = 0 and thus the curve is not regular at
those points. Apart from that, any two curves can be joined by a unique minimizing
geodesic, which can be computed via an explicit formula, and we know when the
intermediate curves will fail to be regular.

For closed curves the situation is less explicit, because now we also have to sat-
isfy the nonlinear constraint

∫
S1 q|q|dθ = 0. This is a d-dimensional constraint on an

otherwise infinite-dimensional space and furthermore the function q 7→
∫

S1 q|q|dθ is
continuous with respect to the L2-topology. Numerical evidence suggest, that mini-
mizing geodesics continue to exist between any two curves. In particular, computing
minimizing geodesics between parametrized curves is a fast and stable operation; an
example of a geodesic can be seen in Fig. 2.

Fig. 2 Minimal geodesics between two pairs of parametrized curves. Images taken from [6].
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Smoothness of the minimizing geodesics is another issue. The natural target
space for the SRVT is the space L2(S1,Rd) of square-integrable functions. If the
SRVT of a curve lies in L2(S1,Rd), the curve itself is only absolutely continuous.
Unfortunately the Riemannian metric Gc(h,k), given by (5), does not have to be fi-
nite for absolutely continuous curves c and tangent vectors h,k; the term Dsh= 1

|c′|h
′

may well become infinite. We are approaching the frontier of the Riemannian frame-
work now: any two (open) curves can be joined by a minimizing path, however the
space, where the path lives—the completion of the space of smooth curves, if one
wants to use the term—is not a Riemannian manifold any more.

Minimizing Geodesics for Unparametrized Curves If we want to find minimiz-
ing geodesics between two unparametrized curves C0,C1 ∈ B(S1,Rd)/Tra, repre-
sented by the curves c0,c1 ∈ Imm(S1,Rd)/Tra, one way to do this is to minimize
distI(c0,c1 ◦ϕ) over ϕ ∈Diff(S1) or equivalently over all parametrized curves c1 ◦ϕ

representing the shape C1; indeed, the geodesic distance on B(S1,Rd)/Tra is given
by

distB(C0,C1) = inf
ϕ∈Diff(S1)

distI(c0,c1 ◦ϕ) . (6)

If the infimum is attained for ψ ∈ Diff(S1) and if we denote by c(t) the minimiz-
ing geodesic between c0 and c1 ◦ψ , then the curve [c(t)] in B(S1,Rd)/Tra is the
minimizing geodesic between C0 and C1. Thus we are interested, whether the infi-
mum (6) is attained and if it is, in what space.

Let us look at distI(c0,c1 ◦ϕ), first for open curves in the SRV representation.
Let qi = R(ci). We have R(c1 ◦ϕ) =

√
ϕ ′ q1 ◦ϕ and

distI(c0,c1 ◦ϕ)2 =
∫ 2π

0
|q0(θ)−

√
ϕ ′(θ)q1(ϕ(θ))|2 dθ .

Assume that ψ minimizes this expression, fix θ ∈ S1 and set θ̃ =ψ(θ). Even though
finding ψ has to be done over the whole interval [0,2π] simultaneously, it is very
instructive to look at just one point at a time. Consider the infimum

inf√
ϕ ′(θ)≥0

|q0(θ)−
√

ϕ ′(θ)q1(θ̃)|2 .

This is a d-dimensional minimization problem, that can be solved explicitly; its
solution is visualized in Fig. 3. Denote by α the angle between q0(θ) and q1(θ̃). If
π

2 ≤α ≤ 3π

2 , then the infimum is attained for
√

ϕ ′(θ) = 0. In other words, for q1(θ̃)
lying in the half-plane “opposite” q0(θ), the optimal reparametrization would scale
it to 0. Next we look at close by points. If the optimal scaling at θ is

√
ϕ ′(θ) = 0

and θ +∆θ is close enough, then the angle between q0(θ +∆θ) and q1(θ̃) will also
lie inside [π

2 ,
3π

2 ] and so
√

ϕ ′(θ +∆θ) = 0 as well. But this would lead to ϕ being
constant on a whole subinterval of [0,2π].

