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Abstract 

 

Recent European legislation has enforced a reduction in the use of animal models for 

safety assessment purposes and carcinogenicity testing. The Syrian hamster embryo cell 

transformation assay (SHE CTA) has been proposed as a suitable animal alternative, but 

its implementation into test batteries has been delayed. This is due to concerns regarding 

the assay’s endpoint subjectivity and, moreover, the model’s relevance to carcinogenicity 

remains mostly unexplored.  

Senescence is an essential barrier against uncontrolled cell proliferation and its evasion is 

necessary for clonal evolution and tumour development. Carcinogenesis can be modelled 

by reproducing underlying mechanisms leading to senescence bypass. In this project, the 

SHE CTA was performed using the known mutagen and human carcinogen, 

benzo(a)pyrene, and the resulting SHE colonies were analysed. It was found that 

morphological transformation (MT) does not guarantee senescence bypass and cell 

immortalisation, but increases the likelihood of MT-derived cells subsequently acquiring 

unlimited growth potential. A limited number (between 10 and 20 %) of MT colonies 

produced cell clones capable of sustained proliferation and in most cases secondary 

events were necessary for the evasion of senescence barriers.  

With regard to mechanisms, p53 point mutations were present in 30 % of immortal B(a)P-

induced MT colony-derived cells and located within the protein’s DNA binding domain. 

No p16 mutations were identified. Expression of p16 mRNA was commonly silenced or 

markedly reduced by a combination of mechanisms including monoallelic deletion, 

promoter methylation and BMI-1 overexpression. Taking advantage of the recently 

available Syrian hamster genomic sequence information generated by the Broad Institute, 

the coding regions of the Syrian hamster CDKN2A/B locus were shown to have good 

homology to human nucleotide sequences and confirmed the exonic structures of SH p16, 

ARF and p15. The findings further implicate the importance of p16 in regulating 

senescence while providing a molecular evaluation of SHE CTA-derived MT clones. 
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1.1 Cancer – The Problem 

In 2012 it was estimated that there were 14.1 million new cases of cancer world-wide and 

8.2 million cancer-related deaths (Ferlay et al., 2014). Of the 3.4 million patients 

diagnosed with cancer in Europe alone, around 50 % of malignancies were identified in 

breast, prostate, colorectal and lung tissues, with the latter being the highest cause of 

mortality (Ferlay et al., 2013). Cancer is defined by abnormal and uncontrolled cell growth 

which expands beyond its usual organised tissue setting, eventually spreading or 

metastasising to other organs. Risk factors include an unhealthy diet, smoking, alcohol 

consumption and a lack of exercise, but susceptibility to cancer can be genetically 

inherited, and chronic viral infections can also lead to its development. The incidence of 

cancer is increasing annually worldwide (Ferlay et al., 2014). In the UK one in three people 

will develop some form of cancer, but the prognosis for patients is improving through 

early diagnosis and preventative approaches, such as routine screening in higher risk 

groups. The onset of cancer is also age related. As global healthcare, sanitation and 

wellbeing continue to improve, life expectancy is rising but so therefore are the numbers 

of those affected with cancer. Sixty percent of individuals newly diagnosed with cancer 

live in developing countries, although this is in part due to better survey response rates 

(Ferlay et al., 2014), the increase is also related to ageing populations. Unlike in 

westernised countries, these individuals do not necessarily have access to high quality 

medical care and routine screens may be unavailable, contributing to higher mortality 

rates. Cardiovascular diseases and strokes remain the main causes of death world-wide 

(13.2 % and 11.9 % of total deaths respectively in 2012 - WHO). However, the burden of 

cancer is continuously rising, which is for the most part caused by increased life-

expectancy, lifestyle choices and the environment. 

1.1.1 Somatic mutation theory of cancer 

The progression of cancer is dependent on the continual selection of cellular 

subpopulations containing acquired genetic variations that confer growth advantages 

(Bell, 2010); this process is known as ‘clonal evolution’. Accumulation of sufficient 

sporadic mutations impacting a cell’s normal function may ultimately lead to the evasion 

of inbuilt safeguard mechanisms and uncontrolled malignant growth. The somatic 
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mutation theory describes a multistep progression of tumourigenesis which can be 

conceptualised in several key stages and biological outcomes (Hanahan and Weinberg, 

2000). In becoming autonomous, cancerous cells must acquire the ability to proliferate 

independently of normal mitogenic signalling and growth-inhibitory signalling. In order to 

sustain continued growth they must then evade and bypass inbuilt safeguards, such as 

apoptosis and senescence, thus also acquiring immortality. Finally, tumourigenic cells lack 

contact inhibition thus conferring invasive growth and metastasis and can promote 

angiogenesis to further sustain autonomous tumour growth (Hanahan and Weinberg, 

2011). 

The emerging complexity of cancer genomes has highlighted the heterogeneity of 

tumours across patients and tumour types, even within the same metastasis (Vogelstein 

et al., 2013). Cancer encompasses over a hundred disease subtypes originating from 

different cell types and organs, and is caused by a multitude of genetic and epigenetic 

alterations, including gene mutations, chromosomal amplifications, deletions, 

translocations, and changes in gene and protein expression often accompanied by 

chromatin remodelling (Hanahan and Weinberg, 2011). Genomic sequencing of tumours 

has highlighted their vast array of aberrations, many of which are passenger mutations 

believed not to have any selective growth advantage but that have silently accumulated 

(Copeland and Jenkins, 2009, Vogelstein et al., 2013) in clonally evolving populations. 

Relatively few genes (138 according to Vogelstein) are considered to be key somatic 

drivers of cancer and less than 5 % of these may be commonly altered within the same 

tumour type (Copeland and Jenkins, 2009). The genetic landscapes and mutations 

observed between individuals affected by equivalent cancer types are unlikely to be 

identical, even within the same targeted gene. Estimates predict that two to eight 

somatic mutations in genes conferring growth advantages are sufficient for 

tumourigenesis (Vogelstein et al., 2013) but the extent of their cumulative effects will be 

additionally influenced by non-genetic factors, specific to the cell’s micro-environment 

and determining cell-type (Hanahan and Weinberg, 2011).  
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1.2 Toxicology and in vitro safety testing 

The assessment of carcinogenic risk is essential in ensuring product safety, whether it be 

a novel consumer product, a medicine or an agricultural chemical. Safety testing is of the 

upmost importance to prevent additional and unnecessary incidences of cancer. Genetic 

toxicology aims to determine potential adverse effects, following exposure of cells or 

organisms to test chemicals and compounds under controlled laboratory conditions. In 

order to reliably predict carcinogenicity, the appropriate assays must be performed to 

effectively detect any hazardous consequences. 

Rodent bioassays have been considered the ‘gold standard’ for use in toxicology as they 

provide in vivo data while addressing long-term effects in a complex organism. In the 

context of chemical screening, animal testing is impractical given its expense both in 

terms of experimental and labour costs. They can take over two years to complete, not to 

mention the increased requirement to focus on ethical issues concerning animal use 

(Vanparys et al., 2011, Creton et al., 2012). More recently, European legislation has 

constrained the use of animals for chemical and agrochemical testing (EC, 2007b), but still 

requires information on chemical carcinogenicity, and has placed a complete animal 

testing ban on the cosmetics industry since 2013 (EC, 2003b). This has fuelled the need 

for alternative methods to conform to REACH requirements and the application of the 

‘3Rs’ principles that encourage the reduction of animal usage, their replacement with in 

vitro test systems and protocol refinement. 

Based on the long-standing acceptance that a major driver of carcinogenesis is genetic 

damage, assays have been developed to detect chemical genotoxicity and mutagenic 

properties. Genotoxic agents are those that are capable of causing direct damage to the 

DNA leading to cancer initiation events. The Ames test assesses mutagenicity using a 

bacterial strain of Salmonella that is deficient for the synthesis of the amino acid histidine. 

After incubation with a metabolised test compound, the number of resulting bacterial 

colonies that acquire the ability to grow in histidine-deficient medium is proportional to 

the mutagenic potency of the chemical. Chromosomal instability can be measured by the 

micronucleus (MN) assay that detects fragmented chromosomes as markers of 

chromosome breaks or losses, apoptosis and misrepaired DNA (Fenech, 2007). Another 
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biological assay that gauges DNA damage is the Comet assay in which carcinogen-exposed 

cells are embedded in agarose; single-strand DNA breaks are determined by gel 

electrophoresis and the extent of damaged DNA is identified in the comet ‘tail’ (Azqueta 

and Collins, 2013).  

The problem with genotoxicity assays is that they cannot accurately identify non-

genotoxic carcinogens that do not directly alter an organism’s genetic makeup but act 

epigenetically by, for example, influencing signal transduction pathways via the aberrant 

regulation of gene transcription (Creton et al., 2012). Carcinogenesis in these instances 

can be promoted by changes in growth factor receptor expression, forced cell 

proliferation, inhibition of intracellular communication and DNA hypermethylation 

(Hernandez et al., 2009). For a test battery to be fully comprehensive, it is necessary to 

include assays with sufficient predictive power for both genotoxic and non-genotoxic 

carcinogens to avoid false negatives (OECD, 2007); this is of course complicated by the 

non-availability of rodent bioassays. Other caveats are: (i) that bacterial assays such as 

the Ames test may not pick up mammalian carcinogens and, (ii) that there can be non-

concordance between rodent-based assays and human toxicity, additionally leading to 

false positive results (Benigni and Bossa, 2011). By combining test batteries, a weight of 

evidence approach is useful to gauge the potential of an unknown chemical to cause 

cancer and possibly to understand its mode of action (Balls et al., 2006, Hernandez et al., 

2009). Lastly in silico modelling to predict toxicity based on carefully selected existing in 

vitro and in vivo datasets is starting to be implemented (Modi et al., 2012) and is likely to 

aid risk assessments and help evaluate induced adverse outcomes (Adeleye et al., 2014). 

 

The carcinogenic potential of a given chemical or test article must be thoroughly 

investigated before it can be classed as safe to the consumer and the environment. Initial 

toxicological tests must have the capability to detect accurately DNA damage, 

chromosome aberrations and epigenetic (non-genotoxic) changes directly resulting from 

carcinogen exposure. Cell transformation assays (CTAs) have long been proposed as 

potential representatives of in vivo models to complement genotoxicity screening and 

have been shown to produce good correlations with rodent bioassay data (Colacci et al., 
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2011, LeBoeuf et al., 1999), although this does not always predict human carcinogenicity 

(Mauthe et al., 2001). Importantly, CTAs have predictive power for detecting non-

genotoxic carcinogens and are relatively quick and cost effective (Benigni and Bossa, 

2011, Hernandez et al., 2009, Vanparys et al., 2012). As suitable animal alternatives, they 

are concordant with REACH requirements and should, at least in theory, also provide a 

quality of data in line with EU legislation (Corvi et al., 2012, Vanparys et al., 2011). 

 

1.3 Cell transformation 

Early in vitro and in vivo studies demonstrating the progressive nature of cell 

transformation were largely based the observation of cellular characteristics and growth 

properties (Barrett et al., 1979, LeBoeuf et al., 1990). The step-wise process of 

transformation is thought to recapitulate clonal evolution events leading to neoplasia and 

is characterised by the acquisition of a number of traits that can be identified in 

tumourigenic cells (Isfort and LeBoeuf, 1996). The first is described as a block in cell 

differentiation and clonal expansion (Isfort and LeBoeuf, 1996). Berwald and Sachs (1963) 

first observed this phenomena when they exposed Syrian hamster embryo-derived cells 

(SHE cells) to known carcinogens and observed cellular changes in phenotype, such as 

random patterns of growth, spindle-shaped cells and increased fibrinolytic activity 

(Berwald and Sachs, 1963). Initial results identified morphological transformation (MT) as 

an early indicator of neoplastic potential but in itself, MT was not sufficient for tumour 

formation (Barrett and Ts'o, 1978). Barrett suggested that early morphological alterations 

could represent the initiation of transformation but could not accurately predict the 

frequency of neoplasia. It was only after multiple population doublings that transformed 

cells formed colonies in semi-solid agar, indicating that the acquisition of additional 

mutagenic events took time and were necessary for anchorage-independent growth 

(Barrett and Ts'o, 1978, LeBoeuf et al., 1990, Newbold, 1985b). Fully transformed cells 

were capable of developing into tumours at the site of injection when explanted in vivo 

into hamsters or athymic mice (DiPaolo et al., 1969). The following characteristics are 

thus commonly used to describe fully transformed cells: (1) a block in cell differentiation 

leading to clonal expansion of transformed cells, (2) cell immortalisation and genetic 
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instability, permitting an extended lifespan (3) anchorage-independent growth and loss of 

contact inhibition and (4) if explanted have the capacity to form tumours at sites of 

injection (OECD, 2007, Newbold, 1985a, Schechtman, 2012). The apparent similarity 

between induced cell transformation and cancer was deemed to support its proposed use 

as an in vitro model of tumourigenicity. 

1.3.1 Cell transformation assays (CTAs) 

By exposing the transforming potential of known chemical carcinogens, cell 

transformation assays (CTAs) were subsequently developed as in vitro systems capable of 

predicting chemical carcinogenicity and were proposed for the testing of unknown 

compounds. Depending on the assay employed, transforming properties are measured 

differently and assessed by changes to morphological characteristics, growth patterns and 

anchorage-independent proliferation. To date there are several well established rodent 

CTAs which employ different cell types assessing the various endpoints (Creton et al., 

2012). The Syrian hamster embryo derived assay (SHE) uses normal, diploid and 

metabolically competent primary cells whereas the mouse BALB/c 3T3, C3H 10T1/2 and 

Bhas 42 focus assays are aneuploid, pre-immortalised rodent cell lines which are contact-

inhibited (Schechtman, 2012). The Bhas 42 assay was derived from the BALB/c 3T3 (by 

stable transfection with v-Ha-Ras); both can be used as a two-step model to predict 

tumour-initiators or tumour promoters, depending on stage of target cells used. Typically, 

focus assays have a defined subculture regime whereby the cells are re-seeded after a set 

number of days to avoid contact-inhibition and to maintain the treated cells at 

subconfluent levels. Chemically-induced transformation in these instances is identified by 

disorganised, multilayered discrete cell foci growing over a background of contact 

inhibited cells (Combes et al., 1999, Sasaki et al., 2012). On the other hand, the SHE CTA 

assay measures the frequency of induced morphological transformation (MT) and is 

discussed later in this Chapter in more detail. Events leading to cellular transformation, as 

detected by CTAs, are not fully understood but are believed to result from the 

deregulation of cell-signalling pathways either by direct genetic disruption (eg. mutations 

or chromosomal damage) or by epigenetic mechanisms (Hernandez et al., 2009, Waters 

et al., 2010) that are representative of an in vivo biological response. 
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Typically, transformation assays have been shown to have good concordance with rodent 

bioassay data and were therefore postulated as potential in vitro animal alternatives. In 

addition, CTAs are metabolically competent systems believed to be capable of picking up 

non-genotoxic carcinogens that remain undetected by most test systems that rely on 

genetic damage as their endpoint. As an attractive and cost effective model, CTAs were 

considered as potential candidates for carcinogenic screening (Isfort and LeBoeuf, 1996, 

Kerckaert et al., 1996a, LeBoeuf et al., 1996). However, following several workshops, 

concerns were raised due to the lack of molecular and mechanistic data confirming the 

link between transformation and carcinogenesis, along with difficulty in assay 

reproducibility and missing protocol standardisation (Combes et al., 1999, Farmer, 2002). 

In response to these criticisms, a number of recommendations were made by ECVAM (the 

European Centre for the Validation of Alternative Methods) to address the limitations of 

CTAs (Combes et al., 1999, Schechtman, 2012). Since then, European legislative changes 

have further driven the need for appropriate animal replacements for chemical risk 

assessments by implementing a complete ban on animal testing for cosmetics from 2013 

(EC, 2003b, EC, 2007b). Stimulated by REACH regulations and the cosmetic directive, pre-

validation work was carried out for CTAs in the context of assessing their suitability for in 

vitro predictive toxicology, according to OECD guidelines. At the same time, data 

originating from previously tested chemicals using CTAs were pooled together by the 

OECD so as to have a comprehensive wealth of accessible data (OECD, 2007, Vasseur and 

Lasne, 2012). These studies highlighted the high concordance of the CTAs to rodent 

bioassay data plus good carcinogen sensitivity and specificity. Publications detailing 

refined methodologies for the SHE MT assay at both pHs (pH 6.7 and pH 7.3, discussed 

later) have been produced (Maire et al., 2012a) and ECVAM pre-validation studies have 

ensured that the assay could be reproducibly followed according to recommended 

guidelines in different laboratory settings (Maire et al., 2012b, Pant et al., 2012, Vanparys 

et al., 2011). Similar pre-validation work has also been carried out with the murine BALB/c 

3T3 assay (Vanparys et al., 2011, Mascolo et al., 2010, Sasaki et al., 2012, Tanaka et al., 

2012). 
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1.3.2 SHD CTA assay 

A variation of the SHE-MT assay has been developed using Syrian hamster dermal (SHD) 

cells. SHD cells are normal, diploid, and metabolically active, plate with high frequencies 

(30-40%) and grow in monolayers. Unlike SHE cells, SH dermal cells are homogeneous and 

on average untreated mass cultures begin to enter senescence following 15-20 

population doublings, which is much earlier than their embryo derived counterparts 

(Newbold et al., 1982). After incubation with the test article, the cells are serially 

subcultured until transformed rare immortalised variants emerge from the cell 

population. Similarly to human fibroblast lines, no spontaneous immortalisation has so far 

been reported (Yasaei et al., 2013). This is in contrast to mouse fibroblasts which show 

higher relative frequencies of immortalisation (Pant et al., 2008). Compared to the vast 

amount of historical data available for SHE CTA and BALB/c 3T3 there is limited data 

supporting the use of the SHD assay for toxicology screening which explains why it has 

not yet been implemented for this purpose (Creton et al., 2012). 

 

1.4 The SHE CTA 

The Syrian hamster embryo cell transformation assay (SHE CTA) is a clonogenic in vitro 

assay based on primary SHE cells derived from disaggregated hamster embryos. With this 

assay a chemical’s transforming potential is based on scoring morphological change in the 

resulting colonies. The SHE CTA is unique in that pre-immortalization events are identified 

in a normal, diploid and finite-lifespan cell model (Trott et al., 1995). Unlike established 

cell lines such as BALB/c 3T3 or C3H 10T1/2, the SHE system offers a heterogeneous cell 

population derived from early embryos, meaning that multiple cell types can be 

simultaneously tested and targeted (Isfort and LeBoeuf, 1996). Typically in a single test 

plate a variety of colony morphologies will be visible, such as epithelial, fibroblast and 

myocardial-like cells which is advantageous for screening applications (Custer et al., 

2000). The heterogeneity of the target cells eliminates the cell-type bias encountered in 

systems employing established sub-clones of cells (as with the focus assays) which can 

influence transformation frequencies or spontaneous rates of immortalisation. 
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Although a small number of live animals must be used to generate the SHE embryo-

derived cells for the SHE CTA, primary cell stocks are cryopreserved in virtually identical 

assay-ready batches. Typically 3-4 animals may be used to obtain 30-35 embryos that are 

sufficient for the cell isolation procedure, generating enough SHE cells for hundreds of 

CTAs. For the assay itself, SHE cells are plated at very low seeding densities on a 

supportive feeder-layer of X-irradiated SHE cells that cannot replicate and, following 

chemical dosing, the cells are allowed to grow undisturbed in the test article for a total of 

7 days, at which point the resulting colonies are individually examined and scored for 

morphologically transformed (MT) characteristics (Mauthe et al., 2001, Maire et al., 

2012a). MT colonies are characterised by highly disorganised cell growth (see Figure 1): 

MT cells are elongated with limited cytoplasms and they extensively overlap each other in 

a criss-crossed fashion; whereas normal or non-transformed SHE colonies form organised 

and flowing cell monolayers at high cell confluency (Bohnenberger et al., 2012, Maire et 

al., 2012c). Scoring is aided by the staining of colonies with Giemsa, a dibasic stain which 

typically stains MT colonies dark blue (more basophilic) in contrast to normal colonies 

which stain more lightly and are purple (Kerckaert et al., 1996b, LeBoeuf et al., 1996). A 

large number of plates must be assayed for a single SHE CTA experiment due to the 

relatively low frequencies of MT (MTF) observed following chemical treatment (LeBoeuf 

et al., 1996, Pienta et al., 1977); the MTF for a given compound is determined relative to 

the appropriate controls and is the assay’s endpoint (Kerckaert et al., 1996b). 
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Figure 1 - Non-transformed versus morphologically transformed SHE CTA colonies 
 
Non-transformed or normal colonies contain organised monolayers of cells that have a flowing 

pattern of cell growth; in Giemsa they stain purple. Morphologically transformed colonies are 

more basophillic and stain blue, MT colonies contain disorganised cells that stack ontop of 

eachother and are more spindle shaped with high nuclear to cytoplam ratios. (Images were taken 

using a 5X objective on a Zeiss Axioskop microscope). 

 

1.4.1 Improving the SHE CTA 

Over 500 carcinogenic agents have been tested using the SHE-MT assay (OECD, 2007). 

Like other CTAs, the SHE assay is believed to have the predictive power to identify non-

genotoxic carcinogens in addition to genetic damage either at a DNA or chromosomal 

level. Although deemed to have predictive value and, despite extensive efforts by the 

validation bodies such as ECVAM and the OECD to standardise the assay (Corvi et al., 

2012), the underlying mechanistic underpinnings confirming the link between MT, 

immortality and tumourigenesis remain mostly unaddressed (Combes et al., 1999, 

Combes, 2012). The model’s questionable relevance to carcinogenesis has hindered the 

incorporation of the SHE CTA into routine testing strategies and remains a topic of debate 

(Creton et al., 2012, Vanparys et al., 2011). This section highlights some of the technical 

improvements specific to the SHE CTA that have been implemented and discusses more 

recent protocol amendments. 

The major criticism of the SHE assay is focused on the subjective nature of scoring and 

selecting morphologically transformed colonies, despite numerous papers detailing 

methodology and the scoring process (Kerckaert et al., 1996b, LeBoeuf et al., 1996, Custer 

et al., 2000). Following optimisation and refinement, the overall evaluation of the assay 
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reported 87.7 % inter-laboratory consistency and an overall concordance of 85 % with 

rodent bioassays (Vasseur and Lasne, 2012). Previous to ECVAM, the issue of 

reproducibility was initially addressed by decreasing the pH of the culture media from 

pH 7.3 to 6.7 in LeBoeuf’s modified Dulbecco’s modified Eagle’s medium (DMEM-L). This 

change retains optimal SHE cell clonal proliferation (Isfort et al., 1996b, LeBoeuf et al., 

1996). Although the mechanisms are not fully understood, the acidification of the culture 

medium evidently improves the predictive power of the assay, solves problems of low 

frequencies of MT and increased cell proliferation, and results in a higher colony density 

(Pienta et al., 1977, LeBoeuf and Kerchaert, 1987, LeBoeuf et al., 1996). No effect on 

plating efficiency was detected compared to cells grown in pH 7.3 medium, but a 4-fold 

increase in replicative lifespan was noted prior to senescence when growing untreated 

SHE cells at pH 6.7 (Isfort et al., 1996b, Kerckaert et al., 1996c). The reduced pH assay also 

improved inter-laboratory reproducibility, as the SHE cells acquire a more elongated, 

spindle-shaped appearance which in principle facilitates the discrimination between 

normal and MT cells by making the typical MT criss-crossed pattern readily identifiable. 

Despite this, a detailed review paper (DRP) from the OECD states that the choice of pH at 

which the assay is conducted can be considered immaterial in terms of performance 

(Vasseur and Lasne, 2012). However, questions have been raised concerning which pH is 

most physiologically relevant (DRP in progress – personal communication from Nathalie 

Delrue and Laurence Musset to RFN). Further, in a bid to assist the scoring of MT SHE 

colonies, photo catalogues have been made available, that act as valuable visual aids for 

the identification of various types of colonies obtained at the SHE CTA assay’s endpoint 

(Bohnenberger et al., 2012, Maire et al., 2012c). From these images, SHE colony 

heterogeneity is immediately apparent which raises the importance of appropriate expert 

training prior to conducting the assay, in order to alleviate concerns over the subjective 

nature of scoring. 

Computational image analysis of SHE CTA colonies has been attempted to eliminate 

manual scoring bias and this achieved correct identification of colony phenotypes in up to 

93 % of instances analysed (Ridder et al., 1997). However, sparse colonies were not 

included in the analysis, dramatically reducing the sample size from which the MTF value 

was calculated; such automated analysis may thus reduce the sensitivity of the assay 
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(Ahmadzai et al., 2012a). Another approach to assess transforming properties of chemical 

carcinogens has been developed using Fourier-transform infrared (FTIR) spectroscopy in a 

bid to obtain a more objective evaluation of MT (Walsh et al., 2009). Infrared (IR) 

wavelengths are absorbed differently by bio-molecules such as DNA, RNA and protein so 

that, depending on their relative content, the reflected IR spectra might be used to 

quantitatively and objectively distinguish between the biochemical properties of MT and 

non-transformed cells (Ahmadzai et al., 2012ba). This method was effectively able to 

discriminate between SHE colonies treated with different carcinogens, but spectra 

obtained from MT and non-transformed cells treated with the same carcinogen were 

more difficult to analyse (Ahmadzai et al., 2012bb), suggesting that further work is 

needed to find an appropriate objective scoring process.  

An additional minor protocol amendment has also been developed which is worth noting. 

The SHE CTA is traditionally carried out using a supportive feeder-layer of X-ray irradiated 

cells. During scoring, the toxicologist must be able to distinguish between MT and non-

transformed colonies that grow over a background of non-dividing cells. This protocol has 

now been modified and validated using conditioned medium as a feeder-layer 

replacement to aid the scoring process (Pant et al., 2008, Pant et al., 2010). This is clearly 

advantageous as the discrimination between SHE cell growth on feeder cells and actual 

MT stacking does not need to be made, eliminating such background interference. No 

substantial differences in the morphological transformation rates were described (Pant et 

al., 2008), although the spontaneous rate was marginally higher than experiments using 

feeder cells. 

1.4.2 Current molecular understanding of MT 

The second major concern of the SHE CTA is the lack of information supporting 

morphological transformation in the Syrian hamster as a mechanistically valid (i.e. cancer 

related) endpoint and whether the model in general is suitable for modelling, at least in 

part, human carcinogenesis. Acquisition of transformed phenotypes has been correlated 

with an increased probability of immortality and bypass of senescence (LeBoeuf et al., 

1990, Watanabe and Suzuki, 1991) but limited studies have analysed SHE cells derived 

from MT colonies at a molecular level. Studies addressing MT have analysed SHE cells 

treated with known transforming agents, but independently of actual morphological (MT) 
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scoring, and have used mass cultures instead of cells derived from MT colonies. This is 

useful for understanding the general mechanisms of carcinogenesis but perhaps less 

informative of MT-specific molecular changes. For example, zinc is a known inhibitor of 

apoptosis (programmed cell death) and has been found to induce MT at 100-150 μM 

concentrations (Alexandre et al., 2003, Truong-Tran et al., 2001). Zinc chloride-treated 

SHE cells (not derived from the SHE CTA) had altered ratios of the Bcl-2/Bax favouring 

inhibition of apoptosis but no changes in the oncogene c-myc were noted (Maire et al., 

2005a). Induction of mitogenic c-myc was identified in SHE cells exposed to transforming 

concentrations of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) but c­myc 

expression was also unchanged following exposure to benzo(a)pyrene (Maire et al., 

2007). Unlike zinc, treatment with 2,4-D did not affect expression of Bcl-2 or Bax (Maire 

et al., 2007). It has been suggested that early events leading to MT may involve the 

inhibition of apoptotic pathways via upregulation of Bcl-2, although the result may also 

be specific to the biological effects of zinc chloride rather than to the MT phenotype itself 

(Truong-Tran et al., 2001, Sztalmachova et al., 2012). That said, the carcinogen di-(2-

ethylhexyl)-phthalate (DEHP) was also found to increase Bcl-2 and negatively regulate c-

myc in SHE cells (Maire et al., 2005b). In another study DEHP exposure caused 

transcriptional changes in cytoskeletal genes and reduced cell-cell adhesion and cell 

adhesion to the extracellular matrix (Landkocz et al., 2011), possibly consistent with a 

non-genotoxic carcinogenic mode of action. Although these studies do not specifically 

address mechanisms of morphological transformation, they do strongly point towards the 

applicability of using SHE cells as biologically relevant models for studying carcinogenesis. 

 

In summary, due to EU legislation requiring the reduction of animal use in toxicology 

there has been renewed interest in in vitro cell transformation assays (CTAs). Concerns 

regarding their reproducibility have been partly addressed by protocol standardisation, 

and validation studies have confirmed their suitability for incorporation into OECD Test 

Guidelines. In the case of the SHE CTA, efforts have been made to reduce the assay’s 

subjectivity and develop novel, unbiased, scoring methods. Reservations still remain with 

regards to CTAs, since the mechanisms underpinning cellular transformation have not 

been fully explained. Beyond the propensity of morphologically transformed (MT) cells to 
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immortalise and acquire anchorage-independent growth, little is still known about the 

relationship between MT and carcinogenesis. 

 

1.5 Cellular senescence, an inbuilt safeguard 

Cellular senescence is an irreversible state whereby progression through the cell cycle is 

impeded despite an adequate supply of nutrients and appropriate growth conditions, 

while cell viability and metabolic activity are fully maintained (Kuilman et al., 2010). To 

this day the ‘Hayflick limit’ describes the point at which cells irreversibly lose their ability 

to proliferate and enter replicative senescence after a finite number of divisions (Hayflick, 

1965, Ogrunc and Fagagna, 2011). Initially this phenomenon was thought to be caused by 

inadequate culture conditions but senescence has been proved to be a physiological 

event taking place in vitro and in vivo. Senescent cells have been identified in benign skin 

lesions such as naevi (moles) and increased numbers of senescent cells have been 

identified in aged mice and humans, suggesting an accumulation of growth-arrested cells 

with age (Gray-Schopfer et al., 2006). Senescence can also be triggered prematurely in 

response to oncogene activation and hyper-proliferation, acting as an essential barrier 

against uncontrolled proliferation and thus as an early tumour suppressor mechanism 

(Campisi and d'Adda di Fagagna, 2007). 

1.5.1 Markers of senescence 

Progression to cellular senescence can be visually identified in vitro by striking 

morphological alterations. Changes include low saturation density, a general flattening 

and enlargement of cells, which is accompanied by increased cytoplasmic area (Campisi 

and d'Adda di Fagagna, 2007, Kuilman et al., 2010). The nucleolus of senescent cells can 

become highly condensed forming senescence-associated heterochromatic foci (SAHF), 

which are thought to contain silenced proliferation-associated genes (Zhao et al., 2010). 

However, in vivo SAHF have not yet been observed. Besides a lack of DNA replication 

which is common to quiescent as well as senescent cells; senescence-associated beta-

galactosidase (SA-βgal) staining is the most widely used marker of cellular senescence 

(Dimri et al., 1995, Debacq-Chainiaux et al., 2009). Histochemical staining for SA-βgal at 

pH 6.0 is related to increased lysosomal content that accumulates in senescent cells (Kurz 
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et al., 2000), although its function in senescence is unclear. As an alternative, immuno-

histochemical staining of Ki-67 or incorporation of BrdU can be used to estimate cellular 

proliferation (Schluter et al., 1993) but these methods cannot discriminate between 

quiescent and senescent cells. No single marker of senescence has been universally 

identified relevant to all cell types (Collado and Serrano, 2006, Buajeeb et al., 2009) but 

senescent cells accumulate senescence-associated molecules with ageing and tend to 

overexpress negative regulators of the cell-cycle, such as p16 and p21, which can also be 

used as markers (Campisi and d'Adda di Fagagna, 2007, Kurz et al., 2000).  

1.5.2 Replicative senescence 

Telomere shortening provided the first molecular explanation for senescence, linking 

aging with increased growth arrest and is essentially what Hayflick observed (Campisi and 

d'Adda di Fagagna, 2007). Telomeric tandem repeats (5’-TTAGGG-3’) protect and ‘cap’ 

eukaryotic chromosome ends; each time a cell divides the linear ends of telomeres 

gradually become shortened. This is due to the requirements of the DNA polymerase 

enzyme during replication that requires an existing strand from which to initiate 

elongation; this is known as the ‘end-replication problem’ (Zhao et al., 2014). As a 

consequence the lagging strand is incompletely replicated by DNA polymerase. 

Eventually, and after multiple rounds of replication, the telomeric repeat sequences reach 

a critical length due to attrition (Harley et al., 1990). A protective protein complex, known 

as Shelterin, helps to form a telomeric loop structure (t-loop) to hide the chromosomal 

ends (Stewart et al., 2012). When these proteins fall away due to telomere erosion, the 

unprotected telomeres are interpreted as DNA double strand breaks by the cell. This 

initiates a DNA damage response (DDR), halting progression through the cell-cycle and 

promoting replicative senescence via p53 activation, and phosphorylation by ATM and 

ATR kinases that sense DNA strand breaks (Parkinson, 2010, Ogrunc and Fagagna, 2011). 

Thus, telomeres act as a molecular clock limiting cellular lifespan (Harley et al., 1990, 

Zhao et al., 2014). 

Telomerase is the ribonucleoprotein responsible for the maintenance of telomeres 

(Blackburn and Collins, 2011) and can extend them by reverse transcription from the 

chromosomal ends’ tandem repeats. In humans, the catalytic component of telomerase 

(hTERT) is switched off except for in germ-line cells at around 20 weeks of development 
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meaning that, in most mammalian cells, their proliferative lifespan is finite due to 

telomere shortening. In human fibroblast cells, replicative senescence takes place after 

around 60 population doublings (Hayflick and Moorhead, 1961). Over 80 % of human 

tumour tissue samples re-express hTERT whereas normal tissues minimally express it. The 

reintroduction of TERT rescues cells from senescence as well as immortalising human 

primary cell lines (Bodnar et al., 1998, Collins and Mitchell, 2002, Finkel et al., 2007).  

Replicative senescence is thought to have evolved as a protective anticancer mechanism 

to avoid the unlimited proliferation of unregulated cells. In smaller rodents such as mice 

and hamsters, telomerase is constitutively switched on (Prowse and Greider, 1995, Russo 

et al., 1998) maintaining telomeres and removing the replicative senescence barrier. Mice 

have exceptionally long telomeres (over 40 kb compared to 10-15 kb in humans) and 

TERT-deficient mice can produce viable and fertile offspring without defects for up to four 

generations, at which point telomere dysfunction starts to take its toll on proliferation 

and tissue renewal (Chang, 2005). Interestingly, telomerase activity is switched off in the 

largest rodents, e.g. the capybara and beaver, indicating that telomerase repression could 

be linked to body mass and longevity (Seluanov et al., 2007). Yet, both in vivo and in 

culture, wild-type cells from small rodents have limited life-spans and enter senescence 

under normal conditions after 20-30 population doublings (Russo et al., 1998). This is 

indicative of other intrinsic barriers to cellular immortality that must be bypassed for 

continuous cell growth. 

1.5.3 DNA Damage response  

The DNA damage response (DDR) senses DNA strand breaks caused by dysfunctional 

telomeres but also by other DNA damage that can place anywhere in the genome, for 

example in response to ionising radiation. The resulting cell-cycle arrest serves to impede 

replication of damaged genetic information that would otherwise lead to genomic 

instability. If repairable, cycling will continue upon the reinstatement of cellular 

homeostasis, but extensive or continuous DDR signalling may induce a permanent escape 

from the cell cycle; either initiating apoptosis or activating entry into cellular senescence. 

Like telomere-initiated senescence, DNA damage-initiated growth arrest is dependent on 

p53 activation which mediates DDR signalling. Double strand breaks are the most severe 

type of DNA damage and they activate p53 via ATM kinase phosphorylation while ATR 
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senses single-strand breaks. p53 acts as a transcription factor to promote the 

transcription of p21, a Cdk-inhibitor (CDKI) which inactivates the cyclin dependent kinases 

CDK2 and CDK4 that are necessary for progression into S phase of the cell cycle (see 

Figure 2) (Campisi and d'Adda di Fagagna, 2007, d'Adda di Fagagna, 2008). Senescent cells 

that undergo growth arrest due to persistent DDR signalling can contain nuclear foci that 

co-localise with DNA repair complexes, suggesting that their DNA remains permanently 

damaged (d'Adda di Fagagna et al., 2003, Larsson, 2011). 

1.5.4 Stress-induced senescence (SIPS) 

Inadequate culture conditions can be a cause of premature cellular senescence. When a 

cell line is initially established from a living tissue or organ the cell population needs to 

adapt to an artificial and non-physiological environment. This imposes varying degrees of 

stress which may drive the cells into senescence if the appropriate growth factors and 

oxygen levels are not provided (Kuilman et al., 2010, Sherr and DePinho, 2000). Multiple 

sub-lethal doses of hypoxia have been shown to induce premature senescence (Toussaint 

et al., 2000) whereas physiological oxygen levels can extend cellular lifespan (Parrinello et 

al., 2003). In vivo stress-induced premature senescence (SIPS) may occur when cells are 

removed from their normal surroundings, for example when a cell escapes its niche and 

finds itself in a new microenvironment. 

1.5.5 Oncogene-induced senescence (OIS) 

Premature senescence takes place when cells are exposed to oncogenic stimuli which 

initiate uncontrolled growth. This can be shown in vitro by transfecting human and rodent 

primary fibroblasts with genes encoding members of the RAS pathway family, which 

under normal settings relay extracellular mitogenic signals stimulating cell division. 

Instead of increasing proliferation, introduction of oncogenic forms of Ras and Raf leads 

to premature growth arrest (Newbold and Overell, 1983, Serrano et al., 1997, Zhu et al., 

1998) and increases expression of the tumour suppressor genes (TSG) p16 and p53. When 

either of these two key TSG genes were disrupted, cells overexpressing RAS members 

bypassed senescence and continued to proliferate (Serrano et al., 1997). Oncogene-

induced senescence (OIS) is therefore thought to have a protective role against tumour 

development and counteracts hyper-proliferation stimulated by excessive mitogenic 

signalling (Sharpless and DePinho, 2004).  
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Activation of senescence barriers is dependent on the p53 and p16-pRB pathways (Figure 

2) which induce and maintain growth arrest (usually in the G1 phase of the cell cycle). 

Depending on the required response, one or both pathways may be activated to 

counteract DNA damage, such as telomere erosion, oncogene activation and stress. Both 

p53 and p16 pathways can converge on the retinoblastoma pocket protein (pRb) which 

functions to block the cell cycle, but each pathway modulates pRb via different cyclin 

dependent kinase (Cdk) activity (see Figure 2). Once bound together Cdks and cyclins 

(Cyclin E to CDK2 and 4 or Cyclin D to CDK4 and 6) target pRb and inactivate it by 

phosphorylation. Cdk-inhibitors (CDKI) p16 and p21 inhibit Cdk activity and maintain pRb 

in an active and unphosphorylated state. Active pRb binds directly to repress the E2F 

family of transcription factors which promote expression of genes involved in DNA 

synthesis and cell division. The tight control of the transition of G1 to S phase via pRb 

phosphorylation is therefore important to inhibit cell division until the cell is ready to 

replicate. 