The true situation is more complicated than that, in particular for closed curves,
where we additionally have the nonlocal constraint

∫
S1 q|q|dθ = 0 to satisfy. But we
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√
ϕ ′(θ) = 0

q0(θ)

q0

q1

√
ϕ ′(θ) q1(θ̃)

q1(θ̃)

Fig. 3 Left side: solution to the finite dimensional minimization problem. In the halfplane below
the dotted line, the solution is given by

√
ϕ ′(θ) = 0. On the halfplane above the dotted line the

solution is given by the unique value
√

ϕ ′(θ) such that
√

ϕ ′(θ)q1(θ̃) lies on the dotted circle.
Right side: effect of the reparametrization action on the space of SRVTs.

Fig. 4 Left side: initial curve. Middle figure: target curve. Right figure: minimal geodesic on shape
S (S1,R2) between an ellipse and an ellipse with a large fold. One can see, that the fold grows out
of a singular point. Image taken from [6].
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do observe the scaling-to-zero behavior in numerical computations; see for example
Fig. 4.

Incompleteness The key conclusion is this: we should expect the solution ψ of the
minimization problem infϕ distI(c1,c2 ◦ϕ) to have intervals, where it is constant—
that is true, even if we solve the problem on a finite-dimensional approximation
space. If I is such an interval and ψ|I = θI ∈ S1, then this means that the whole
segment c1(I) of the first curve corresponds to the point c2(θI) on the second curve.

Now we can switch c1 and c2. Then the optimal reparametrization is ψ−1. How-
ever, since ψ is constant on the interval I, its inverse ψ−1 will have a jump at
the point θI . What does this mean for minimizing geodesics? If c(t) is a length-
minimizing path between c2 and c1 ◦ψ−1, then the point c2(θI) will “open up” to
the whole segment c1(I).

A geodesic is supposed to encode the differences between the shapes represented
by c1 and c2 in its initial velocity ∂tγ(0). However the geodesic starting at c2 sees
only the parametrized curve c1 ◦ψ−1 and since ψ−1 has a jump at θI , jumping over
the interval I, this interval is missing from the curve c1 ◦ψ−1. How then can the
geodesic encode the shape differences, if it does not “see” them?

We understand that this is not a rigorous proof5. However there is numerical
evidence pointing in the same direction. In Fig. 4 we see an attempt to numerically
compute the minimizing geodesic between an ellipse and an ellipse with a large
fold, both considered as unparametrized curves. The picture on the right shows the
point-to-point correspondences after we have minimized over the reparametrization
group. We can see that indeed one point on the ellipse wants to correspond to the
part of the fold, where the tangent vectors points in the opposite direction to the
tangent vector of the ellipse.

In the example of Fig. 4 we could have cleverly selected the shape with the fold
as the initial curve and compute our geodesic starting from there. Then there would
be no problem of one point wanting to become a whole segment. However, for two
general curves c1, c2, we would expect to encounter mixed behavior: some segments
of c1 would collapse to points on c2 and other points on c1 would expand to segments
of c2.

This effect is not caused by the global “curvedness” of the manifold of shapes, it
is rather a manifestation of the incompleteness. We expect to see this as soon as we
match two curves whose tangent vectors point in opposite directions. Since in the
SRV representation distances are measured in the L2-norm, this behavior can occur
for a pair of curves with arbitrary small (geodesic) distance. The fold in Fig. 4 can
be arbitrary small, but the behavior will be the same.

Let us fix a representative curve c for the shape [c] and let us look at the space
of unparametrized curves through the lens of the exponential map, while standing
at the curve c. We look at a shape [c1], represented by a curve c1, by finding a
reparametrization ψ1, s.t. distI(c,c1 ◦ψ) is minimal, and then we compute v1 =
exp−1

c (c1◦ψ1). This vector v1 is what we see, when we look at the shape [c1]. Now, if