For entry into senescence, Cdk activity must be fully inactivated to ensure complete 

withdrawal from the cell cycle and maintenance of pRb activity. Repression of E2F 

transcription factors during senescence is maintained by pRb that, on binding the DNA, 

recruits remodelling proteins to condense the local chromatin by histone deacetylation 

and methylation (Talluri and Dick, 2012). For example, trimethylation of lysine 9 at 

histone 3 (H3K9me3) is catalysed by SUV39H1 and recognised by histone binding protein 

HP1 which appears to be specific to senescent cells and not quiescent cells. These 

repressive marks are thought to aid the formation of senescence-associated 

heterochromatin foci (SAHFs) which can accumulate in senescence cells (Narita et al., 

2003).  
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Figure 2 – The p16-pRb and p53 pathways promote cellular senescence 
 
Senescence induction can be promoted by a number of stimuli which are relayed by intracellular 

signalling via the p16-pRb pathway and/or the p53 pathway; the latter is also involved in the DNA 

damage response pathway. In mice, ARF has an important role in sensing mitogens and oncogenic 

stress whereas, in humans, p16 seems to have the dominant role in inhibiting progression through 

the cell cycle. The p16-pathway inactivates Cyclin dependent kinases CDK4/6 to maintain pRb 

activation whereas p21 inactivates CDK2/4. Adapted from: (Campisi and d'Adda di Fagagna, 2007) 

 

1.5.6 Species differences 

The extent to which either senescence promoting pathway is engaged can be influenced 

by the cell-type and species. In mice, p53 inactivation is sufficient to bypass Ras-induced 

senescence, and abrogation of its upstream activator ARF has the same outcome (Kamijo 

et al., 1997). ARF is believed to have a more dominant role in murine models than p16 at 

promoting senescence (Sharpless et al., 2004), and has a stabilising role on p53 by 

sequestering its negative regulator Mdm2. Despite activation of both ARF and p16 in 

response to mitogenic signalling, MEFs lacking ARF spontaneously immortalise, whereas 

p16-null MEFs can still engage oncogene-induced senescence (Sharpless et al., 2001, Gil 

and Peters, 2006). Knockout of ARF in mice leads to early evasion of senescence and 

development of tumours in vivo (Kamijo et al., 1997, Zindy et al., 2003) with a broad 
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spectrum of tumour types (Kamijo et al., 1999). In humans, p16 is predominantly 

activated in response to oncogenic signalling, and is believed to play a more important 

role in the commitment to cellular senescence. In vivo benign nevi (skin lesions) contain 

senescent cells that overexpress p16 (Gray-Schopfer et al., 2006) while melanomas 

frequently lack functional p16. ARF specific mutations are rare, even though ARF and p16 

are found in the same genomic region and share exonic sequences (discussed later), 

whereas p16 mutations have been described in many cancers (Kim and Sharpless, 2006, 

Forbes et al., 2010). 

 

Escape from cellular senescence leads to immortalisation and it is thus considered the 

first barrier against malignancy. Infinite proliferative potential in itself is not harmful, but 

may permit successive mutational events to take place (Newbold et al., 1982, Newbold, 

1985b). On average, 20-30 population doublings are required for a single cell to produce a 

daughter population large enough for a second mutation to occur. It is through such 

repeated rounds of mutation and selection (clonal evolution) that increased autonomy is 

acquired and, in rare cases, spontaneous immortalisation may take place, frequencies of 

which are species dependent (Newbold, 1985a, Trott et al., 1995). In humans, replicative 

senescence is activated by telomere shortening, but premature senescence can be 

triggered when the cell encounters oncogene activation, stress or sufficient DNA damage. 

Disruption of tumour suppressor genes and their regulatory networks can alter a cell’s 

response to mitogenic signals and deregulate the control of the cell cycle. The bypass of 

senescence barriers by the disruption of the p16-pRb and ARF-p53 pathways can be 

attained as a result of cooperating molecular events, leading to cellular immortalisation.  

 

1.6 The tumour suppressor gene p53 

Almost half of all tumours carry defective copies of the tumour suppressor gene p53 and 

its deregulation is an established hallmark of cancer. Its main function is to preserve 

genomic stability and, in its wild type conformation, p53 is capable of responding to many 

cellular stressors such as telomere shortening, DNA damage, oncogene activation and 
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hypoxia (Rufini et al., 2013). p53 signalling can induce a temporary cell cycle arrest to re-

establish homeostasis and promote DNA repair or if necessary stimulate a permanent exit 

either by initiating apoptosis and cell death or promoting senescence pathways. p53 

knockout mice are known to be susceptible to spontaneous tumourigenesis from a young 

age (Donehower et al., 1992) and models carrying point mutations are also prone to 

cancer. Reintroduction of p53 into deficient mouse lymphomas inhibits tumour growth 

and causes tumour regression following reactivation of senescence (Martins et al., 2006, 

Xue et al., 2007). 

The activity of p53 is highly regulated to permit rapid cellular responses to the range of 

stimuli that it is responsible for integrating. Post-transcription, p53 is assembled as a 

protein tetramer that acts as a transcription factor, binding to a large variety of 

downstream targets via p53-responsive elements. It is has been estimated that murine 

p53 has over 3600 direct gene targets in mouse embryonic stem cells (Li et al., 2012). Its 

protein turnover is mediated by the E3 ubiquitin ligase Hdm2 (or Mdm2 in mice) which 

marks p53 for proteosomal degradation via poly-ubiquitination activity (Honda et al., 

1997). In a negative-feedback loop, activated p53 acts as a transcription factor of Mdm2 

to promote its own degradation; quickly re-establishing homeostasis. Upstream of p53 is 

ARF that responds to oncogenic signalling by binding and sequestering Mdm2, inhibiting 

degradation of p53, indicating that p53 is available to interact with the Cdk-inhibitor p21 

promoter (refer to Figure 2). The CDKI p21 promotes cell-cycle arrest via inactivation of 

Cyclin E-CDK2/4 complexes. Induction of p21 is elevated in senescing cells but only in 

those with functional p53 while p21 knockout mice cannot arrest in G1 following DDR 

activation (Brugarolas et al., 1995). In a negative feedback loop, ARF is repressed by pRb-

E2F complexes that form from p21 signalling (Sherr, 2006). ARF protein turnover is also 

regulated through ubiquitination from the E3 ubiquitin ligase ULF which when inhibited 

stabilises ARF, leading to p53-dependent growth arrest (Chen et al., 2010). 

1.6.1 Post-translational modifications 

p53 activity is tightly controlled at the post-translational level especially within its N-

terminal transactivation and C-terminal regulatory domains. Post-translational 

modifications (PTMs) modulate p53, broadly speaking either by increasing protein 

stability (activating) or by promoting protein degradation (inactivating), like ubiquitination 
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(Marouco et al., 2013). Following DNA damage and exposure to carcinogens, multiple 

serine and threonine residues can be phosphorylated to stabilise p53. ATM and ATR 

kinases target Ser15 phoshorylation to promote Mdm2 release and transcriptional target 

transactivation (Saito et al., 2003, Loughery et al., 2014). A number of different PTMs 

have been identified with interdependent roles which may take place in a cell-type 

specific manner, regulating p53 and ultimately promoting growth arrest or increased cell 

proliferation (Marouco et al., 2013). Phosphorylation of Ser46 in mice is associated with 

p53-dependent senescence and reduced cellular immortalisation in MEF cells following 

oncogenic stress by Ras-induction (Feng et al., 2006), while Ser15 was phosphorylated by 

p38 MAPK activation following ionising radiation in HMEC cells (Wang et al., 2013). 

Acetylation is also an important PTM and its complete abolishment prevents p53 

transactivation of p21 leading to excessive cell proliferation (Tang et al., 2008), although 

removal of individual acetyl-sites can be compensated for by acetylation at other sites 

(Carter and Vousden, 2009). On sensing DNA damage, six lysine (K) residues that are 

targeted by Mdm2 for ubiquitination in the C-terminal domain, are instead acetylated to 

stabilise p53 by the histone acetlytransferase CBP/p300 (Kruse and Gu, 2008, Dai and Gu, 

2010). In response to oncogenic myc, acetylation of K120 takes place due to ARF 

signalling which promotes OIS (Mellert et al., 2007). Finally, methylation at site-specific 

lysines can also influence p53 activity by either stimulating growth arrest via increased 

promoter binding affinity or by repressing gene target activation (Scoumanne and Chen, 

2008).  

1.6.2 p53 mutations 

In a recent study by The Cancer Genome Atlas (TCGA) 42 % of all tumours tested carried a 

p53 mutation (Kandoth et al., 2013) and, although substitutions are frequently located in 

six mutational hotspots within its DNA binding domain (see Figure 3), point mutations 

have been identified across the whole gene locus (Leroy et al., 2013). Missense mutations 

leading to amino acid substitutions are most commonly associated with the disruption of 

p53 function, and the resulting mutant p53 proteins can often act independently and in a 

dominant-negative way to wild-type p53 (Muller and Vousden, 2014).  
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Figure 3 – p53 functional domains and mutation hotspots 
 
A diagram of the human p53 protein and its six mutational hotspots that are often identified in 

cancers. Over 90 % of mutations are found within the DBD and are mostly missense point 

mutations. TAD: transactivation domain, PRD: proline rich domain, DBD: DNA binding domain, 

OD: oligomerisation domain, RD: regulatory domain, NLS: nuclear localisation signal, NES: nuclear 

export signal. The amino acid numbers are below. Adapted from: (Vousden and Lu, 2002, 

Marouco et al., 2013). 

 

A single substitution in the p53 DNA binding domain can affect the protein’s affinity to its 

targets, thus modulating downstream transcriptional activation, and may even confer 

recognition of alternative binding sites. p53 mutations can also influence protein folding 

and stability (i.e. structural mutants) which may disrupt normal protein function, alter a 

PTM site and potentially also uncover new protein interaction sites (Muller and Vousden, 

2013). Consistent with a dominant-negative function, mice with one mutated p53 allele 

are prone to more types of malignant lesions than those that are p53 null or have a single 

mutated gene copy (Doyle et al., 2010, Kenzelmann Broz and Attardi, 2010). Li-Fraumeni 

syndrome patients with germline p53 missense mutations are more susceptible to the 

onset of early cancers than those with reduced p53 protein expression (Zerdoumi et al., 

2013). These findings are suggestive of a dominant role of a dysfunctional p53 protein 

which has tumour promoting functions (gain-of-function) and thus contributes to 

oncogenesis (Muller and Vousden, 2013). As an example, mutated forms of p53 can bind 

and inhibit TAp63 (Strano et al., 2002), which if deleted leads to promotion of cell 

invasion and metastasis (Su et al., 2010) also indicating important co-operative roles of 

p53 family members in suppressing oncogenesis (Qian and Chen, 2013).  
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1.6.3 p53 splice variants 

Canonical p53 contains seven different functional domains (shown in Figure 3) and the 

full length human protein (p53α) is 393 amino acids long. The locus found on 

chromosome 17p13 encodes ten or more p53 isoforms via alternative splicing of its 

11 exonic regions, contains two transcriptional promoter sites (P1 and P2) (Bourdon et al., 

2005) and two translational initiation sites. Its multiple isoforms are expressed in normal 

cells and their relative abundance is cell- and tissue-type dependent, implying subtle 

functional differences (Khoury and Bourdon, 2011). Following DNA damage, p53 can self-

activate its internal promoter situated in intron 4 and thus upregulate its Δ133p53α 

isoform (Aoubala et al., 2011). Δ133p53α has been shown to reduce G1 arrest and 

apoptosis but has no effect on G2 arrest; in human fibroblasts it can induce cellular 

proliferation by p21 transcriptional inhibition and thus also act in repressing senescence 

(Aoubala et al., 2011). In the cell’s resting state, p53β (which has an alternative C-terminal 

domain) preferentially binds and activates promoter regions of the cell-cycle regulator 

p21, unlike p53α which preferentially binds to Mdm2 (Bourdon et al., 2005). The isoform 

p53β can also induce expression of the microRNA miR-34a to upregulate replicative 

senescence while Δ133p53α is believed to repress miR­34a expression (Fujita et al., 

2009). It is unsurprising then that in cancer, malignant cells can also differentially express 

p53 isoforms; for example, in melanoma p53β and Δ40p53 isoforms have been identified 

whereas they are not found in normal melanocytes and fibroblasts. Clinical studies 

suggest that isoform expression profiles may be linked to tumour stage and be predictive 

of prognosis (Surget et al., 2013). 

 

p53 is a highly regulated transcription factor that controls and responds to many 

pathways. Alternative splicing and post translational modifications help fine-tune its 

expression and modulate its cellular activities. The deregulation of p53 by point 

mutations is commonly associated with cancer and the disruption of its signalling 

pathway can have detrimental effects on its ability to induce senescence. 
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1.7 The tumour suppressor gene p16 

In the context of replicative senescence, activation of the p16/pRb pathway seems to play 

a secondary, albeit critical role in finalising induced growth arrest. In response to 

telomere erosion and DNA damage, human cells activate both p16 and p53 pathways 

which work together in promoting senescence (Jacobs and de Lange, 2004). Mouse p53-/- 

knockouts failed to enter senescence when provoked with telomeric disruption, 

indicating that the p16 pathway alone may be insufficient to trigger growth arrest in 

response to DNA damage (Smogorzewska and de Lange, 2002). However, following 

premature senescence induced by p16 expression, inactivation of key regulators p53, pRb 

as well as p16 had no effect on senescence reversal and replicative rescue (Beausejour et 

al., 2003) indicating that once the p16-pathway is fully engaged it is irreversible. This is in 

contrast to p53-induced senescence where inactivation of the p53-pathway can reinitiate 

cell growth (Gire et al., 2004, d'Adda di Fagagna et al., 2003). Serial passaging of cultured 

cells has also been correlated with increasing transcript levels of p16 in many human 

primary cell lines and thus implicating its role in cellular ageing (Collado et al., 2007, 

Krishnamurthy et al., 2004, Kim and Sharpless, 2006). Its upregulation in response to 

carcinogenic exposure, oxidative stress and DNA damage, and chromatin alterations 

demonstrates the importance of p16 signalling in OIS (Campisi and d'Adda di Fagagna, 

2007). 

Like p21, p16 is a cyclin dependent kinase (Cdk) inhibitor that functions by blocking 

progression from the G1 to S phase. It maintains Retinoblastoma protein (pRb) activity by 

inactivating CDK4 and CDK6 so that they cannot complex with cyclin D, thus locking pRb 

into its hypophosphorylated and active form. In turn, active pRb sequesters the E2F 

transcription factors responsible for transactivating genes that are required for 

proliferation and cell-cycle progression leading to senescence entry. There are two 

phosphorylation sites at either end of the p16 protein which can confer stability and are 

known to modulate CDK4 association (Gump et al., 2003, Guo et al., 2010). Double 

knockout of Cdk-inhibitors p21 and p16 rendered mice highly susceptible to tumour 

formation when painted with DMBA/TPA, and senescence barriers were rapidly bypassed 

in MEF-derived cells following introduction of ectopic Ras signalling, despite strong 

upregulation of p15 (Takeuchi et al., 2010). The study suggests a compensatory role 
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between p21 and p16 in oncogene-induced senescence; in the absence of one the other 

CDKI is upregulated, although p16-/- mice suffered from aggressive lesions while benign 

lesions were found in p21-/- mice (Takeuchi et al., 2010). 

Compared to p53 the tumour suppressor gene p16 (also known as CDKN2A or Ink4a) is 

less frequently mutated, but many tumours are prone to homozygous or heterozygous 

gene deletion and silencing of p16 to such an extent that 50% of all human cancers 

display p16 inactivation (Gonzalez and Serrano, 2006). Deregulation of p16 has been 

described as a necessary early event in the progression of tumourigenesis in Barrett’s 

oesophageal cancer (Chao et al., 2008, Paulson et al., 2008), and its inactivation has been 

associated with carcinogenesis (Li et al., 2008, Yasaei et al., 2013). p16 overexpression has 

also been identified in several late-stage tumours, which initially contradicts its accepted 

tumour suppressor role (Romagosa et al., 2011). High levels of p16 are found in benign 

lesions which retain functional p16-Rb pathways capable of inducing senescence (Gray-

Schopfer et al., 2006) but, if evaded by further downstream mutations, then p16 

signalling is ineffective. In this scenario, high-grade malignant tumours overexpress p16 as 

a result of positive feedback due to non-functional pRb permitting uncontrolled 

proliferation (Romagosa et al., 2011). 

1.7.1 The CDKN2A/B locus  

Located on chromosome 9p21 in humans, the CDKN2A/B locus (also known as INK4-ARF) 

encodes three known tumour suppressor genes (Gil and Peters, 2006, Simboeck et al., 

2011). Extending over 35 Kb, this region is situated in a gene desert and is prone to 

deletions that contribute to melanoma, carcinomas and leukaemias, while knockout mice 

are susceptible to spontaneous lesions (Gu et al., 2013). The region encodes p16, p15, 

ARF, p16γ and p12; the latter two are splice variants of p16 and are mostly 

uncharacterised, although p12 expression is restricted to the pancreas. ARF and p16 are 

under the control of separate autonomous promoters and are located 20 Kb from each 

other, but share a second exon which is read in an alternative reading frame (hence ARF). 

The resulting translated proteins are completely distinct from one another and both 

promote senescence by independent pathways; p16 acting via pRb and ARF via p53. 

Located upstream of both ARF and p16, p15 is thought to have arisen by gene duplication 

of p16 and also targets CDK4/6 for cell cycle regulation (Krimpenfort et al., 2007). 
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Figure 4 – The CDKN2A/B locus 
 
Located on chromosome 9p21 in humans and chromosome 4 in mouse, the CDKN2A/B locus 

encodes three tumour suppressor genes which act to promote cellular senescence: encoded 

proteins p16 and p15 inhibit CDK4/6 to keep the Retinoblastoma protein (pRb) hyposphorylated 

and active, while ARF (p14 in humans, p19 in mice, p13 in rat and hamster) which is read in 

alternative reading frame to p16, sequesters Mdm2 to stabilise and promote p53 activity. 

Upstream of the locus is a regulatory domain (RD) that is bound by Polycomb group proteins 

(PcG) that can repress transcription by influencing local histone modifications and may also 

function to coordinate CDKN2A/B gene expression. Adapted from (Peters, 2008) 

 

The CDKN2A/B locus has been identified in tumours as a site of mutation, or more 

commonly deletion, suggesting its anti-tumourigenic role (Gil and Peters, 2006, Li et al., 

2014). In most cases, mutations are contained within the p16 portion of the locus and 

rarely solely target ARF, while p15 mutations are equally uncommon. The majority of 

mutations are missense which can take place across the whole protein length and tend to 

influence p16’s ability to interact with its cyclin kinase targets CDK4/6, but mutations may 

also influence cellular localisation (McKenzie et al., 2010). Around 40 % of melanoma 

patients inherit germline p16/ARF gene mutations that predispose them to developing 

lesions (Goldstein et al., 2007). The CDKN2A/B locus is also frequently targeted in urinary 

bladder cancers (>50 %), but its inactivation is predominantly due to homozygous 

deletion (HD) and loss of heterozygosity (LOH) of p16 and ARF (Williamson et al., 1995, 

Berggren et al., 2003). Mouse knockout studies for each of the three encoded genes 
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correlated with increased tumour formation and a triple knockout developed a wide 

range of lesions within seven months (Krimpenfort et al., 2007). 

1.7.2 Epigenetic regulation 

Multiple epigenetic mechanisms are being unveiled in the regulation of the CDKN2A/B 

locus, adding layers of complexity for the coordinated expression of p16, ARF and p15 

during development, and later when promoting senescence. During embryogenesis and 

early developmental stages the expression of the CDKN2A/B locus is minimal, presumably 

to permit rapid cellular division (Li et al., 2009). Although not fully understood, disruption 

of epigenetic molecular components can lead to deregulation and senescence bypass (Gil 

and Peters, 2006, Popov and Gil, 2010). 

DNA methylation is mostly associated with transcriptional repression of genes, occurring 

in the promoter regions enriched for CG dinucleotides known as CpG islands. Covalent 

binding of methyl groups to CpG sites can alter the binding affinity of transcription 

factors, or recruit repressive methyl binding and histone modifying proteins to further 

enhance gene silencing (Sharma et al., 2010). Cancers are generally associated with a 

deregulation of methyl marks, leading to genome-wide hypomethylation, but with site-

specific hypermethylation at CpG islands that would normally be unmethylated (Jones 

and Baylin, 2002). The tumour suppressor gene p16 is commonly silenced in cancer by 

promoter hypermethylation and has been suggested as a predictive marker of p16 status 

(Wang et al., 2012), in some cases promoter methylation is thought to be an early event 

predisposing cells to evasion of senescence barriers (Al-Kaabi et al., 2014). Similarly, ARF 

and p15 gene promoters have also been found to be methylated in cervical cancers, 

glioblastomas and oral carcinomas; thus the identification of methylation at CDKN2A/B 

gene promoters has prognostic potential (Robertson and Jones, 1998, Wemmert et al., 

2009, Jha et al., 2012). 

The CDKN2A/B locus is regulated epigenetically by local chromatin remodelling which co-

ordinately influences gene transcription of three crucial regulators of senescence 

(Simboeck et al., 2011). In proliferating cells, the Polycomb group (PcG) of proteins is 

known to target the CDKN2A/B locus and associates with the DNA as two complexes. The 

PRC2 contains the histone methyltransferase EZH2 that trimethylates histone 3 lysine 27 
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(H3K27me3), which then serves as a recruiting mark for PRC1 members (such as RING1B, 

BMI-1 and CBX proteins). Once bound, PRC1 proteins maintain the repressive state by 

mono-ubiquitinating histone H2A which, together with PRC2 complexes, locally compact 

the DNA and hinder transcriptional initiation (Henikoff et al., 2004). During senescence 

and following cellular stress, EZH2 is downregulated (Agherbi et al., 2009), leading to a 

loss of repressive histone trimethylation at the CDKN2A/B locus and a progressive release 

of bound PcG proteins spanning p16/ARF; this is correlated with an increase in expression 

of p16 and ARF (Bracken et al., 2007). Additional histone modifiers have been found to 

associate with the CDKN2A/B locus to further activate it; JMJD3 (a lysine specific 

demethylase) removes repressive methyl marks and replaces them with ones associated 

with transcription, thereby promoting senescence (Agherbi et al., 2009). The deregulation 

of histone modifications and chromatin binding protein-complexes leading to the 

perturbation of transcriptional regulation is thus implicated in tumourigenesis (Mills, 

2010, Fullgrabe et al., 2011, Varier and Timmers, 2011). Indeed, overexpression of PRC1 

and PRC2 components have been identified in cancers that cooperate with oncogene 

activation to bypass senescence and promote sustained cell division (Dietrich et al., 2007, 

Velichutina et al., 2010, Larsson, 2011, Jia et al., 2014). 

Displacement of PcG proteins from the CDKN2A/B locus during senescence also includes 

BMI-1 which does not seem to undergo changes in gene expression during ageing 

(Agherbi et al., 2009). However, if overexpressed BMI-1 can act oncogenically by 

repressing SIPS/OIS and binding to the p16 promoter along with CBX8 (Bracken et al., 

2007). In MEFs lacking BMI-1 premature senescence takes place, while its overexpression 

induces immortalisation (Jacobs et al., 1999). Upregulation of BMI-1 has been shown to 

extend human cellular lifespan and was dependent on functional pRb but not p53 activity, 

implicating its suppressive role on the p16 pathway (Itahana et al., 2003). Finally, the p16 

promoter contains a BMI-1 binding element (BRE) that negatively regulates transcription, 

suggesting that the PRC1 member BMI-1 can also act directly as a transcription factor to 

repress p16 expression (Meng et al., 2010).  

A regulatory domain (RD) has been identified in a conserved non-coding region 1.5 Kb 

upstream of p15’s transcriptional start site, which contains a potential replication origin 

which might confer synchronized regulation of the CDKN2A/B locus (Gonzalez and 
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Serrano, 2006, Li et al., 2011). Additionally, the 150 bp RD element is recognised by Cdc6, 

a protein that is strongly overexpressed in cancers and that recruits histone deacetylases 

(Gonzalez et al., 2006, Gonzalez and Serrano, 2006). Polycomb proteins including BMI-1 

and EZH2 have also been identified to localise at the RD in young proliferating MEFs, 

indicating a regulatory role on local chromatin (Agherbi et al., 2009). The RD upstream of 

CDKN2A/B has been found to be deleted in tumour samples and malignant human cell 

lines, further implicating the domain in carcinogenesis (Li et al., 2014). 

MicroRNAs (miRNAs) have also been associated in promoting senescence (Abdelmohsen 

et al., 2012). Only 21­23 bp in length, they are processed non-coding mRNAs that target 

gene transcripts by sequence specific binding inhibiting protein translation or promoting 

mRNA degradation. A recent screen suggests 16 putative miRNAs could significantly 

upregulate p16 expression following oncogene-induced senescence from Braf activation, 

and a further seven miRNAs could potentially downregulate p16 (Kooistra et al., 2014). 

Suppression of BMI-1, promoting p16 expression, has been found to be controlled by 

miR-141 which was upregulated during cellular senescence, (Dimri et al., 2013, Itahana et 

al., 2013) while miR-378a-5p represses p16 protein expression and attenuates oncogene-

induce senescence following Braf activation, although the specific miR-378a-5p target is 

unknown (Kooistra et al., 2014). In HMECs and in human fibroblasts, a further four 

miRNAs were shown to be progressively upregulated during cellular senescence, 

(miRNA 26b, 181a, 210 and 424) and their overexpression led to increased p16 levels and 

decreased cell growth rates (Overhoff et al., 2014). Moreover these miRNAs targeted 

members of the Polycomb repressor complexes such as EZH2 and CBX7; the authors 

suggest a regulatory feedback loop between miRNAs to stimulate PRC2/PRC1 release 

from the CDKN2A/B locus while the PcG proteins repress miRNA expression to keep the 

locus silenced (Overhoff et al., 2014). Other silencing mechanisms include long non-

coding RNAs like ANRIL (antisense non-coding RNA in the INK4 locus), which is transcribed 

in the opposite direction to the CDKN2A/B locus, overlaps with p15 and its promoter is in 

close proximity to ARF’s transcriptional start site(Popov and Gil, 2010). It is thought that 

ANRIL can suppress p15 and p16 transcription and may further coordinate recruitment of 

PRC proteins to the locus (Aguilo et al., 2011).  
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The CDKN2A/B locus contains three important tumour suppressor genes that act via the 

p53 and pRb-pathways to promote growth arrest. Together p16, p15 and ARF restrain cell 

proliferation in response to oncogenic signals. Their expression can be co-ordinately 

controlled by protein complexes and epigenetic modifications influencing local chromatin 

structure at chromosome 9p21, but CDKN2A/B gene products can also be independently 

regulated. Inactivation of p16 is frequent in human cancers, and has an important role in 

inducing senescence, although in mice ARF seems to be more influential in promoting 

growth arrest. 

 

1.8 The Syrian hamster as a model 

In contrast to rodents, human cells have two major barriers safeguarding unlimited 

proliferative potential; premature senescence (OIS/SIPS) and replicative senescence (RS). 

Their combined role in protecting the cell from malignant growth explains the observed 

low frequency of immortalisation and cell transformation in human cells (Trott et al., 

1995, Russo et al., 1998). It has been postulated that large mammals evolved a second 

senescence-inducing mechanism to minimise accumulative damage resulting from a 

longer lifespan and a larger soma. Small rodents must rely on oncogene-induced 

senescence as their only failsafe senescence barrier, but this also implies that the bypass 

of OIS/SIPS can be thus analysed in isolation in mice and hamsters, without needing to 

reactivate TERT (Russo et al., 1998). Since the 1960s the Syrian or Golden hamster 

(mesocricetus auratus) has been used as a model to study chemical cell transformation 

and carcinogenesis (Berwald and Sachs, 1963). Compared to classically implemented 

mouse models which are genetically better characterised, the Syrian hamster has a lower 

rate of spontaneous immortalisation, and a higher innate resistance to genetic 

aberrations (Trott et al., 1995). Human cells very rarely immortalise even when exposed 

to carcinogens, so as a model the Syrian hamster is a good compromise; transformation 

can be readily induced by chemical exposure but, unlike mouse cells, hamster cells have a 

relatively low rate of spontaneous immortalisation (frequency of <10-9 per primary SH cell 

compared to >10-5 in mice) (Newbold, 1985b, Trott et al., 1995). 
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1.8.1 SH carcinogen-induced immortalisation 

To aid the study of senescence bypass and the mechanisms regulating immortalisation, 

cells can be exposed to known carcinogens and mutagenic agents. Using SH dermal cells 

(SHD cells) mechanisms underlying OIS/SIPS and its bypass in the Syrian hamster have 

been studied following exposure to a number of chemical and physical carcinogens 

(Yasaei et al., 2013). SHD clones were generated using the SHD mass culture CTA and 

senescence bypass was induced by treatment with benzo(a)pyrene, nickel chloride and 

ionizing radiation (IR). Components of the p53 and p16/Rb-pathway were differentially 

affected, suggesting specific mutagenic fingerprints. Complete physical loss of the 

CDKN2A/B locus was identified in SHD clones immortalised by IR. However, karyotyping 

did not reveal gross chromosome aberrations, indicating locus-specific losses. No gene 

expression was detected for p16, p15 or ARF in these clones. SHD cells exposed to the 

known point mutagen benzo(a)pyrene produced immortalised clones with missense 

mutations (mainly G to T transversions) in the DNA binding domain of p53 and single 

allele losses of p16 was commonly observed, possibly indicating haploinsufficiency. p53 

mutations were not identified in IR- or nickel-treated SHD cell lines and, in p16, gene 

substitutions were rare. However, in the majority of immortalised B(a)P-treated lines, p16 

expression was upregulated together with ARF but p15 was transcriptionally repressed, 

raising the possibility that p15 downregulation may have cooperated with p53 point 

mutations to bypass oncogene-induced senescence. Finally, all nickel clones had 

downregulated p16 expression but expressed ARF and p15. Extensive DNA methylation in 

the 5’ promoter region of p16 accounted for epigenetic gene silencing due to nickel 

exposure; nickel is a known non-genotoxic carcinogen. Finally, one B(a)P treated line was 

also methylated and had low levels of p16 expression. The data indicates a critical role for 

p16 in establishing OIS/SIPS, possibly more akin to that in human senescence rather than 

in mice (Sherr and DePinho, 2000). Bypass of senescence in SHD was described as either a 

one-step hit (termed Type I immortalization) whereby p16 and the whole CDKN2A/B locus 

was deleted leading to sustained uncontrolled proliferation, or as a two-step process 

(Type 2 immortalization) involving p53 mutations and suppression of p16 or p15 (Yasaei 

et al., 2013).  
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Deletion and inactivation of the CDKN2A/B locus containing p16 is commonly observed in 

tumours (Goldstein et al., 2007, Williamson et al., 1995, Berggren et al., 2003, Gu et al., 

2013). Several studies have also identified p16 alterations in chemically-induced tumours 

derived from the Syrian hamster. Tumourigenic hamster cell lines derived from pancreatic 

and oral SH tumours were lacking both p16 and p15 due to homozygous deletions (ARF 

was not analysed) (Muscarella et al., 2001). Others have identified downregulation of p16 

expression due to heterozygous deletion and/or DNA methylation at the p16 promoter in 

pancreatic cancers (Li et al., 2004, Hanaoka et al., 2005). Although these studies did not 

involve analysis of ARF-p53 pathways, they further confirm the protective role of p16 

against tumourigenesis. p53 on the other hand has been studied in SH cheek-pouch 

lesions that model squamous cell carcinomas (SCC), and accumulates in pre-malignant 

and malignant tissues, most likely to due to the induced point mutations observed in the 

p53 DNA binding domain (Gimenez-Conti et al., 1996, Chang et al., 2000).  

 

The Syrian hamster can be considered a suitable model for studying carcinogenesis and 

senescence-bypass in isolation from telomere erosion. Molecular mechanisms that 

inactivate the p16 and p53 tumour suppressor pathways have shown similarities between 

human and hamster senescence bypass and tumourigenesis. Characterisation of 

oncogene-induced senescence and carcinogen-induced immortalization has been 

performed in primary SHD cells, but has not yet been undertaken in SHE cells derived 

from the SHE CTA. In order to validate the SHE CTA the molecular analysis of cellular 

transformation events needs to be addressed and that constituted a major aim of this 

project. 

  



Page 47 of 226 

PROJECT OVERVIEW AND AIMS 

 

Current legislative and ethical pressures require a substantial reduction in the number of 

animals used in carcinogenicity testing for safety purposes. Pre-validation studies 

conducted on behalf of ECVAM have concluded that the Syrian hamster embryo cell 

transformation assay (SHE CTA) could be a promising assay for predicting carcinogenicity. 

However, the underlying mechanisms of carcinogen-induced morphological 

transformation are unknown and the relevance of the SHE CTA as a representative model 

of carcinogenesis has not been confirmed. It has been shown that the rate-limiting 

immortalisation step in the Syrian hamster (SH) requires only the bypass of the 

oncogene/stress-induced senescence barrier (SHE cells have constitutive telomerase 

activity) meaning that OIS can be studied in isolation and spontaneous progression 

towards immortalization is a rare event. Therefore, SHE cells should be further exploitable 

as a useful in vitro cell transformation model for carcinogen screening.  

The objective of this project was to evaluate the SHE CTA and demonstrate that the assay 

has a sound mechanistic basis. The results of an extensive body of work to characterise 

early-events leading to senescence bypass and cellular immortalisation are described, and 

these provide a more detailed molecular understanding of the SH morphologically 

transformed (MT) phenotype, following induction by the known mutagen and potent 

human carcinogen, benzo(a)pyrene. The findings address some of the current concerns 

regarding the SH CTA while, at the same time highlighting work that still needs to be done 

to improve the assay’s objectivity and reproducibility. 
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CHAPTER 2 

 

2 General Materials and Methods 

 

Details of specific experimental procedures are located 

at the beginning of each results chapter 
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2.1 Cell culture 

2.1.1 Cell culture medium and supplements 

Syrian hamster embryo-derived (SHE) cell lines were grown in Dulbecco's modified Eagle's 

medium, LeBoeuf's modification without L-Glutamine (DMEM-L) (Quality Biological) 

supplemented with 20 % (v/v) fetal bovine solution (FBS) (Invitrogen Gibco®), 4 mM 

GlutaMAXTM supplement (Invitrogen Gibco®), 100 units/mL penicillin and 100 µg/mL 

streptomycin (Gibco®) and incubated in a humidified HERAcell (Heraeus) incubator at 

37°C ± 1°C with 10 % CO2 ± 1 %. Medium was used within 2 weeks and discarded if its pH 

was visibly altered. 

2.1.2 Tissue culture plastics 

Cells were grown in disposable plastic petri dishes (60, 100 or 150 mm) or flasks (75 or 

175 cm2) (Sarstedt). Centrifugation took place in 15 mL disposable centrifuge tubes 

(Sarstedt). 

2.1.3 Routine subculture of cells 

All cellular manipulations were performed in a HERAsafe (Haraeus) safety cabinet. Media 

was changed in cultures every 2-3 days by aspirating the existing culture medium and 

replacing it with 5 mL fresh medium per 60 mm dish or 10 mL medium per 100 mm dish. 

On reaching 60-80 % confluence, SHE cells were subcultured at a seeding density of 

5 x104 to 6 x105 cells per 100 mm dish depending on the individual cell line. Cells were 

detached by washing in 4 mL Ca2+ and Mg2+ free Hank’s Balanced Salt Solution without 

phenol red (CMF-HBSS) (Gibco®) before incubating cells in 4 mL 0.05 % Trypsin-EDTA 

(Gibco®) for 3-5 min at 37 °C. After gentle tapping, the effects of trypsin were neutralised 

by adding equal volumes of media to dislodge cells and any clumps were removed by 

retropipetting. Cells were then centrifuged to remove traces of trypsin-EDTA at 1000 x g 

for 5 min and fully resuspended in fresh media. Appropriate volumes of cell suspension 

were then seeded into equilibrated fresh media and returned to the incubator. 

2.1.4 Cryostorage and recovery of cells 

Exponentially growing cells were trypsinised and centrifuged before being resuspended 

drop-wise in cryostorage medium made from FBS with 10 % DMSO (v/v) (Sigma-Aldrich®) 
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to limit the extent of freeze-thaw damage. Resuspended cells were aliquoted into 1 mL 

screw-cap cryovials (Sarstedt) at a freezing density of 106-107 cells/mL. Vials were placed 

in freezer heads and frozen overnight at a rate of approximately -1 ˚C/min in the gaseous 

phase of liquid nitrogen (LN2). Cells were then stored at temperatures below -170 ˚C in 

liquid nitrogen until needed. To recover cryostored cells, each vial of frozen cells was 

rapidly thawed in a 37 °C water bath. The cells were then aseptically transferred to fresh 

equilibrated media and allowed to attach. The next day, medium was changed to remove 

DMSO and from then on media was changed every 2-3 days while in culture. 

2.2 Senescence-associated beta-galactosidase staining 

Cells were considered terminally senescent when no signs of cell growth were visible 

after once month of seeding without further sub-culture. An increase in cellular beta-

galactosidase activity is a marker of cellular senescence and this can be detected by 

staining fixed cells with X-gal which, in senescent cells, forms a blue precipitate. 

Cells were seeded in 60 mm or 100 mm dishes and allowed to attach. Proliferating cells 

were included as negative controls. Medium was aspirated and cells washed in phosphate 

buffered saline (PBS) twice for 30 sec before being permeabilised and fixed for 5 min in 

2 % formaldehyde (v/v) and 0.2 % glutaraldehyde (v/v) made in PBS buffer. The fixation 

solution was aspirated and cells washed twice in PBS again for 30 sec. Cells were then 

incubated overnight at 37 °C in the dark with SA-βgal staining solution. The staining 

solution was prepared on the day in ultra-pure water (Debacq-Chainiaux et al., 2009): 

40 mM Citric acid/Sodium phosphate buffer (adjusted to pH 6.0), 5 mM Potassium 

hexacyano-ferrate (II) trihydrate {K4[Fe(CN)6]3H2O}, 5 mM Potassium hexacyano-ferrate 

(III) {K3[Fe(CN)6]}, 150 mM sodium chloride, 2 mM magnesium chloride and 1 mg/ml 

X­gal in N,N-dimethylformamide (pre-warmed at 37 ˚C for 1 hour to avoid aggregates). 

(All reagents were from Sigma-Aldrich®). The following day, the staining solution was 

removed and cells washed twice in PBS before air drying through the use of 1-2 mL 

methanol. Plates were stored at RT in the dark. Fixed and stained cells were then imaged 

using an Olympus CK40 microscope with a Dino-Eye digital eyepiece (Dino-Lite) and 

DinoCapture v2.0 Software. Stained cells were counted for intense blue staining 

corresponding to SA-βgal activity. 
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2.3 RNA extraction 

RNA was obtained via phenol-based extractions of cultured SHE cells using peqGOLD 

TriFast (PeqLab Ltd). At 75-85 % cell confluence, media was removed from 100 mm dishes 

and cell monolayers were washed twice using ice cold CMF-HBSS. 1 ml TriFast reagent 

(10 X) was added per dish and incubated at room temperature for 2 minutes to lyse cells. 

The resulting lysate was retropipetted and transferred into a chilled 1.5 ml microfuge 

tube with the aid of a cell scraper. Sample preparations were then either stored at -80 °C 

or used directly for RNA extraction. 