5 See [43, Sect. 4.2] for a rigorous proof, that this behavior indeed occurs for the metric Gc(h,k) =
1
`c

∫ 2π

0 〈Dsh,Dsk〉ds on the space of unparametrized open curves modulo translations.
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the reparametrization ψ has jumps, then the curve c1 ◦ψ1 wil miss parts of the shape
[c1]; furthermore, there will be several shapes [c2], distinct from [c1] only in the part
that is missing from c1◦ψ1, such that the corresponding optimal representing curves
c2 ◦ψ2 coincide with c1 ◦ψ1. This implies that v2 = exp−1

c (c2 ◦ψ2) coincides with
v1, while the shapes [c2] and [c1] differ. In other words we look at different shapes,
but see the same thing. In fact there are many regions in shape space, that cannot
be distinguished using the exponential map and these regions start arbitrary close to
the starting shape [c].

Joint Reparametrizations It is possible that searching for one reparametrization
is the wrong problem. Mathematically an equivalent way to define the geodesic
distance on B(S1,Rd)/Tra is via

distB(C1,C2) = inf
ϕ1,ϕ2∈Diff(S1)

distI(c1 ◦ϕ1,c2 ◦ϕ2) .

Using the invariance of distI under reparametrizations we can recover (6). Now
we are looking for reparametrizations of both curves, such that the infimum is at-
tained. The advantage of this approach is that we can avoid jumps, that would nec-
essarily appear in the one–reparametrization strategy, by instead setting the other
reparametrization to be constant on the corresponding interval.

The underlying behavior does not change: points on one curve can be matched
to intervals on the other and vice versa. If ψ1,ψ2 represent a pair of optimal
reparametrizations for two curves c1,c2 and ψ1 is constant on the interval I with
ψ1|I = θI , then the point c1(θI) will correspond to the interval c2(ψ2(I)). Instead of
jumping over the interval ψ2(I), we now reparametrize c1 and the reparametrized
curve c1 ◦ψ1 waits at θI until ψ2 has moved past I.

The strategy of joint reparametrizations was proposed in [33, 24], where the au-
thors consider only curves without the periodicity constraint. Even for open curves,
it is not known, whether for any two absolutely continuous curves, there exists a
pair of reparametrizations realizing the geodesic distance; in [24] this is shown only
under the additional assumption, that one of the curves is piecewise linear.

Other H1-metrics There are many different H1-metrics to choose from. For a start,
the constants 1 and 1

4 are rather arbitrary and we could look at the full family of
metrics of the form

Gc(h,k) =
∫

S1
a2〈Dsh⊥,Dsk⊥〉+b2〈Dsh,v〉〈Dsk,v〉ds ,

with a,b > 0. This family has been given the name elastic metrics and has been
studied for plane curves in [31, 6]. All metrics in this family are uniformly equiv-
alent, i.e., if G and H are two elastic metrics with possibly different constants a,b,
there exists a constant C, such that

C−1Hc(h,h)≤ Gc(h,h)≤CHc(h,h) ,

holds for all curves c and all tangent vectors h.
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All H1-metrics can be made invariant with respect to scalings by multiplying
them with an appropriate power of the length `(c); for example the following metric
is scale-invariant,

Gc(h,k) =
∫

S1
`−3

c 〈h,k〉+ `−1
c 〈Dsh,Dsk〉ds .

A modified H1-metric was introduced in [39] with the property that scalings, trans-
lations and general deformations of the curve are all orthogonal to each other; this
metric was then applied to tracking moving objects.

We have looked at completeness properties only for the H1-metric corresponding
to the SRVT; a similar, more rigorous, discussion can be found for the scale-invariant
version of elastic metric corresponding to the choice a = b in [43] and we conjec-
ture, that all H1-metrics share the same qualitative behavior. We will see in the next
section, what happens, if we additionally penalize second and higher derivatives of
the tangent vectors.

4 Higher Order Sobolev Metrics

Riemannian metrics involving first derivatives of the tangent vectors can lead to
very efficient computations, but some of their mathematical properties are less con-
venient. Now we will make the metric dependent on higher derivatives. It is not easy
to give a definition of a general Sobolev-type Riemannian metric, that is both gen-
eral enough to encompass all known examples and concrete enough so that we can
work easily with it. We will approach this class by looking at families of examples
instead, noting common features as well as differences.

A very useful family is that of Sobolev metrics with constant coefficients. These
are metrics of the form

Gc(h,k) =
∫

S1
a0〈h,k〉+a1〈Dsh,Dsk〉+ · · ·+an〈Dn

s h,Dn
s k〉ds , (7)

with constants a0, . . . ,an. The largest n, such that an 6= 0 is called the order of the
metric. We require a j ≥ 0 for the metric to be positive semi-definite, an > 0 for it to
be a metric of order n and a0 > 0 for it to be non-degenerate. If a0 = 0, then constant
tangent vectors are in the kernel of G and, provided there is at least one non-zero co-
efficient, G defines a non-degenerate metric on the quotient space Imm(S1,Rd)/Tra
of regular curves modulo translations. Most of the metrics encountered in Sect. 3
were of this type.

Using integration by parts we can rewrite (7) to obtain

Gc(h,k) =
∫

S1
a0〈h,k〉+a1〈−D2

s h,k〉+ · · ·+an〈(−1)nD2n
s h,k〉ds , (8)
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enabling us to write the metric in the form Gc(h,k) =
∫

S1〈Lch,k〉ds, with Lc =

∑
n
j=0(−1) ja j D2 j

s , a differential operator of order 2n.

Metrics with Nonconstant Coefficients We could loosen our restrictions on the
coefficients a j and permit them to be functions, that depend on the curve c and
quantities derived from it, e.g., a j = a j(`c,κ,Dsκ, . . .). In Sect. 2 we have consid-
ered such metrics of order zero, the almost local metrics. Several examples of higher
order metrics with nonconstant coefficients have been investigated in the literature.
The completeness properties of first and second order metrics with coefficients de-
pending on the length are studied in [27]. The idea in [35] and [11] is to decompose
a tangent vector h = h‖ + h⊥ into a part tangent and a part normal to the curve
and consider derivatives of these quantities. Some special examples of second order
metrics can be found in [10].

Geodesic Equation The geodesic equation of a Sobolev metric with constant co-
efficients is a nonlinear PDE, second order in time and of order 2n in the space
variable. It is given by

∂t

(
n

∑
j=0

(−1) ja j |c′|D2 j
s ct

)
=−a0

2
|c′|Ds (〈ct ,ct〉Dsc)

+
n

∑
k=1

2k−1

∑
j=1

(−1)k+ j ak

2
|c′|Ds

(
〈D2k− j

s ct ,D j
sct〉Dsc

)
.

We can see that if a j = 0 for j ≥ 1, then this equation reduces to the geodesic
equation (3) of the L2-metric. The left hand side of the geodesic equation is the
time derivative of the momentum, Lcct |c′|. For metrics of order n≥ 1 the geodesic
equation is locally well-posed [30].

Now we come to the main difference between Sobolev metrics of order one and
metrics of higher order. In a nutshell, first order Sobolev metrics are only weak
Riemannian metrics, while Sobolev metrics of higher order, if extended to a suitable,
larger space, are strong Riemannian metrics.

Weak Sobolev Metrics Let G be a Sobolev metric of order one,

Gc(h,k) =
∫

S1
〈h,k〉+ 〈Dsh,Dsk〉ds =

∫
S1
〈h,k〉|c′|+ 〈h′,k′〉|c′|−1 dθ .

Fix the curve c and look at the inner product Gc(·, ·). The natural space to define
Gc(·, ·) is the Sobolev space H1(S1,Rd) of functions with square-integrable deriva-
tives, together with the inner product

〈h,k〉H1 =
∫

S1
〈h,k〉+ 〈h′,k′〉dθ .

If c is smooth enough, say c ∈C1, then we see that Gc(·, ·) defines an inner product
on H1, which is equivalent to the standard inner product. Unfortunately we cannot
allow c itself to be an H1-function. We need uniform control on the derivative c′
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to guarantee that the integral
∫

S1〈h′,k′〉|c′|−1 dθ is finite, but the H1-norm does not
provide that. The best we can do is to extend G to the space

G : C1Imm(S1,Rd)×H1(S1,Rd)×H1(S1,Rd)→ R .