At room temperature, 200 µl chloroform was added to each tube for every 1 ml TriFast 

reagent used, before vigorously shaking for 15 sec; this was followed by a 5 min 

incubation at room temperature to allow phase separation to take place. Samples were 

then centrifuged at 12,000 x g for 5 min at 4 °C. The resulting clear supernatant 

containing RNA was carefully transferred into appropriately labelled clean 1.5 ml 

microfuge tubes containing 500 µl isopronanol (Sigma-Aldrich®) before inverting the tube 

several times to precipitate the RNA. Samples were incubated on ice for 5 min and then 

centrifuged at 12,000 x g for 10 min to pellet the RNA. At this point the supernatant was 

decanted and 500 µl 75 % ethanol was added to wash the RNA pellet twice before 

vortexing and further centrifuging for 10 min. Finally, remaining ethanol was removed 

and the RNA pellet allowed to air dry before resuspending in 20-40 µl chilled DNase, 

RNase-free H2O depending on pellet size. Samples were quantified and then stored at 

­80 °C. 

2.3.1 Nucleotide quantification 

RNA concentrations were quantified using a NanoDrop 2000 (Thermo ScientificTM) which 

uses a 1 µl sample for quantification (in ng/µl) and also assesses RNA quality by 

determining the A260/280 and A260/230 ratio. Quality of RNA was also assessed by running 

representative samples on an agarose gel to check 18S and 24S ribosomal RNA (rRNA) 

subunit integrity as well as messenger RNA (mRNA) integrity. 

2.3.2 RNA purification 

RNA extractions performed using phenol-based methods need to be cleaned up for 

residual genomic DNA by DNase treatment. For every 1 µg of RNA, 1 µl 10 X DNase buffer 
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and 1 µl DNaseI enzyme (InvitrogenTM) were added to a final volume of 10 µl in 

RNase/DNase-free dH2O. Treated RNA was then incubated at RT for 15 min before adding 

1 µl of 25 mM EDTA solution to stop the reaction, along with 10 min incubation at 65° C 

to inactivate the enzyme. Samples were either stored at -80 °C or used directly for reverse 

transcription. 

2.4 First strand synthesis (cDNA) 

A high-capacity cDNA reverse transcription kit (Applied Biosystems®) was used to reverse 

transcribe single-stranded cDNA from extracted RNA samples. For a final cDNA volume 

equal to 20 µl the following was added per RT reaction: 2 µl 10X RT buffer, 0.8 µl 25X 

dNTP mix (100 mM), 2 µl 10X RT random primers, 1 µl multiScribe reverse transcriptase, 

1 µl RNase OUT (InvitrogenTM) and 2.2 µl nuclease-free water. The reaction was gently 

mixed together with 1 μg total RNA treated with DNase I as described above in section 

2.3.2. For reverse transcription, samples were incubated on a thermal cycler, DNA Engine 

Tetrad2 (MJ Research): 25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 min and held at 

4 °C until stored at -20 °C. 

2.5 Quantitative real-time PCR (qPCR) using SYBR chemistry 

Real-time PCR was performed using 7900HT fast real-time PCR system with SDS v2.4 

software (Applied Biosystems®) in 10 µl reactions in a clear MicroAmp fast optical 96-well 

reaction plate (Applied Biosystems®). Typical working reactions were made from 5 µl fast 

SYBR green (Applied Biosystems®) or iTaq universal SYBR green supermix (BioRad), 1 µl 

5µM primer mix (forward and reverse primers), 2 µl cDNA and 2 µl DNase/RNase free 

H2O. Typical cycling parameters (see appendix for gene specific annealing temperatures): 

initial denaturation at 95 °C for 20 sec, 45 cycles of 95 °C for 1 sec and annealing and 

extension at 60 °C for 20 sec. Fluorogenic data was collected through the SYBR green 

channel during the annealing phase. After spinning down the plate, a dissociation 

protocol was carried out to confirm primer binding specificity and expected amplicon. 

Dissociation cycling was as follows: 95 °C for 15 sec, 60 °C for 15 sec and 95 °C for 15 sec; 

data was collected during the second 95 °C incubation to identify the amplicon’s melting 

temperature. 
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Genes analysed were p16, p15, ARF, p53, Rb1, Mdm2 andBmi-1. GAPDH and β-Act were 

selected as endogenous controls and expression levels were compared to appropriate 

controls. Ct values were analysed using the delta delta Ct method, all samples were 

calibrated to the relative expression of the average of the two reference genes and then 

the target gene’s expression was compared to the expression of the control samples. 

Expression suite software v1.0.3 (Applied Biosystems®), RQ manager v1.2.1 (Applied 

Biosystems®) and qBASEPLUS (Primerdesign Ltd) were all used to analyse qPCR data. PCR 

replicates were run in triplicate and outliers were excluded from the analysis. Where 

possible two or more separate qPCR runs were performed using cDNA prepared at 

different times.  

2.6 DNA extraction 

DNA was extracted from adherent SHE cells by using the DNA Purification Kit (Promega) 

and following the protocol provided. Briefly, harvested cells were spun down and the 

pellet washed twice using CMF-HBSS before removing the supernatant. Cell pellets were 

resuspended in 600 µl nuclei lysis solution and transferred to a 1.5 mL centrifuge tube. 

RNA was removed from the lysate by adding 3 µl RNase solution and incubating for 

15 min at 37 °C in a water bath. After cooling at room temperature for 5 min, 200 µl of 

protein precipitation solution was added and samples vortexed at high speed before 

chilling on ice for a further 5 min. Protein was removed by centrifuging samples for 

15 min at 16,000 x g and 4 °C and the resulting supernatant added into 600 µl isopropanol 

to precipitate the DNA strands followed by further centrifuging to form a pellet. The DNA 

pellet was then washed in 75 % ethanol and air dried before resuspending in DNA 

rehydration solution overnight at 4 °C, before quantification and storage at -20 °C. 

2.7 Polymerase chain reaction (PCR) 

cDNA or DNA was amplified on a thermal cycler, DNA engine tetrad2 (MJ Research) using 

the appropriate polymerase enzyme in a final reaction volume of 20 µl or 50 µl. Please 

refer to appendix (section 8) for primer lists and their specific annealing temperatures. 

Cycling conditions were enzyme specific but generally consisted of an initial denaturation 

step followed by 30-40 cycles of denaturation, annealing and extension before a final 

extension step. Reactions were prepared in 0.2 mL PCR tubes and thoroughly mixed 
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before loading onto the thermal cycler. The resulting PCR products were electrophoresed 

and resolved on 1-2 % agarose gels made in 1 X TBE buffer diluted in distilled water. 

Appropriate DNA ladders were loaded alongside PCR products to estimate amplicon size. 

Gel electrophoresis was carried out in a gel tank with 1X TBE buffer at 70-90 V for around 

1.5 hours before imaging. 

2.8 Gel extraction 

After gel imaging using UV, expected bands of interest were excised using a sterile scalpel 

and UV box. The correct amplicon was extracted and purified using PureLink quick gel 

extraction and PCR purification combo kit (InvitrogenTM) as per the manufacturer’s 

instructions. Briefly, according to weight, the gel slice was solubilised in three gel slice 

volumes of gel solubilisation buffer and incubated at 50 °C before adding one gel slice 

volume of isopropanol. Using spin columns provided with the kit, the band was bound to 

the column, washed twice and then the purified DNA amplicon eluted with 40 µl pre-

warmed elution buffer. The resulting DNA was quantified and stored at – 20 °C until 

needed for further analysis. 

2.9 Sequencing analysis 

Purified PCR fragments were outsourced for Sanger sequencing at Beckman Coulter 

Genomics using ABI3730XL (Beckman Coulter Genomics) at room temperature, according 

to shipment guidelines. Sequencing primers diluted to 5 µM were also sent where 

necessary. Nucleotide reads (.abl or .seq files) were analysed using CLC main workbench 

software v5.5 (CLCbio, Aarhus, Denmark). Sequence profiles were checked for their 

quality, individual peaks and minimum background fluorescence. Nucleotide sequences 

generated were then aligned to corresponding wild type reference sequences and 

checked for any differences. 
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3.1 Introduction 

The application of the Syrian hamster embryo cell transformation assay (SHE-CTA) 

towards the prediction of the carcinogenic potential of chemicals is becoming of 

increasing interest to toxicologists seeking alternative in vitro assays for safety testing and 

screening (Creton et al., 2012). However, the origins of the assay date from the 1960’s 

and its endpoint relies on the identification of morphologically transformed (MT) colony 

characteristics, and is therefore based on an individual’s visual assessment of every 

colony obtained. Concerns over the reproducibility and subjective nature of this CTA have 

recently been addressed by pre-validation studies coordinated by ECVAM (Pant et al., 

2012) and the formulation of OECD test guidelines is underway. Photo catalogues have 

been published to provide the scientific community with a range of examples of normal 

and morphologically transformed (MT) SHE colonies (Bohnenberger et al., 2012). 

The process of cellular transformation was originally observed in rodent (including SHE) 

cells and is believed to recapitulate the stages of tumourigenesis. Carcinogen-induced 

alterations of cellular morphology are thought to be followed by unlimited proliferative 

potential (immortalisation) and subsequently the acquisition of anchorage-independent 

growth. However, the actual relevance of morphological transformation as an end point 

in relation to subsequent events leading to uncontrolled growth and senescence bypass 

has not been properly investigated, and a significant gap therefore remains in our 

knowledge. Although exposure of SHE cells to a chemical compound may lead to 

significant increases in the frequency of MT, which would imply a carcinogenic potential, 

we do not fully understand the relationship between MT and the immortalisation 

process. Therefore this project set out to evaluate the SHE-MT assay, initially by 

establishing if morphological transformation is directly associated with senescence 

bypass, leading to immortality in colony-derived SHE cells. 

Benzo(a)pyrene is a polycyclic aromatic hydrocarbon (PAH) which is naturally formed by 

the incomplete combustion of organic materials and can be found in coal tar, cigarette 

smoke and in cooked foods from fat burning. The IARC recognises B(a)P as a Group I 

carcinogen and its metabolism produces highly reactive oxygenated species that are 

responsible for its mutagenic properties and DNA adduct formation. Cytochrome P450 



Page 57 of 226 

proteins are responsible for B(a)P oxidation to B(a)P-7,8-epoxides, which are further 

metabolised by epoxide hydrolases to B(a)P-7,8-diols which are re-oxidised to form B(a)P-

diol-epoxides (BPDE) again by the CYP enzymes (Jarvis et al., 2014). PAHs act as ligands to 

the aryl hydrocarbon receptor (AhR) which when activated can lead to increased 

expression of the CYP enzymes and thus increased breakdown of B(a)P (Nebert et al., 

2004). 

Syrian hamster embryo cells are considered to be metabolically active and capable of 

oxidising B(a)P in culture. Metabolic profiles of benzo(a)pyrene in SH embryonic cell 

cultures indicate a preference towards a left-side oxidation, giving rise to increased B(a)P 

derivatives oxidised at the 7,8 and 9,10 carbon positions compared with generation of 

4,5-diols and 3-hydroxybenzo(a)pyrene typically identified in liver fractions (Selkirk et al., 

1976). Increased concentrations of B(a)P lead to increases in the presence of metabolised 

oxygenated products (Nemoto et al., 1979) and the activity of the aryl hydrocarbon 

hydrolase enzyme was noted to be highest in tertiary SHE cells, decreasing over 

subsequent passages (Hirakawa et al., 1979).  

In collaboration with our industrial sponsors Unilever, SHE MT assays were performed at 

BioReliance, Rockvile (MD) USA by expert toxicologists familiar with the CTA. SHE cells 

were exposed to either the vehicle control DMSO or to the known mutagen and potent 

human carcinogen benzo(a)pyrene (normally the assay’s positive control). At the end of 

the one week incubation period required for colony formation, unstained SHE colonies 

that had been treated either with DMSO or benzo(a)pyrene were isolated. Cultures were 

established from these clones which were then transported to our laboratories at Brunel 

University. Four groups of colony-derived SHE cells were obtained: those scored as non-

transformed and those which had been scored as morphologically transformed (MT) from 

the two groups initially treated with either B(a)P or DMSO. 

In order to further understand the SHE-CTA it was important to gain experience in 

conducting the assay in-house at Brunel, which also generated an increased number of 

colony-derived SHE cells for subsequent molecular analysis. A short visit to the 

BioReliance laboratories helped me become familiar with colony scoring, although the 

subjective nature of the assay was apparent. For the purposes of this project and, unlike 
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in the ECVAM studies, both BioReliance and in-house SHE-CTAs were performed using 

conditioned media (Pant et al., 2008) as a replacement for x-irradiated feeder layers in 

order to facilitate colony picking. A comprehensive protocol is detailed in the Materials 

and Methods section to this Chapter, 3.2.1. 
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3.2 Materials and Methods 

3.2.1 Syrian Hamster Embryo Cell Transformation Assay (SHE-MT) 

The SHE-MT assay was performed independently at BioReliance, Rockville (MD) USA 

(Kamala Pant) and at Brunel University. The assay was carried out by following ECVAM 

recommended protocol guidelines (Maire et al., 2012a) but with the use of conditioned 

medium instead of a supportive feeder layer of irradiated SHE cells as supported by (Pant 

et al., 2008). SHE cells were treated with the same concentrations of vehicle control 

(DMSO at a final concentration of 0.2 %) and the known carcinogen benzo(a)pyrene. A 

summary diagram of the assay is shown in Figure 5. 

It should be noted that the primary cultures used in each of the two laboratories were 

obtained from different batches of Syrian hamster embryos. Stocks of embryo-derived 

cells cryopreserved at Brunel had been prepared as part of research by a previous PhD 

student (Dafou, 2003) and the resulting SHE primary cells (passage 1) stored in liquid 

nitrogen until required. All colony-derived SHE cell cultures from SHE-MT experiments 

were analysed at Brunel: those prepared at BioReliance were shipped to our laboratory 

under cryostorage in a liquid nitrogen Dewar.  

 

 

Figure 5 – SHE cell transformation assay time scale 
 

SHE primary cells were seeded at low densities in conditioned medium so that individual cells 

receiving chemical treatments would form individual colonies. Over an incubation period of 

7 days, attached viable cells proliferated to form colonies which were then visually assessed for 

morphological transformation (MT) and the frequency of MT compared with cells treated with the 

vehicle control (DMSO) was then calculated. 
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Isolation of Primary SHE Cells 

SHE cells were grown in LeBoeuf’s modified DMEM (DMEM-L, Quality Biologicals) at 

reduced pH 6.7 as described in the General Material and Methods (section 2.1). Primary 

SHE cells previously isolated from disaggregated embryos were frozen at a cell density of 

2.5x106 cells/ml in 10 % DMSO (by Dr Dimitra Dafou 2003 at Brunel University). 

Preparation of Conditioned Medium 

Conditioned medium was prepared, as a replacement to feeder cells, by seeding 

secondary-tertiary SHE cells in 175 cm2 flasks containing 45 mL DMEM-L medium. When 

70-80 % confluent (2-4 days after seeding) the conditioned media was decanted, pooled 

together and filtered using 0.22 µm low protein binding filters (Merk-Millipore). Storage 

was at 4 ˚C for a maximum of 2 weeks. Secondary SHE cells were subsequently 

subcultured as a reserve stock for the preparation of additional stocks of conditioned 

medium. 

Target Cell Preparation 

A single vial of primary SHE cells was recovered in a 75 cm2 flask in 35 mL of complete 

medium and incubated for 24 h. The next day cells were detached and, after staining in 

0.4 % (v/v) Trypan Blue, counted using a Countess Automated Cell Counter (InvitrogenTM). 

Cells were diluted in fresh medium to a density of 40 cells/ mL and 2 mL of cell suspension 

was then seeded in 60 mm dishes already containing 2 mL equilibrated conditioned 

medium, giving a total volume per dish of 4 mL. Cells were incubated for 24 h to allow the 

secondary SHE cells to adhere. Target cells were seeded in conditioned medium prepared 

from the same batch of SHE cells for consistency. Seeding of ~80 cells per dish routinely 

yielded 25–45 SHE colonies as recommended by the assay guidelines (Maire et al., 

2012a). 

Target Cell Treatment 

SHE target cells were treated with a final concentration of 5 µg/mL benzo(a)pyrene 

[B(a)P]. A 600 X stock solution of the test compound was prepared in DMSO and stored at 

-20 ˚C until required. On the day of treatment the B(a)P stock solutions was diluted in 

complete fresh DMEM-L medium to achieve a 3 X solution. To each plate, 2 mL of fresh 

medium containing the compound were added to achieve a final 1 X solution with no 
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more than 0.2 % (v/v) DMSO (as suggested (Maire et al., 2012a) and as previously 

performed at Brunel by Dafou (2003). Dishes were returned to the incubator at 37°C and 

10 % CO2 for 7 days before scoring. 

Controls 

Vehicle control test plates were included and prepared as above in conditioned media 

and treated with 0.2 % (v/v) DMSO. A minimum of 20 dishes per treatment (B(a)P and 

DMSO) were seeded. Untreated plates seeded with 80 cells/dish were also included as 

further controls as well as dishes containing only conditioned media (i.e. with no cells 

seeded) to check there was no cell growth caused by the conditioned media. 

SHE colony staining 

After 7 days of incubation the culture medium was removed, the cells washed in 3 mL 

CMF-HBSS and then fixed in 2-3 mL methanol for a minimum of 10 min. The methanol 

was then removed and the plates allowed to air dry before staining the SHE colonies in 

3 mL 10 % (v/v) Giemsa in pure water for a minimum of 20 min. Plates were then rinsed 

well in tap water to remove excess stain and air dried upside-down overnight. 

Colony scoring 

Individual SHE colonies were visually assessed under a light microscope for their 

morphological characteristics before being scored as normal (N) or morphologically 

transformed (MT). This evaluation was based on a combination of cell size, colony 

density, cell orientation, pattern of growth across the whole colony and the nuclear to 

cytoplasmic ratio of the cells. The detection of all of these features is enhanced by 

addition of the Giemsa stain. ‘Altered’ and ‘washed’ colonies were not included in the 

MTF calculation but were taken into account for the plating efficiency calculations. This is 

according to previous work (Bohnenberger et al., 2012) and ECVAM pre-validation studies 

(Pant et al., 2012) which describe altered colonies as those which are not fully developed 

and cannot be accurately scored. Washed colonies are those that fail to take up the 

Giemsa stain (and are usually found at the plate edges).  

Typically normal SHE colonies stain light purple in Giemsa, their cell growth patterns are 

organised and flowing, especially in the centre of the colony and the cells are contact 

inhibited. In contrast, morphologically transformed SHE colonies tend to be highly 
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basophilic staining dark purple or blue with Giemsa, their cells are more spindle-shaped 

and disorganised with noticeable cell stacking or criss-crossed growth across the whole 

colony. 

Assay assessment 

Plating efficiencies and transformation frequencies were calculated and compared with 

published data for B(a)P. Because we were not performing an ECVAM study it was not 

necessary to adhere rigidly to the assay acceptance guidelines. 

Plating efficiency (PE) was calculated as follows: 

PE (%) = (total No. colonies / total No. target cells seeded) x100   (1) 

Relative plating efficiency (RPE) was calculated as follows: 

RPE (%) = (PE of treated cells / PE of control cells) x 100    (2) 

Morphological transformation frequency (MTF) was calculated for treatment and control 

plates as follows: 

MTF (%) = (No. transformed colonies / total number of colonies) x 100  (3) 

 

3.2.2 Establishing colony-derived SHE cell cultures 

In this project, a major objective was to characterise, at a cellular and molecular level, 

colony-derived SHE cells generated from the SHE-MT cell transformation assay (CTA). 

Therefore it was necessary to score unstained SHE colonies for normal or transformed 

characteristics before the assay’s normal end point; that is to say before fixing and 

staining, in order to be able to pick living cells for further analysis.  

SHE colony picking 

After incubation for a week at 37 °C in 10 % CO2, SHE colonies were observed under an 

Olympus CK40 light microscope for MT characteristics. Unstained colonies from treated 

[B(a)P] and vehicle control (DMSO) plates with clear transformed morphologies were 

circled and labelled before returning to the incubator, typical non-transformed control 

colonies were also marked. One plate at a time, the medium was removed from each 
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plate and the cells washed in CMF-HBSS. Plates were allowed to drain after removing the 

wash buffer. Half of each colony of interest was lifted off using a blunted Pasteur pipette 

and then disaggregated by repeated gentle pipetting into 0.5 mL DMEM-L conditioned 

medium (diluted 1:1 with fresh complete DMEM-L) in a 24-well plate. The remaining 

colonies were fixed and stained in the same way as described above using 10 % (v/v) 

Giemsa. Brightfield colour images were taken of the remaining picked colonies when still 

intact using a Zeiss Axioskop microscope.  

Establishing SHE-MT colony derived cultures 

On the day after picking colonies, a further 0.5 mL fresh DMEM-L media was added per 

well and the cultures were observed for the presence of proliferating cells. On reaching 

80-90 % confluence, 200 µl Tryple-Express (Gibco®) was added to detach the 

disaggregated clone and the resulting cell suspension was then transferred to a 6-well 

plate with 1 mL 50 % conditioned media until the cells could be transferred to a 60 mm 

dish. From this point onwards the SHE cells were detached with Trypsin-EDTA 0.05 % as 

described earlier and counted with a haemocytometer. 

3.2.3 Establishing cultures derived from SHE-MT colonies generated at BioReliance 

(Prepared by Kamala Pant) 

Frozen vials containing cells derived from picked SHE colonies were also provided by 

BioReliance, Rockville (MD) USA. However, these cells were taken from whole colonies, 

isolated by using cloning cylinders and a few drops of trypsin-EDTA to detach the cells. 

This differed from the approach described above (paragraph 3.2.2) where half the colony 

was scraped using a glass pipette. The BioReliance-derived cells were cultured until there 

were enough for freezing and shipment to the Brunel laboratories. On arrival at Brunel, 

SHE cells prepared at BioReliance were recovered into 60 mm dishes with 5 mL fresh 

DMEM-L media and analysed in the same way as those prepared at Brunel. 

3.2.4 Basic cell growth characteristics of colony-derived SHE cells 

SHE cultures obtained from the SHE-MT assay were serially sub-cultured (ie. trypsinised 

and split) to determine their growth characteristics and cellular lifespan. Cells were 

considered terminally senescent after over one month in culture with no signs of cellular 

division or proliferation. Previous research by Dafou (2003) noted that untreated SHE 
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primary cells continued to divide for up to 55 population doublings in reduced pH 

medium before entering irreversible growth arrest and terminal senescence. Cells that 

continued to proliferate beyond this were considered immortal once they reached over 

60 to 70 population doublings which, depending on the rate of proliferation of each 

colony-derived SHE culture, roughly equalled 20-30 sub-cultures.  

3.2.5 Growth curves 

Following trypsinisation and pelleting, colony-derived SHE cells were resuspended in 2-

4 mL of fresh complete DMEM-L and counted using a haemocytometer. The total number 

of cells and growth incubation time was used to calculate population doublings and these 

figures were used to plot growth curves. 

Cumulative population doubling level (PDL) was calculated as follows: 

PDL = 3.32 x (log N2 – log N1) + X       (4) 

Where: N2 is the total number of cells at a given time point 

 N1 is the number of cells initially seeded 

X is the previously calculated PDL of the cell culture used 

 

3.3 Results 

3.3.1 The SHE-MT assay 

The SHE-MT assay was performed at BioReliance and at Brunel using the vehicle control 

DMSO and the known mutagen and potent human carcinogen benzo(a)pyrene (normally 

the assay’s positive control). Cells were seeded at a low density (80 cells per dish) so as to 

obtain between 25 and 45 colonies per plate, with each colony presumed to originate 

from a single cell. Figure 6 contains example test plates from the assay and each colony 

was individually assessed for its growth characteristics and appearance in order to be 

scored either as ‘non-transformed’ (N) or ‘morphologically transformed’ (MT). The assay 

therefore generated four groups of colony-derived SHE cell cultures these are shown in 

Table 1. 
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Normal SHE colonies contain cells that are contact-inhibited and display organised flowing 

patterns of growth. Morphologically transformed SHE colonies differ as the cells overlap 

each other in a random orientation and cell nuclei will also stack on top of each other. 

Generally MT cells are basophilic and stain dark purple or blue in Giemsa compared with 

normal cells which stain light purple (Bohnenberger et al., 2012). Examples of normal and 

transformed colonies from my SHE-MT CTA experiments are shown in Figure 7. 

The plating efficiencies (PE) and morphological transformation frequencies (MTF) for SHE 

cells treated with DMSO and B(a)P are listed in Table 2 and were calculated according to 

the assay’s pre-validation studies (Maire et al., 2012a, Pant et al., 2012). The average 

number of colonies obtained routinely per plate was above 25, the PE of the vehicle 

control was above 20%, and no colonies or cells grew in dishes containing only 

conditioned media, which is in line with ECVAM’s assay guideline acceptance criteria 

(Maire et al., 2012a). The relative PE (RPE) of the positive control compared with the 

vehicle control (DMSO) was 117.19 %. The MTF for DMSO was 1.39% and for B(a)P was 

6.20 %. The statistical significance between observed MT frequencies following DMSO or 

B(a)P treatment was calculated using a one-sided Fisher’s exact test. Altered colonies 

which contain low density cells, still undergoing colony formation or process stacking; 

were not scored and were only included in the plating efficiency calculations.  

Table 1 – Types of SHE-CTA colony from which SHE cultures were obtained 
 

 Treatment Scoring 

DMSO N 0.2% DMSO Non-transformed 

DMSO MT 0.2% DMSO Morphologically transformed 

BP N 5 µg/mL B(a)P Non-transformed 

BP MT 5 µg/mL B(a)P Morphologically transformed 

 

Primary SHE cells were treated with either the vehicle control, DMSO (0.2%) or B(a)P (5 µg/mL). 

After a one-week incubation period, the resulting colonies were then scored according to their 

morphological characteristics. The cells isolated from the selected colonies were then used for 

further analysis. 
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Figure 6 – Example test plates from the Syrian hamster cell transformation assay (SHE CTA) 
 
Secondary SHE cells were seeded at 80 cells /dish (60 mm) in conditioned media. After a 7-day 

incubation period with test article, a minimum of 20 test plates per treatment were scored per 

SHE CTA experiment. The total number of colonies was used to calculate the plating efficiency 

(PE) and scoring of each colony was recorded to work out the frequency of morphological 

transformation (MTF).  

 

Table 2 – SHE cell transformation assay summary (performed by me at Brunel, 7 day treatment) 
 

Treatment 

Total 

colonies 

scored 

Average 

colonies per 

dish 

PE 

(%) 

RPE 

(%) 

MTF 

(%) 

MTF 

p value 

0.2% DMSO 509 25.45 31.81 n/a 1.39 n/a 

5µg/mL B(a)P 1879 29.83 37.28 117.19 6.20 <0.01 
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A total of 80 cells per dish were seeded to obtain 25 or more colonies per dish after treatment. 

Twenty dishes were treated with DMSO and 63 dishes with B(a)P (experiment BP B6). Colonies 

were scored according to established criteria for morphological transformation (Bohnenberger et 

al., 2012, Maire et al., 2012a); those that were altered and undergoing process stacking were not 

included in the MTF calculation. MTF p values were calculated using the one-sided Fisher’s exact 

test. As expected, no cells or colonies grew in the control plates containing only conditioned 

media. 
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Figure 7 – SHE MT assay colony examples 
 
Colonies were fixed in 100% methanol and stained in 10 % (v/v) Giemsa. Colonies shown in the 

left panel typify those scored as normal or non-transformed: the cells form organised flowing 

monolayers and they stain light purple. Colonies in the right panel are representative of those 

scored as morphologically transformed (MT): cell growth is disorganised and criss-crossed across 

the whole colony; typically these cells are spindly and elongated with increased nuclear to 

cytoplasmic ratios. Nuclear overlapping is visible and the colonies stain dark blue due to their 

basophilic nature. (Images were taken using a 5X objective on a Zeiss Axioskop microscope). 

 

3.3.2 Cells derived from the SHE-MT assay 

Live unstained colonies were scored and picked to understand the relationship between 

morphological characteristics, cellular lifespan and molecular analysis. SHE cells derived 

from colonies scored at Brunel were lifted using a Pasteur pipette, from unstained 

colonies, and transferred to 24-well plates containing conditioned media so that they 

could be expanded. Only half of each colony was picked so as to leave the remaining cells 

behind for staining in Giemsa, in order to confirm the preliminary scoring performed on 

unstained colonies. Areas lacking cells in the photographs in Figure 7, Figure 8 and Figure 

9 are where the cells have been scraped off in the picking process. In some instances the 

process of picking damaged the colony so that there were no cells left to image. In these 

instances, the initial scoring on unstained colonies was relied upon.  

Figure 8 and Figure 9 show examples of B(a)P-treated SHE CTA colonies that were picked 

at Brunel. From one SHE CTA experiment, cells derived from 4 out of a total 48 B(a)P-

treated colonies scored morphologically transformed (MT), imaged in Figure 8, continued 

to proliferate and established immortal cell lines. In contrast, the remaining 44 BP MT 

colonies (examples of which are shown in Figure 9) did not immortalise and ceased to 

proliferate (i.e. they senesced). A further two BP MT clones were isolated from other 

SHE CTA experiments. Despite these colonies not being intact on imaging due to sections 

having been removed for culture, both images clearly show typical MT characteristics. 

With the exception of D37 #1, (Figure 8D) and D51 #2, (Figure 9D) MT colonies stained 

dark blue in Geimsa. Under the microscope the cells appeared highly mitotic with large 

numbers of rounded telophase pairs visible. Cells were small in size with limited 

cytoplasms compared with normal and non-transformed SHE cells. There were significant 
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areas of cell aggregation and cell stacking visible typical of MT characteristics, in colony 

D37#1 (Figure 8D). Areas of nuclear stacking and clustering are also identifiable in MT 

colony D51 #2 (Figure 9D). By established criteria (Bohnenberger et al., 2012, Maire et al., 

2012c, Maire et al., 2012a), these colonies should be scored as MT. In all morphologically 

transformed colonies, the cells were disorganised, nuclear stacking was observed and 

their random cell orientation was visible across the remaining colony areas at both the 

colony periphery and the centre. MT cells even grew on top of senescent looking cells 

(Figure 8E, arrow). 
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Figure 8 – Picked morphologically transformed colonies that immortalised 
 
SHE cells were picked from unstained colonies which were then stained in Giemsa to confirm their 

MT phenotypes. From 2 separate SHE-CTAs, only 2 (A-B) and 4 (C-F) BP MT colonies progressed to 

immortality. To confirm senescence bypass, over 70 population-doublings had to take place 

which, depending on culture procedures, equated to around 30 sub-cultures; this process took 

over 3 months to complete. Images were taken using a 5X objective on a Zeiss Axioskop 

microscope. 
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Figure 9 – Picked morphologically transformed colonies that senesced 
 
SHE cells were picked from the unstained colonies which were subsequently stained in Geimsa to 

confirm their MT phenotypes. 68% of cell populations (33 out of 48) derived from B(a)P-treated 

MT colonies, such as those imaged above, senesced by ~PD18 and did not immortalise despite 

overt MT characteristics. Images were taken using a 5X objective on a Zeiss Axioskop microscope. 
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3.3.3 Morphological transformation does not guarantee senescence bypass 

SHE colony sizes after the 7 day incubation varied in density and size: between 5x103 -

2x104 cells were counted using a graticule. The average colony contained 8x103 cells, 

which assuming these originated from a single cell indicates ~13 population doublings at 

the point of colony picking and assay end point (passage 2). Picked colonies were 

transferred to a 24-well plate and expanded to a 60 mm and later 100 mm dish 

(passage 5); 80 % of all colonies picked, that established, senesced before they had 

undergone a total of 18 population doublings (i.e. stopped diving once transferred to a 

100 mm dish) and could not be studied further. Table 3 shows how the population 

doublings observed were estimated when the picked colonies were transferred and 

expanded from a 24-well plate to a 60 mm dish and later to 100 mm dish. 

Table 3 – Estimation of SHE cell population doublings undergone by colony-derived SHE cells 

 

Primary cells were recovered from liquid nitrogen and replated at 80 cells per dish 24 hours prior 

to treatment (passage 2). Several assumptions were made. First, each colony was generated from 

a single cell and second that, after 7 days incubation, an average colony contained around 

8x103 cells, i.e. approximately 13 or more population doublings had taken place. Picked cells were 

initially expanded in a 24-well plate. An average taken from counting confluent SHE cells in a 

60 mm dish, (passage 4) indicated that 18 or more population doublings had taken place. These 

cells were then expanded in a 100 mm dish (passage 5). 

 

All picked DMSO-treated colonies senesced as did all non-transformed B(a)P treated 

colonies. As highlighted in Table 4, the remaining 20 % of dividing clones continued to 

divide until a maximum of 35 population doublings (PD) before senescing (by passage 10) 

except for 4 out of 48 B(a)P-treated MT colony-derived cells that immortalised (a 

frequency in this experiment of <10 %) and continued to proliferate for over 60 PD; the 

original colonies from which these clones originated are imaged in Figure 8. Out of a total 

 
Number of cells Population doublings Passage No. 

Single cells seeded 1 0 P2 

Colony size (average) 8x103 13 P2 

Seed in 100 mm dish 5-30 x104 18 P5 
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of 142 SHE colonies picked from one SHE-MT assay (experiment BP B6), only 4 colony-

derived cultures immortalised (BP MT colonies C-F Figure 8). A further 2 B(a)P MT 

immortal clones were generated during other SHE MT assays. At the time of writing two 

BP MT colonies had undergone over 100 PD. 

Table 4 – Low frequency of immortalization of cells isolated from SHE-MT colonies 

 

The table gives examples of colonies picked from a SHE MT assay at Brunel, SHE cells were either 

treated with DMSO or B(a)P. Most colony-derived cell cultures either stopped dividing before 

18 population doublings from the point of CTA seeding (passage 5- transferred to 100 mm dish) 

and could not be further studied, or continued to divide for a maximum of 35 population 

doublings before senescing (by passage 10). From the cells generated in this representative assay 

4 B(a)P treated MT colony-derived cells continued to proliferate beyond 60 population doublings 

and thus could be considered immortal. Unscorable colonies included: 22 altered, 9 washed and 3 

extensively damaged colonies.  

 

Serial sub-culturing of colony-derived cells demonstrated that, with the exception of a 

total of 6 B(a)P-induced MT colonies, all DMSO and B(a)P-exposed non-transformed and 

transformed colonies stopped dividing without signs of growth by 35 population 

doublings (~passage 10). Growth curves for the 6 immortalised B(a)P MT lines prepared at 

Brunel and a representative non-immortal BP MT culture (D14 #1) are shown in Figure 10. 

When kept in culture, immortal lines continued to proliferate beyond 100 population 

doublings (Table 5A). Immortal clones divided exponentially once established as shown in 

Figure 10, for example BP MT D37 #1 and D36 #4 with mean doubling times of 23 hours 

Treatment Scoring 
No. colonies 

picked 
Division at P5 

(~18PD) 
No. 

Immortal 

DMSO Normal (N) 6 2/6 none 

DMSO 
Morphologically 

transformed (MT) 
5 2/5 none 

DMSO Unscorable 2 0/2 none 

B(a)P Normal (N) 47 4/47 none 

B(a)P 
Morphologically 

transformed (MT) 
48 15/48 4 

B(a)P Unscorable 34 6/34 none 

Expt. ‘BP 
B6’ total 

 142 29 4 
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and 33 hours respectively. BP MT D60 #1 had mean population doubling of around 

38 hours but had an initial cell growth ‘lag’ period following colony picking and 

establishment at around 18­20 PD (see Figure 10). Doublings times increased to over 

80 hours for about 20 days before exponential growth was observed. Similarly, following 

20 population doublings in BP MT D2 #1 there was a period of around 25 days without 

any cell division followed by an estimated 5 PDs in the following 21 days; cells were 

replated and doubling times stabilised to around 85 hours (Figure 10). A list of immortal 

lines generated in-house during this project is presented in Table 5A. In addition, two 

B(a)P-treated colony-derived SHE MT immortal lines were sourced from stocks prepared 

by a previous PhD student (Dafou, 2003), these are listed in Table 5B.  

Table 5– Frequencies of senescence-bypass of SHE-MT colonies scored as morphologically 
transformed (MT) 

 
A) BP treated, immortalised scored at Brunel by JCP 

Clone Name Senescence Bypass Crisis Passaged to 

B4 BP D36 #4 2/2 N P45 (approx. 120 PD) 

B4 BP D2 #1 2/2 Y P39 (approx. 75 PD) 

B6 BP D22 #2 2/2 N P34 (approx. 70 PD) 

B6 BP D37 #1 2/2 N P47 (approx. 135 PD) 

B6 BP D34#2 2/2 N P22 (approx. 80 PD) 

B6 BP D60#1 2/2 Y P23 (approx. 65 PD) 

 
B) BP treated, scored at Brunel by a previous PhD student Dimitra Dafou (DD) 

Sample Name Senescence Bypass Crisis Passaged to 

DD 8B-BP1 2/2 Unknown P19 

DD 8B-BP2 2/2 Unknown P21 

 

A total of 6 immortal SHE lines derived from B(a)P treated MT colonies were generated and the 

population doublings at the time of writing are stated (A). An additional 2 MT immortal SHE lines 

derived from previous SHE CTA and induced by B(a)P (B) were sourced from frozen stocks 

previously prepared at Brunel University by Dafou (2003).  
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Figure 10 – Immortal B(a)P-MT colony-derived SHE cells proliferate beyond 35 population 
doublings 
 
Secondary (passage 2) SHE cells were seeded on day zero and the colonies picked after 7 days 

exposure (black arrow). Cells taken from B(a)P-treated MT colonies were serially sub-cultured and 

their characteristics studied. Finite-lifespan SHE cells senesced before 35 population doublings 

and are represented by D14 #1. BP MT cultures that continued to expand were kept in culture for 

over 60 population doublings from the point of seeding for the assay. Cells were counted using a 

haemocytometer and calculated PDL values were plotted. BP MT D2#1 and D60#1 have distinct 

growth curves from the remaining BP MT clones that divided exponentially once established (e.g. 

by D37 #1).  

 

3.3.4 Determining growth characteristics and cell lifespan of SHE-MT clones obtained 

from BioReliance 

In addition to SHE clones from the SHE-MT assay performed by me at Brunel, 

representative colonies were also picked by the BioReliance (USA) team and grown there 

before shipping to the Brunel laboratories. The SHE CTA was performed at BioReliance by 

expert toxicologists who are familiar with the assay and their laboratory took part in 

previous CTA ECVAM validation studies (Pant et al., 2012). BioReliance-derived MT clones 
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scored as normal (non-transformed) are listed in Table 6 and Table 7. SHE cells derived 

from unstained colonies scored at BioReliance had been picked using cloning cylinders; in 

these instances the whole colony was picked and no reference image of the colony is 

available. On arrival at Brunel, cells were recovered from frozen ampoules and assigned 

passage number of P+1. Given that these cells were independent clones, and that 

cultures would have needed to have been expanded sufficiently to freeze these cells prior 

to shipping, it can be confidently assumed that they had undergone a minimum of 13 

population doublings on arrival (estimated from average Brunel SHE colony size) at P+1. 

These colony-derived cells from BioReliance were also studied for their general cellular 

morphologies and any unifying or distinguishing characteristics. 

Non-transformed SHE colony-derived cells senesce 

SHE-derived clones that had been treated with DMSO and scored as non-transformed 

(DMSO N), see Table 6A and representative images in Figure 11, displayed uniform 

organised growth as observed in the SHE colony based assay. As cells reached a high cell 

density they appeared as a flowing single monolayer of cells. Colonies scored as non-

transformed and treated with benzo(a)pyrene (BP N - see Table 6B) on recovery showed 

growth patterns similar to DMSO non-transformed cells and displayed characteristics 

typical of normal SHE cells. 

After 3-4 rounds of subculture there were increasingly visible signs of cellular senescence 

in cells derived from non-transformed colonies. SHE cells had enlarged cytoplasms, fewer 

mitotic cells and the non-transformed SHE colonies treated with DMSO and B(a)P stained 

positive for SA-βgal activity. All cells derived from DMSO N- and B(a)P N colonies entered 

cellular senescence by P+8. Terminally senescent cells were maintained in culture for at 

least one month to confirm lack of proliferation. It should be noted that, in six cases, non-

MT (DMSO exposed) colony-derived SHE cells obtained from BioReliance senesced 

immediately after recovery (P+1) and therefore could not be analysed further. 
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Table 6 – Senescence-bypass frequencies in non-transformed or normal SHE clones obtained 
from the SHE-CTA (provided by BioReliance) 

 
A) DMSO N: DMSO treated, scored non-transformed by BioReliance 

Abbreviation Sample Name Senescence Bypass Passaged to 

SHE 1 #4 DMSO 36 4N 0/2 P+5 (approx. 25 PD) 

SHE 2 #1 DMSO 38 1N 0/3 P+6 (approx. 30 PD) 

SHE 3 #2 DMSO 36 1N 0/6 P+6 (approx. 30 PD) 

SHE 4 #8 DMSO 40 2N 0/2 P+8 (approx. 30 PD) 

SHE 5 #9 DMSO 40 4N* 0/1* P+1 (approx. 13 PD) 

SHE 6 #3 DMSO 36 3N* 0/1* P+1 (approx. 13 PD) 

DMSO N1 DMSO AD29ZG 1N 0/2 P+7 (approx. 16 PD) 

DMSO N2 DMSO AD29ZH 1N 0/3 P+5 (approx. 16 PD) 

DMSO N3 DMSO AD29ZH 5N 0/5 P+6 (approx. 30 PD) 

DMSO_N1 DMSO N1 0/1* P+2 (approx. 13 PD) 

DMSO_N2 DMSO N2 0/1* P+2 (approx. 13 PD) 

DMSO_N3 DMSO N3 0/1* P+1 (approx. 13 PD) 

DMSO_N4 DMSO N4* 0/1* P+1 (approx. 13 PD) 

 
B) BP N: B(a)P treated, but scored as non-transformed by BioReliance 

Abbreviation Sample Name Senescence Bypass Passaged to 

SHE 7 #2 BP 27 1N Unknown Infection 

SHE 8 #8 BP 1 1N 0/2 P+4 (approx. 16 PD) 

SHE 9 #11 BP 34 1N 0/2 P+5 (approx. 25 PD) 

SHE 10 #12 BP 34 3N unknown Infection 

SHE 11 #13 BP 35 4N 0/2 P+4 (approx. 16 PD) 

SHE 12 #10 BP 22 2N 0/2 P+6 (approx. 30 PD) 

BP 4N BP AD29ZJ 4N 0/2 P+4 (approx. 16 PD) 

BP 1N BP 1N (Batch 3) 0/1* P+2 (approx. 13 PD) 

BP N1 BP N1 0/1* P+1 (approx. 13 PD) 

BP N2 BP N2 0/1* P+5 (approx. 18 PD) 

BP N3 BP N3 0/1* P+1 (approx. 13 PD) 

BP N4 BP N4 0/1* P+4 (approx. 18 PD) 

*cells were senescent on recovery, unable to freeze cell stocks. 

A total of 13 vials containing cells derived from DMSO-treated non-transformed colonies (A) and 
12 vials containing cells derived from B(a)P-treated non-transformed colonies (B) were obtained 
from BioReliance (via Unilever, the industrial partner in my BBSRC CASE studentship). 
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Figure 11 - Non-transformed cells, derived from the SHE-MT cell transformation assay (CTA) 
group that were treated with DMSO enter terminal senescence 
 
On recovery (P+1) cells were healthy and at high density formed flowing cell monolayers. Entry 

into terminal senescence took place within 2-4 subcultures. Cells shown in the Figure are derived 

a Syrian hamster embryo CTA perfomed at BioReliance. For the CTA, plates were treated with the 

vehicle control DMSO and clones isolated as described earlier from normal or non-transformed 

clones. (A) Top row; SHE#2 DMSO36 1N P+1 and P+5 (B) bottom row; SHE #1 DMSO38 1N P+1 and 

P+6. Images taken on a Carl Zeiss Axioshop microscope with a 4X objective. 
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Table 7 - Senescence-bypass frequencies in cells derived from SHE-MT colonies scored as 
morphologically transformed (MT)(provided by BioReliance) – cont. on next page 

 

A) DMSO MT: DMSO treated, scored morphologically transformed by BioReliance 

Abbreviation Sample Name Senescence Bypass Crisis Passaged to 

SHE 13 #10 DMSO 35 1T 0/2  P+6 (approx. 25 PD) 

SHE 14 #4 DMSO 10 1T 1/3 Y 
P+42 (approx. 95 

PD) 

SHE 15 #9 DMSO 33 2T 0/2  P+4 (approx. 18 PD) 

SHE 16 #5 DMSO 23 1T 0/1*  P+4 (approx. 18 PD) 

SHE 17 #4 DMSO 4 2T 0/1*  P+2(approx. 13 PD) 

SHE 18 #15 DMSO 37 1T 0/2  
P+15 (approx. 35 

PD) 

DMSO T1 DMSO T1 0/2  P+3 (approx. 16 PD) 

DMSO T2 DMSO T2 0/1*  P+1 (approx. 13 PD) 

DMSO T3 DMSO T3 0/1*  P+3 (approx. 16 PD) 

DMSO T4 DMSO T4 0/1*  P+1 (approx. 13 PD) 

*cells were senescent on recovery, unable to freeze cell stocks. 
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Table 7–Senescence-bypass frequencies in cells derived from SHE-MT colonies scored as 
morphologically transformed (MT)(provided by BioReliance) 

 

B) BP MT: BP treated, scored morphologically transformed by BioReliance 

Abbreviation Sample Name Senescence Bypass Crisis Passaged to 

19 #19 BP 10 1T 0/8  P+8 (approx. 20PD) 

20 #18 BP 37 1T unknown  infection 

21 #17 BP 37 2T 2/7 Y 
P+7 (approx. 25 PD) 

P+39 (approx. 80 
PD) 

22 #22 BP 17 1T 0/7  P+5 (approx. 20 PD) 

23 #16 BP 7 1T 5/5 N 
P+42 (approx. 140 

PD) 

24 #3 BP 10 1T 1**/10 Y P+6 (approx. 20 PD) 

BP T4 BP AD29ZJ 4T 2/3 Y 
P+27 (approx. 70 

PD) 

BP T1 BP T1 0/3  P+5 (approx. 20 PD) 

BP T5 BP T5 0/1*  P+5 (approx. 20 PD) 

BP T8 BP T8 0/1*  P+3 (approx. 16 PD) 

BP T9 BP T9 2/2 Y 
P+25 (approx. 65 

PD) 

BP T10 BP T10 0/1*  P+2 (approx 13 PD) 

BP T11 BP T11 0/1*  P+3 (approx. 16 PD) 

BP T13 BP T13 0/1*  P+1 (approx. 13 PD) 

BP T15 BP T15 0/1*  P+4 (approx. 18 PD) 

BP T17 BP T17 0/1*  P+1 (approx. 18 PD) 

BP T19 BP T19 0/2  P+7 (approx. 20 PD) 

BP T21 BP T21 0/1*  P+1 (approx. 13 PD) 

*cells were senescent on recovery, unable to freeze cell stocks. 

**SHE 24 cells post crisis lost due to infection 
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A total of 10 vials containing cells derived from DMSO-treated MT colonies (A) and 18 vials 

containing cells derived from B(a)P treated transformed colonies (B) were obtained via Unilever 

from BioReliance. On arrival at our laboratories these cells were recovered and grown to study 

their growth characteristics and cellular lifespan. In red typeface are those colony derived cells 

that immortalised (5 out of 28 MT colonies, 4 of which were derived from BP-treated CTA groups). 

In 4 out of 5 cases a cell crisis had to be overcome to bypass senescence barriers. 

 

 

Morphological transformation does not (as in 3.3.3) guarantee senescence bypass in 

SHE-MT clones generated by BioReliance 

 

DMSO MT 

Areas of criss-crossed cell growth were not initially identified in cells derived from 

DMSO MT colonies inconsistent with their scored MT characteristics (Figure 12). Eight out 

of 10 DMSO MT colony-derived cells from BioReliance entered senescence and stopped 

dividing by P+6 (Table 7A). A further clone continued to proliferate for around 

35 population doublings (SHE 18) but then ceased to proliferate and also senesced. In one 

out of ten cases, cells from a DMSO-treated MT colony (SHE 14) continued to grow and 

divide, overcoming a cell crisis in which most of its population ceased to proliferate 

(Figure 13). Expansion of SHE 14 was repeated from early passages but events leading to 

spontaneous immortalisation only occurred in one out of three expansion attempts, 

implying the occurrence of a further stochastic immortalization event. The frequency of 

immortalisation in cells derived from DMSO-exposed MT colonies was 1 in 10; although, 

given the known low rate of spontaneous immortalisation in SHE cells (Trott et al., 1995) 

this is believed to be a very rare event. 

B(a)P MT 

SHE populations obtained from benzo(a)pyrene-treated transformed colonies (BP MT) 

initially retained their MT characteristics; cell growth was disorganised and random with 

many cells overlapping each other. Fourteen out of eighteen (78 %) BP-treated MT 

colony-derived SHE cells prepared by BioReliance subsequently flattened, enlarged and 

entered senescence, see Table 7B. Eight of these BP MT colony-derived cells were 
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senescent on recovery from cryostorage (P+1) and could not be further analysed. The 

typical appearances of senescent cells from the BP MT colony, SHE 19 are shown in Figure 

14A. SHE 19 was slow growing at P+1 after recovery and, although signs of overlapping 

MT growth were initially noted, cell proliferation then slowed such that by passage +5 

cultures were dominated by enlarged overlapping cells that looked granular with irregular 

cells membranes. Dishes containing SHE 19 cells at passage +8 (around 20 population 

doublings) were maintained for over 2 months without any subculture or signs of cell 

growth. The frequency of immortalisation of morphologically transformed SHE cells that 

had initially been treated with B(a)P from BioReliance was 22 % (4 out of 18). These 

clones bypassed senescence and continued to divide and proliferate beyond 

70 population doublings; when kept in culture immortalised MT cells reached beyond 

100 population doublings. Those cultures that went on to bypass senescence barriers are 

identified in Table 7 and shown in bold, red typeface. 

The growth kinetics of MT-derived SHE cells from both BioReliance and those prepared at 

Brunel confirm that immortality is not a direct consequence of morphological 

transformation following the SHE-MT colony CTA. They also indicate that events 

subsequent to MT are necessary for senescence barriers to be successfully overcome. 
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Figure 12 –DMSO MT colony-derived cells show signs of poor growth before widespread 
senescence. 
 
On subculture, DMSO-treated morphologically transformed SHE clones (DMSO MT) for the most 

part enter terminal senescence and stop dividing, except in one instance shown in Figure 9. Cells 

shown are representative of cells derived from SHE DMSO T colonies. (A) SHE 13 P+2 and P+5; (B) 

SHE 18 P+2 and P+3. 
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Figure 13 – One transformed colony from the DMSO-treated group (SHE 14) spontaneously 
immortalised 
 
Time course of DMSO-treated MT SHE 14 cell growth. On recovery, SHE 14 was phenotypically 

similar to other DMSO MT colony-derived cells and most of its cell population terminally 

senescenced by passage +4 (A and B). A rare clonal event spontaneously took place at P+5 (C) 

these cells continued to proliferate (D) and on replating expanded to bypass senescence barriers 

and spontaneously immortalised.  
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Figure 14 – Cell growth of B(a)P-treated morphologically transformed (MT) colony-derived SHE 
cells from BioReliance 
 
(A) 77% of B(a)P treated MT clones senescence and do not immortalise. Phase contrast images 

were taken of cells derived from a representative SHE B(a)P-treated MT colony that senesced 

(SHE 19). On recovery, cell organisation of these cells was disorganised but following 

3­6 subcultures cells entered senescence, had enlarged cytoplasms and ceased to proliferate. This 

indicated that MT does not guarantee cellular immortality. From left to right images were taken 

at passages +4, +5 and +6. 

(B) Only 1 out of 18 B(a)P-treated MT clones showed no signs of senescence and was found to be 

immortal from the outset. On recovery, SHE 23 cells displayed MT phenotypes and had a high rate 

of population doubling. MT cells continued to proliferate for over 100 population doublings; no 

signs of senescence were observed and cells were negative for SA-β gal (not shown). From left to 

right images were taken at passages +2, +5 and +6 using a Carl Zeiss Axioshop inverted 

microscope. 
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 Secondary immortalising events following MT 

A single BP MT culture (SHE 23) from BioReliance continued to proliferate with no signs of 

senescence (cultured to passage P+42, over 140 population doublings). SHE 23 cells were 

highly spindle-shaped, retained MT characteristics (Figure 14B) and had short population 

doubling times of ~30 hours (Figure 16). Stocks of early passage SHE 23 were recovered 

on 5 separate occasions (Table 7B) and cells were cultured for over 140 population 

doublings with no signs of senescence indicating that these cells were immortal from the 

outset. 

On the other hand, three BP-treated MT cultures needed to overcome a cell crisis visually 

similar to cellular senescence and from then continued to proliferate. Cell population 

doubling times increased (as shown in Figure 16) for a period of around 20 days with no 

growth as similarly observed in the clones generated at Brunel (see Figure 10). Following 

this incubation time, rare pockets of clonal growth were readily identifiable in the case of 

BP MT SHE 21 that emerged from a background of senescent cells (Figure 15A) and also in 

BP MT SHE 24 (Figure 15B). In SHE 21, once the clonal growth was replated and 

distributed across the cell plate, population doubling times decreased to 58 hours and 

from then on cells continued to divide without signs of senescence (Figure 16). SHE cells 

from MT colonies BP T4 and BP T9 also progressed to immortality with similar lag times. 

However, unlike SHE 21, pockets of clonal cell growth were not observed in these 

instances but BP MT cells still overcame what phenotypically looked like a cell crisis with 

enlarged cytoplasms and a distinct lack on telophase cells. Gradually, the cell population 

bypassed senescence between 10 and 20 population doublings and, after around 80 days 

in culture (from CTA seeding), began to proliferate with decreased doubling times (Figure 

16). This suggests that rare immortalising events are not necessarily phenotypically 

obvious in contrast to those observed in Figure 15. Unfortunately SHE 24 was lost due to 

a bacterial infection; while stocks previous to the (likely) immortalising event were frozen 

it was not observed again, indicating a stochastic nature of secondary events leading to 

senescence bypass. 
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Figure 15 – MT colony-derived cells require one or more additional events to acquire 
immortality 
 
B(a)P-treated MT-derived cells underwent a prolonged crisis identified by high senescent 

backgrounds and increasingly slow growth rates which lasted up to a month in culture. In SHE 21 

(A) and SHE 24 (B) rare events eventually took place, initiating clonal division after around 20-

25 population doublings. These proliferating cells through subsequent rounds of replating and 

subculture took over the cell population. (A) SHE 21, images taken (from left to right) at P+2, P+5, 

P+16. (B) SHE 24 images taken at P+2, P+4 and P+4 (different fields of vision from the same plate). 

Note the dish containing SHE 24 with clonal growth was lost to infection. Images were taken using 

a Carl Zeiss Axioshop inverted microscope. 
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Figure 16- Most colony-derived SHE cells senesced by 35 population doublings 
 
Whole SHE-MT colonies were picked at BioReliance using cloning cylinders and, on arrival at the 

Brunel laboratory; colony-derived cells were serially sub-cultured to study their growth 

characteristics. Detached cells were counted using a haemocytometer and calculated PDL values 

were plotted against number of days in culture. All DMSO and B(a)P non-transformed colony- 

derived cells that grew senesced before 35 PD (or 7 passages). 14 BP MT colony derived cultures 

also did not proliferate beyond P+7 or 35 PD; examples are BP T15 and BP T19. A total of 4 B(a)P-

treated MT colonies immortalised and continued to proliferate beyond 35 PD: SHE 21, SHE 23, 

BP T4 (not plotted) and BP T9. 

 

Morphologically transformed (MT) colony-derived SHE cells that were shown to have 

reduced rates of proliferation were noted to lose their MT characteristics following the 

decrease in population doubling times. As shown in Figure 17 but also in Figure 15 (right-

most images), once clonal growth emerged from the senescent background, B(a)P-

induced cells no longer had criss-crossed patterns of growth but were organised and 

contact  inhibited at high cell densities. A similar observation was identified in SHE 14, the 
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DMSO-induced spontaneous MT clone too had an extensive incubation period where the 

cells did not divide but then a rare clone without MT characteristics continued to grow 

and took over the cell population, progressing to immortality (imaged previously, in 

Figure 13). In contrast, cells derived from B(a)P MT colonies that were immortal from the 

outset with continuous exponential growth (e.g. SHE 23, D22 #2 and D37 #1) retained 

their MT characteristics with obvious cell stacking and star-like growth (Figure 18). 

 

Figure 17 – Morphologically transformed (MT) characteristics are lost in two immortal BP MT 
colony-derived SHE cells obtained following crisis 
 
The B(a)P treated colonies which generated SHE 21 and D2#1 immortal cell lines were 

morphologically transformed. As the cells from these clones were cultured, MT characteristics in 

were lost. SHE 21 (A) grew in non-overlapping clusters and D2#1 (B) displays fibroblastic-like 

growth. Both of these cell lines had to overcome a cell crisis where no proliferation took place for 

prolonged period of time before immortalising. (A) SHE 21 P+26; (B) SHE BP B4 D2 #1 P22. Phase 

contrast images were taken with a Canon PowerShot G6 camera adapted onto a Carl Zeiss 

AxioVert CFL Microscope (images to the left taken using a 10 X objective and images to the right 

using a 40 X objective). 
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Figure 18 –MT characteristics are retained in clones derived from MT colonies that were 
immortal from the outset 
 
Immortal cell lines generated from B(a)P treated MT colonies generally retained disorganised MT 

characteristics. Transformation was identified by overlapping criss-crossed growth and a lack of 

cell contact inhibition. The following representative cell lines are imaged: (A) SHE 23 P+6: 10X and 

40X; (B) D37 #1 P13: 10X and 40X; (C) D22 #2 P12: 10X and 40X. Phase contrast images were 

taken with Canon PowerShot G6 camera adapted onto a Carl Zeiss AxioVert CFL Microscope 

(images to the left taken using a 10 X objective and images to the right using a 40 X objective). 
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In the table below (Table 8) all of the immortal SHE clones studied in this project are 

listed. This includes those that were obtained from BioReliance (5 cell lines), those 

prepared de novo at Brunel (6 cell lines), plus existing immortalised colony-derived lines 

previously prepared at Brunel by Dafou (2003), (2 cell lines). In total there were 12 B(a)P-

treated MT immortal lines and 1 DMSO-treated MT immortal clone. Five lines had an 

observable cell crisis that was overcome before progressing to immortality. For simplicity, 

the SHE-MT colony derived cultures have been renamed and from this point on will be 

referred as stated in Table 8.  

Table 8 – Summary of immortal MT colony derived SHE cells 
 

Name Sample Prepared by Treatment Crisis 

DMSO MT1 SHE 14 BioReliance DMSO Y 

BP MT1 SHE 21 BioReliance B(a)P Y 

BP MT2 SHE 23 BioReliance B(a)P N 

BP MT3 BP T4 BioReliance B(a)P Y* 

BP MT4 BP T9 BioReliance B(a)P Y* 

BP MT5 D36 #4 JCP B(a)P N 

BP MT6 D2 #1 JCP B(a)P Y 

BP MT7 D22 #2 JCP B(a)P N 

BP MT8 D37 #1 JCP B(a)P N 

BP MT9 D34#2 JCP B(a)P N 

BP MT10 D60#1 JCP B(a)P Y* 

BP MT11 8B-BP1 DD B(a)P Unknown 

BP MT12 8B-BP2 DD B(a)P Unknown 

 
From SHE-MT assays conducted at BioReliance and Brunel, a total of 13 independent clones 

derived from morphologically transformed colonies bypassed senescence and immortalised. Of 

these, one had received treated with DMSO during the CTA and spontaneously immortalised; the 

remaining 12 had been exposed to the carcinogen B(a)P at the start of the MT CTA. The table 

gives the origin of each cell type and if they entered a cell crisis during stages of senescence 

bypass. The detailed growth characteristics of cultures prepared by Dafou (2003) were unknown 

as only late passage cell stocks were available.(*) did not show characteristics of crisis 

(cytoplasmic enlargement) but the cumulative population doublings indicate there was a lag 

phase before exponential cell growth. 
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3.4 Discussion 

The first objective in this project was to investigate the relationship between 

morphological transformation and known hallmarks of malignant transformation (e.g. 

immortalisation) in Syrian hamster embryo cells (SHE cells) obtained from the SHE cell 

transformation assay. For this study, unstained colonies were picked and the cells used to 

establish colony-derived SHE cultures to investigate if there was a link between MT and 

cell immortalisation. 

The average lifespan in culture of a normal primary SHE cells is 20-30 population 

doublings at which point the cells no longer possess any proliferative potential and 

undergo permanent growth arrest (Carman et al., 1998). Cellular senescence is typified by 

enlarged cytoplasms and flattened cellular morphologies often with stress fibres and 

increased lysosomal activity (Chandler and Peters, 2013). However, in reduced pH 

medium (such as DMEM-L, pH 6.7) the lifespan of SHE cells has been shown to be 

extended, reaching around 50 population doublings (Kerckaert et al., 1996c). In work by 

Dafou (2003) primary SHE cells underwent 55 PD before senescing but colony-derived 

cells entered senescence more readily. Growth studies presented here on SHE CTA 

colonies show that all non-transformed DMSO-treated colony-derived clones senesced 

before 35 population doublings, as did all B(a)P treated non-transformed colony-derived 

SHE cells. Senescent cells showed no signs of cellular division in culture for a month or 

more, despite regular fresh media changes. A common marker for senescence is 

lysosomal activity which is thought to increase with cell ageing and can be detected by 

senescence-associated beta-galactoside (SA-βgal) staining (Kurz et al., 2000). Although 

SA-βgal staining was used to confirm senescence in SHE cells, the formation of the blue 

precipitate was inconsistent and may have been affected by culture of cells in a low pH 

culture medium. Actively proliferating cells were often positive for the stain which was 

noted to form when the cells were at higher cell densities. Immunofluorescence with a 

marker of proliferation (Ki-67) was briefly attempted as an alternative (Schluter et al., 

1993) but this was also unsuccessful in highly proliferating SHE cells (e.g. BP MT2) and 

was probably due to incompatibility of the human and mouse antibodies tested with the 

Syrian hamster. Therefore to confirm senescence in the colony-derived SHE cells, cells 

were kept in culture between one to two months and checked for any signs of growth.  
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The vast majority of morphologically transformed (MT) SHE cells also stopped 

proliferating and entered senescence. Over 90 % of B(a)P-induced MT colonies picked at 

Brunel entered growth arrest and almost 80 % of those from BioReliance also ceased to 

divide. It is therefore clear that MT characteristics alone are insufficient for cellular 

immortalisation and that subsequent additional event(s) are necessary for evasion of 

senescence barriers. The remaining 10-20 % of BP MT clones did bypass senescence 

whereas no non-transformed colony-derived cells were found to immortalise. In total 

(and from three different sources) twelve morphologically transformed B(a)P-treated 

clones picked from SHE-CTA colonies continued to proliferate and can be considered 

immortal. Thus the MT phenotype does seem to correlate with an increased likelihood of 

unlimited proliferative potential. When cells derived from the same colony were re-grown 

from early population doubling time points, immortality was not always acquired, 

indicating a stochastic nature of senescence bypass.  

The event of unlimited growth was secondary to MT in at least 45 % of immortalised MT 

colony-derived SHE cells. Cultures requiring secondary events flattened and remained 

without signs of division for a period of 20 days, observable by a lack of telophase cells 

and long population doubling times. Subsequently cell division increased and, after a cell-

crisis period reminiscent of senescence, areas of clonal growth emerged from a 

background of cytoplasmically enlarged cells. From this point onwards no signs of 

senescence or increased doubling times were observed but MT characteristics were lost 

in these cases so that cells became contact inhibited and did not overlap. These 

observations point towards necessary secondary events required by MT cells to bypass 

senescence and acquire unlimited growth potential. In those MT cells that stopped 

dividing, it is postulated that secondary events did not take place. In contrast, the 

remaining BP MT colony-derived SHE cells proliferated without any known incubation 

period (doubling times around 30 hours) and can be considered immortal at the outset. 

An interesting point is that these populations retained MT characteristics throughout 

their time in culture and were not contact-inhibited. This indicates that underlying 

molecular events and clonal evolution occurring during crisis had an effect on cell 

morphology which again highlights how the scored MT phenotype is not sufficient for the 

bypass of senescence barriers nor are criss-crossed patterns of growth required long-



Page 94 of 226 

term. Information on the generation of immortal clones BP MT11 and 12 was not 

available as these cultures were established by a previous PhD student (Dafou, 2003). 

One single DMSO-treated MT colony established a spontaneously immortalised line and 

also followed growth kinetics similar to the two-step kinetics described earlier whereby 

rare clonal growth took over a population of mostly senescent cells. All other DMSO-MT 

clones irreversibly senesced. It is believed that this is an extremely rare event as 

spontaneous immortalisation is very uncommon in the Syrian hamster and largely 

unrecorded in previous findings (LeBoeuf et al., 1990, Trott et al., 1995). Along with 

previously described data from BP MT clones, we can conclude that morphologically 

transformed characteristics must predispose or prime SHE cells towards overcoming 

senescence barriers but that this is by no means guaranteed. 

In terms of assay evaluation, the SHE CTA is a highly subjective assay which relies on a 

visual interpretation of each individual colony. What was apparent from conducting the 

assay is the heterogeneous nature of the colonies obtained, which can be explained by 

the target cells being derived from embryo cells. This is innately beneficial to screening as 

a mixture of cell types can be simultaneously tested. However, the resulting variety of 

colony types further complicates the scoring process (Bohnenberger et al., 2012, Maire et 

al., 2012c). Basic training did greatly aid my ability to discriminate between normal and 

morphologically transformed colonies but the actual scoring process can occasionally be 

ambiguous even for scientists familiar with conducting the assay. In these cases a second 

opinion is often sought (personal communication with BioReliance). 

Frequencies of morphological transformation (MTF) have been shown to vary slightly 

between laboratories; this has been addressed with recent efforts to standardise the 

assay’s protocol, improving assay reproducibility and transferability (Corvi et al., 2012). It 

is apparent from SHE CTA data from Brunel that the calculated MTF for the vehicle 

control DMSO (0.2 %) is greater than that stated in the ECVAM guidelines, as is the 

expected MTF for benzo(a)pyrene (5µg/µl) (Pant et al., 2012). This suggests an 

overestimation of those colonies that were scored MT and could be down to a number of 

factors (in the first instance attributed to lack of experience and lack of assay objectivity). 

However, other factors affecting the MTF cannot be excluded. Seeding density may have 
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had an effect. From previous experiments, using the same batches of primary SHE cells 

(Dafou, 2003) a seeding density of 80 cells per 60 mm dish was shown to produce an 

increased MTF of 4.1 % using 6 µg/µl B(a)P compared to an average MTF of 1.7 % when 

150 cells were seeded, indicating that a lower seeding density increases the observed 

MTF and vice versa. In my hands, when 150 cells per dish were seeded, colony picking 

became problematic as the colonies overlapped after the 7 day incubation period. A 

lower seeding density of 80 cells per dish was optimal in order to facilitate picking 

individual SHE colonies. Another factor to be taken into consideration is that MTFs were 

shown to be slightly higher in SHE CTAs performed using conditioned media compared 

with assays employing feeder layers (Pant et al., 2008, 2010). ECVAM’s pre-validation 

study, which uses feeder layers of x-ray irradiated SHE cells instead of conditioned 

medium, places an upper limit of DMSO MTF at <0.6 %, and the observed MTF using B(a)P 

5 μg/mL was between 1-4 % depending on laboratory. In another SHE MT study by Pant 

(2008) using conditioned medium and not feeder cells, the vehicle control DMSO MTF 

was between 0.52 % and 0.80 % whereas the MTF for the positive control B(a)P at the 

same concentration was also higher, i.e. between 2.56 % and 2.85 %. The main purpose 

of performing the SHE CTA in-house was to generate an increased number of MT 

immortalised colonies for further analysis. Despite increased frequencies of MT in our 

samples, together with colony-derived SHE cells obtained from BioReliance, it can 

nonetheless be concluded that the vast majority of morphologically transformed colonies 

stopped dividing before 35 PD in reduced pH media. It is probable that the frequency of 

immortality in MT B(a)P cells picked in-house of <10 % reflects the higher proportion of 

colonies scored MT. 

In conclusion, morphological transformation (MT) does not guarantee senescence bypass 

but may predispose cells within the MT colony to subsequently evade senescence. In 

almost half of the colonies studied, secondary events following MT were necessary for 

cellular immortalisation. MT cell characteristics were not necessarily retained in clones 

acquiring unlimited growth potential but all colony-derived SHE scored as non-

transformed cells stopped dividing. 
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CHAPTER 4 

 

4 The Syrian Hamster CDKN2A/B Locus 
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4.1 Introduction 

The CDKN2A-CDKN2B locus is located on chromosome 9p21 in humans and spans over 

40 Kb of genomic DNA. It is found in a gene desert but contains three important tumour 

genes, each under the control of separate promoters (p16, p15 and ARF), which are 

involved in regulating cell growth and senescence pathways (Gil and Peters, 2006). The 

genomic region is frequently subject to loss of heterozygosity (LOH) and homozygous 

deletion in tumours (van der Riet et al., 1994, Gray et al., 2006, Florl and Schulz, 2003). 

During early stages of development the locus is silenced by polycomb protein repressor 

complexes (PRC1 and PRC2) which are then progressively removed over the course of the 

cell’s lifespan pushing the cell towards senescence (Bracken et al., 2007, Martin et al., 

2013). Targeting of Polycomb proteins by microRNAs (miRNAs) has been shown to 

activate expression of p16 and entry into senescence (Overhoff et al., 2014). ARF is known 

to modulate the activity of the tumour suppressor protein p53 by regulating protein 

turnover via Mdm2, whereas p16 activates senescence pathways via the retinoblastoma 

protein (pRB) (Kuilman et al., 2010). ARF and p16 have their second exonic region in 

common which uses an alternative reading frame to generate proteins with distinct 

functions. The p15 gene is thought to have arisen by duplication of p16 and is believed to 

have similar functional roles (Krimpenfort et al., 2007); p15 is located ~8 Kb upstream of 

ARF exon1 β which is another 20 Kb upstream of p16exon 1 α. A large anti-sense long 

non-coding RNA element ANRIL has been identified to overlap with the CDKN2B locus 

(Aguilo et al., 2011) which may co-ordinate regulation of all three tumour suppressors.  

Up until recently the Syrian hamster (Mesocricetus auratus) genome had not been 

sequenced and only very limited sequence information has been available. The lack of 

accessible genomic data for this rodent model has been experimentally restrictive and 

has hindered studies concerning molecular mechanisms (Li et al., 2008, Yasaei et al., 

2013, Creton et al., 2012). In 2013, the Broad Institute of MIT and Harvard University 

recently completed genomic shotgun sequencing of the Syrian hamster genome using the 

Illumina HiSeq 2000 platform (WGS Project APMT01). The project generated 237,700 

unannotated whole genome shotgun sequences (WGS) containing nucleotide information 

which can be accessed via the NCBI database. Although not yet fully assembled, genomic 

information is now available for Mesocricetus auratus and very recently, predicted gene 
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transcripts inferred from protein alignments (personal communication with NCBI Help 

Desk) have also been uploaded. Previous to WGS Project APMT01, messenger transcripts 

were available for p16, p15 and ARF genes but non-coding information was very limited. 

Taking advantage of the latest genomic knowledge, intergenic information can be sourced 

from the WGS files (APMT01). This chapter focuses on discussing coding regions of genes 

located within the CDKN2A/B locus. Inferred alignments between known Syrian hamster 

coding sequences and genomic WGS now permit a comparison of the genomic structure 

of the CDKN2A/B locus in hamster with other species. Additionally, non-coding regions 

upstream of the p16 gene containing its promoter were further identified (Hanaoka et al., 

2005) which enabled prediction of regulatory DNA sequences and characteristics. 

 

 

4.2 Materials and methods 

4.2.1 Annotated CDKN2A/B sequences available via NCBI 

The following known mRNA sequences were identified via the NCBI nucleotide database 

for genes located in the Syrian hamster CDKN2A/B locus: p16 (GenBank: AF292567), ARF 

(GenBank: AF443796) and p15 (GenBank: NM_001281539). Additionally, for the p16 gene 

two extra sequences containing limited genomic information were sourced: p16 

promoter (Hanaoka et al., 2005) and p16 partial coding region (GenBank: AH010240.2) 

which contained incomplete intragenic information.  

4.2.2  WGS sequences available via NCBI 

Whole genome shotgun sequences (WGS) for the Syrian hamster were obtained via NCBI. 

Existing and known coding sequences for p16, p15 and ARF were entered into nucleotide 

BLAST (BLASTn) to identify which WGS contained them, by selecting Mesocricetus auratus 

(taxid: 10036) and limiting the search to WGS contigs. Contig sequences were then 

downloaded into CLC Main Workbench software v6.9 (CLCbio, Aarhus, Denmark) for 

further alignments and sequence analysis. 
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4.2.3 Sequence alignments 

Coding nucleotide sequences for p16, p15 and ARF in human, rat and mouse were 

searched for via the NCBI nucleotide database and protein sequences were inferred. 

Sequences were aligned to Syrian hamster coding sequences using ClustalX v2.1 (Larkin et 

al., 2007) in the multiple alignment mode. Once aligned, the file was opened in 

Jalview v2.8.1 (Waterhouse et al., 2009) and residues were coloured according to their 

identity (i.e. conversation across sequences). Pairwise alignments in Jalview calculated 

the similarity between species, given as percentage identities. CLC Main Workbench 

software v6.9 (CLCbio, Aarhus, Denmark) was also used for simplicity to visualise the 

sequences. 

4.2.4 Sequencing of ~1.6 Kb upstream of the p16 transcriptional start site (TSS) 

WGS contig sequences containing the upstream region to p16 were confirmed by PCR and 

sent for Sanger sequencing (Beckman Coulter Genomics). Overlapping primers were 

designed to the immediately upstream sequences of contig085774 (GenBank: 

APMT01085774.1) located adjacent to the known 300 bp containing the 5’ SH p16 

promoter. 

Primer design 

Primers were designed using Primer-BLAST (available via NCBI) and the suggested primer 

oligonucleotides were checked for specificity by ‘blasting’ them back into the SH WGS 

database. Three overlapping primer pairs were generated to cover a total of 1,674 bp just 

upstream of the p16 gene’s transcriptional start site and including 380 bp of known p16 

promoter region. Primer specificity was confirmed by PCR and gel electrophoresis (refer 

to section 2.7). 

Confirming WGS sequence 

A further PCR for each primer pair was then performed on wild-type Syrian hamster 

genomic DNA (gDNA); amplified products were extracted from a 1.5 % agarose gel and 

purified for sequencing as described in sections 2.8 and 2.9 respectively. For each PCR 

reaction, 100 ƞg gDNA was added to 25 µl AmpliTaq Gold ® 360 master mix (Applied 

Biosystems®), 5 µl GC enhancer, 0.5 µM forward primer, 0.5 µM reverse primer made to 

50 µl in RNase/DNase free dH2O. Cycling conditions were as follows: denaturation at 95 °C 
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for 10 min followed by 40 cycles of 94 °C for 45 sec, 59 °C for 30 sec and 72 °C for 45 sec, 

then final extension at 72 °C for 7 min before holding at 4 °C. Reactions were performed 

in duplicate so as to load up to 100 µl of each PCR product on a 1.5 % agarose gel made in 

1 X TBE buffer with EtBr. The resulting Sanger sequences were aligned back to the original 

WGS sequence (contig085774) using CLC Main Workbench software v6.9 (CLCbio, Aarhus, 

Denmark). 

4.2.5 Investigating the p16 gene promoter 

Confirmed WGS sequence information was input into MethPrimer (Li and Dahiya, 2002), 

to identity potential CpG islands located in the p16 promoter. The criteria for 

identification of a CpG island were (i) that it had to be over 100 bp in length and (ii) that 

its CG content had to be higher than 50 %. Similarly, data was input into GPMiner (Lee et 

al., 2012) to identify any promoter regulatory motifs. As there was no setting specific for 

hamster genomes included on the program, both human and mouse settings were tested 

and they gave the same output. 

 

 

4.3 Results 

4.3.1 Conservation of CDKN2A-CDKN2B coding regions 

Gene coding regions of the CDKN2A/B locus in Mesocricetus auratus were aligned to 

corresponding mouse, rat and human sequences identified via the NCBI databases. Figure 

19 shows the aligned mRNA (A) and protein (B) sequences for the p16 coding regions of 

Syrian hamster (AF292567), mouse (AF044335), rat (L81167), human variant 1 

(NM_000077) and 5 (NM_001195132). Hamster p16 was found to be 474 nucleotides in 

length and was shown to have 71.78 % identity in common with mouse, 77.11 % with rat 

and 73.47 % and 72.06 % identity with human variant 1 and 5 respectively. p16 identity to 

human transcript variants 1 and 5 was marginally higher than mouse (67.81 % and 

66.73 % respectively) and rat (71.78 % and 70.27 % respectively); the highest identity was 

between mouse and rat orthologues (82.05 %). At a protein level, hamster p16 shared 
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69.59 % identity to human Ink4a and 66.24 % to p16-gamma, 68.13 % identity to rat and 

65.61 % identity to mouse. 

Nucleotide and protein alignments performed with Clustal X for ARF are shown in Figure 

20. Between Syrian hamster p13ARF and mouse p19ARF there was 77.63 % nucleotide 

sequence identity. This is compared to 81.27 % identity with rat and 76.36 % identity with 

human p14ARF. The coding region of Syrian hamster ARF appears to hold two extra 

codons encoding arginine residues in exon 1β. The second exon is shorter in length 

leading to a total hamster p13/ARF polypeptide of 123 amino acids compared to 132 

residues in human (p14/ARF) and over 160 residues in mouse and rat (p19/ARF). This 

difference in length helps explain the low sequence homology between the amino acid 

sequences; Syrian hamster ARF protein held 53.66 % identity with mouse, 54.47 % with 

human and 61.79 % with rat. 