In this sense G is a weak Riemannian metric6; the topology induced by the inner
product Gc(·, ·), in this case the H1-topology, is weaker than the manifold topology,
here the C∞- or C1-topology.

Strong Sobolev Metrics The situation is different for Sobolev metrics with con-
stant coefficients of order 2 or higher. Let us look at an example:

Gc(h,k) =
∫

S1
〈h,k〉+ 〈D2

s h,D2
s k〉ds ,

with Dsh = 1
|c′|h

′ and D2
s h = 1

|c′|h
′′− 〈c

′,c′′〉
|c′| h′. Again the natural space for Gc(·, ·) is

the Sobolev space H2(S1,Rd) and it would appear that we need c ∈C2 for the inner
product to be well-defined. However a careful application of Sobolev embedding
and multiplier theorems—see [16, Sect. 3.2]—shows that we can extend G to a
smooth inner product on the space

G : I 2(S1,Rd)×H2(S1,Rd)×H2(S1,Rd)→ R ;

here we denote by I 2(S1,Rd) = {c ∈ H2 : c′(θ) 6= 0 ∀θ ∈ S1} the space of H2-
curves with non-vanishing tangent vectors. The crucial fact is the Sobolev embed-
ding H2 ↪→C1, implying that the H2-norm controls first derivatives uniformly. This
also implies that I 2 is an open set in H2. Thus G becomes a strong Riemannian
metric on I 2(S1,Rd); the topology induced by each inner product Gc(·, ·) coin-
cides with the manifold topology.

Similarly Sobolev metrics of order n with constant coefficients induce strong
metrics on the space I n(S1,Rd) of regular Sobolev curves, provided n≥ 2.

Note however that Sobolev metrics of order 2 and higher are strong metrics only
when considered on the larger space I n(S1,Rd), not on the space Imm(S1,Rd)
of smooth curves. On Imm(S1,Rd) the metric is still a weak metric. That said the
difference between metrics of order 1 and those of higher order is that for higher
order metrics we are able to pass to the larger space I n(S1,Rd)—one could say we
are “completing” the space of smooth curves—on which it becomes a strong metric,
while for first order metrics such a completion does not exist.

Properties of Strong Metrics The following is a list of properties we get “for free”
simply by working with a smooth, strong Riemannian metric as opposed to a weak
one:

6 An infinite-dimensional Riemannian manifold (M,g) is called strong, if g induces the natural
topology on each tangent space or equivalently, if the map g : T M→ (T M)′ is an isomorphism.
If g is merely a smoothly varying nondegenerate bilinear form on T M we call (M,g) a weak
Riemannian manifold, indicating that the topology induced by g can be weaker than the natural
topology on T M or equivalently g : T M→ (T M)′ is only injective.



16 Martin Bauer, Martins Bruveris and Peter W. Michor

• The Levi-Civita covariant derivative exists and the geodesic equation has local
solutions, which depend smoothly on the initial conditions.

• The exponential map exists and is a local diffeomorphism.
• The induced geodesic distance is point-separating and generates the same topol-

ogy as the underlying manifold.

The theory of strong, infinite-dimensional Riemannian manifolds is described in
[25] and [20]. For weak Riemannian manifolds all these properties have to be es-
tablished by hand and there are examples, where they fail to hold. The geodesic
distance for the L2-metric discussed in Sect. 2 on the space of curves vanishes iden-
tically [29, 28], it is not known whether the geodesic equation for the L2-metric
has solutions and [7] presents a weak Riemannian manifold that has no Levi-Civita
covariant derivative.

We would like to note that the distinction between weak and strong Riemannian
metrics arises only in infinite-dimensions. Every Riemannian metric on a finite-
dimensional manifold is strong. Therefore phenomena, like the vanishing of the
geodesic distance or the failure of geodesics to exist, can only arise in infinite di-
mensions. For better or for worse, this is the setting, where the joy and pain of shape
analysis occurs.

Completeness Properties What are the operations on the manifold of curves, that
are used in shape analysis?