Finally, SH p15 is 393 nucleotides in length and aligned to both human isoforms but 

showed the highest homology to the CDS of human p15 transcript variant 1 (NM_078487) 

with 83.37 % identity. The coding transcript of hamster p15 was highly conserved across 

species and had 88.89 % identity with mouse nucleotide sequences and 89.20 % with rat, 

see Figure 21. The gene’s first exon was the most homologous. Between the p15 Syrian 

hamster protein sequence there was 91.54 % identity with both rat and mouse sequences 

compared with 86.15 % identity with human p15. 
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Figure 19 – Alignment of Syrian hamster p16 coding regions 
 
Sequence information was inferred from GenBank via NCBI nucleotide and protein databases, 

alignments were performed using ClustalX2 before exporting into Jalview v2.8.1. Regions shaded 

in blue are those of identity, with darker blue indicating the highest conservation. A) Nucleotide 

alignment of: Hamster (AF292567), mouse (AF044335), rat (L81167), human variant 

1(NM_000077), human variant 5 (NM_001195132). B) Derived amino acid alignment from 

nucleotide sequences. 
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Figure 20 – Alignment of Syrian hamster ARF coding regions 
 
Sequence information was inferred from GenBank via NCBI nucleotide and protein databases, 

alignments were performed using ClustalX2 before exporting into Jalview v2.8.1. Regions shaded 

in blue are those of identity, with darker blue indicating the highest conservation. A) Nucleotide 

alignment of: hamster (AF443796), mouse (NM_009877), rat (AY679727), human variant 

4(NM_058195). B) Derived amino acid alignment from nucleotide sequences. 
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Figure 21 – Alignment of Syrian hamster p15 coding regions 
 
Sequence information was inferred from GenBank via NCBI nucleotide and protein databases, 

alignments were performed using ClustalX2 before exporting into Jalview v2.8.1. Regions shaded 

in blue are those of identity, with darker blue indicating the highest conservation. A) Nucleotide 

alignment of: Hamster (NM_001281539), mouse (NM_007670), rat (NM_130812), human variant 

(NM_004936). B) Derived amino acid alignment from nucleotide sequences. 
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4.3.2 Identification of genomic CDKN2A sequences in Syrian hamster 

Recent completion of the Mesocricetus auratus whole genome shotgun (WGS) 

sequencing project (accession number GenBank: APMT01000000) has enabled the 

availability of unannotated SH genomic DNA sequences via the NCBI website. It is 

therefore possible to infer which assembled WGS sequences, also known as contigs, 

contain known nucleotide sequences belonging to genes of interest, in the case of this 

project, those belonging to the CDKN2A/B locus.  

Using nucleotide BLAST (BLASTn), a search for WGS sequences with homology to Syrian 

hamster p16 (GenBank: AF292567) identified two contigs: APMT01085773.1 and 

APMT01085774.1. The two WGS did not align together but instead contained separate 

regions of the p16 coding sequence. Additional nucleotide sequences were therefore 

necessary to align p16 correctly to the WGS and to infer exonic and intronic regions. The 

additional sequences were a partial SH coding region of p16 (GenBank: AH010240.2) 

which also contains incomplete intragenic information between p16 exons 1α and 2, plus 

a 380 bp genomic sequence of the SH 5’ upstream p16 promoter region which has been 

identified by RACE PCR (Hanaoka et al., 2005). Together the known nucleotide sequences 

were used to align correctly the two SH WGS sequences found to contain p16 transcripts. 

Figure 22A schematically represents the nucleotide alignments; regions in common are 

those which hold identity. The first WGS (contig085774) contained p16’s promoter 

region, 128 bp nucleotides of its coding region and the first half of the partial p16 

sequence which also contained intronic information. Conversely, the reverse complement 

of the second WGS (contig085773) aligned to the outstanding half of non-coding DNA and 

partial p16 coding sequence (GenBank: AH010240.2), and aligned to the remaining 

346 bp of p16 (GenBank: AF292567); these were inferred as exons 2 (305 bp) and 3 

(41 bp). The positioning of the exonic regions identified in the WGS is schematically 

represented in Figure 22B. The identity between the respective sequences was 99 % with 

minor nucleotide differences mostly in non-coding regions, which are likely to be due to 

sample variation and single nucleotide polymorphisms (SNP). 
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Figure 22 – p16 nucleotide sequence alignments with unannotated Mesocricetus auratus WGS 
sequences 
 
The CDS of SH p16 aligned to WGS sequences in three distinct regions, corresponding to 3 exonic 

regions. (A) Two WGS contigs were identified using BLASTn that contained known p16 nucleotide 

sequences GenBank: AF292567, AH010240.2 and its 5’ promoter region PCR (Hanaoka et al., 

2005). Aligned regions are highlighted in green. (B) Contig085774 aligned to promoter and coding 

regions containing exon 1 and the reverse complement of contig085773 aligned to exons 2 and 3. 

The two contigs did not align to each other (dashed lines). Alignments were performed using 

nucleotide BLASTn available via the NCBI website and CLC sequence viewer software v 6.9. 

 

 

Coding sequences for Syrian hamster p16 (AF292567), ARF (AF443796) and p15 

(NM_001281539) were subsequently aligned to WGS contigs to compare the genomic 

structure of the CDKN2A/B locus between hamster and human. A schematic of the SH 

locus is found in Figure 23. As gathered from earlier alignments, shown in Figure 22, in 

total hamster p16 has 3 exonic regions. The second exonic region is common to both p16 

and ARF, but their resulting protein sequences do not align and their gene transcripts are 

read in different reading frames. Both tumour suppressor genes hold distinct first exons 
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as in the human genome and are regulated by separate transcriptional start sites. WGS 

nucleotide alignments showed that exon 1β, which is unique to ARF and exon 1α, which is 

unique to p16 were located in separate contigs from each other (APMT01085775 and 

APMT01085774 respectively), suggesting they could be quite far apart. On the other 

hand, the Syrian hamster p15 coding transcript is 393 bp long and maps to a single 

assembled WGS (APMT01085778) in 2 discrete sections, indicating 2 exonic regions which 

are located over 3 Kb away from each other. There are two known isoforms of human 

p15, one which is of a similar length of 417 bp nucleotides with two exons and the other 

one of which has 1 exon with its CDS spanning 237 bp. 

From the inferred pairwise alignments, the genomic structure of p16 and ARF appeared 

to be very similar to that in humans (Figure 23). In humans, the intronic distance between 

p14/ARF exon 1b and exon 2 is in the order of 20 Kb, whereas exons encoding p16 are 

located 2-3 Kb from each other. Using WGS sequences it was not possible to deduce the 

distances between SH p16 exon 1α, exon1β and exon 2 as the WGS did not overlap and all 

3 exonic regions were found to be contained in separate contigs. However, the distance 

between SH p16 exon 2 and exon 3 was just under 2 Kb which encompasses the gene’s 

second intron and is comparable in length to human p16 intron 2. Presupposing that 

assembled WGS are in sequence and numerically in the same order as the Syrian hamster 

genome, then the CDKN2A/B locus containing p15, ARF and p16 could span up to 6 WGS 

contigs (085773-085778) which together are in the order of 45 Kb in length. 

  



Page 108 of 226 

 

 

Figure 23 – Suggested genomic structure of the CDKN2A-CDKN2B locus in Mesocricetus auratus 
 
Gene transcripts of the CDKN2A/B locus in the Syrian hamster mapped to 4 different WGS contigs. 

Coding sequences for p16, p15 and ARF were aligned to WGS available via the NCBI nucleotide 

database using CLC sequence viewer v6.9. The number of exons in each gene was comparable to 

their human counterparts and the alignments suggested a very similar genomic layout of p16, p15 

and ARF. The figure is not to scale. 

 

To confirm the upstream alignment of contig085774 to the 5’ sequences of p16, 

overlapping sequencing primers were designed to the WGS sequence spanning a total of 

1674 bp which included the known 5’ 380 bp promoter region. Figure 24A is a schematic 

of the overlapping regions amplified. The PCR products were purified and sent for 

sequencing before re-aligning the forward and reverse nucleotide reads back to 

contig085774. The generated sequences closely matched the WGS assembly and 

confirmed the extended upstream region of p16 in Syrian hamster. This information was 

necessary for subsequent experiments described in Chapter 8 which focus on the p16 

promoter site. 

Finally, additional information regarding regulatory motifs and regions upstream of the 

p16 transcriptional start site was obtained using online predictive software tools. 

MethPrimer (Li and Dahiya, 2002) identified two putative CpG islands over 
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100 nucleotides long with over 50 % GC content; these are shown in Figure 24B. The first 

CpG island is positioned upstream of the p16 gene’s transcriptional start site (-139 to 

­263 bp) and the second spans both the promoter site and exon 1α (-88 to +51 bp). As 

seen in Figure 24B, the number of CpG sites diminishes further away from the promoter 

site with the majority located in the first 500 bp upstream of the start site. No additional 

CpG islands were found further upstream of this; however, Gene Promoter Miner or 

GPMiner (Lee et al., 2012) predicted a single large CpG site in the WGS confirmed 

sequence spanning around 700 bp (from -1008 bp to +306 bp).  

Regulatory motifs belonging to the promoter region were also sought using GPMiner (Lee 

et al., 2012); a list of the sites closest to the transcriptional start site are listed in Table 9. 

A palindromic TATA box was identified -160 bp upstream of p16 start time and regulatory 

GC boxes were found either side of it at ­53 bp and ­151 bp, and ­216 bp and ­243 bp. 

Additional putative regulatory DNA motifs were located in close proximity to the start site 

(­24 and ­64 bp). 

Table 9 – Identification of predicted upstream regulatory motifs located in the p16 promoter 
 

Location Strand TATA box GC box Pattern 

-24 to-31 +   AGGCGATC 
-53 to -58 +  GGGGCG  
-64 to -70 +   TCACGCG 

-108 to -114 +   CCCCCCCC 
-151 to -156 +  GCGGGC  
-157 to -162 + CCTATA   
-216 to -221 +  GGGGCG  
-243 to -248 -  CGGCGG  
-276 to -284 +   AGACCTAGG 
-315 to -320 +  GCGCCG  

 

Summary of results from GPMiner (Lee et al., 2012) when the upstream sequences of p16 were 

input. Regulatory promoter motifs and patterns including TATA and GC boxes were identified in 

regions upstream of the p16 start site. 
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     A) Primers designed to p16 upstream regions 

 

     B) GC content of p16 upstream regions 

 

Figure 24 – Regulatory motifs and GC content of sequences upstream of p16 in the Syrian 
hamster 
 
Overlapping sequencing primer pairs (A) were designed using the WGS contig085774 to span 

upstream p16 genomic sequences, including its known 5’ promoter. The sequences generated by 

Sanger sequencing were aligned back to the contig and confirmed as far as -1641 bp upstream of 

the start site (+1). CpG islands (B) are shaded in blue and regulatory TATA and GC boxes indicated. 

Each CpG site is represented by a red line and the frequency of CpG sites increased with proximity 

to the start site. 

 

 

4.4 Discussion 

The analysis reveals the similarity of the Syrian hamster (SH) CDKN2A-CDKN2B locus to 

that found in humans (which spans around 43 Kb on chromosome 9p21 and encompasses 

p16, ARF and p15 genes). Considering only CDKN2A/B exons, SH retained an average of 

over 70 % nucleotide identity for all three genes when compared with human transcripts 

and, although ARF proteins were considerably distinct from each other (only 54 % 
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identity), p15 and p16 amino acid sequences were well conserved, with 91 % and 69 % 

identity to their human counterparts respectively (Figure 19, Figure 20 Figure 21). These 

results are not dissimilar to those obtained by Muscarella et al., (2001) who originally 

identified the coding transcripts of Syrian hamster p16 and p15. However, any 

discrepancies between the results can be explained by differences in calculating identity; 

sequence identities presented here accounted for both similarity and coverage. Secondly, 

analysis of sequence homology will have been affected by the initial selection of human 

GenBank nucleotide sequences leading to differences in sequence identities. A single p16 

transcript variant is available for the Syrian hamster, whereas there are at least 4 known 

coding human p16CDKN2A transcript variants (excluding ARF). The inferred alignments may 

actually under-represent the homologies between species if there are additional, 

currently unknown, transcript variants belonging to the Syrian hamster which are more 

homologous to that of human. 

From the gene alignments, ARF is the least conserved gene at the CDKN2A/B locus. A 

paper by Szklarczyk et al. (2007) describes higher than average selective pressures in 

mammals occurring across the INK4A/ARF locus. It was noted that at a protein level ARF 

orthologues were not well conserved. However, the number of residues in common 

between ARF and p16 was shown to be retained to between 67-68 amino acids. This 

implies selection against stop codons in both reading frames as well as a functional 

significance of ARFs second exon. However in chickens, ARF is solely encoded by exon 1β 

and does not share overlapping reading frames with p16 which is actually not present 

(Kim et al., 2003). Evolutionary studies on the INK4A/ARF locus discuss the paradox of two 

key tumour suppressor genes sharing a second exon despite the region being a common 

target of deletion in primary human tumours. Consequently, although the frequency of 

aberrations in INK4A/ARF is comparable to that in p53, the vast majority of INK4A/ARF 

aberrations are homozygous deletions, and less commonly p16-specific point mutations 

(Sharpless and DePinho, 1999). Mutations that do affect ARF tend to be in the shared 

second exon and are rarely exclusive to ARF. Interestingly, in evolutionary terms, p16 

tends to accumulate synonymous mutations whereas ARF acquires non-synonymous 

mutations so long as they have limited impact on its function (Szklarczyk et al., 2007). In 

this way the two tumour suppressor genes can evolve separately while still sharing 
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alternative reading frames. Conversely, p15 which is considered a gene paralogue of p16 

(Gilley and Fried, 2001) and is located in a distinct region upstream of INK4A/ARF, has a 

reduced rate of gene evolution (Szklarczyk et al., 2007) which to some extent is reflected 

in the highly similar alignments shown in Figure 21. 

By aligning known Syrian hamster sequences to genomic WGS sequences it was possible 

to infer their intronic gene regions and to estimate the position of each exon in relation to 

one another. Interestingly the WGS sequence containing coding regions for p16 matched 

the strain variant identified in the p16 specific portion of exon 2 in colony-derived SHE 

cells described in the next Chapter (section 5.2.1). 

It cannot be assumed that separate WGS are continuous nor is it possible to state in 

which direction the contigs align, especially as the assemblies contain regions of 

ambiguity which, until the Syrian hamster genome is fully assembled and annotated, will 

not be clarified. However is it reassuring that the identified WGS sequences shown here 

that contain the known regions for the CDKN2A/B locus were in numerical order (see 

contigs in Figure 23) and the positions of SH p15, ARF and p16 were comparable to those 

in human and mouse (Gil and Peters, 2006). When taking into account the 6 WGS contigs 

(WGS 085773-085778) the Syrian hamster CDKN2A/B locus can be estimated as spanning 

< 45 Kb; this contains all coding regions plus those sequences assumed to be intragenic. 

Even given that this raw estimate is derived from WGS sequences that are not fully 

annotated, the estimated genomic size of the SH locus is likely to be very similar, at least 

in length, to that in humans. 

Having confirmed part of the genomic WGS, regulatory motifs were searched for in the 

genomic region surrounding hamster p16. A palindromic putative TATA box was found -

160 bp upstream of the p16 transcriptional start site, flanked by regulatory GC boxes, 

which together act as recognition sites for RNA polymerase II and transcriptional 

machinery. The TATA box identified was found to be in closer proximity to the TSS than 

that in the rat, (Abe et al., 2002) which was predicted at ­360 bp upstream of the start 

site. CpG islands were also identified encompassing the majority of the first -300 bp 

upstream of the p16 gene promoter, the initiation codon and part of exon 1α. CpG sites 

were mostly located near the transcriptional start site (Figure 24) indicating that the 
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methylation status of these sites may play a role in p16 regulation as discussed in 

Chapter 6, and this was not dissimilar to findings in rat (Abe et al., 2002).  

The additional genomic information presented in this chapter means that a larger amount 

of sequence directly upstream of the p16 locus is now accessible for promoter studies 

using the Syrian hamster (see Chapter 6). Ultimately, the release of the Mesocricetus 

auratus genome will inevitably have a positive impact on future hamster-based work and 

aid mechanistic insight into the underlying events involved in the Syrian hamster embryo 

cell transformation assay (SHE CTA).  
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CHAPTER 5 

 

5 Molecular Characteristics of SHE-MT Colony-Derived 

Cells 
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5.1 Introduction 

There are two known cellular senescence barriers that act as safeguards against 

uncontrolled growth leading to cancer. The first (and most robust) is replicative 

senescence, whereby a cell with finite lifespan enters growth arrest following telomere 

shortening to a critical length, triggering a DNA damage response via p53. In most large 

mammals this is an important intrinsic barrier as it restricts cell growth to a finite number 

of population doublings. Acquisition of unlimited growth potential necessitates the 

reactivation of the ribonucleoprotein telomerase (responsible for maintaining telomere 

length) via transcriptional derepression of the gene encoding its catalytic component, 

known as hTERT in humans (Sealey et al., 2010). hTERT expression is constitutively 

switched off in adult human somatic cells. The other senescence barrier relies on the 

activation of anti-proliferating signalling pathways that regulate senescence in response 

to aberrant internal and/or external signalling. For example, stress-induced premature 

senescence (SIPS) is known to occur in cell cultures, due to unfavourable culture 

conditions, whereas oncogene-induced senescence (OIS) takes place when oncogenes 

become deregulated. Both of these telomerase-independent pathways involve similar 

mechanisms that activate ARF-p53 or p16-pRB signalling, which mutually block 

proliferation and can drive senescence. While human cells possess both classes of 

senescence barrier, small rodents constitutively express telomerase, meaning that for cell 

immortalisation to take place only a single barrier (SIPS or OIS) must be bypassed. This 

makes rodent models like the Syrian hamster (SH) ideal for studying senescence barriers 

in isolation from the requirement for telomerase activation (Russo et al., 1998). Unlike 

mice, the Syrian hamster is known to have a very low frequency of spontaneous 

immortalisation (Trott et al., 1995) which makes it a favourable model for carcinogen 

screening. 

Bypass of senescence involves the inactivation or abrogation of cellular pathways 

regulating cell cycle progression. Both p53 and p16 signalling ultimately converge on the 

retinoblastoma protein (pRB) which when inactivated permits entry to S phase from G1. 

Unsurprisingly in cancers, components of the pathways are found to be mutated or 

subject to deregulation, thus permitting extended somatic cellular lifespans and 

subsequent clonal evolution and cancer development. p16 is a cyclin-dependent kinase 
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inhibitor which is upregulated in senescing cells; it acts by sequestering Cdk4/6 from 

Cyclin D1 leaving pRB in an active, unphosphorylated state. Rb1 is a member of the 

pocket protein family along with related proteins p107 and p130 which together act 

cooperatively and preferentially to bind E2F factors (Cobrinik, 2005). When active, pRB 

reversibly binds to and inhibits the E2F transcription factors responsible for promoting 

progression through G1 to S phase, thus restricting replication. Pocket proteins can also 

recruit histone deacetylases to E2F-responsive promoters via additional co-repressors to 

actively inhibit transcription. Inactivation of p16 is commonly identified in tumour types 

mostly via homozygous deletion and/or silencing by epigenetic mechanisms. Like p16, 

ARF is another so called ‘INK4’ protein (Cdk4/6 inhibitors) (Canepa et al., 2007) which 

together with p15 is found at the CDKN2A/B locus on chromosome 9p21.3 in humans. 

ARF also functions in regulating cell growth but via the p53 pathway. In mice, ARF 

expression increases as cells reach senescence and deletion is associated with extended 

lifespan whereas in humans p16 seems to be the predominant driver of senescence 

(Sherr and DePinho, 2000, Weber et al., 2000). The expression of tumour suppressor 

protein p53 is tightly regulated post-transcriptionally and is subject to varying turnover 

rates influenced by its surrounding molecular environment. Expression of ARF increases 

with oncogenic simuli and it serves to stabilise p53 by sequestering Mdm2 which 

otherwise marks p53 for ubiquitination and degradation. Amongst others, the 

downstream target of circulating p53 is transcription of p21, another cyclin-dependent 

kinase inhibitor, which results in the dephosphorylation of Rb1 and cell cycle arrest 

(Campisi and d'Adda di Fagagna, 2007, Larsson, 2011).  

Previous work using Syrian hamster dermal (SHD) mass cultures has characterised 

molecular mechanisms underlying carcinogen-induced immortalisation, including 

benzo(a)pyrene and nickel as well as low-LET and high-LET ionising radiation (e.g. x-rays 

and fast neutrons). Common targets were the CDKN2A/B locus which was found to be 

subject to deletions, the p16 promoter methylation, as well as point mutations in the 

tumour suppressor gene p53 (Yasaei et al., 2013). The work presented in this chapter 

expands on these findings using heterogeneous embryonic cells cultures (SHE cells) 

treated with benzo(a)pyrene (see previous Chapter 3).  
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5.2  Materials and methods 

5.2.1 Mutation screening of p53 and p16 

Coding regions of two key tumour suppressor genes p16 and p53 were sequenced for 

mutations in SHE immortalised lines derived from the SHE-MT assay (see Chapter 3). 

Overlapping primers for sequencing were used spanning exon 1α and 2 of p16 and exons 

2-9 of p53; these are listed in the appendix (section 8).  

Table 10– Regions sequenced of tumour suppressor transcripts and their expected band sizes. 
 

Gene Exons Expected amplicon (bp) 

p16/ARF Exon 1α –2 459 

p53 Exons 2-4 388 

 Exons 4-6 377 

 Exons 6-9 383 

Three overlapping sequencing primer pairs were used to sequence exons 2 to 9 of p53 and one 

primer pair was used for p16. 

 

Polymerase chain reaction (PCR) 

A total volume of 40 µl cDNA reactions were prepared from 2 µg of DNase treated RNA as 

described in section 2.4) using the Applied Biosystems® cDNA kit. From this, 4 µl cDNA 

was amplified with 0.5 µM gene specific forward and reverse sequencing primers using 

25 µl DreamTaq green PCR master mix (2X) (Thermo ScientificTM) in a final reaction 

volume of 50 µl. For primer specific annealing temperatures see appendix. Example 

cycling conditions: denature at 95 °C for 2 min followed by 35 cycles of: 95 °C for 30 sec, 

annealing at 57 °C for 30 sec and extension at 72 °C for 45 sec. Final extension was for 

7 min at 72 °C. For each sample, two PCR reactions were run in parallel and combined 

before loading ~100 µl PCR product on a 1.5 % agarose gel. 10 µl of 1 Kb+ DNA ladder 

(InvitrogenTM) was also loaded as a reference. Gel electrophoresis took place at 75 V for 

around 1.5 hours before imaging. 
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Gel extraction 

After visualising and imaging the gel, the expected band of interest (see Table 10) was 

excised and purified as described previously in section 2.8. The resulting purified DNA 

fragments were quantified using a NanoDrop and stored at – 20 °C until needed for 

sequencing. 

Sequencing 

Quantified PCR fragments above 15 ng/µl were outsourced for Sanger sequencing at 

Beckman Coulter Genomics using ABI3730XL (Beckman Coulter Genomics) according to 

shipment guidelines, along with appropriate sequencing primers diluted to 5 µM. The 

nucleotide reads were analysed using CLC Main Workbench software V5.5 (CLCbio, 

Aarhus, Denmark) as previously described section 2.9. Forward and reverse alignments 

from SHE cells were compared to wild type primary Syrian hamster (Mesocricetus 

auratus) sequences as well as published reference sequences: p16 (GenBank: 

AF292567.1) and p53 (GenBank: U07182.1). Sequencing profiles were analysed for clarity 

of the read, individual peaks and minimal background. Mutations were accepted only if 

found in both forward and reverse reactions. 

5.2.2 Gene expression analysis 

RNA extraction 

RNA was extracted using phenol-chloroform based methods as described in section 2.3. 

Extracted RNA quality and quantity was recorded and stored at -80 °C. 

First strand synthesis (cDNA) 

cDNA was synthesised from DNase I treated RNA samples as described in section 2.4. 

cDNA samples were stored at -20 °C until required, when they were thawed on ice. 

Primer quality control 

Primers for real-time qPCR were optimised using appropriate cycling conditions and 

tested at a range of different annealing temperatures (between 55-62 ˚C) using 

DreamTaq green PCR master mix (2X) (Thermo ScientificTM). The appropriate annealing 

temperature was established by running the PCR products on an agarose gel and selecting 

the strongest band intensity. Primer specificity and working concentrations were 
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determined using real-time PCR and SYBR green chemistry. If two or more peaks were 

present in the dissociation curves following amplification then the primers were rejected. 

The presence of primer dimers in the non-template control (NTC) was only accepted if 

their Ct value was 10 Ct values higher than reactions containing cDNA.  

Quantitative real-time PCR (qPCR) using SYBR chemistry 

Real-Time PCR was performed as described in section 2.5 using 10 µl reactions and a 96-

well plate format. Following amplification a dissociation curve was performed to check 

amplicon specificity. Gene targets analysed were p16, p15, ARF, p53, Rb1, Mdm2, BMI-1. 

GAPDH and beta-actin were used as reference targets or endogenous controls (see 

below). Gene expression in colony-derived SHE cells was compared to that of early 

passage and dividing, non-transformed SHE-MT assay derived SHE cells treated with 

vehicle control (DMSO). Time points were taken over the course of the cellular lifespan, 

so as to have a continuous analysis of transcript expression. Data was analysed according 

to the delta delta Ct equation using qbasePLUS v2.6.1 (Biogazelle) software.  

Selection of reference genes 

qPCR data were normalised to GAPDH and beta-actin for improved reliability of gene 

expression quantification. Reference genes were selected from a panel of candidate 

genes from a variety of cellular processes to ensure their expression stability. The gene 

targets tested were: beta-actin, SDHA, TBP, GAPDH, B2M and YWHAZ as provided by 

geNormTM Reference Gene Selection Kit (Primerdesign Ltd). Transcript expression of these 

six genes was measured by standard qPCR on twelve representative samples (six 

untreated and six treated) including SHD and SHE samples treated with carcinogens 

benzo(a)pyrene, nickel chloride (NiCl2) , N-nitroso-N-methylurea (MNU) and high doses of 

X-ray radiation. 

Standard qPCR reactions were performed in a MicroAmp Fast Optical 96-well reaction 

plate (Applied Biosystems®) and the amplification protocol performed using a Real-time 

HT9700 Applied Biosystems®). Per reaction, 5 µl cDNA diluted to 5 ng/µl was added to 

1 µl resuspended primer mix, 10 µl PrimerDesign PrecisionPLUS 2X qPCR Mastermix 

(Primerdesign Ltd) and 4 µl RNAse/DNase free water to give a total final volume of 20  µl 

per reaction. Amplification conditions were as follows: enzyme activation for 2 min at 
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95 °C, 50 cycles of denaturation for 15 sec at 95 °C and amplification for 1 min at 60 °C. 

Fluorogenic data was collected through the SYBR green channel during the annealing 

phase. A dissociation protocol was also performed (section2.5) to check the melt curve 

for the amplified gDNA products. 

Absolute quantification (AQ) data were exported and overall average gene stability was 

assessed by analysing Cq values on qbasePLUS (Biogazelle) software using the geNORM 

function. Based on each gene’s average expression, stability and pairwise variation the 

most stably expressed genes and optimum number of reference genes required were 

determined according to Handbook HB01.02.02 and MIQE guidelines (Vandesompele et 

al., 2002). An optimum geNORM experiment contains at least ten representative samples 

and eight candidate reference targets (Primer Design only provided six suitable for Syrian 

hamster) and all samples were measured in the same run for a given reference target 

(Hellemans et al., 2007). 

5.2.3 Gene copy number variation (CNV) analysis  

Genomic DNA samples were analysed for selected gene duplications or deletions using 

qPCR and Taqman style detection chemistry. 

DNA extraction 

DNA was extracted using methods previously described in sections 2.6 and RNase treated. 

DNA pellets were stored at -20 °C. 

Selection of reference gene for CNV analysis 

Gene stability at a gDNA level was assessed using the geNORM Reference Gene Selection 

Kit (Primerdesign Ltd) using SYBR chemistry and developed for the Syrian hamster. A 

panel of six reference genes was used to ensure that the most stable gene from these was 

selected for accurate normalisation at later experimental stages. These genes included: 

beta-actin, SDHA, TBP, GAPDH, B2M and YWHAZ. Given that these primers were originally 

developed by Primerdesign for use with Syrian hamster RNA samples, a standard PCR was 

performed to ensure the specificity of the primers to cDNA and gDNA samples along with 

establishing the position of these primers in relation to intron-exon boundaries. Only 

reference primers amplifying the same primer products in gDNA and cDNA were 
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considered for CNV analysis (i.e. those recognising exonic regions without intron/exon 

boundaries). 

qPCR reactions took place in a MicroAmp fast optical 96-well reaction plate (Applied 

Biosystems®) and the amplification protocol run using a Real-time HT9700 Applied 

Biosystems®). Per reaction, 5 µl gDNA diluted to 5 ng/µl was added to 1 µl resuspended 

primer mix, 10 µl PrimerDesign PrecisionPLUS 2X qPCR Mastermix (Primerdesign Ltd) and 

4 µl RNAse/DNase-free water to give a total final volume of 20  µl per reaction. 

Amplification conditions were as follows: enzyme activation for 2 min at 95 °C, 50 cycles 

of denaturation for 15 sec at 95 °C and amplification for 1 min at 60 °C. Fluorogenic data 

was collected through the SYBR green channel. A dissociation protocol was also 

performed to check the melt curve for the amplified gDNA products. 

A total of 14 gDNA samples were included to assess overall gene stability across 

untreated normal SHE cells, B(a)P treated immortal SHE cells and control x-ray and B(a)P 

SHD cells. For the analysis, qbasePLUS (Biogazelle) software and the geNORM function was 

used. All samples for each reference gene were run on a single plate and each sample per 

gene was run in duplicate (Hellemans et al., 2007, Vandesompele et al., 2002). SDHA was 

selected as the most suitable reference gene for CNV analysis in SHE colony-derived cells. 

CNV Taqman primer/probe design 

Gene-specific double dye (Taqman style) probes for CNV analysis were designed and 

validated by PrimerDesign. Taqman probes were fluorescently labelled with FAM or VIC at 

their 5’ end and a non-fluorescent quencher (‘Black Hole’) at the 3’ end. Unlike SYBR 

green which detects all dsDNA, the Taqman style probe is specific to the gene amplicon 

amplified by the primer pair, ensuring specificity. Separate FAM labelled assays were 

designed for specifically for p16 (NCBI ref. AH010240.2) exon 1α, ARF (AF443796.1) exon 

1β and exon 2 which is common to both p16 and ARF, p15 (NM_001281539.1), p53 

(NM_001281661.1) and BMI-1 (transcript variants 1 and 2 only: XM_005082709.1 and 

XM_005082710.1 respectively). SDHA (DQ402977.1) was used as the reference gene and 

its assay was labelled with the fluorophour VIC so as to simultaneously run its 

amplification with a gene of interest (i.e. duplexing). All primers for CNV were synthesised 
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by PrimerDesign Ltd and remain their intellectual property. Primer sequence information 

can be found in the appendix. 

CNV using Taqman probes 

Real-time qPCR for copy number variation analysis was performed using SHE gDNA as 

described above except that per reaction, 5 µl gDNA diluted to 5 ng/µl was added to 1 µl 

FAM-labelled gene specific probe, 1 µl VIC-labelled reference probe (SDHA), 10 µl 

PrimerDesign PrecisionPLUS 2X qPCR Mastermix (Primerdesign Ltd) and 3 µl 

RNAse/DNase free water to give a total final volume of 20 µl per reaction. Amplification 

conditions were as follows: enzyme activation for 2 min at 95 °C, 50 cycles of 

denaturation for 15 sec at 95 °C and amplification for 1 min at 60 °C. Fluorogenic data was 

collected through the FAM channel. Amplification values for each gene of interest were 

normalised internally to the SDHA reference gene. In addition to wild type calibrator 

samples, immortalised SH dermal gDNA samples were used as references as their copy 

number for p53, p16, ARF and p15 are known. Each sample was run in quadruple PCR 

replicates per plate and where possible each cell line was tested at an early and late 

population doubling time point. The experiment was performed in duplicate (two 

separate gDNA dilutions prepared from the same sample). Copy Caller Software v2.0 (Life 

Technologies) and qBASE plus premium (Biogazelle) were used to analyse the data. 
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5.3 Results 

5.3.1 Mutation screening of p53 and p16/ARF in immortalised transformed SHE cells 

Previous studies using Syrian hamster dermal (SHD) cells indicated that benzo(a)pyrene-

induced senescence bypass is mediated primarily through point mutations and specifically 

base pair transversions affecting the p53 and p16 tumour suppressor genes, at equivalent 

human mutational hotspots (Yasaei et al., 2013). Sanger sequencing was carried out for 

tumour suppressor genes p53 and p16 in colony-derived SHE cells as an initial screen to 

identify any potential mutations which could permit bypass of senescence barriers. An 

example of a good quality sequencing profile is shown in Figure 25; each peak is clear and 

corresponds to an individual nucleotide while the background in the trace is minimal. 

Generated sequencing reads were aligned to complete coding regions for p16 and p53 

(GenBank: AF292567.1 and GenBank: U07182.1 respectively) and any point mutations 

identified were only accepted if found in both forward and reverse sequencing reactions. 

SH samples were scanned for mutations in the coding regions of tumour suppressor gene 

p53 (exons 2-9) using three overlapping primer pairs and a single primer pair for p16 

(exon 1α-exon 2). Controls derived from early passage wild type SH dermal cells (SHD), 

primary SHE cells (SHE 2B) and colony-derived non-transformed cells initially exposed to 

DMSO which were picked following the SHE-MT assay (DMSO N). Mutational analysis took 

place on all immortalised SHE cells to include: 1 colony-derived DMSO-treated MT clone 

(DMSO MT1), and 12 BP-treated colony-derived clones scored as morphologically 

transformed (BP MT1 to BP MT12 and listed in section 3.3.4, Table 8). B(a)P treated, MT-

scored colony-derived SHE cells that did not immortalise were also sequenced for gene 

mutations. 

 



Page 124 of 226 

 

Figure 25 – A good quality Sanger sequencing profile example  
 
This is a sequencing trace example for the forward reaction of the p16 coding region of BP MT1. 

Sanger sequencing reactions were outsourced to Beckman and Coulter Genomics. A good 

sequencing profile consisted of clear peaks with little or no background and regular signal 

intensity throughout the read.  

 

 

When aligned to reference sequences, all samples including untreated controls and B(a)P-

treated MT immortal and finite lifespan SHE cells held a common variation in p16 at 345-

346 bp from its ATG transcriptional start site (CT>TC). The base change was identified in 

both forward and reverse sequencing reactions; aligned examples are shown in Error! 

Reference source not found.. The transcriptional change spanned two codons located in 

the second portion of p16/ARF exon 2, which is unique to p16, causing a non-synonymous 

or translational change only in the proteins 116th amino acid (refer to Table 11) as the 

alteration to the second codon is silent. Because these changes were common to all 

samples analysed when compared to reference sequences available via NCBI, they are an 
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assumed strain variation or single-nucleotide polymorphisms (SNP). No other alterations 

to the p16 coding region sequenced were identified in immortal SHE-MT cultures or 

controls. 

Table 12 summarises mutations identified via Sanger sequencing for the coding regions of 

p53 in benzo(a)pyrene-induced SHE-MT clones. As with p16, a common inversion was also 

identified which was located at position 561-562 bp from its transcriptional start site 

(GA>AG) and is highlighted in Error! Reference source not found.. This was located in the 

sequence encoding the DNA binding domain and also spanned 2 codons causing a change 

in the transcribed protein in only 1 of the two amino acids (Ser>Gly). Again, it is assumed 

this is a strain variant as the change was noted in all samples tested. A synonymous base 

change located at 195 bp from the transcriptional start site (TSS) was found in all Brunel-

derived SHE colonies, including the SHE primary cell of origin (SHE 2B). This mapped to 

the p53 proline-rich domain and is equivalent to amino acid 66 in human p53, which is 

not considered a mutational hotspot (Error! Reference source not found.), and is likely to 

be an inter-laboratory strain variant between Brunel and BioReliance-derived SHE 

colonies. 

Finally, 4 different non-synonymous p53 point mutations were found in 4 separate 

immortal SHE lines, which had been derived following treatment with benzo(a)pyrene; 

they had been scored as morphologically transformed and had bypassed senescence 

(Error! Reference source not found.). These were: BP MT9, BP MT10, BP MT11 and 

BP MT12. Point mutations in each cell line were identified in both the forward and 

reverse sequencing reactions; Figure 28 identifies a single peak on the sequencing profile 

observed, relating to the nucleotide base change. As noted in Table 12, three out of four 

mutations were transversions, which is a characteristic fingerprint of benzo(a)pyrene 

exposure (Toyooka et al., 2003) and 3 out of 4 point mutations targeted arginine amino 

acid residues. The resulting translational changes were all located in the DNA binding 

domain of p53 which, when mapped to the orthologous human p53 protein, were 

identified in known mutational hotspots. For example the SH point mutation 

p53 c752 G>T (Figure 28C) which corresponds to human p53 amino acid 248, occurring in 

SHE BP MT11, has been identified in 121 human cancers (IARC p53 database) and human 

codon 248 has been mutated in 1544 known instances (Beroud et al., 2000). 
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Figure 26 – Sanger sequencing of p16 mRNA identified a strain variation in SHE colony-derived 
cells compared to the published NCBI sequence. 
 
No mutations were detected in the coding regions of p16 analysed in SHE samples. However, a 

strain variation common to all cells analysed was identified which differs to the reference 

sequence available via NCBI (GenBank: AF292567.1). The inverted base changes are highlighted 

above in red (c.345 CT>TC).  
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Table 11 – No mutations in p16 gene coding regions were identified 

 
No gene mutations leading to an altered protein structure were identified in the coding regions of p16 by Sanger sequencing. However, a strain variant common to all 

SHE samples analysed was located at 345-346 bp found in exon 2 which leads to a cysteine being changed to an arginine at the 116th amino acid in the p16 protein. 

Table 12 – Mutations identified in p53 gene coding regions 

Brunel-derived samples analysed held a synonymous point mutation in the proline rich domain of p53 and all SHE samples analysed contained what we believe to be a 

strain variation. Four immortal SHE lines held p53 point mutations which lead to an altered translated protein sequence. All non-synonymous point mutations were 

located in the DNA binding domain of the p53 protein and can be considered to be found in corresponding human mutational hotspots. ‘a’ number of human p53 

mutations found at that codon according to the Universal mutation database(UMD) (Beroud et al., 2000) and numbers in brackets represent the number of known 

human tumours with the same amino-acid mutation according to IARC p53 database R17. 

No. MUTATION CODON CHANGE TRANSLATED MUTATION HUMAN EQUIVALENT HOTSPOT LOCATION 

All samples c345 CT>TC 
CAC/TGC> 
CAT/CGC 

115-116aa 
HIS/CYS> 
HIS/ARG 

116aa HIS/ARG 0 Exon 2 

No. MUTATION CODON CHANGE TRANSLATED MUTATION HUMAN EQUIVALENT HOTSPOTa LOCATION 

All 
samples 

c561 GA>AG 
GAG/AGC> 
GAA/GGC 

187-188aa 
GLU/SER> 
GLU/GLY 

185aa ASP/SER 18 (0) DNA binding domain 

7 c195 G>A GCG>GCA 65aa ALA>ALA 66aa MET 2 (0) Proline Rich 

1 c482 G>T CGT>CTT 161aa ARG>LEU 158aa ARG 264 (102) DNA binding domain 

1 c734 G>C TGC>TCC 245aa CYS>SER 242aa CYS 198 (20) DNA binding domain 

1 c752 G>T CGG>CTG 251aa ARG>LEU 248aa ARG 1544 (121) DNA binding domain 

1 c808 C>T CGG>TGG 270aa ARG>TRP 267aa ARG 65 (34) DNA binding domain 
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Figure 27 – Sanger sequencing of p53 mRNA identified non-synonymous point mutations in 
30 % of immortal MT colony-derived SHE cells and a common strain variation in all samples 
compared to the published NCBI sequence. 
Four immortal lines harboured different point mutations which lead to changes in the amino acid 

sequence of p53; these are highlighted in boxes with an asterisk above. A synonymous point 

mutation was also identified common to all Brunel-derived clones; indicated with two asterisks. A 

strain variation in p53 was identified in all samples (GA>AG inversion, no asterisk). Sequences 

were aligned to the reference sequence available via NCBI (GenBank: U07182.1). 
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Samples that were found to harbour mutations were re-sequenced at earlier population 

doubling time points so as to establish if the mutations were a direct result of 

benzo(a)pyrene exposure. A summary of point mutations identified in colony-derived 

B(a)P-induced SHE cells is shown in Table 11 and Table 12 and any changes between early 

and late passage cells noted in Table 13. At early population doubling times, the point 

mutation located in the DNA binding domain of colony-derived immortal BP MT9 and 

BP MT10 was identified in both forward and reverse sequencing reactions which points to 

a direct mutational event. However, at early population doubling time points, 2 

overlapping profile peaks were identified in p53 c482 and c808 bp transcripts respectively 

for BP MT9 and BP MT10, shown in Figure 28. Conversely, at later passage time points the 

respective mutations were noted as clear individual peaks. The height of the two peaks 

for BP MT9 at early passages was not equal, suggesting that there was heterogeneity for 

p53 within the cell population which was lost over time. At later time points only the 

mutated form of p53 c482 bp was identified in BP MT9 cells suggesting the wild type 

sequence had been lost. In BP MT10, the height of the Sanger sequencing peaks was 

equal at early time points, suggesting either an equal number of colony-derived cells 

containing wild-type and mutated p53 or that in each cell only one allele encoded wild 

type p53. Given that the number of peaks was reduced from 2 to 1 it is suggestive of the 

wild-type copy being lost and the mutated allele selected for. Conclusions over any p53 

transcript changes concerning SHE BP MT11 and BP MT12 could not be made as only later 

population doubling time points for these colony-derived cells were available (Dafou, 

2003).  

Finally, the base-pair change in p53 at c195 bp was synonymous but analysis of the 

sequencing profiles revealed that in some cases it was not present in all transcripts 

sequenced within a given sample, and overlapping sequencing peaks were present (an 

example is shown in Figure 29). In the primary SHE 2B used to perform the SHE CTA at 

Brunel; adenine bases (A) was mostly identified on the sequencing profiles at c195 bp, but 

a very small peak corresponding to guanine was also present at the same site. Two SHE-

MT lines has only a single peak corresponding to adenine at c195 bp, but 3 lines showed 

two peaks: one for A and one for G nucleotide residues. At the later time points testing 

only the synonymous ‘mutated’ corresponding peak was identified (Table 13).  



Page 131 of 226 

Table 13 – Re-sequencing of p53 transcripts at earlier time points reveals changes in population. 

 

In samples found to harbour mutations p53, sequences derived from cDNA samples were re-

sequenced at earlier passage time points. The sequencing profiles revealed that cultures analysed 

at earlier time points were heterogeneous for the mutations identified at later time points. This 

suggests that populations of colony derived SHE cells change over time with cells containing wild 

type p53 falling out of the population and there may be selective pressures favouring cells 

harbouring p53 mutations. Non-synonymous mutations are in bold typeface. (*) B(a)P-induced 

SHE clones prepared at Brunel by a previous PhD student (Dafou, 2003) and only late passage cells 

were available. 

 

 

 

 

Origin Cell line Mutation In Early Passage In Late Passage No. peaks 

BioReliance DMSO N none n/a n/a n/a 

Brunel SHE 2B 195bp (G>A) 90 % n/a 2 

Brunel BP MT5 195bp (G>A) 50 % 50 % 2 

Brunel BP MT6 195bp (G>A) 50 % 50 % 2 

Brunel BP MT7 195bp (G>A) 100 % 100 % 1 

Brunel BP MT8 195bp (G>A) 50 % 50 % 2 

Brunel BP MT9 
195bp (G>A) 50 % 100 % 21 

482bp (G>T) 25 % 100 % 21 

Brunel 
BP 

MT10 

195bp (G>A) 100 % 100 % 1 

808bp (C>T) 50 % 100 % 21 

Brunel* BP 
MT11 

734bp (G>C) n/a 100 % 1 

Brunel* BP 
MT12 

752bp (G>T) n/a 100 % 1 



Page 132 of 226 

 

Figure 28 – Sanger sequencing profile sections containing non-synonymous p53 mutations 
 
In total, four mutations leading to changes in the translated p53 amino acid sequence were 

identified. The profile to the left for figures A-D is the corresponding wild type sequence and 

highlighted peaks are those which were subject to mutation; the star indicates that the nucleotide 

file generated contained the point mutation. At early population doublings BP MT9 and BP MT10 

sequencing profiles revealed superimposed peaks indicating both wild type and mutated versions 

of p53 were present in the samples tested. Only forward sequencing reactions are shown; 

corresponding complementary mutations were identified in the reverse sequencing reactions. 
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Figure 29 – Synonymous base change p53 c195 bp is selected for in SHE MT BP9 over time in 
B(a)P-induced immortalised colony-derived SHE cells 
 
Sequence profiles at coding region 195 bp for p53 in SHE colony-derived cells (highlighted by a 

black box). The wild-type codon GCG is identified in BioReliance-derived DMSO and BP-treated 

clones (A) but GCA was the predominant transcript in the untreated primary SHE line from Brunel 

SHE 2B (B). G>A at 195 bp was also identified in Brunel-derived B(a)P-treated MT clones. (C) In 

BP MT9 cells at early population doubling time points, a green peak is just visible behind the black 

one and at later time points a single green peak (adenine) was shown in late passage BP MT9. 

 

 

5.3.2 Gene expression analysis of immortal colony derived cells 

Cells derived from the SHE cell transformation assay (CTA) were analysed for patterns of 

gene expression following colony picking and clonal establishment. The gene targets 

analysed, potentially relevant to senescence-bypass, were from the ARF-p53 and p16-Rb 

signalling pathways. Amplification values were normalised to housekeeping genes beta-

actin and GAPDH and then compared to proliferating early passage DMSO-treated cells 

derived from non-transformed colonies scored in the SHE CTA. Expression for each target 

gene varied across the DMSO-treated non-transformed group, so that alone no single 

sample was an appropriate control given that expression patterns in colony-derived cells 

was unknown. The RQ values for the DMSO-group controls (N1-N6) are plotted in Figure 

30. Mdm2 and p16 (because of one significant outlier) showed the largest variation 

whereas ARF and p53 expression was most similar. The mean relative value for each 

target gene was assigned a relative value of 1 and used as the overall calibrator to 

compare gene expression fold changes.  
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Figure 30 – Gene expression in proliferating DMSO-treated non-transformed SHE colony-
derived SHE cells 
 
DMSO-treated non-transformed colony-derived cells were used are the control group (N1-N6). 

These were proliferating and early passage (P2-P3) clones. The mean expression of N1-N6 for 

each gene target was assigned a relative value (RQ) of 1 and used to calculate the RQ values of 

other samples. Values were normalised to the reference genes GAPDH and beta-actin. 

 

 

Gene expression was analysed over successive passages of colony-derived SHE cells 

during their lifespans. In colonies obtained from BioReliance, the initial thawed vial was 

assigned passage P+1 whereas for colonies picked in-house at Brunel passage 5 (P5) 

represents the time point at which colony-derived cells were first transferred to a 

100 mm2 dish. A summary of all the data is presented as a ‘heat-map’ in Figure 31 and will 

be referred to during this section along with additional plotted graphs. Cell lines BP MT11 

and BP MT12 were previously established (Dafou, 2003) and thus RNA from early 

passages could not be sourced, hence the single row of expression data (Figure 31). SHE 

clones BP MT9 and BP MT10 were generated towards the end of the project and their 

gene expression analysis was not undertaken. 

SHE untreated primary cells were over 100-fold downregulated for p16 and ARF 

expression and over 50-fold downregulated for p15 when compared to the DMSO control 

group mean. Elevated levels of BMI-1 were noted in these cells and Mdm2 transcription 

was downregulated in comparison with the DMSO control group. This was in contrast to 

DMSO-treated non-transformed colony-derived senescing cells which showed a 6-8 fold 

overexpression in p16 along with a 3-4-fold increase in ARF and p15 (Figure 31).  
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Figure 31 - Heat map of gene expression patterns in all B(a)P-treated MT immortalised SHE cells 
 
Summary of gene expression in all B(a)P-induced colony-derived SHE MT cells tested at successive 

passages during their lifespan. p53, Mdm2, Rb1, BMI-1, p16, ARF and p15 were assayed for and 

normalised to the reference genes GAPDH and beta-actin. Overexpressing genes are in red and 

downregulated ones are in blue. Early time points for BP MT11 and BP MT12 were unavailable as 

these colony were isolated previously (Dafou, 2003) and BP MT10 and BP MT9 were not analysed. 
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p16 gene expression is attenuated in at least 30 % of benzo(a)pyrene-induced immortal 

MT colony-derived SHE cells 

Gene expression analysis of colony-derived cells from the SHE-MT CTA revealed that p16 

was generally reduced when compared with average RQ values from the control group of 

proliferating DMSO-treated non-transformed colony-derived cells. In four immortalised 

B(a)P-induced SHE cell lines p16 expression levels were downregulated 5 to 10-fold when 

assayed at early passage time points (RQ values between 0.2 and 0.1 respectively) and 

p16 transcripts levels remained below 50 % compared to the average DMSO-treated 

controls following multiple subcultures (Figure 31). An example of p16 transcripts with RQ 

values for BP MT2 and BP MT8 are plotted in Figure 32A. Results indicated that, at later 

passages, p16 was not overexpressed, as was the case in normal finite lifespan SHE cells; 

the latter showed a 6-8 fold increase but continued to transcribe p16 at a baseline level 

(ie. at least 10-fold higher than primary SHE cells - see RQ values in Figure 32C). No cell 

crisis was observed in BP MT2, BP MT5, BP MT7 or BP MT8 which proliferated 

exponentially. RNA extracts at early PD were not available for BP MT11 and BP MT12 as 

the MT colonies had been isolated earlier by a previous PhD student (Dafou, 2003). 

Relative quantities of p16 expression were also below the DMSO-treated controls average 

in both immortal cell lines. Their gene expression profiles at earlier time points following 

colony picking were not determined.  

Secondary events following MT lead to the down regulation of p16 and p15 

In 50 % (4 out of 8) of B(a)P-treated MT colony-derived cells analysed over successive 

passages, it was found that p16 transcript levels at early population doublings were 

temporarily elevated by 2-5 fold compared with the control group of proliferating DMSO-

treated non-transformed colony-derived cells. This was accompanied by a change in 

observed cellular characteristics towards an increasing senescent-like phenotype and 

reduced levels of cell growth. After a period of cell-crisis which lasted up to a month, 

proliferation rates increased and coincided with an abrupt reduction in the relative 

quantities of p16 mRNA detected by qPCR. Such low p16 levels were stably retained in 

subsequent population doublings to levels below the average DMSO-treated non-

transformed control RQ value as shown in Figure 32B. The sudden drop in expression was 

not limited to p16; in BP MT1, BP MT4 and most strikingly BP MT6 (see Figure 32B) the 
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downregulation of p16 was accompanied by a reduction of p15. In BP MT3 the expression 

of ARF and p15 were simultaneously affected. The data is indicative of secondary events 

taking place following morphological transformation permitting evasion of senescence 

barriers.  

Similar patterns of gene expression at the CDKN2A/B locus 

The CDKN2A/B locus encodes three tumour suppressor genes under the control of 

independent promoters. Gene expression analysis indicated that the observed patterns of 

p16 expression were generally recapitulated with ARF and p15 following increasing 

population doublings. This was especially evident in BP MT5, as shown in Figure 32C. At 

the earliest point of RNA extraction following colony picking and expansion (passage 6; 

around 18 population doublings) all three genes were significantly downregulated 

compared to DMSO controls to levels almost comparable to those observed in primary 

SHE cells. All three CDKN2A/B locus transcripts then steadily increased by 10-fold until 

passage 10; p16 and p15 were still downregulated compared with the DMSO control 

average, but were within the lowest expression range of the DMSO panel, whereas ARF 

reached an RQ value of 1 between passages 10 and 12 (no change compared with the 

controls). Thereafter, p16 gene expression decreased slightly and reached a plateau, as 

did that of ARF and p15. At the latest time point recorded (P 21) average RQ values were 

≤0.2 for all three genes. The Spearman rank correlation coefficient (Rs) was close to 1 

between expression of ARF to p16 and to 15 (Rs 0.80, p<0.005 and Rs 0.92 p<0.001 

respectively) and Rs 0.65 p<0.025 between p16 and p15, indicating a positive correlation. 

Common trends of CDKN2A/B expression were also observed in other BP MT clones but 

were mostly confirmed between p16 and p15 as shown in Figure 32B. 
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A) p16 expression is maintained at levels permissive for proliferation in B(a)P-induced SHE 
immortalised cells 
 

 

B) Secondary events following morphological transformation (MT) leading to senescence bypass 
 

 

 

Figure 32 – mRNA transcripts in SHE colony-colony derived cells (cont. on next page) 
 
(A) mRNA expression of p16 in colony-derived SHE cell clones BP MT2 and BP MT8. (B) mRNA 

expression of p16 and p15 in colony-derived SHE BP MT4 and BP MT6.  
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C) Similar patterns of gene expression of p16, ARF and p15 located at the CDKN2A/B locus in 
B(a)P-induced immortal colony-derived SHE cells 
 

 

D) BMI-1 overexpression in B(a)P-induced immortal SHE colony-derived cells 

 

Figure 32 - mRNA transcripts in SHE colony-colony derived cells (cont.) 
 
(C) mRNA expression of genes p16, p15 and ARF (located in close proximity to each other in the 

CDKN2A/B locus on chr9p21.3 in humans) in colony-derived SHE clone BP MT5. (D) mRNA 

expression of BMI-1 in colony-derived SHE BP MT1 and BP MT3. DMSO N are the control group 

(N1-N6) of proliferating, early passage (P+2-P+3) DMSO treated non-transformed colonies. The 

mean of N1-N6 was assigned a value of 1 and used to calculate the RQ values of other samples. 

Relative quantities of amplified product were normalised to the reference genes GAPDH and beta-

actin. Error bars represent the standard deviation of 2-ΔΔCt. 
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BMI-1 expression is upregulated in B(a)P-induced immortal MT colony-derived SHE cells 

BMI-1 is a member of the Polycomb group proteins (PcG) which act to repress the 

expression of other genes by epigenetic mechanisms. BMI-1 expression was found to be 

increased by 2 to 5-fold in primary SHE cells compared with proliferating non-transformed 

DMSO-treated colony-derived cells (shown in Figure 32D). An abundance of BMI-1 

transcripts was identified in 90 % of the B(a)P-induced immortal MT colonies assayed and 

in 3 instances the increase was above 8-fold that in non-transformed control SHE cells 

(see Figure 31). In all immortalised MT colonies assayed for BMI­1 gene expression, 

transcription was generally above the DMSO-controls mean relative values. These ranged 

from a modest increase (2.5-fold in BP MT2) to much larger increases in other MT clones. 

For example, in BP MT1 an initial 8-fold increase continued to rise reaching up to 50­fold; 

in BP MT3 BMI-1 was overexpressed 8-fold in time points measured after P+15 (Figure 

32D) and in BP MT4 BMI­1 rose to 13 fold and at later time points decreased (Figure 31).  

p53 expression is subtly altered in B(a)P-induced SHE MT cells and its upstream 

regulators Mdm2 and ARF are downregulated 

As shown in Figure 31, gene expression levels of the tumour suppressor gene p53 did not 

greatly vary when compared to the DMSO-control group. However, differences in 

expression within each cell type did change over time points analysed. For example, 

BP MT1 displayed a 3-5-fold increase in its expression at early time points but this was 

reduced to control levels in the later time points assayed. Conversely, BP MT3 and 

BP MT4 displayed reduced p53 expression at early time points which then increased to 

values similar to the DMSO non-transformed control group from passages 13 and 8 

respectively.  

Upstream regulators of p53, ARF and Mdm2 were generally found to be downregulated at 

the transcriptional level (Figure 31). In the case of Mdm2 (which marks p53 for 

ubiquitination and degradation) its transcripts were reduced to levels similar to untreated 

primary SHE cells in 40 % of B(a)P-induced colony-derived cells (4 out of 10) and the 

remaining immortalised cell lines were positive for Mdm2 but generally below 2.5 fold 

above the DMSO control group mean. Reduced expression of Mdm2’s upstream binding 

partner ARF was observed in 80 % of B(a)P-induced clones (normal expression levels in 

BP MT3 and BP MT6) as discussed earlier in this section. There was no common 



Page 141 of 226 

correlation (Spearman rank coefficient, Rs) between Mdm2, ARF or p53 gene expression 

across colony-derived clones assayed at successive time points. However, ARF and p53 

did have a positive correlation of expression in BP MT4 and BP MT8 (Rs 0.74, p value 

<0.01 and Rs 0.86, p value <0.025 respectively) whereas in BP MT3 an inverse correlation 

between ARF and p53 (Rs -0.77, p value <0.1) and Mdm2 and p53 expression (Rs -0.83, 

p value <0.05) was noted. 

Rb1 follows similar expression patterns to Mdm2, and its downregulation is cell line 

specific 

Rb1 gene expression varied across immortalised B(a)P-induced colony-derived SHE cells 

(shown in Figure 33 and Figure 31). There were 3 to 6-fold Rb1 transcript increases in 

50 % of the cell lines and SHE clone BP MT2 overexpressed up to 12-fold compared with 

the DMSO non-transformed group. In the case of BP MT5 Rb1, gene expression became 

progressively downregulated, with only 10 % expression compared to the DMSO control 

average at passage 17 (Figure 33). This is in contrast to BP MT7 and BP MT8 which overall 

retained a marginal overexpression of Rb1 at the consecutive time points measured. 

It was observed that Rb1 and Mdm2 gene expression followed the same trends in four 

SHE B(a)P-induced cell lines during the course of the time points measured (BP MT2, 

BP MT3, BP MT5 and BP MT6). For example, the fluctuations in Rb1 gene expression 

evident in BP MT5 (shown in Figure 33) were mirrored in the cell line’s Mdm2 expression 

(not shown, but see Figure 31). The genes shared a positive correlation (p value <0.01) 

which is shown in Figure 34. 
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Figure 33 – Rb1 gene expression in B(a)P-induced immortal SHE colony-derived cells 
 
mRNA expression of Rb1 in colony-derived SHE BP MT5 BP MT7 and BP M8. DMSO N is the 

control group (N1-N6) of proliferating, early passage (P+2-P+3) DMSO treated non-transformed 

colonies. The mean of these was assigned a value of 1 and used to calculate the RQ values of 

other samples. Relative quantities of amplified product were normalised to the reference genes 

GAPDH and beta-actin. Error bars represent the standard deviation of 2-ΔΔCt. Note that the y-axis 

scale is log10. 

 

Figure 34 – Mdm2 and Rb1 gene expression is positively correlated 
 
Gene expression of Mdm2 and Rb1 at successive time points followed the same trends in SHE 

clones BP MT2, BP MT3, BP MT5 and BP MT6. RQ values were ranked per gene and cell type, the 

Spearman rank correlation coefficient (Rs) was calculated for the ranked expression between 

Mdm2 and Rb1; Rs was above 0.83 in all four cases and p values were <0.01.  
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5.3.3 Copy number variation (CNV) in immortal colony-derived SHE cells 

Numerical gene changes (gains or losses) in immortalised colony-derived SHE cells were 

studied using copy number variation (CNV) analysis with TaqMan-style probes. The 

stability of the reference gene succinate dehydrogenase subunit A (SDHA) was verified 

using SHE treated and untreated genomic DNA (gDNA) samples (see section 5.2.3). 

Amplification values for the reference gene SDHA were duplexed alongside the target 

genes which were those encoded by the CDKN2A/B locus (p16 exon 1α, p16/ARF exon 2, 

ARF exon 1β and p15) and p53. Positive calibrator samples were presumed to contain 

2 allelic copies of each target gene and included wild-type primary SHE cells and a panel 

of finite lifespan non-transformed SHE colony-derived cells, initially treated with DMSO in 

the SHE-MT assay. Additionally, gDNA samples from carcinogen-induced Syrian hamster 

dermal (SHD) cells known to have allelic copy loss were included. The entire CDKN2A/B 

locus is deleted in the X-ray-immortalised SHD line 4XH11 but this line still retains both 

gene copies of p53, whereas line SHD 5BP2 carries a single allelic loss of p53 and also 

single copy loss across the CDKN2A/B locus (Yasaei et al., 2013). 

Figure 35 shows the gene copy numbers (CN) for the panel of controls used in the CNV 

analysis. An overall CNV value of 2 was assigned to the average value from the SHE 

primary sample and used as the calibrator for unknown samples. No fluorescence 

amplification was observed in p16, p15 or ARF for the X-ray-treated sample SHD 4XL1 but 

two copies of p53 were identified (Yasaei et al., 2013). SHD 5BP2 had a single copy of p53, 

p16/ARF exon 2 and ARF exon 1β but was found to have retained both copies of p16 

exon 1α and p15. As shown in Figure 35, sample variation was evident amongst the 

calibrator SHE DMSO samples when compared to the SHE primary calibrator. The average 

predicted CN across all gene targets was 2.01 and the CNV range across all targets 

measured was between 1.12 and 3.21 copies. Given this large range, stringent criteria 

were used to call gene amplifications or deletions in unknown samples. For MT colony-

derived immortalised SHE cells, single allelic loss was called when copy number values 

were observed to be lower than 1.0 predicted copies and gene amplification called when 

greater than 3.5 copies. The CNV range for each unknown sample was taken into 

consideration to make each copy number call. 
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Figure 35 - Copy numbers for SHE and SHD calibrator samples used for CNV analysis 
 
Genomic DNA from wild type SHE cells and SHE cells derived from non-transformed DMSO 

treated colonies were used as calibrator samples for copy number variation (CNV) analysis. SHD 

with known CNV were also analysed. SDHA was identified as the most stable reference gene 

(GeNorm) and was assayed in parallel to the target assay. Primers were designed and validated by 

PrimerDesign. CNVs were analysed for p53 exons 7-9 (A) and (B) p16 exon1α, p16/ARF exon 2, 

ARF exon 1β and p15 using CopyCaller software v 2.0. Error bars represent the copy number 

variation range between sample replicates. 

 

Copy number variation analysis was carried out on MT colony-derived SHE cells. In cell 

lines that immortalised, DNA samples were analysed at ‘early’ and ‘late’ passages to 

account for any allelic gains or losses during the cell population’s lifespan. Early passages 

include cells below ~35 population doublings and late include cells above ~50 population 

doublings. The p53 CNV data shown in Figure 36 was calibrated against non-transformed 

SHE samples with both normal copies of p53 (Figure 35A) and suggests that nearly all MT 

colony-derived SHE cells carry 2 p53 alleles at early and late time points. Gene 
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amplification was observed in only one SHE sample, namely B(a)P treated MT SHE 24, 

which did not immortalise; its predicted p53 CNV was 4 copies. BP MT7 at the early time 

point had an estimated p53 copy number of 0.6 but the allelic loss was not identified at 

the later time point in the same cell type (CNV of 2.15 copies). As mentioned earlier a cut 

off of 1.0 copy was used to determine allelic loss so, although BP MT11 and BP MT12 

were calculated to have 1.20 and 1.29 copies of p53 respectively, they are predicted to 

have 2 gene copies when taking into account the CNV range.  

Separate copy number variation assays were carried out for p16 exon1α, p16/ARF exon 2, 

ARF exon 1β and p15; all encoded by the CDKN2A/B locus. Amplification data was 

calibrated against primary SHE gDNA and non-transformed colony-derived SHE samples 

which were assumed to have both normal allelic copies of the locus (Figure 35B). BP MT3 

(Figure 37) displayed single allelic loss of ARF exon 1β and exon 2 (common to p16) (CNV 

values were between 0.5 and 0.7 copies) and 2 copies of p16 exon1α and p15; although 

p15 values were borderline, possibly indicating one copy. BP MT6 retained a single copy 

of the entire CDKN2A/B locus but only at the later time point suggesting that one allele 

was deleted in these cell lines during the process of immortalisation; the result was 

similar for BP MT1, although p16/ARF exon 2 was borderline as its maximum CNV was 

predicted as 1.23 at the later time point. BP MT11 and BP MT12 also had a single copy of 

the whole locus encompassing p16, ARF and p15 (CNV values all below 0.8). No genomic 

alterations at the selected loci were observed in the spontaneously immortal DMSO MT1 

at either time points. 

Two of the four morphologically transformed B(a)P-treated SHE cells that entered 

senescence and did not immortalise were predicted to have two copies of the genes 

located at the CDKN2A/B locus. Interestingly, p15 was amplified in SHE 24 and BP T15 

(see Figure 37) with CNV ranges above the 3.5 copy threshold. The CNV analysis predicted 

5-6 copies at early time points of ARF exon 1β and p16/ARF exon 2 in BP MT2 and BP MT5 

whereas BP MT7 was predicted to carry more than 8 copies of exon 2 at the early time 

point analysed. Curiously, the amplifications were generally not observed in gDNA 

samples tested from the same cell lines at later time points, with all genomic regions in 

BP MT2, BP MT5 and BP MT7 showing a predicted 2 gene copies except for 3.82 copies of 

p16/ARF exon 2 in BP MT5.  
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Figure 36 - Copy number variation of p53 in immortalised colony-derived SHE-MT cells 
 
The allelic status of p53 was measured using qPCR and Taqman style probes in morphologically transformed (MT) colony-derived SHE cells. DNA from finite lifespan and 

immortalised MT SHE cells was analysed. Calibrator SHE samples shown in Figure 35 were used as controls with an average copy number of 2 copies. Values above 3.5 

copies were considered gene amplification and below 1.0 copies single allele loss. Amplification data was analysed using CopyCaller software v 2.0. The error bars 

represent the maximum and minimum CNV range. 
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Figure 37 – Copy number variation at the CDKN2A/B locus in immortalised colony-derived SHE-
MT cells 
 
The allelic status of p16 exon1α, p16/ARF exon 2, ARF exon 1β and p15 were measured using 

qPCR and Taqman-style probes in morphologically transformed (MT) colony-derived SHE cells. 

DNA from finite lifespan and immortalised MT SHE cells was analysed. Calibrator SHE samples 

shown in Figure 35 were used as controls with an average copy number of 2 copies. Values above 

3.5 copies were considered gene amplification and below 1.0 copies single allele loss; the CNV 

range was taken into account. Amplification data was analysed using CopyCaller software v 2.0. 
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5.4 Discussion 

This chapter describes in detail the results of work in which colony-derived cells from the 

SHE cell transformation assay were analysed for their patterns of gene expression, copy 

number variation and gene mutations in p53- and p16-tumour suppressor pathways. The 

objective was to provide molecular insight to events leading to senescence bypass in 

morphologically transformed (MT) SHE cells sourced directly from the SHE cell 

transformation assay (CTA). The results focus on molecular alterations in SHE cells treated 

with the carcinogen benzo(a)pyrene which is commonly used as the SHE CTA’s positive 

control carcinogen. The data presented here may also expand on current knowledge of 

the mode of action of benzo(a)pyrene as a cell transforming agent and potent human 

carcinogen. 

p53 mutations in SHE MT B(a)P-induced clones 

The metabolic activation of benzo(a)pyrene commonly leads to the formation of DNA 

adducts, which if incorrectly repaired, will mispair on DNA replication leading to 

characteristic point mutations. The majority of B(a)P-induced mutations are thought to be 

G to T transversions. Such mutations are commonly identified in lung cancers (Toyooka et 

al., 2003) and when present in the critical tumour suppressor gene p53, are influenced by 

a strand bias whereby guanine base nucleotides on the non-coding strand are targeted 

more than those on the transcribed strand (Hollstein et al., 1991). The tumour suppressor 

p53 is frequently mutated in human cancers and in chemically-immortalised Syrian 

hamster cell lines (Chang et al., 1995, 2000, Oreffo et al., 1993). Here in this analysis, four 

p53 point mutations were identified in separate B(a)P-induced MT colony-derived SHE 

clones (Figure 38). Two of these were G>T transversions, one a G>C transition and the 

other a C>T transition which if targeted via a B(a)P adduct on the opposite strand is also a 

guanine residue (G>A). The resulting changes in the translated protein were all predicted 

to localise to human mutational hotspots within the p53 DNA binding domain. One SH 

p53 mutation (p.C245S) was identical to a point mutation found in an SH dermal B(a)P-

induced cell line (Yasaei et al., 2013) indicating a commonly targeted site in hamster cell 

immortalisation. Using PredictProtein with SNAP2 (Yachdav et al., 2014) to assess the 

impact that each mutational event might have on protein function, all point mutations 

had a score above +70 and a high probability of impacting p53 function, (R161L = +82; 
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R270W = +74; C245S = +88; R251L = +71) this was in stark contrast to the strain variant 

S188G which was predicted no change in protein function (score of -86). According to the 

IARC p53 database all mutated codons were deleterious missense mutations that would 

alter the vast majority of the ten predicted human p53 isoforms (Δp53α was not affected 

by R267W), whereas the strain variant was predicted a neutral effect on protein function 

did not affect the transactivation domain. This suggests that p53 activity was 

compromised in 33 % of BP-induced immortal SHE MT cells (4 out of 12) and moreover, 

confirms that the base change common to all samples sequenced is indeed a strain 

variant. Given the mutational frequency induced by benzo(a)pyrene at a single gene locus 

is about 3 in 10,000 cells (Newbold et al., 1977) which despite being more than 30-fold 

higher than spontaneous mutations occurring is still very low, the outcome of a relatively 

high proportion of immortal SHE MT clones containing a p53 mutation might be 

unexpected. 

Sequencing profiles revealed that p53 mutations in BP MT9 and BP MT10 were present at 

early population doublings (under passage 10) indicative of the mutation likely being a 

direct effect of benzo(a)pyrene treatment, although only two were characteristic G>T 

transversions. The sequencing profiles also indicated that the mutated form of p53 was 

only present in the whole cell population or in all transcripts at the later time point when 

the clone fully acquired immortality, suggesting the mutated p53 conferred growth 

advantages and evasion of senescence barriers. Only one B(a)P-induced SHE MT clone 

had amplification in p53 (4 copies, tetraploid) but no gene mutations and it failed to 

bypass senescence. The overall p53 mutation frequency was lower in SHE compared to 

that observed in SHD immortal B(a)P-induced lines (Yasaei et al., 2013) but the lack of 

CNV in B(a)P-induced clones was concordant with senescence bypass studies in induced 

SHD cells, where 5 out of 7 B(a)P-induced lines were found to carry p53 DNA binding 

domain point mutations, although only one line sustained single allele loss of p53 (Yasaei 

et al., 2013).  
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Figure 38 – Copy number variation (CNV) and point mutations in p53 and CDKN2A/B genes in 
SHE colony-derived cells 
 
A summary of gene copy numbers and mutations identified in colony-derived cells derived from 

the SHE CTA at ‘late’ passages (population doublings ~above 50 Pd). Mutations were screened by 

Sanger sequencing and CNV was performed using qPCR with TaqMan-style primers designed by 

Primerdesign. A strain variation common to all cells tested was identified in both p16 and p53 but 

point mutations were only found in p53. The synonymous mutation refers to p53 c195 G>A which 

was silent at the amino acid level. Separate CNV assays were designed for p53 spanning exons 7-

9, p15, p16 exon 1α, ARF exon 1β and p16/ARF shared exon 2. One gene copy was called when 

≤1.0 copies were predicted, 3 copies called when ≥3.5 copies and 4 copies called when ≥4.5 

copies predicted using CopyCaller v2.0, Applied Biosystems. 

 

 

From the copy number variation analysis (CNV), both BP MT9 and BP MT10-immortalised 

cell lines were shown to have two copies of p53, at least between exons 7 and 8. In 

cancer, p53 inactivating mutations are often accompanied by single allele loss on the 

remaining wild-type allele. This may have been the case in BP MT11 and BP MT12 as 

predicted p53 gene copies were 1.20 and 1.29 respectively. However, in BP MT9 and 

BP MT10 the data would in fact be suggestive of two p53 alleles both with a point 
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mutation (see Figure 38). The likelihood of two mutations taking place at exactly the same 

place in two alleles separately is next to impossible, unless there was chromosome loss 

followed by duplication of the remaining chromosome. One explanation could be due to 

differences in sample population doublings taken between RNA and DNA extracts in these 

instances; CNV was analysed around 5-6 population doublings (2 passages) before RNA 

was extracted for cDNA synthesis. It may be that in that over time cells lost a copy of p53 

giving rise to only one peak on the sequencing profile; but this would need to be 

confirmed. Also, the CNV analysis takes place at a DNA level whereas mRNA transcripts 

(not DNA) were sequenced for mutations. DNA sequencing might reveal additional allelic 

p53 mutations or upstream deletions that could interfere or block transcription on the 

other allele, allowing transcription of only the first mutated allele. In this case amplified 

cDNA will have only contained one allelic version of p53 even though the clones contain 

two p53 gene copies. Gene copy analysis by fluorescence in situ hybridisation (FISH) with 

multiple probes to p53 would verify the gene copy number across the gene and now that 

the Syrian hamster genome has been sequenced, genomic DNA encompassing the whole 

gene locus could be analysed. 

The synonymous point mutation in p53 c195 G>A was identified in all Brunel-derived SHE 

colonies and also involved a guanine residue (a transition mutation) but resulted in no 

predicted change in the protein conformation and was not found to be in a mutational 

hotspot (Figure 38). c195 G>A was identified in the original primary SHE population 

suggesting a further strain variant, different from the p53 NCBI sequence and from clones 

obtained from BioReliance. The sequence profiles often showed two unequal peaks at 

c195 which is suggestive of either two populations of cells with alternative versions of 

p53 or possibly allelic variants with a transcription bias. The mRNA transcripts sequenced 

suggest that the adenine (A) variant was preferred as at later time points the guanine (G) 

variant was not identified. One more speculative suggestion could be selection of the 

synonymous mutation or single-nucleotide polymorphism (SNP) in favour of its impact on 

splicing machinery. Silent mutations can promote cancer and in p53 such aberrations are 

specifically located in close proximity to p53 splice sites (Supek et al., 2014). Although not 

located at a splice junction, the corresponding wild-type codon in humans (human 

codon 66) is located in a predicted splicing enhancer motif (Cartegni et al., 2003) which, if 
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mutated, could influence the transcription of p53 splice variants by affecting the assembly 

of spliceosome complexes. These splice enhancer sequences are not well-conserved 

recognition sequences but rather are loosely defined regions that can promote exon 

skipping or inclusion depending on their capacity to recruit splice factors. This was not 

investigated further.  

Loss of CDKN2A/B locus in SHE colony-derived cells 

In 50 % of B(a)P-induced immortal clones (6 out of 12) single copy loss was observed 

(CNV <1.0) and in these instances ARF exon 1β was also commonly affected (Figure 38). In 

three of these cases the whole locus was subject to a single allelic deletion which was not 

observed at the early time point tested in BP MT6. It is likely that BP MT1 also lost the 

whole locus (p16, ARF and p15) as its CNV value for exon 2 was 0.88 but with a maximum 

range of 1.23 copies. Initial upregulation of p16 and p15 was noted in BP MT1 and 

BP MT6 which corresponded to a temporary cell crisis. A secondary event is presumed 

then to have taken place that resulted in increased cell growth and reduced expression 

levels of the CDKN2A/B locus which is consistent with the observed copy number loss 

only at the later time point. The reduction in mRNA expression of Cdk inhibitors can be 

explained by the deletion of one allele containing the CDKN2A/B locus that resulted in a 

lower level of p16, p15 and ARF gene expression permissive for proliferation to continue. 

BP MT3 lacked one allele of ARF exon 1β and of exon 2 which is shared in alternative 

reading frame with p16. However, due to a lack of cell material (the cells could only be 

replated between passages +3 and P+12) DNA could not be extracted from the cells at the 

early passage time point. It too showed downregulation of p16, p15 and ARF gene 

expression at later time points. Given the patterns of expression, it is likely that BP MT3’s 

change in gene expression was linked to the loss of p16/ARF exon 2 and ARF exon 1β. 

BP MT11 and BP MT12 on average expressed p16, p15 and ARF at around 50 % of that 

measured in the non-transformed DMSO group and also carried a p53 point mutation. 

Monoallelic expression of CDKN2A/B may not have been sufficient to activate senescence 

pathways causing haploinsufficiency; in fact gene transcript levels were akin to those in 

non-primary proliferating cells. In some SHD B(a)P-induced cell lines, monoallelic 

(heterozygous) deletions were commonly identified at the CDKN2A/B locus but were 

accompanied by increased levels of p16 gene expression. Unlike in colony-derived SHE 
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cells, p16 mutations were identified and gene silencing was only observed in a single 

B(a)P-induced SHD line, which was explained by DNA methylation at the gene promoter 

(Yasaei et al., 2013). Deletions spanning the 9p21.3 region are commonly associated with 

melanoma and multiple tumour types (Gu et al., 2013) and have also been identified in 

patients suffering from the very rare melanoma-astrocytoma syndrome (Frigerio et al., 

2014).  

Gene amplifications at the CDKN2A/B locus in SHE colony-derived cells 

Gene amplification at chromosome 9p21.3 in humans is uncommon although it has been 

identified in urinary bladder cancers and associated with poor prognosis (Berggren de 

Verdier et al., 2006). Chromosomal aberrations as a result of benzo(a)pyrene exposure in 

SHE morphologically transformed cells have been recorded although normal SHE cells are 

well known for maintaining diploidy. From a single B(a)P-induced MT cell line, 83 % of 

cells counted were abnormal and included hypotetraploid, and hypo-octaploid cells along 

with aneuploid cells with fewer than 23 chromosomes (Markovits et al., 1975). 

Results from the CNV analysis in SHE colony-derived cells suggested that there was 

amplification in genes found at the CDKN2A/B locus in 25 % of B(a)P-induced immortal 

SHE clones (3 out of 12) and also in two of the finite lifespan clones treated with 

benzo(a)pyrene (CNV >3.5). In B(a)P MT cells amplification was limited to p16/ARF exon 2 

and ARF exon 1β, mostly observed at early time points. This was not dissimilar from 

earlier observations in B(a)P-induced SHD immortal clones (Yasaei et al., 2013) which also 

noted CNV amplification limited to ARF. In samples predicted to have acquired p16/ARF 

amplification, there were two copies of p53 at both early and later time points so 

amplification at the locus is unlikely to be explained by genome-wide amplification or 

polyploidy. Given that the predicted copy numbers were unequal across the locus, for 

example BP MT7 had over 8 copies of the ARF specific exon but two copies of p16 exon 

1α, it is indicative of gene- or locus-specific amplification and not whole chromosomal 

amplification. If the cell population is viewed as initially genetically heterogeneous when 

derived from the MT colony, only those with selective growth advantage would continue 

to divide and overcome senescence barriers. If the CNV amplification at early time points 

is true (would need to be verified) then at later time points with clonal expansion, extra 

copies were lost from the overall cell population, indicating cell cycle arrest in those 
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amplified cells. Only BP MT5 retained an extra copy of exon 2, although the CNV 

minimum range was borderline.  