(1) We want to use the Riemannian exponential map expc : TcM → M to pass
between the tangent space at one point and the manifold itself. Its inverse
logc = exp−1

c allows us to represent the nonlinear manifold or at least a part
thereof in a vector space.

(2) Given two curves, we want to compute the geodesic distance between them,
that is, the length of the shortest path joining them. Often we are also interested
in the shortest path itself; it can be used to transfer information between two
curves and the midpoint can serve as the average of its endpoints.

(3) Given a finite set {c1, . . . ,cn} of curves, we are interested in the average of this
set. On a Riemannian manifold this is usually the Fréchet or Karcher mean, i.e.,
a curve c∗, minimizing the sum of squared distances, c∗ = argminc ∑i d(c,ci)

2,
where d is the geodesic distance.

This is by no means an exhaustive list, but describes rather the basic operations,
one wants to perform. The ability to do so places conditions on the manifold of
curves and the Riemannian metric. Let us look at these conditions.

(1) On a general Riemannian manifold the exponential map expc :U→M is defined
only on an open neighborhood U ⊆ TcM of 0 and it is rarely known exactly how
U looks like. For us to be able to freely map tangent vectors to curves, we want
a globally defined exponential map. Since the exponential map is defined as
expc(h) = γ(1), where γ is the geodesic with initial conditions (c,h) and using
the property expc(th) = γ(t), we can see that a globally defined exponential map
is equivalent to requiring that geodesics exist for all time. This property is called
geodesic completeness.
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(1’) Asking for the exponential map to be invertible is more difficult. On a strong
Riemannian manifold this is always the case locally. Imposing it globally is a
very restrictive condition. The Weil–Peterson metric [36] comes closest; it is
a metric with negative sectional curvature, meaning that the derivative of the
exponential map is everywhere invertible.

(2) Here we want to know, whether any two curves can be joined by a minimizing
geodesic, i.e., a geodesic, whose length realizes the geodesic distance. On a
finite-dimensional manifold geodesic completeness would imply this property;
this is not the case in infinite dimensions [1]. This is not to say, that we cannot
hope for minimizing geodesics to exist, but rather, that it will have to be proven
independently of (1).

(3) Ensuring that the Fréchet mean exists for all finite collections of curves is dif-
ficult. But there is a theorem [3] stating that the mean exists and is unique on a
dense subset of the n-fold product M× . . .×M, provided the manifold is metri-
cally complete. This means that the manifold (M,d) together with the induced
geodesic distance is complete as a metric space.

The properties (1), (2) and (3) for Riemannian manifolds are called completeness
properties. In finite dimensions the theorem of Hopf–Rinow states that (1) and (3)
are equivalent and either one implies (2). For infinite-dimensional strong Rieman-
nian manifolds the only remaining implication is that metric completeness implies
geodesic completeness.7.

Completeness for Sobolev Metrics Let us look at the situation for Sobolev metrics
on the space of parametrized curves. We have argued in Sect. 3 that we shouldn’t
expect H1-metrics to be geodesically or metrically complete. Things look better for
Sobolev metrics of higher order. In fact it is shown in [16] and [15] that these metrics
satisfy all the above mentioned completeness properties. 8

Theorem 1. Let n≥ 2 and let G be a Sobolev metric of order n with constant coef-
ficients. Then

(1) (I n(S1,Rd),G) is geodesically complete;
(2) Any two elements in the same connected component of I n(S1,Rd) can be joined

by a minimizing geodesic;
(3) (I n(S1,Rd),distI ) is a complete metric space.

The geodesic equation for Sobolev metrics has a smoothness preserving property.
If the initial conditions are smoother that Hn—let us say the initial curve and initial
velocity are C∞—then the whole geodesic will be as smooth as the initial conditions.
Therefore the space (Imm(S1,Rd),G) of smooth immersions with a Sobolev metric
of order n is also geodesically complete.