Reliability of the CNV assay 

More repeats of the CNV analysis would be needed to remove sample variation. The 

increase in predicted copy number did not generally correlate with increases in gene 

expression, which indeed questions the quantitative reliability of the assay. The variability 

within the control group (p16, p15 and ARF assays) was high and noticeably so compared 

with the p53 assay. To take this into account, it was necessary to allocate a large CNV 

range to attempt to gain a meaningful interpretation of the predicted copy number 

variation data, probably at the cost of assay sensitivity. One potential influencing factor 

could be remnant traces of PCR inhibitors within the gDNA samples derived from the 

extraction process. Although the gDNA used was diluted to 5 ng/μl and sample quality 

checked, this may not have been sufficient, leading to variable interference of the PCR 

reaction and resulting Cq values. The reference gene (SDHA-VIC) and target of interest 

(labelled with FAM) were duplexed in the same reaction to account for pipetting 

variability, which could have led to misinterpreted results. It was noted that the overall 

fluorogenic data recorded by the qPCR machine was quite low, and readings may have 

been dampened by running both simultaneously. This could have had unpredictable 

effects on the relative amplification, if the reduction in fluorescence did not take place 

evenly between the two fluorophoures. Alternative methods to measure copy numbers 

to complement the CNV assay would be ideally performed although until recently a lack 

of genomic sequence information was limiting. Fluorescence in situ hybridisation (FISH) 

using gene specific probes would help visualise the gene copies and karyotyping the cell 

lines would aid identification of any gross chromosomal loss or gain in the resulting 

immortalised clones.  
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Figure 39 - Transcriptional changes potentially leading to immortalisation and senescence 
bypass 
 
A schematic representation of transcriptional alterations identified in morphologically 

transformed SHE cells that had bypassed senescence, and which may help explain underlying 

molecular mechanisms of immortalisation. Genes assayed included components of the p16-

pathway (BMI-1, p16, p15 and Rb1) and the p53-pathway (p53, ARF, Mdm2). Red arrows indicate 

common transcriptional changes identified in this project by qPCR. 

 

Transcriptional changes in p16- and p53-senescence pathways 

A basic pathway network diagram is shown in Figure 39 for p16- and p53-senescence 

promoting pathways incorporating commonly observed transcriptional changes seen in 

B(a)P-induced morphologically transformed colony-derived SHE cells. Both pathways 

ultimately influence progression of the cell cycle from G1 to S phase via the inactivation 

of cyclin dependent kinases that keep pRb in an active, phosphorylated state (Henley and 

Dick, 2012). The pathway analysis was limited to mRNA level assessment as there was 
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difficulty in identifying reliable antibodies for western blotting specific to the Syrian 

hamster. In order to confirm the low levels of p16 transcripts, several human and mouse 

antibodies specific to p16 were tested in samples found to have high levels of p16 

transcripts (for example DMSO controls) but protein detection was not achieved in 

hamster samples despite multiple optimisation attempts. Ideally transcriptional changes 

would be confirmed by protein analysis and where relevant quantified both at total and 

phosphorylated protein level to gauge protein activity. 

BMI-1 upregulation in MT B(a)P-induced SHE cells 

Data presented in this chapter provide insight into the possible mechanisms underlying 

upstream regulation of members of the CDKN2A/B locus that drive senescence pathways. 

Increased expression of BMI-1 in immortal benzo(a)pyrene-induced morphologically 

transformed (MT) SHE cells could partly account for how p16 and p15 are 

transcriptionally downregulated compared to non-transformed SHE cells. BMI-1 is a ring-

finger protein and a member of the Polycomb repressive complex 1 (PRC1) which, along 

with other complexed proteins such as CBX7 (chromobox homologue 7) and RING1B (ring 

finger protein 2), recognise epigenetic marks imposed by other Polycomb group (PcG) 

proteins. There is evidence that a steady release of PRC1 proteins bound to the 

CDKN2A/B locus has an activating effect on p16 transcription during senescence (Itahana 

et al., 2003) whereas BMI-1 overexpression extends replicative cell lifespan by disrupting 

the Rb1-pathway (Itahana et al., 2003). Arsenic-induced cell transformation in 

immortalised BALB/c 3T3 cells was shown to correlate with increased levels of PRC2 

protein components EZH2, SUZ12 and EED as well as elevated protein levels of BMI-1. 

When PcG proteins were knocked-down, ARF and p16 levels were rescued in transformed 

cells (Kim et al., 2012) although there was no mention of any proliferation rate 

differences following transfection. Additionally, an upstream DNA element of p16 is 

recognised and bound by BMI-1 (BRE-element) which acts as a negative transcription 

factor directly influencing p16 transcription in humans (Meng et al., 2010). Further 

investigation is required in immortalised SHE MT cells to confirm BMI-1 overexpression at 

the protein level, and a knockdown via short-hairpin RNAs would confirm its upstream 

role in regulating p16, p15 and possibly ARF, which is also located at the CDKN2A/B locus. 
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Downregulation of p16 and p53 compensation 

The monoallelic loss of the CDKN2A/B locus identified by copy number variation analysis 

was linked to the downregulation of one or more of its gene products in MT clones 

BP MT1, BP MT3 and BP MT6. As this secondary event took place, there were changes in 

gene expression of members of the p53 pathway (Figure 31). For example, there was a 

3­fold increase in p53 expression noted in BP MT3 and BP MT6 after P+3 and P10 

respectively. A higher fold increase was observed in BP MT1 after P+3 which correlated to 

when p16 was downregulated; a further increase in p53 was noted at P+12 when p15 

transcripts were also reduced. This is suggestive of members of the p53-pathway sensing 

the silencing of senescence regulators in some instances, possibly causing the observed 

slight increase in p53 expression in compensation. A similar observation was made for 

BP MT4 between passages +7 and +8, which retained both copies of the CDKN2A/B locus 

but also suffered from attenuated levels of p16, ARF and p15 (Figure 32), suggesting 

alternative regulatory mechanisms. 

Both p53 and p16-pathways converge on the retinoblastoma protein which when active 

maintains cells in their resting state, limiting progression of the cell cycle from G1 to 

S phase (Henley and Dick, 2012). In BP MT4 and BP MT6 Rb1 expression was reduced at 

the same passages as when p15 downregulation was commonly observed, implicating its 

role in senescence. Transcripts of p16 were reduced concomitantly with Rb1 and p15 in 

BP MT6 and in BP MT4 p16 was downregulated following a 2.5-fold decrease in Rb1 

(Figure 31). No information was generated with regards to pRB1 protein levels or 

phosphorylation state in colony-derived clones which limits conclusions drawn on the 

activity of pRB1. The mRNA data suggests the deregulation of senescence activating 

pathways, permitting uncontrolled growth despite increased p53 transcription in B(a)P-

induced MT SHE cells with downregulated p16 and p15.  

On the other hand Rb1 expression was also shown to be upregulated in several immortal 

SHE lines, including BP MT7, BP MT8 and p53 mutants BP MT11 and BP MT12. If p53 was 

non-functional due to inactivating DNA binding domain mutations in the latter two lines, 

it is conceivable that its downstream target p21 failed to activate RB1, allowing 

progression through to S phase. With low levels of p16 and p15, cyclin D may remain 

activate and thus RB1 further inactive despite higher mRNA transcripts circulating due to 
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its protein phosphorylation via cyclin dependent kinases. Further work is needed to prove 

the posttranslational regulation of RB1 in immortal B(a)P-induced SHE cells but the data 

suggests that regulation of the restriction checkpoint into S phase is compromised. 

CDKN2A/B transcripts were downregulated in BP MT7 and BP MT8 however these cells 

were found to have both wild type copies of p53, p16, ARF and p15. There may be 

additional unknown inactivating events taking place in the p53-pathway or the reduced 

expression of the locus including ARF, which affects p53 protein turnover by sequestering 

Mdm2, may have been sufficient to bypass senescence barriers. 

Mdm2 gene expression 

Mdm2 was minimally expressed in BP MT5, which would suggest stabilisation of the p53 

protein (as it is not marked for ubiquitination) and the resulting increased p21 activity 

could then lead to the inactivation of Cdk2 and cell cycle arrest. However, this was not 

the case as the cells reached over 100 population doublings and showed no signs of 

entering senescence. Indeed Mdm2 is often overexpressed and amplified in cancers 

(Rayburn et al., 2005) which is inconsistent with its striking downregulation detected in 

BP MT5. A gradual increase in transcription of its upstream regulator ARF to levels 

comparable of the DMSO-control group was observed (Figure 32) but its expression was 

later downregulated by about 80 % along with p16 and p15. Transcript levels of Mdm2 in 

BP MT5 were comparable to those identified in primary SHE cells, suggesting that its 

silencing is compatible with proliferation, and low levels were also common to BP MT3 

and BP MT4. It possible that downregulation of Mdm2 is the cell’s way of trying to 

activate the p53 pathway and initiate cell cycle arrest.  

Downstream effectors like p21 and Cdks were not transcriptionally quantified in this 

study but may be drastically altered thus evading cell cycle checkpoints. Recent papers 

argue that the function of Mdm2 goes beyond negatively regulating p53 activity and that 

it may not always be oncogenic (Manfredi, 2010, Nag et al., 2013). A role for Mdm2 in 

promoting cell cycle arrest has been implicated, as stabilisation of p53 activity by silencing 

Mdm2 with small interfering RNAs, did not impact cell cycle progression (Giono and 

Manfredi, 2007). Despite increased p53 and p21 levels, Mdm2 knockdowns continued to 

proliferate indicating that it may be required for a full cell cycle arrest via the p53-

pathway. It is also worth noting that Mdm2 has multiple isoforms plus binding partners 
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(Nag et al., 2013) and it is possible that the qPCR primers used in this analysis may 

encompass only a subset of all transcript variants. 

Sample variability in qPCR analysis 

Relative quantities of gene transcripts were compared to a group of non-transformed 

DMSO-treated colony-derived cells (Figure 30). RNA was extracted from DMSO controls 

which were early passage (P2-P3), that were proliferating and had visible mitotic 

telophase pairs. It was found that most of the DMSO N group did not grow very well and 

many cells on recovery (following shipment from BioReliance) or following colony picking 

were senescent and could not be further expanded for analysis. This limited the number 

of controls that were available for analysis; ideally sample size would have been larger 

and more representative. Variation was not sample specific so that there were no obvious 

outliers that over- or under-expressing all genes which could be commonly removed to 

minimise the range observed. From the available DMSO controls with good growth, 

substantial variation was identified between colony-derived cells (N1-N6), especially for 

p16 mRNA transcripts. To a certain extent this was to be expected given the 

heterogeneous nature of the SHE CTA also exemplified by the differences in BP MT clone 

expression profiles. Slight differences in population doublings across the DMSO clones 

may have influenced their transcriptional levels; in the case of clones from BioReliance, 

population doublings or number of passages were unknown at point of recovery 

(assigned P+1). Whereas for p16, if only the highest RQ values had been assigned as the 

calibrators, the fold difference observed would have been much greater with stronger 

gene downregulation in BP MT clones. On the other hand if the lower RQ values for 

Mdm2 DMSO controls had been assigned an RQ of 1 then the low levels of Mdm2 gene 

expression would not have been observed, but certain clones would have been 

interpreted as having upregulated transcripts. Patterns of gene expression within the 

same BP MT clone at different time points would remain largely unchanged, except that 

changes might be increased or diminished depending on the calibrator’s expression. 

Without a ‘normal’ DMSO CTA clone transcription profile as a reference point, it was 

necessary to group the control samples together. Primary SHE cells were not used as 

calibrators as they were not considered to be representative of cells derived from the SHE 

CTA which have gone through assay specific growth conditions such as plating at low 
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seeding density, colony formation and at least 13 or more population doublings. It was 

hoped that by grouping the controls together a closer to normal representation of non-

transformed DMSO-treated controls would be obtained.  

 

Chapter summary 

Colony-derived cells from the SHE MT cell transformation assay (CTA) were analysed for 

gene mutations, copy number variation and gene expression in potentially relevant genes 

from the p53- and p16-pathways. MT cells analysed continued to proliferate beyond 

100 population doublings and can be considered fully immortal, in marked contrast to 

untreated SHE primary cells which entered senescence after ~35-45 population doublings 

(Dafou, 2003). We identified p53 point mutations in 4 out of 12 immortal B(a)P-induced 

MT SHE cells which altered the translated protein sequence and were likely to be 

functionally inactivating. Two of the mutations were transversions and consistent with 

benzo(a)pyrene’s mutational fingerprint. No point mutations were observed in p16 or in 

any of the finite lifespan clones. A single allele loss was observed in 40 % of BP MT 

immortalised lines which was not limited to p16 but was extended to the whole 

CDKN2A/B locus, i.e. including the tumour suppressor genes (TSGs) p15 and ARF. Gene 

expression analysis indicated that the entire locus was expressed at low levels, unlike in 

senescent cells which overexpressed all three TSGs. In those instances where p15 or p16 

were initially upregulated, the timing of (CNV) gene copy loss seems to have coincided 

with a reduction in mRNA transcripts and the appearance of clonal cell growth. The 

negative CDKN2A regulator BMI-1 was shown to be upregulated in most SHE MT cells 

which can, at least in part, explain the silencing of the CDKN2A/B locus. In some 

instances, p53 was slightly upregulated along with Rb1 transcription but cell cycle arrest 

did not take place, probably indicating further signalling pathway abrogation in the lines 

containing wild type p53. Surprisingly, the p53 negative regulator Mdm2 was expressed at 

very low levels but this may have been due to highly expressing control samples. 
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CHAPTER 6 

 

6 The Role of DNA Methylation in Regulating p16 

in Immortal SHE MT Colony-Derived Cells 
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6.1 Introduction 

DNA methylation is a known epigenetic regulator of transcription, most widely associated 

with gene silencing but also with imprinting and X-chromosome inactivation. Occurring 

non-exclusively at CpG dinucleotide sites the addition of methyl groups takes place on 

cytosine residues and is catalysed by various methyltransferase enzymes belonging to the 

Dnmt family (Rhee et al., 2002). The dynamic process of DNA methylation is regulated by 

the synergistic activation of Dnmt enzymes which catalyse de novo methylation whilst 

maintaining existing methyl groups (Okano et al., 1999). DNA methylation is reversible 

and demethylating TET enzymes play a role in remodelling methylation patterns (Kohli 

and Zhang, 2013, Jeltsch and Jurkowska, 2014). Epigenetic methyl marks can be stably 

inherited following cellular replication, since hemimethylated DNA is recognised by Dnmt 

enzymes such that unmethylated strands are remethylated. Changes to an organism’s 

methylome can lead to gene dysregulation and disease (Ehrlich, 2002) and, in cancer, 

metastatic cell types have been shown to have genome-wide altered patterns of 

methylation (Reyngold et al., 2014).  

Hypermethylation of the p16 promoter has been identified as a risk factor in the 

development of breast cancer (Wang et al., 2012). Aberrant patterns of DNA methylation 

in this region have been shown to cause transcriptional inactivation of p16 in a number of 

cell types and species; including human oral cancer cells (Cody et al., 1999), head and 

neck cancer (Demokan et al., 2012) prostate and renal cell carcinomas (Herman et al., 

1995) as wells as other in vivo cancer models such as rat and mouse, (Honoki et al., 2004, 

Wu et al., 2012) and the Syrian hamster. The 5’ promoter region of SH p16 was shown to 

be methylated in pancreatic carcinomas induced by N-nitrosobis(2-oxopropyl)amine 

(BOP) (Hanaoka et al., 2005, Li et al., 2004) and by 7,12-dimethylben(a)anthracene 

(DMBA) in SH cheek pouch tumours (Li et al., 2008) explaining the observed reduced 

expression levels of p16. In earlier studies, epigenetic silencing by extensive DNA 

methylation at the p16 promoter was also identified in immortalised Syrian hamster 

dermal (SHD) cells, induced by exposure to the known epigenetic-carcinogen nickel 

chloride (Yasaei et al., 2013). Further, the p16 gene in one benzo(a)pyrene-induced SHD 

cell line was also identified to be transcriptionally inactivated due to its heavily 

methylated promoter region. This raised the possibility that silencing of p16 in 



Page 163 of 226 

immortalised SHE colony-derived cells could also be explained epigenetically via DNA 

methylation at the 5’ p16 promoter. Thanks to the recent Syrian hamster whole genome 

sequencing performed by the Broad Institute, additional genomic information is now 

available via the NCBI website. Following on from sequencing alignments discussed in 

Chapter 7, (section 4.2.3) p16 promoter analysis in cells derived from the SHE-MT assay 

could now be improved over that described previously (Hanaoka et al., 2005) by 

extending the upstream promoter sequence available for analysis. 

In order to analyse the extent of methylation present, a bisulphite conversion of genomic 

DNA was carried out to discriminate between methylated and unmethylated cytosine 

bases. Treatment of genomic DNA with sodium bisulphite converts cytosine residues to 

uracil, but methyl groups (-CH3) bound to cytosines are protective of the conversion 

process, meaning that methylated cytosines remain unchanged. Uracil is complementary 

to adenine which also base pairs with thymine; on subsequent rounds of PCR the present 

uracils are replaced by thymine. Therefore, post bisulphite conversion and 

desulphonation, any unmethylated cytosines are altered to thymines. This approach 

enabled the investigation of epigenetic silencing of p16 in immortalised colony-derived 

SHE cells. 

Immortalised colony-derived SHE cells positive for abnormal DNA methylation at the p16 

promoter were treated with 5’­Aza-2’-deoxycytidine (5-aza-dC), which inhibits 

methyltransferase activity, to ascertain whether the removal of aberrant methyl groups 

could restore p16 expression and even lead to the reactivation of senescence barriers. 5-

aza-dC, also known as decitabine or abbreviated to DAC, is a pro-drug which once 

activated by kinase phosphorylation becomes a substrate for replication and can be 

incorporated into the DNA in the place of cytosine bases. As methyltransferases recognise 

hemimethylated DNA they remain covalently bound to 5-azacytosine rings and their 

catalytic activity is blocked (Momparler, 2005). Methylation can no longer take place in 

treated cells but DNA damage response (DDR) pathways are initiated, trapped 

methyltransferases are degraded leading to a global loss of DNA methylation (Stresemann 

and Lyko, 2008). 
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6.2 Materials and methods 

6.2.1 DNA methylation analysis of p16 

Bisulphite conversion 

Bisulphite conversions were performed using the Cells-to-CpG Bisulphite Conversion Kit 

(Applied Biosystems®) on genomic DNA, extracted by the methods described in 2.6. The 

following steps were performed: 

DNA bisulphite conversion 

Conversion reagent was freshly prepared by adding 26 µl denaturation reagent and 800 µl 

ddH2O to one conversion tube, mixing and then adding 50 µl conversion buffer. The 

mixture was then incubated at 60 °C for 10 min with brief vortexing, to properly solubilise 

the conversion reagent. A total of 1 µg purified genomic DNA was made to 45 µl in ddH2O 

and 5 µl denaturation reagent was added before mixing and then incubating at 50 °C for 

10 min. Volumes of 100 µl prepared conversion reagent was then added to each 

denatured sample, the reaction was mixed well and then two 75 µl aliquots per sample 

were placed in the thermal cycler. The thermal cycling conditions for bisulphite 

conversion were as follows: two cycles of 65 °C for 30 min and 95 °C for 1.5 min, followed 

by a final incubation at 65 °C for 30 min before holding at 4 °C for a maximum of 4 hours. 

Desalting and desulphonation 

Volumes of 600 µl  binding buffer was first added to a binding column, followed by the 

converted DNA, before inverting the column to mix. The sample was passed through the 

column at 10,000 RPM for 1 min and the flow-through discarded. Subsequently gDNA 

bound to the column was washed with 600 µl wash buffer and the DNA then 

desulphonated by incubating the column with 200 µl desulphonation reagent for 15 min 

at room temperature with the lid closed. After 1 min of centrifugation at 10,000 RPM the 

column was again washed and the flow-through fully discarded. The bisulphite converted 

and desalted DNA was then eluted into 40 µl pre-warmed elution buffer and stored at 

4 °C for up to three months. 
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Methyl-specific PCR (MSP) 

PCR was performed on bisulphite-converted samples using methyl-specific primers (MSP) 

and primers specific to non-methylated genomic DNA for the 5’ upstream promoter 

region and exon 1α of p16. Primer sequences for exon 1α were sourced from published 

papers (Li et al., 2004, 2008) as were primers for the p16 promoter (Yasaei et al., 2013). 

Primer sequences are located in the appendix. A total of 3 µl bisulphite converted gDNA 

was amplified to a final reaction volume of 50 µl with 0.5 µl Phusion U polymerase 

(Thermo ScientificTM), 200 µM dNTPs, 0.5 µM forward and reverse p16 MSP primers along 

with 10 µl 5 X GC Buffer and 1.5 µl 100 % DMSO. Samples were kept on ice and mixed 

well. Thermal cycling was as follows: denaturation at 98 °C for 30 s followed by 45 cycles 

of 98 °C for 5 s 54 °C for 20 s and 72 °C for 15 s, then final extension at 72 °C for 10 min 

before holding at 4 °C. For each MSP experiment two PCR reactions were performed 

based on the bisulphite conversion of unmethylated cytosine nucleotides: one specific to 

methylated DNA and one specific to non-methylated DNA. Products were then run on a 

2 % agarose gel with EtBr in 1X TBE buffer at 70 V for 2-3 hours before imaging. 

CpG site analysis of p16 promoter 

Designing BS sequencing primers 

Additional sequence information upstream of p16 permitted the design of bisulphite 

sequencing primer pairs spanning a larger promoter region. MethPrimer (Li and Dahiya, 

2002) was used to design suitable oligonucleotides which recognise bisulphite-converted 

gDNA. These sequences are designed to complement bisulphite converted DNA and were 

selected based on their lack of CpG sites so as to avoid amplification bias of methylated or 

unmethylated sequences. The input sequence was a 1 Kb sequence directly upstream of 

p16, which included the previously identified 300 bp belonging to the p16 5’ promoter 

region (Hanaoka et al., 2005). From this candidate BS sequencing primer pairs were 

obtained. Optimal primer annealing temperatures were assessed by performing gradient 

PCRs with annealing temperatures between 52 °C and 62 °C. Primers generating a 457 bp 

amplicon held good DNA specificity and were suitable for sequencing. The MethPrimer 

software also predicted two CpG islands (over 50 % GC content) within the input 

sequence: the first being 125 bp and the second 110 bp in length.  
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Amplification 

Phusion U Polymerase worked best at amplifying the 457 bp amplicon upstream to p16, 

so it was necessary to use a vector capable of inserting blunt ended PCR products. Two 

50 µl PCR reactions were set up per sample using bisulphite sequencing primers. Each 

reaction contained 4 µl bisulphite converted gDNA, 0.5 µM forward and reverse 

bisulphite p16 promoter primers, 200 µM dNTPs, 10 µl 5X GC Buffer, 1.5 µl 100 % DMSO 

and 0.5 µl Phusion U polymerase (Thermo Scientific). Samples were kept on ice and mixed 

well. Thermal cycling involved denaturation at 98 °C for 30 s followed by 40 cycles of: 

98 °C for 10 s, 56 °C for 30 s and 72 °C for 30 s, then final extension at 72 °C for 10 min 

before holding at 4 °C. 

Gel extraction 

Products were run on a 1.5 % agarose gel with EtBr in 1X TBE buffer at 70 V for 1.5 hours 

before imaging. Then using a sterile scalpel and UV box, the band of interest was excised 

for extraction and purification as described in section 2.8. The resulting DNA was 

quantified using a NanoDrop 2000 and stored at -20 °C until required for ligation steps. 

Plasmid preparation 

The pJET1.2/blunt linearised vector (Figure 40A, Thermo Scientific) was modified by Dr 

Evgeny Makarov by ligation of a double stranded 19 bp DNA product into its insertion site 

(Figure 40B). This sequence contained four restriction sites (see Figure 40C) which was 

used to produce a ‘home-brew’ vector suitable for the incorporation of blunt-ended DNA 

fragments.  
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Figure 40 – The pJET1.2 blunt cloning vector 
 
A) Commercially available pJET 1.2/blunt vector map (Thermo Scientific) B) DNA sequence of 

multiple cloning site (MCS) region containing the insertion site and forward and reverse 

sequencing primers C) Restriction sites in modified linearised pJET propo plasmid. The cloning 

vector contains an ampicillin resistance gene as well as a lethal restriction enzyme gene which is 

disrupted by ligation of the insert into the MSC.  

 

10 µg of the ligated vector with short insert was first digested with 100 units of Eco321 

(EcoRV) (Fermentas) for 2 hours 30 min at 37 °C in a final volume of 200 µl to cut the 

plasmid at two recognition sites producing a vector with blunt ends. To minimize re-

circularisation of the plasmid, the reaction was then further ligated with 50 Units of EcoRI 

(Fermentas) in the same buffer solution for an hour at 37 °C. The plasmid was then 

extracted by adding 200 µl phenol, chloroform and isoamyl alcohol (Sigma-Aldrich®) in a 

ratio of 25:24:1 respectively to the sample, briefly vortexing before centrifuging at 

13,000 RPM for 5 min. The upper aqueous phase was then transferred to a new tube and 

20 µl of 3 M NaAc (pH 5) was added to precipitate the DNA. 500 µl of 100 % EtOH (2.5 x 

volume of sample) was added and the reaction incubated at -20 °C for 30 min. The vector 

was then precipitated at 14,000 RPM at 4 °C for 30 min before washing the pellet with 

70 % EtOH and re-centrifuging. Once air dried, the pellet was resuspended in 175 µl 

A B 

C 
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RNase/DNase-free dH2O. A final restriction digest was performed with BamHI (Fermentas) 

again to reduce the chances of plasmid re-ligation and circularisation. 50 Units of BamHI 

was added to the resuspended vector along with 20 µl 10X BamHI buffer, LspII091 (with 

BSA) (Fermentas) made to a final volume of 200 µl. The digestion was performed at 37 °C 

for 2 hours before a subsequent phenol/chloroform extraction as described above. The 

final pellet containing modified vector was resuspended in 100 µl to give a concentration 

of ~50 ƞg/ml. 

Blunt-ended insert ligation 

Ligation reactions were performed on ice with a final volume of 20 µl and an insert to 

vector ratio of 3:1 was maintained for all reactions. The insert was mixed well with 2 µl 

PEG 4000, 10 X ligase buffer, 1 µl T4 DNA Ligase (all Fermentas) and 1 µl 50 ng/ul pJET 

prepared vector. The ligation reaction was allowed to proceed overnight at 4 °C. 

Transformation 

2.5 µl of the incubated ligation reaction was added to a vial of One Shot TOP10 chemically 

competent E. coli, (InvitrogenTM) thawed on ice. The reaction was then incubated on ice 

for 30 min before heat-shocking the bacteria for 45 s at 42 °C. The cells were allowed to 

recover on ice for 2 min before shaking at 200 RPM for 1 hour at 37 °C in 250 µl S.O.C. 

medium. 10 µl and 20 µl of transformed bacteria were then spread evenly on pre-warmed 

LB-agar plates prepared with 50 µg/ml ampicillin. The plates were then inverted and 

incubated overnight at 37 °C. 

Colony picking and growth 

Fifteen or more individual colonies were picked per transformation reaction using sterile 

pipette tips. Each colony was added directly into a clean PCR tube for colony PCR and the 

pipette tip then placed into a sterile Falcon tube containing 2 mL LB-broth with 50 µg/ml 

ampicillin and cultures grown overnight at 37 °C and 200 RPM. Colony PCR was set up in 

20 µL reactions as follows: 10 µl DreamTaq green PCR master mix (2X), 

(ThermoScientificTM) 0.25 µM forward and reverse pJET 1.2 plasmid primers. Thermal 

cycling parameters: bacterial cells were lysed at 94 °C for 10 min, denatured at 94 °C for 

2 min, then subjected to 30 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 1 min, 
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followed by final extension at 72 °C for 10 min and holding at 4 °C. Products were run on a 

1.5 % agarose gel with EtBr in 1X TBE buffer at 80 V for 1.5 hours before imaging. Colonies 

containing the expected promoter insert were identified and up to twelve of the positive 

cultures selected for plasmid purification. 

Plasmid purification 

Bacterial cultures in 2 mL LB-broth were pelleted at 8,000 RPM for 3 min and the 

supernatant removed before plasmid extraction using a column based miniprep kit 

(Qiagen). The cell pellet was resuspended and lysed before neutralisation; RNA was 

degraded with RNaseA and the resulting cell lysates pelleted. The supernatant containing 

nucleotides was applied and centrifuged through a spin column in order to bind the DNA, 

and the column was then washed several times before eluting in 40 µl of elution buffer. 

Typical DNA concentrations were of good purity suitable for sequencing (A260/280 

ratio > 1.8) and of concentrations >200 ng/µl. 

Sequencing and Analysis 

Purified plasmids were sent to Beckman and Coulter for Sanger sequencing using the 

pJET 1.2 reverse vector primer. For each bisulphite converted sample, a minimum of 

10 picked colonies were analysed to estimate the methylation status of each CpG site 

within the 457 bp upstream region of the p16 promoter. The nucleotide reads were 

analysed in CLC Sequence viewer as described in section 2.9 and aligned to the 

corresponding 500 bp region of upstream sequence of p16 identified in WGS 

contig085774 (APMT01085774.1). 

 

6.2.2 Demethylation Analysis 

To confirm p16 gene regulation via DNA methylation, immortalised SHE cells were treated 

with 5’-Aza-2’-deoxycytidine (5-aza-dC) and monitored over a period of 4 weeks following 

treatment. Time points for RNA and DNA extraction were taken at days 1, 2, 4 and 8. 
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Drug treatment 

The following immortalised late passage SHE colony-derived MT cell lines were selected 

for demethylation analysis: BP MT2, BP MT6, BP MT7 and BP MT8. An untreated primary 

SHE cell line (SHE 2B, prepared and frozen by Dr Debbie Trott) was also treated in the 

same way. 

6×105 cells were seeded per 100 mm dish in complete DMEM-L in 10 % CO2 at 37 °C as 

described in the General Materials and Methods, Chapter 4. After 24 hours, a final 

concentration of 5 µM 5-aza-dC in fresh media was added at T0. After 4 hours media was 

replaced again containing a final concentration of 5 µM 5-aza-dC. Treatment of SHE cells 

was performed in duplicate, untreated and vehicle control (DMSO) plates were also 

included in the analysis for each cell type. 

Cell culture 

Culture of demethylated cells was as described in the General Materials and Methods, 

(Chapter 4) with the exception of using TrypLE Express enzyme (1X) without phenol red 

(Gibco®) instead of Trypsin-EDTA. This was to facilitate cell counting and limit damage to 

the cells that may result from frequent detachment. Representative treated, untreated 

and DMSO control SHE cells were routinely counted using a haemocytometer after 

detaching and total cell counts were recorded. Cumulative population doublings were 

calculated as described in section 3.2.5. 

SA-βgal staining 

Representative treated, untreated and DMSO exposed SHE cells were fixed and stained 

with x-gal to detect their beta-galactosidase activity, which is associated with the cellular 

senescence phenotype. For this purpose, cells were plated in duplicate in 6-well plates 

and after 2-3 days in culture were fixed and stained as per the protocol described in 

section 2.2. Cells were then scored for their SA-βgal activity detected as a blue 

precipitate. From each plate 3 different areas were counted for βgal-positive cells and 

their average expressed as a percentage of the total number of cells.  

RNA extraction 

RNA was extracted from untreated, treated and DMSO control plates at time points 

between T24hrs and T3weeks after the first 5-aza-dC treatment. After washing in 3-4 mL cold 
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CMF-HBSS (Invitrogen Gibco®), 1 mL peqGOLD TriFast (PeqLab) was added per plate and 

the cell lysate was added to a 1.5 mL Eppendorf tube. At this point the samples were 

frozen at - 80°C until proceeding to the RNA extraction step as described in section 2.3. 

Quantitative Real-Time PCR (qPCR) using SYBR chemistry 

cDNA was prepared in 20 µl reactions as previously described from DNaseI treated RNA 

samples. Prior to qPCR, cDNA was diluted 1:2 in DNase/RNase free water to a final 

volume of 40 µl. p16 and p15 gene expression was detected using real-time qPCR and the 

reference genes GAPDH and ACTB were used as described in section 2.5, with SYBR 

chemistry. Typical working reactions were made from 5 µl iTaq universal SYBR green 

supermix (BioRad), 1 µl 5 µM primer mix (forward and reverse primers), 2 µl diluted cDNA 

and 2 µl DNase/RNase free H2O. Ct values of treated cells and DMSO controls were 

normalised to the average Ct values of untreated cells of the same cell type taken at 

different time points. Expression levels were calculated according to the delta delta Ct 

method. PCR replicates were run in triplicate and two separate cDNA synthesis reactions 

were performed on each sample for a total of 6 technical replicates per sample and 2 

biological replicates. 

DNA extraction 

DNA was extracted from untreated, 5-aza-dC treated and DMSO treated plates at time 

points between T24hrs and T3weeks after the first 5-aza-dC treatment. After washing in CMF-

HBSS (Gibco®), cells were trypsinised and pelleted before further washing in 2 mL CMF-

HBSS. Cell pellets were stored at - 80 °C until proceeding to the DNA extraction step as 

described in General Materials and Methods (section 2.6). 

CpG site analysis of demethylated p16 promoter 

To confirm the demethylation of the SH 5’ p16 promoter after treatment with 5 µM 5-

aza-dC, DNA samples were bisulphite-converted (see section 6.2.1) to detect and 

compare the methylation status of the 457 bp region of interest that was previously 

shown to be methylated. 

The upstream promoter region of p16 was PCR amplified, purified by gel extraction and 

cloned into the pJET 1.2 vector described above in section 6.2.1. Colonies containing the 

bisulphite-converted region were sent for sequencing to Beckman and Coulter using 
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pJET 1.2 Reverse primers and obtained sequences were analysed using CLC Main 

Workbench software v5.5 (CLCbio, Aarhus, Denmark) as described in section 2.9. 

 

6.3 Results 

6.3.1 Silencing of p16 by DNA methylation 

Previous studies have shown that immortal SHD clones induced by nickel chloride and 

benzo(a)pyrene had epigenetically downregulated p16 by DNA methylation of its 

5’ promoter region (Yasaei et al., 2013). These studies were extended here to determine 

whether the downregulation of p16 transcripts observed in the immortal MT colony-

derived SHE cells could be explained by a common mechanism. Methyl-specific PCR (MSP) 

was initially carried out in SHE CTA colony-derived cells in two regions of p16, 

schematically represented in Figure 41. Methyl-specific MSP1 primers targeted the p16 5’ 

upstream promoter and MSP2 primers were targeted to the 5’ region of the p16 gene 

body in exon 1α. Subsequently, bisulphite sequencing of the 5’ promoter region which 

contains two predicted CpG islands was performed (see Figure 41) to confirm the MSP1 

result. 
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Figure 41 – Diagram of the p16 promoter in the Syrian hamster 
 
The upstream 5’ promoter region of p16 contains 2 predicted CpG islands (Primer Meth) indicated 

by the red boxes. CpG dinucleotide sites analysed are represented by vertical black lines. Primers 

used to analyse this region were designed to bisulphite converted DNA and included two sets of 

methyl-specific primers which amplified in the promoter region (MSP1 green arrows, both 

amplicons of 150 bp) and in exon 1α (MSP2 green arrows, 100 bp and 143 bp). Bisulphite 

sequencing primers are also positioned (BS Seq. purple arrows, 457 bp product). 

 

Methyl-specific PCR 

MSP was carried out on bisulphite converted genomic DNA from immortalised MT colony-

derived cells. Bisulphite-specific MSP primers were designed to discriminate between 

methylated and unmethylated gDNA based on the bisulphite conversion process. The first 

set of primers recognised CpG island 1, located in the p16 promoter (MSP1) and a second 

set were used to identify methylation in p16 exon 1α (MSP2). For each MSP experiment, 

two separate PCR reactions were prepared: one to selectively recognise unmethylated 

DNA (converted) and the other to amplify methylated DNA (unconverted). Figure 42 

contains representative images of the electrophoresis MSP products. Presence of both 

amplicons in the two PCR reactions per MSP experiment indicates DNA methylation 

whereas a single unmethylated band indicates no methylation.  

The data from methyl-specific PCR gels indicated that there were different patterns of 

DNA methylation across immortal colony-derived SHE cells in the tumour suppressor 

gene p16. With reference to the gel in Figure 42A, there was no amplification in primers 

amplifying methylated DNA but amplicons of the expected weight (150 bp) were present 

in all unmethylated wells and also a non-specific PCR product of around 100 bp. In non-

-

457bp 

CpG CpG 

SH p16 promoter 

TSS 

FBS Seq RBS 

FMSP1 RMSP1 FMSP2 
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amplified wells the bright bands of very low molecular weight are due unincorporated 

primers. This data was suggestive of no methylation in the p16 promoter; however this 

conclusion is solely applicable to CpG sites found within the primer pairs used for PCR. 

Additionally, the lack of amplification of MSP1 methyl-specific PCR products was 

inconsistent across repeated PCRs, which raised concerns. Primer annealing and 

extension was occasionally observed in the p16 promoter using MSP1 methyl-primers but 

was not consistent across repeats, necessitating further investigation. Figure 42B suggests 

that there was DNA methylation present within the coding region of p16 (exon 1α), 

especially in the positive control and BP MT1. This was reproducible across different 

batches of bisulphite converted DNA and in separate PCRs. Finite lifespan B(a)P-induced 

MT colony-derived cells from SHE 19 which did not immortalise but were senescent was 

not shown to be methylated and the negative control (SHE 2B) only had amplification in 

unmethylated wells. 

Bisulphite sequencing of the p16 promoter 

To further investigate the presence of DNA methylation in SHE samples, bisulphite 

sequencing was performed on the immediately upstream region of p16 which contains 

the gene’s transcriptional promoter. The primers used are those indicated by purple 

arrows in Figure 41 and their product spans a 457 bp of gDNA containing 32 CpG 

dinucleotides which could be sites of potential methylation. Examples of excised PCR 

products containing amplified p16 promoter fragments are imaged in Figure 43. After 

ligation and transformation of competent E.coli bacteria with the fragment of interest, 

bacterial colonies were checked by colony PCR to confirm that they contained the correct 

insert, an example of which is shown in Figure 44. The correct colonies were then purified 

and Sanger sequenced using the reverse pJET1.2 vector sequencing primer, so as to 

amplify the whole p16 promoter insert. The resulting bisulphite converted p16 sequences 

were then aligned and analysed for the presence of methylation at 32 CpG sites as shown 

in Figure 45.  
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Figure 42 – Analysis of DNA methylation in p16 5’ promoter and exon 1α using methyl specific 
PCR (MSP) 
 
Bisulphite converted gDNA was amplified with two sets of primers designed to either methylated 

or unmethylated DNA. Both p16 exon 1α and a 5’ p16 promoter regions were analysed using MSP 

primer sets to give an indication of the extent of methylation of p16. Expected band sizes for 

unmethylated and methylated products were 150 bp for both primer pairs for the promoter 

amplicon (A) and 143 bp and 100 bp for exon1a (B). Products in methylated wells indicate the 

presence of methylated cytosine in the primer set and products in unmethylated wells indicate 

amplification of unmethylated DNA. PCR products were run on a 2 % agarose gel in TBE buffer 

along side a 1 kb and 20 bp ladder. 