7 A counterexample, showing that in infinite dimensions metric and geodesic completeness to-
gether do not imply existence of minimizing geodesics can be found in [1]; similarly, that geodesic
completeness does not imply metric completeness is shown in [2]
8 A related result holds for the space of curves of bounded second variation, together with a Finsler
BV 2-metric. It is shown in [32] that any two curves in the same connected component of the space
BV 2(S1,R2) can be joined by a length-minimizing path.
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Completeness for Unparametrized Curves Similar completeness properties hold
for unparametrized curves. The correct space, where to look for completeness, is the
quotient

Bn(S1,Rd) = I n(S1,Rd)/Dn(S1) ,

of regular curves of Sobolev class Hn modulo reparametrizations of the same reg-
ularity; the group Dn(S1) = {ϕ ∈ Hn(S1,S1) : ϕ ′(θ) > 0} is the group of Hn-
diffeomorphisms. We have the following theorem [15]:

Theorem 2. Let n≥ 2 and let G be a Sobolev metric of order n with constant coef-
ficients. Then

(1) (Bn(S1,Rd),distB) with the quotient metric induced by the geodesic distance
on (I n,G) is a complete metric space;

(2) Given C1,C2 ∈ Bn in the same connected component, there exist c1,c2 ∈ I n

with c1 ∈ π−1(C1) and c2 ∈ π−1(C2), such that

distB(C1,C2) = distI (c1,c2) ;

equivalently, the infimum in

distB(π(c1),π(c2)) = inf
ϕ∈Dn(S1)

distI (c1,c2 ◦ϕ)

is attained;
(3) Any two shapes in the same connected component of Bn(S1,Rd) can be joined

by a minimizing geodesic.

The only drawback is that the space Bn(S1,Rd) of Sobolev shapes is not a man-
ifold any more9. It is however a topological space and equipped with the geodesic
distance function a metric space. We have to understand a minimizing geodesic in
the sense of metric spaces, i.e., a curve γ : I→Bn is a minimizing geodesic, if

distB(γ(t),γ(s)) = λ |t− s|

holds for some λ > 0 and all t,s ∈ I.
We would like to point out that part (2) of Thm. 2 is the counterpart of the in-

completeness discussion in Sect. 3. This theorem states that given two shapes, rep-
resented by two parametrized curves, we can find an optimal reparametrization ϕ

of the second curve. The fact that ϕ ∈ Dn(S1) guarantees that ϕ is at least a C1-
diffeomorphism of the circle; thus no intervals are collapsed to single points and
neither ϕ nor ϕ−1 has any jumps.

9 This has to do with smoothness properties of the composition map in Sobolev spaces. While
the smooth reparametrization group Diff(S1) acts smoothly on the space Imm(S1,Rd) of smooth
curves [21], the group of Sobolev reparametrizations Dn(S1) acts only continuously on Sobolev
curves I n(S1,Rd). Moreover, the smooth shape space B(S1,Rd) is (apart from isolated singular-
ities) a manifold, but the Sobolev shape space Bn(S1,Rd) is only a topological space. This is the
price we have to pay for completeness. See [15, Sect. 6] for details.
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Numerical Computations We have argued that Sobolev metrics of sufficiently
high order have nice mathematical properties, which are relevant to applications in
shape analysis. What we have not done is present convincing applications, showcas-
ing their superior performance. This is because the numerical computation of min-
imizing geodesics between parametrized or unparametrized curves is still an open
problem. First attempts at discretizing special cases of H2-metrics can be found in
[11, 32]. While first order metrics have nice representations in terms of the SRVT or
the basic mapping [43], which greatly simplifies the numerics, there is no such anal-
ogon for higher order metrics10 Finding a robust and stable discretization of metrics
of order 2 and higher remains a challenge.

5 Riemannian Metrics on the Space of Surfaces

In the previous sections we have presented several reparametrization invariant met-
rics on the space of curves. We want to conclude the exposition with a short ex-
cursion to the space of regularly parametrized surfaces, i.e., Imm(M,Rd) = { f ∈
C∞(M,Rd) : Tx f injective ∀x∈M}with M a compact 2-dimensional manifold with-
out boundary. Typical choices for M are the sphere S2 and the torus S1×S1. In par-
ticular we will describe how the previously described metrics can be generalized
from Imm(S1,R2) to Imm(M,Rd). We will follow the presentation of [12, 13].

Sobolev metrics To generalize Sobolev metrics (8) from the space of curves to the
space of surfaces, we need the right replacements for the arc length derivative Ds and
integration ds. For an immersion f ∈ Imm(M,Rd), we denote by g = g f = f ∗〈·, ·〉
the pullback of the Euclidean metric to M. This makes (M,g) into a Riemannian
manifold with a Laplace operator ∆ g = −divg ◦gradg and volume form volg. We
will use ∆ g and volg as replacements for −D2

s and ds. A Sobolev metric of order n
on Imm(M,Rd) is given by

G f (h,k) =
∫

M
a0〈h,k〉+a1〈∆ gh,k〉+ · · ·+an〈(∆ g)nh,k〉volg ; (9)

here the tangent vectors h,k are seen as maps h,k : M→Rd and the Laplace operator
acts on each coordinate separately11.

10 In [10] a representation of second order metrics, similar to the SRVT was developed. However,
image of the resulting transformations have infinite co-dimension, which, compared to the SRVT,
complicates the situation.
11 On Imm(M,Rd) there is no canonical way to define Sobolev metrics. We could have also used
the definition

G f (h,k) =
∫

M
a0〈h,k〉+ · · ·+an〈(∇g)nh,(∇g)nk〉volg ,

where ∇g is the covariant derivative on M. Then the differential operator associated to this metric
is L f = ∑

n
j=0 a j ((∇

g)∗)n (∇g)n⊗volg, with (∇g)∗ = Tr(g−1∇g) denoting the adjoint of ∇g. When
n≥ 2, the operator ((∇g)∗)n (∇g)n differs from (∆ g)n in the lower order terms—they are connected
via the Weitzenböck formulas.
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The associated operator L f , allowing us to write G f (h,k) =
∫

S1〈L f h,k〉ds, is
given by L f =∑

n
j=0 a j (∆

g) j⊗volg. Every metric in this family is invariant under the
action of the diffeomorphism group Diff(M) and induces a Riemannian metric on
the quotient space of unparametrized surfaces B(M,R3) = Imm(M,R3)/Diff(M).

Similarly as in the previous section one can also allow the coefficients a j to
depend on the surface f . Coefficients depending on the total volume, the mean cur-
vature and the Gauß curvature have been considered in [14]. The class of almost
local metrics on surfaces has also been studied [13].

Geodesic Distance For the geodesic distance we obtain similar results as for
curves: the geodesic distance vanishes for the L2-metric on Imm(M,Rd). Both
higher order Sobolev metrics and almost local metrics depending on mean curvature
or total volume induce point-separating distances on the space of unparametrized
surfaces. Whether higher order Sobolev metrics induce a point-separating distance
function on Imm(M,Rd) itself is not known.

Geodesic Equation The formulas for the geodesic equations for Sobolev metrics
(9) become very quickly very technical; see [12]. As an example we present the
geodesic equation of the H1-metric with coefficients a0 = a1 = 1; this is the metric
induced by the operator field L f = 1+∆ g.

∂t
(
L f ft ⊗volg

)
=

(
Tr
(
g−1S f g−1〈∇g ft ,∇g ft〉

)
− 1

2
Tr
(
g−1

∇
g〈∇g ft , ft〉

)
.H f

− 1
2
〈L f ft , ft〉.H f −T f .〈L f ft ,∇g ft〉]

)
⊗volg ;

here S f denotes the second fundamental form, H f = Tr(g−1S f ) the vector valued
mean curvature and ∇g the covariant derivative of the surface f .

Outlook On spaces of surfaces the theory of Sobolev metrics is significantly less
developed than on the space of curves. We conjecture that Sobolev metric of order
n≥ 3 will again be strong Riemannian metrics on the space I n(M,Rd) of Sobolev
surfaces. Nothing is known about completeness properties of these metrics.

An analogue of the SRVT transform has been developed for surfaces in [19, 22].
However questions regarding the invertibility of the transform and the characteri-
zation of its image remain open. So far no numerical experiments for higher order
Sobolev metrics on the space of surfaces have been conducted.
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