1) SHE 2B (-ve control)  7) BP MT3 P+16   13) BP MT6 P13 
2) SHD BP1.2 (+ve control) 8) BP MT4 P+8   14) BP MT8 P23  
3) BP MT SHE19 P+2  9) BP MT11 P16   15) BP MT7 P16 
4) DMSO MT1 P+18  10) BP MT12 P15  16) BP MT10 P16 
5) BP MT1 P+21   11) BP MT SHE24 P+3  17) BP MT9 P16 
6) BP MT2 P+26   12) BP MT5 P26    
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Figure 43 – Excision of bisulphite-converted p16 promoter PCR products 
 
Following a bisulphite conversion, 457 bp upstream of the p16 start site including its 5’ promoter, 

was amplified by PCR using bisulphite sequencing primers (purple arrows, Figure 41). The PCR 

products were ran on a 1.5% agarose TBE gel containing ethidium bromide at 70 V for 1.5 hours. 

Three example excised products are imaged above (a-c) and the correct band size of 459 bp was 

excised (indicated by the arrow), purified and quantified for subsequent cloning steps. A 1 Kbplus 

DNA ladder (Invitrogen) was loaded alongside PCR products as a reference (L). 

 

Figure 44 – Bacterial colony PCR to confirm the correct p16 promoter insert into pJET1.2 vector 
 
Up to 15 bacterial colonies were picked per sample and their inserts checked by colony PCR using 

pJET1.2 vector sequencing primers flanking the insert. Only colonies containing the correct insert 

were purified by miniprep and then Sanger sequenced. Imaged are three representative samples 

that were cloned. The expected band size containing insert and flanking vector regions was 

~550 bp (arrow). A 1 Kbplus DNA ladder (Invitrogen) was loaded alongside PCR products as a 

reference (L). 
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For each sample, 10 or more colonies were sequenced so as to obtain an estimated 

percentage of DNA methylation within each MT SHE line. Each CpG site was analysed 

individually and are represented by the 32 circles in Figure 45; the right-most CpG site is 

3’, which is closest to the p16 transcriptional start site (TSS). A CpG site was considered to 

be methylated when unconverted cytosines were identified in above 50 % of colonies 

sequenced for each CG dinucleotide. Data is also shown for the presence of methylation 

in fewer than 50 % of the colonies as this was identified to take place at common CpG 

sites. SHD BP1.2 is known to have a methylated p16 promoter (Yasaei et al., 2013) and 

was used as the positive control whereas gDNA from a DMSO-treated non-MT colony and 

untreated SHD samples were used as the negative controls. 

Extensive methylation was identified in the CpG island closest to the p16 promoter region 

in 5 out of 12 immortal B(a)P treated MT colony derived cell lines and in the positive 

control SHD BP1.2. Figure 45 shows that certain CpG sites were commonly methylated 

across the immortal SHE samples. BP MT6, 7, 8, 9 and 10 were methylated at CpG sites 6 

to 8, which are clustered together in the p16 upstream promoter sequence. In these 

clones ten or more colonies analysed were methylated, except for BP MT6 which was 

methylated in 50 % of colonies analysed. Sites 4, 12, 14 and 18 were noted to be regularly 

targeted by the addition of methyl groups. BP MT2 was shown to have additional DNA 

methylation at the most upstream CpG site (site 32). Interestingly, partial methylation 

was also observed in another 3 immortal BP MT cells at the same CpG sites (BP MT1, 

BP MT2, BP MT5) as those that were fully methylated; possibly indicating a regulatory 

role in p16 expression, depending on the methyl state of CpG sites within the CpG island.  

No methylation was observed in the DMSO-MT immortal colony DMSO MT1, possibly 

indicating that DNA methylation could be an epigenetic effect caused by the initial 

exposure of SHE colonies to benzo(a)pyrene. BP MT colony SHE 19 that was not immortal 

(i.e. senesced) did not show signs of methylation and neither did BP-induced, immortal 

BP MT4, BP MT11 and MT12. The BP MT line SHE 24 that was lost to infection but did 

show signs of clonal growth following a cell crisis phase was partially methylated. 
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Figure 45– DNA methylation status of CpG sites in -457 bp upstream region of the SH p16 
transcriptional start site (TSS) 
 
Bisulphite converted gDNA was amplified using bisulphite sequencing primers and p16 5’-

promoter sequences analysed for DNA methylation at 32 CpG sites; CpG site 1 is downstream of 

the ATG start site (+14 bp) and CpG site 32 the most upstream (-440 bp). Empty (white) symbols 

indicate no methylation present. Black symbols represent those CpG sites in which over 50% of 

the 10 bacterial colonies analysed were methylated, dark grey symbols indicate methylation at 

CpG sites in 30 to 40 % of samples and light grey symbols indicate methylation in 20 % of samples 

at each CpG site. The negative controls included a SHD untreated sample and a non-transformed 

colony-derived SHE cell culture from the DMSO treated group. The positive control (SHD BP1.2) is 

known to be methylated from work on SHD cells (Yasaei et al., 2013).  
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Demethylation of immortal SHE MT colony derived cells increases p16 expression 

To generate further evidence linking DNA methylation with the regulation of p16 

expression, 4 immortal SHE MT colony-derived SHE cell types were demethylated using 

the methyltransferase inhibitor 5’-Aza-2’-deoxycytidine (5-aza-dC). Immortal BP MT2, 

BP MT6, BP MT7, BP MT8 plus a wild type SHE primary control (SHE 2B) were treated 

twice with 5 µM 5-aza-dC and then monitored for the following 3 weeks. All treatments 

per cell type were performed simultaneously and in duplicate.  

Cell counts of treated plates were taken after 24, 48 and 96 hours following exposure to 

5-aza-dC and from then on every two to three days (Figure 46). After plating and 

treatment total cell numbers increased and only a few floating cells were present in 

treated groups between 24 and 48 hours. There was no measurable difference in the rate 

of growth in cells treated with the vehicle control DMSO compared with untreated SHE 

cells of the same cell type, with the exception of SHE 2B where DMSO (Figure 46A) 

seemed to have a positive effect on proliferation in the first two days following 

treatment. Differences in the numbers of cells counted between day 1 and day 2 in 

SHE 2B may have been a result of unequal seeding as cell counts were taken from 

different plates that were harvested for RNA or DNA. Following 48 hours, the rate of 

growth was the same between untreated and DMSO treated SHE 2B cells otherwise 

indicating the cells behaved in the same way.  

Following treatment with 5-aza-dC, the immortal cell cultures’ rate of population 

doubling decreased dramatically from day 4 compared with their untreated and DMSO-

treated controls. This was accompanied by a change in cell morphology shown in images 

taken at day 4 and day 10 after exposure to 5-aza-dC (Figure 47). Morphological changes 

were especially pronounced in BP MT7 (D) treated cells which became enlarged, flat and 

senescent. After 10 to 12 days in culture, treated cells started to recover and patches of 

mitotic cells became visible across the cell dishes (Figure 48). However, BP MT7 did not 

recover and remained senescent. Cell proliferation was also decreased in the control 

primary SHE 2B culture despite its unmethylated p16 promoter status (Figure 46A). 
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Figure 46 – Growth curves for SHE cells treated with the demethylating agent 5-aza-dC 
 
SHE cell growth was monitored following a 24 hour exposure to 5 µM 5-aza-dC for a period of 

3 weeks. Cells were counted over a period of 17 days; population doublings (PD) were calculated 

and plotted. Error bars represent the standard deviation from the cumulative PD mean. 
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Figure 47 - SHE cells treated with the demethylating agent 5-aza-dC are visibly altered 
 
SHE cell growth was monitored following two doses of 5 µM 5-aza-dC for a period of 3 weeks. 

After 4 days, changes in cell appearance were noticeable and more so 10 days following 

treatment treated cells became enlarged, contained fewer visible mitotic cells compared with the 

untreated and vehicle control treated (not shown) counterparts and the population doubling level 

decreased. Phase contrast images were taken using a Carl Zeiss microscope at 4 X magnification. 
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Figure 48 – Cell recovery occurs after 10 to 17 days following methyltransferase inhibition 
 
After 17 days in culture cell recovery from treatment and demethylation was clearly visible as 

patches of proliferating cells on the cell dishes were identified. However, this was not the case for 

BP MT7 (D22 #2) which ceased to proliferate following treatment and stained positive for SA-βgal.  
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Senescence-associated beta-galactosidase staining (SA-βgal) was carried out on 5-aza-dC 

treated cells. Senescent cells are thought to have increased lysosomal activity which 

decreases the cytosolic pH levels and reacts with the SA-βgal stain producing a blue 

precipitate (Kurz et al., 2000). The proportion of SA-βgal positively-stained cells increased 

in 5-aza-dC treated SHE cells compared with the same untreated cell type and DMSO 

treated control. Representative images of stained colony-derived SHE cells from 

BP MT2 (A) and BP MT7 (B) are shown in Figure 49, there is little or no blue precipitate 

formation in the untreated and vehicle control stained dishes. Figure 50 shows the 

average percentage of cells that stained positive for senescence after 10 days in culture 

following exposure to the demethylating agent. The overall average staining background 

for untreated and DMSO treated SHE cells was 4.3 % and 5.1 % respectively indicating 

that the vehicle control had little if any effect on senescence induction, and this was 

confirmed in the growth curves shown in Figure 46. The treated control SHE 2B had the 

lowest percentage of stained cells (22.7 %) whereas the cell line that did not recover 

BP MT7 (D22 #2) had the highest percentage of SA-βgal cells (45.3 %) the staining of 

which is shown in Figure 49B. Similar results were identified after 16 days of treatment 

although the percentage of positively stained demethylated cells was reduced due to 

recovery and increased growth rates. In the case of BP MT7 treated cells however, after 

16 days 70.0 % of cells stained positive for SA-βgal which correlated with a further 

increase in the number of senescent cells over time as a result of 5-aza-dC exposure. 
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Figure 49 – Senescence associated beta-galactosidase (SA-βgal) staining increases following 
treatment with 5-aza-dC 
 
Representative images of untreated and 5-aza-2’-deoxycytidine treated immortalised colony-

derived SHE cells stained for SA-βgal after 10 days. 24 hours after seeding, cells were treated with 

5 µM 5-aza-dC for 24 hours and grown for up to 3 weeks. Senescent cells stain positive for SA-βgal 

and a blue precipitate is formed. Images were taken with a Olympus CK40 microscope with a 

Dino-Eye digital eyepiece (Dino-Lite) and DinoCapture v2.0 Software (magnification 4 X). 
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Figure 50– Demethylated SHE cells stain positive for SA-βgal 
 
Percentage of SA-βgal positive population in immortalised colony-derived SHE cells treated with 

5 µM 5-aza-dC after 10 days in culture. Positive cells stain blue and an increase in beta-

galactosidase activity is thought to be a general marker of cellular senescence. Plates for each 

treatment were stained in duplicate and the percentage of blue cells calculated; at least three 

different areas per plate were counted, (minimum of 100 cells counted) and the average values 

taken for each replicate. Error bars represent the standard deviation from the mean. 

 

 

Gene expression levels of p16 in demethylated SHE MT colony derived cells were 

measured using qPCR to establish if the observed increases in cellular senescence and 

reduced rates of division could be explained by an elevation of p16 gene expression; p15 

gene expression was also quantified to see if it too may have been regulated by DNA 

methylation (data not included). cDNA was prepared from RNA samples taken from 

treated cells between 24 hours and 8 days after treatment with 5-aza-dC. Two biological 

replicates were prepared per 5-aza-dC treated time point and the average expression 

value compared to untreated cells taken at 24h, 48h, day 4 and day 8. Cells treated with 

DMSO were also included to account for changes in gene expression following exposure 
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to the vehicle control at the same time points. As with the untreated control, the average 

relative quantities (RQ values) are plotted for DMSO treated-cells in Figure 51. 

Following the supposed inhibition of methyltransferase enzymes, there was an increase in 

gene expression of p16 compared to untreated controls in B(a)P-induced immortalised 

SHE cells at 4 and 8 days after 5-aza-dC treatment; but not before 48 hours (see Figure 

51). This was the case for all five cells lines treated, including the primary wild type SHE 

cells (Figure 51A, SHE 2B). The relative quantities of p16 transcripts between untreated 

and DMSO controls were virtually equal amongst each cell type tested, indicating the 

vehicle control had little or no effect on the cells in terms of p16 expression. The increase 

in expression was most noticeable after 8 days in SHE BP MT8 (E) where there was a 

statistically significant 15 fold difference in transcript levels compared to untreated SHE 

BP MT8. SHE BP MT2 (B) and BP MT 7 (D) showed an 8 and 6 fold increase in expression 

compared with their untreated controls after 8 days following demethylation 

respectively, which was also found to be significant. Lastly, treatment with 5-aza-dC led to 

higher levels of p16 in BP MT6 (C) after 4 and 8 days, but the increase was reduced (under 

4 fold) compared with the other cell lines with known methylated p16 promoters. This 

was akin to the increase in gene expression identified in the wild type primary SHE cell 

type which is not methylated at the p16 promoter. 

 

 



Page 188 of 226 

 

Figure 51 – p16 transcript levels following treatment with 5-aza-dC 
 
At various time points following treatment with 5-aza-dC, p16 mRNA expression was measured by 

qPCR (SYBR green) in selected BP-induced SHE immortal clones with known methylated p16 

promoters. Expression was normalised to reference genes beta-actin and GAPDH, samples were 

calibrated to the average NRQ value of untreated controls (n=4) of the same cell type. Treated 

time points plotted are the average of n=2 with each cDNA prepared in duplicate and run in 

triplicate (6 technical repeats per biological sample). Error bars represent the standard deviation 

from the average. Significance (*) was calculated using unpaired t-tests (p<0.02).. 
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To confirm that the exposure of immortalised SHE-MT cells to 5-aza-dC caused 

demethylation of the p16 promoter (Figure 51) bisulphite sequencing was repeated on 

the treated SHE samples 4 and 8 days after treatment using the same bisulphite 

sequencing primers. (The experiments for  this section were carried out with the help of 

undergraduate student Lisa McGinty). As described in section 6.2.1, a minimum of 10 

colonies per gDNA sample and time point were sequenced to estimate the percentage of 

genomic DNA that is methylated at CpG sites immediately upstream of the p16 gene 

promoter. Given that 5-aza-dC acts by inhibiting the enzymes responsible for transferring 

methyl groups its effects should be expected to take place after at least one population 

doubling, as DNA methyl groups ought only to have been lost once the genome has gone 

through a full round of replication. 

Figure 52 compares the p16 promoter methylation profile of untreated SHE BP MT cells 

with the respective 5-aza-dC treated cells after 4 and 8 days. As expected there was no 

methylation in the primary untreated SHE cells (SHE 2B) and this remained unchanged 

following demethylation. Incubation of BP-induced, immortal SHE cells with 5-aza-dC 

strongly reduced the extent of methylation in p16 5’ CpG Island 1 in BP MT7 and BP MT8 

from 100 % methylation in picked colonies to 20 % or less. Demethylation correlated well 

with the previously observed increase in p16 expression from day 4 after treatment with 

the methyltransferase inhibitor (Figure 51). Demethylation in colony-derived cultures was 

retained for up to 8 days following treatment. Partial methylation in CpG island 1, 

identified in untreated BP MT2 (grey dots, Figure 51 and Figure 52) was removed by 

methyltransferase inhibition for up to 4 days but re-instated after 8 days following 

treatment. This indicates the reversibility of demethylation caused by treatment with 5-

aza-dC, and proved that treatment with 5-aza-dC can lead to a loss of DNA methylation at 

the p16 promoter which was retained for at least 4 days. However, immortal BP MT6 

retained its methylated promoter status (methylation at CpG sites in black were found in 

50 % of bacterial colonies) suggesting that in this cell line, either methyl groups at CpG 

sites were replaced before 4 days following treatment or that demethylation by 5-aza-dC 

did not take place at the p16 promoter in this cell line.  
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Figure 52 – Following exposure to 5-aza-dC there is a reduction of DNA methylation in the p16 
promoter after 4 and 8 days 
 
Cells were treated with the methyltransferase inhibitor 5-aza-dC and DNA was extracted from 

cells 4 and 8 days after exposure. Bisulphite converted gDNA was then amplified using bisulphite 

sequencing primers and p16 5’-promoter sequences were analysed for DNA methylation at 32 

CpG sites; CpG site 1 is closest to the ATG start site and CpG site 32 is the most distant. A 

minimum of 10 colonies per sample were analysed. White (empty) symbols indicate no 

methylation, black symbols represent >50 % methylation, dark grey symbols represent 

methylation at 30-40 % of samples and light grey symbols in 20 % of samples at each CpG site. 
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6.4 Discussion 

In this Chapter it was sought to establish if p16 expression in immortalised SHE-MT 

colony-derived cultures was regulated by DNA promoter methylation and if removal of 

aberrant methyl groups in its promoter region could restore p16 transcript levels or even 

reactivate senescence pathways. 

Strong patterns of DNA methylation at the p16 promoter were initially observed in 40 % 

of immortal, morphologically transformed (MT) samples originally induced by 

benzo(a)pyrene. Almost all B(a)P-induced MT clones tested (methylated or unmethylated) 

expressed low levels of p16 compared to DMSO-treated non-transformed clones and 

failed engage senescence pathways. Two B(a)P-clones with extensive methylation at their 

p16 promoter site (100 % of colonies tested at 5-6 CpG sites – BP MT7 and BP MT8) on 

average expressed 20-40 % of p16 transcripts found in DMSO-non transformed control 

levels. Whereas BP MT1, BP MT2 and BP MT5 that were partially methylated at similar 

targeted CpG sites expressed 20-50 % of control p16 mRNA levels. In BP MT immortal 

clones with unmethylated DNA, BP MT11 and BP MT12 p16 transcripts were slightly 

reduced to 70 %-80 % of transcripts. However, the p16 promoter in BP MT6 was found to 

be 50 % methylated and its gene expression was similar to the DMSO-control group 

following secondary events. Therefore the methyl status of the p16 promoter was not 

fully predictive of its expression in SHE cells and nor was the determined extent of 

methylation. 

Following incubation with the demethylating agent 5-Aza-2’-deoxycytidine, p16 

expression was strongly upregulated in BP MT2, BP MT7 and BP MT8, even when its 

promoter locus was originally not fully methylated (BP MT2 <50 % methylated). The 

temporary removal of methyl groups probably due to methyltransferase inactivation, 

correlated to an increase in p16 expression, a reduced level of growth, and an increase in 

the proportion of senescent cells. In one instance, treatment had a permanent effect on 

the BP MT7 clone which following demethylation ceased to proliferate completely. 

Removal of methyl groups in BP MT6 was not confirmed but p16 expression did increase 

4-fold compared to untreated BP MT6; the relative increase was similarly observed in the 
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treated unmethylated control (SHE 2B). It is unknown if methyl groups were reinstated 

before the 4 days following treatment in this cell line or if they were never removed. 

Methyl-specific PCR and bisulfite sequencing 

Data obtained from bisulphite sequencing offers a more comprehensive and reliable view 

of the extent of DNA methylation compared to methyl-specific PCR (MSP) across a larger 

number of CpG sites which are individually analysed. In contrast, data generated by MSP 

only targets CpG sites contained in MSP primer sequences irrespective of the methyl-

status of amplified PCR products, but can be considered suitable as an initial indicative 

screen. Both p16 promoter and exon 1α were tested using MSP primers in colony-

derived SHE-MT cells (Figure 42) and PCRs for each were repeated several times. 

Amplification via MSP of methylated products for p16 exon 1α (MSP2) in colony-

derived SHE cells (Figure 42B) was reproducible across different batches of bisulphite 

converted DNA. B(a)P-induced, immortal SHE BP MT1 was found to be methylated in 

exon 1α as was the SHD positive control and both were shown to have reduced levels of 

p16 transcript when analysed via real-time PCR [Figure 31 and (Yasaei et al., 2013)]. 

Aberrant methylation of p16 exon 1α has also been associated with downregulation of 

gene expression in SH pancreatic tumours at a frequency of 46.7 % induced by BOP (Li et 

al., 2004) and of 26.5 % induced by DMBA (Li et al., 2008). In B(a)P-induced immortalised 

SHE cells, the frequency of methylation in the p16 exon 1α was only of 8.3 % (1 out of 12) 

albeit this sample (BP MT1) was downregulated for p16. 

On the other hand, MSP data generated using MSP1 p16 promoter primers and 

immortalised SHE samples were inconsistent depending on the batch of bisulphite 

converted gDNA generated and also between PCR replicates. Unmethylated promoter 

primer targets were always amplified and the inconsistency noted from methylated 

promoter MSP primers. This could be due either to incomplete bisulphite conversion or 

unspecific primer annealing by oligonucleotide binding to both methylated and 

unmethylated DNA. Bisulphite sequencing provided more reliable data concerning the 

methylation status of CpG sites from -440 bp and +14 bp to the p16 TSS (Figure 45). This 

compensated for the unreliability of the MSP data, although a CG rich sequence could 

have been incorporated in the analysis to assess the efficiency of the bisulphite 

conversion process in addition to the positive control. Bisulphite sequencing confirmed 
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that the CpG sites recognised by MSP1 primers were not methylated but fully converted 

to thymines, explaining why no PCR amplicons were visualised in reactions containing 

methylated DNA primers, as shown in Figure 42A. 

Sites of DNA methylation 

It has been suggested from DNA methylation studies in rats, that the status of the 

promoter of p16 is more predictive of gene expression levels than the methylation status 

of exon 1α, with particular importance assigned to CpG sites between the regulatory 

TATA box and p16 transcriptional start site (TSS) (Abe et al., 2002, Honoki et al., 2004). In 

B(a)P-induced SHE immortal clones it was observed that commonly targeted CpG sites 

were flanked by the predicted TATA box and known TSS for SH p16 (Figure 45). No 

methylation took place at the TATA box itself but the sites immediately upstream of it 

were methylated. From the bisulphite sequencing data it was shown that 40 % of 

immortal SHE cultures induced with B(a)P were extensively methylated in CpG island 1 of 

the p16 promoter and a further 27 % of B(a)P-induced samples were partially methylated 

at the same CpG sites (4-8). Data obtained from chemically induced SHD clones (Yasaei et 

al., 2013) also identified similar CpG sites of methylation in close proximity to the p16 TSS 

induced by soluble nickel and B(a)P.  

Reversibility of treatment 

Treatment of SHE cells with 5-aza-dC was performed on proliferating cells for 24 hours to 

allow at least one round of DNA replication to take place within the whole population. As 

a result silencing methyl groups located at the p16 promoter were lost in 3 out of 4 BP-

induced colony-derived SHE cells treated with the pro-drug 5-aza-dC. Following 

incubation with the pro-drug, metabolised 5­azacytosine rings are incorporated into DNA 

instead of cytosine residues. As methyltrasferases target DNA to catalyse the addition of 

methyl groups, the colavent bond between enzyme and azanucleoside cannot be 

eliminated meaning that they remain attached. This causes a depletion of 

methyltransferases and thus the addition of methyl groups cannot take place 

(Stresemann and Lyko, 2008). Removal of epigenetic methyl marks was observed after 4 

days and mostly retained for up to 8 days before recovery and re-instatement of methyl 

groups at CpG sites. Treated cells became phenotypically enlarged and senescent with 

increased percentages of cells staining positive for SA-βgal, along with dramatic 
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reductions in proliferating cells compared to DMSO vehicle controls and untreated 

counterparts. Consequently, expression of p16 was stimulated after 4 days of treatment, 

which tied in with removal of methylation only taking place after several rounds of 

replication and following methyltransferase inhibition. Inhibitory effects of 5-aza-dC were 

not permanent as patches of cell growth emerged after 2 weeks from treatment. 

Transcript levels of p16 after 20 days were again substantially reduced suggesting 

reinstatement of promoter methylation. Interestingly, the re-instatement of methyl 

marks at the p16 promoter after 8 days in demethylated samples was not identical to 

patterns identified in their untreated counterparts. Difference were found in CpG sites 

located in CpG Island 2 which were not commonly methylated in all BP-induced immortal 

SHE cells (i.e. not CpG sites 4-8). These may be secondary regulatory CpG sites. 

Biological effects 

Finally, there are a number of publications suggesting that the association between 5-aza-

2’-deoxycytidine and demethylation, leading to the induction of senescence, is non-causal 

and that, in fact, its mode of action is methylation-independent. These studies mostly 

focus on the cytotoxicity of the pro-drug and describe demethylation as just one 

consequence of the treatment. Unsurprisingly, cellular responses vary greatly depending 

on the administered concentrations as well as the length of exposure (Liu et al., 2013), 

which may also impact the drug’s mode of action. Using embyonic stem (ES) cells, 

(Juttermann et al., 1994) observed that the reduced enzymatic activity of 

methyltransferases led to increased resistance of 5-aza-dC-induced cytotoxicity. The 

study concluded that demethylation was a secondary event and that 5-aza-dC-induced 

cytotoxicity is primarily a DNA damage response caused by binding of azacytosines to the 

DNA. Activation of ATM and ATR pathways were observed following a 72-hour time 

course of 5-aza-dC treatment along with increased double strand breaks and G2 growth 

arrest (Palii et al., 2008), indicative of direct DNA damage. 5-aza-dC was cytotoxic in p16 

and ARF siRNA knockdowns and caused growth arrest in cells without methylated 

INK4a/ARF promoters as well as in lines overexpressing p16 and ARF (Xiong and Epstein, 

2009). This led to the prediction of a 5-aza-dC p16-independent mechanism that is 

capable of causing growth-arrest. In the same study, exposure to 5-aza-dC restored 

INK4a/ARF expression in a cell line with promoter methylation, but restoration of 



Page 195 of 226 

expression was not enough to inhibit cell growth. These results to a certain degree are 

similar to those presented here, in so far as there was a decrease in cell proliferation 

following 5-aza-dC treatment in the primary SHE wild-type cell line SHE 2B that was 

shown to have an unmethylated p16 promoter. This suggests 5-aza-dC influences cell 

growth and possibly senescence by p16-independent mechanisms and is consistent with 

the findings of Xiong and Epstein (2009) although data presented here in this Chapter do 

not extend beyond the influence of 5-aza-dC on the expression and methyl status of p16. 

Conversely, cell growth was inhibited in one immortal SHE cell line (BP MT7) following a 

24 hour exposure to 5-aza-dC. Given that methylated SHE lines were shown to be 

demethylated at the p16 promoter and gene expression increased after 4—8 days of 

treatment, the data presented here supports the idea that 5-aza-dC effects cell 

proliferation via the p16 status. However, it must also have additional modes of action, 

such as activation of the DNA damage response or other pathways, since attenuated 

changes in proliferation and expression were also noted in the non-methylated control. 

 

Conclusion 

In conclusion, 40 % of B(a)P-induced clones were found to be abnormally methylated at 

the p16 promoter and 27 % were partially methylated at common CpG sites. DNA 

demethylation was observed following treatment with 5-aza-dC at the p16 5’ promoter 

which was retained for up to 8 days. This correlated with upregulation of p16, an increase 

in senescent cells and growth inhibition suggesting suppressive transcriptional role of 

DNA methylation in SHE cells. Given that treatment will have targeted methylation 

globally, we cannot state that 5-aza-dC treatment solely targeted p16 to generate a 

reduction in cell growth or, indeed, that the drug acts via demethylation alone. In fact, 

the data supports the idea that additional regulatory pathways might be targeted other 

than those involving p16. Promoter methylation was not fully predictive of p16 gene 

silencing, but was associated with a suppressive transcriptional role in SHE cells. In one 

instance a 6-fold increase in p16 expression cells following treatment and demethylation 

seemed sufficient to induce terminal senescence (BP MT7). However, other MT BP lines 

also under-expressed p16 and bypassed senescence barriers but were found to be 

unmethylated (e.g. BP MT4). It is proposed that DNA methylation of the p16 promoter 
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can co-operate with other regulatory mechanisms to repress its transcriptional expression 

and induce senescence bypass in B(a)P-induced SHE clones. 
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7.1 Discussion 

Alternative methods of safety testing (i.e. to replace rodent bioassays) are in demand 

driven by recent EU legislation requiring a substantial reduction of animals used for 

carcinogenicity assessments, and a complete ban on their use in the cosmetic industry 

(EC, 2003a, EC, 2007a). The implementation of safety assessment in the context of the 

consumer, and our surrounding environment, is crucial for the development of novel 

drugs, chemicals and healthcare products. For successful in vitro screening, the selected 

test battery must be predictive of mutagenic/genotoxic agents plus ideally have the 

ability to detect non-genotoxic carcinogenicity. Previously, a positive result from standard 

in vitro assays (bacterial mutagenicity, mammalian cell cytogenetics/micronucleus tests) 

would normally have been confirmed by in vivo rodent bioassays which are now banned 

for cosmetics and becoming increasingly regulated for other chemical classes (Creton et 

al., 2012). Genotoxicity tests such as the Ames and micronucleus assays, which assess 

mutation rates and chromosome damage respectively, pick up genetic insult but can give 

in vitro-specific false positives and are not predictive of non-genotoxic carcinogenic 

modes of action such as transcriptional changes and epigenetic alterations (Vanparys et 

al., 2012). Cell transformation assays (CTAs) have been proposed as promising cell-based 

systems for chemical screening, although their routine implementation has not been 

supported by regulatory bodies, because an understanding of their molecular 

underpinnings is lacking (Farmer, 2002, Creton et al., 2012). 

The Syrian hamster embryo cell transformation assay is an established CTA which has 

recently been pre-validated by ECVAM (Maire et al., 2012b, Pant et al., 2012, Corvi et al., 

2012) and the formulation of OECD Test Guidelines is well advanced (Vasseur and Lasne, 

2012). These pre-validation studies assessed the assay’s reproducibility under two 

commonly used pH conditions (pH 6.70 and pH 7.0-7.35) (Maire et al., 2012b, Pant et al., 

2012) and resulted in a standardised recommended protocol (Maire et al., 2012a) along 

with colony photo-catalogues to try and address the subjective nature of the assay’s 

endpoint (Bohnenberger et al., 2012, Maire et al., 2012c). Certainly, without proper 

training and expertise, the SHE CTA is troublesome due to its subjectivity; every colony 

must be independently scrutinised for its growth patterns and scoring is performed by 

eye. The heterogenic nature of the embryo-derived cell population is one of the assay’s 
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strengths as more than one cell type can be tested simultaneously, but this diversity 

means that the variety of colony morphologies complicates the scoring process. 

Discrimination between non-transformed (N) and morphologically transformed (MT) 

colonies is subject to several influencing factors which, depending on the toxicologist 

performing the assay, may be given more or less weight in making the decision (i.e. 

transformed versus non-transformed). As noted in the case of the MT colonies scored 

during this project (presented in Chapter 3) there exists a range of MT phenotypes and 

this is also addressed in the published photo-catalogues (Bohnenberger et al., 2012, 

Maire et al., 2012c). The frequency of MT (MTF) induced by benzo(a)pyrene (5 μg/mL) in 

the pre-validation studies varied slightly across the different laboratories involved; 1­3 % 

MTF at pH 6.7 (Pant et al., 2012) and 2-6 % MTF at pH 7.0 (Maire et al., 2012b) and 

highlights the importance of standardising the cell batch for testing (the highest MTFs at 

pH 7.0 were obtained using a different batch of SHE cells). MTF values (presented in 

section 3.3) were substantially higher which in part is likely to have been due to a lower 

seeding density used (Dafou, 2003) to permit accurate colony picking and the 

replacement of irradiated feeder layers with conditioned medium, which was observed to 

produce a minimal increase on MTF (Pant et al., 2008, Maire et al., 2012a). Scoring of 

colonies in my experience was far from straightforward and, although the differences 

between normal and transformed colonies in many cases were clear-cut, the call between 

MT and ‘altered’ phenotypes (LeBoeuf et al., 1990, Bohnenberger et al., 2012) was on 

occasion difficult to make with any confidence. Altered colonies are those that display 

‘partially transformed’ phenotypes but their lack of cell organisation and criss-crossed 

growth is less pronounced than in fully MT clones (LeBoeuf et al., 1990); scoring is highly 

subjective. Altered colonies are not to be included in the MTF calculation (Maire et al., 

2012a) which, depending on the stringency of the criteria for scoring MT, dramatically 

changes the frequency of MTF. Hence, assay standardisation and thorough training are 

critical features to ensure success and reproducibility of this assay. The body of recent 

publications including pre-validation studies have addressed this and concluded that the 

SHE CTA is reproducible across laboratories. Therefore, with strict adherence to the 

appropriate OECD test guidelines, the assay could be fit for assessment purposes (Corvi et 

al., 2012). 
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Despite appropriate efforts to increase the SHE CTA’s reproducibility, mechanisms 

underlying the assay’s endpoint of morphological transformation (MT), and explaining the 

relationship of MT to genotoxic and non-genotoxic carcinogenesis, remain mostly 

undefined. This has further fuelled uncertainties in implementing the SHE CTA into 

regulatory applications (Creton et al., 2012) (DRP in progress – personal communication 

from Nathalie Delrue and Laurence Musset to RFN). Initial studies addressing neoplastic 

transformation in SHE cells, describe the induction of morphological transformation as an 

early event, linking it to the bypass of senescence which leads to unlimited growth 

potential. Immortal MT cell clones then progress further acquiring the ability to form 

anchorage independent foci in semi-solid agar and tumours when injected into nude mice 

(LeBoeuf et al., 1990, Isfort et al., 1996a). Although anchorage-independence assays were 

not performed in this project, the observed cell growth kinetics were similar to those 

previously identified, in so far as not all MT colonies immortalised (LeBoeuf et al., 1990). 

All normal colonies, regardless of exposure, entered senescence and stopped 

proliferating before they had undergone 35 population doublings from the single-cell 

stage (26 to 44 PD for LeBoeuf et al., 1990); in fact, a substantial proportion managed 

only one or two passages before entering senescence. Fewer than 10 % of B(a)P-induced 

MT colonies picked in the Brunel laboratories (6 in total) bypassed senescence barriers 

(and have reached over 100 PD of growth at the time of writing) whereas 22 % of BP MT 

clones sent to Brunel from BioReliance (4 out of 18) immortalised. LeBoeuf (1990) 

observed a background frequency of spontaneous immortalisation of 3 % in 

morphologically transformed colonies from control (DMSO-treated) dishes and similar 

frequencies in B(a)P non-transformed colonies. From the data obtained in this project 

only 1 DMSO MT colony continued to proliferate, giving a 5 % spontaneous 

immortalisation rate from the BioReliance cohort of colonies alone (there was no 

senescence bypass in any of the BP N colonies). 

At least 45 % of MT colony-derived cells that immortalised were found to undergo and 

overcome a cell crisis phase, which took place between passages 4 and 12; at this point 

doubling times increased and cytoplasmic enlargement was observed in the majority of 

cells in culture; similar observations were made in previous SHE MT colony-derived 

studies conducted at pH 6.70 (LeBoeuf et al., 1990). Scoring of morphological 
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transformation, therefore, does not guarantee escape from senescence since over 70 % 

of MT SHE cells senesced before 35 population doublings. Senescence bypass was mostly 

attributed to MT cells that had been exposed to carcinogens and was much less common 

in spontaneously derived MT clones (10-22 % in BP MT compared to 0-5 % in DMSO MT). 

Observation of cellular crisis and a senescent-like phenotype in >45 % of MT colonies 

confirms that the acquisition of unlimited proliferative potential requires additional, 

probably stochastic, events (Trott et al., 1995, LeBoeuf et al., 1990). 

Immortal SHE cell lines continued to proliferate beyond 100 population doublings but did 

not necessarily retain their MT phenotypes. Clonally-derived proliferating cells emerging 

after cell crisis eventually formed monolayers that had lost criss-crossed growth patterns 

and, when approaching high cell density, were contact inhibited. The same pattern was 

also seen with the single spontaneous immortal DMSO MT1 line that was generated. 

Retention of MT characteristics is not necessary for malignant transformation, although 

may be required for anchorage-independent growth in vitro (LeBoeuf et al., 1990). 

However studies by Barrett et al., (1979) indicated a strong relationship between 

anchorage independent growth (AIG) in semi-solid agar of immortal MT colony-derived 

cells and in vivo tumour formation; this tendency increases with passaging and was 

estimated to take between 32-75 population doublings to acquire (Barrett et al., 1979, 

LeBoeuf et al., 1990). This is consistent with the notion that immortalisation and 

senescence bypass are only the first necessary steps towards progression to malignancy. 

Further work would be needed to confirm the neoplastic potential of SHE MT colonies 

produced in this study. 

The actual mechanisms that lie behind morphological transformation are still unclear 

(Creton et al., 2012). The data presented in this project highlight the fact that 

morphological changes are not sufficient for the cells to escape senescence, but that 

colonies containing transformed cells have a higher probability of generating immortal 

cell lines that may then go on to acquire malignant characteristics. No unique predictive 

attribute (prior to colony picking) was visually identified in MT colonies later capable of 

evading senescence that could enable them to be distinguished from those that ceased to 

proliferate (again subjective). Efforts by others have been made to render the scoring 

process more objective, such as the application of computerised image analysis to detect 
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changes in colour, cell organisation and texture (Ridder et al., 1997) and of Fourier-

transform infrared (FTIR) microscopy, which has been employed to identify biochemical 

fingerprints in SHE MT cells (Walsh et al., 2009, Ahmadzai et al., 2012b). By using the 

colony scraping technique for MT colony isolation and further culture, half of each MT 

colony was propagated and the remaining half stained and observed microscopically to 

confirm the MT phenotype. By combining objective colony analysis and establishing 

colony-derived cultures, early stage differences might be identified between MT clones 

which have the capability to immortalise and those that are already programmed for 

entry into senescence. Another approach could be the use of alternative staining agents 

to Giemsa which may be more discriminatory. For example, given that many of the MT 

colonies picked underwent growth-arrest after only one or two passages from picking, 

senescence-associated beta-galactosidase staining might be predictive of cell growth 

potential (Kurz et al., 2000) although it has been known to be influenced by cell type and 

cell density.  

Molecular analysis of the resulting immortal SHE colonies generated from the SHE CTA 

has provided further insight into induced carcinogenesis by benzo(a)pyrene and expands 

the evidence of the Syrian hamster being a mechanistically relevant model for studying 

the bypass of cellular senescence (Russo et al., 1998, Trott et al., 1995). Studies using SH 

dermal fibroblasts characterised events leading to senescence bypass induced by a panel 

of carcinogens using a mass culture approach (Yasaei et al., 2013); from this work it was 

evident that exposure to different carcinogens (both genotoxic and non-genotoxic) 

resulted in molecular fingerprints reflecting their mode of action. For example, irradiated 

SHD clones that immortalised suffered from a physical loss of the CDKN2A/B locus 

spanning over 37 KB of genomic content and encoding p16, p15 and ARF, whereas the 

non-genotoxic human carcinogen nickel chloride induced transformation by silencing p16 

expression epigenetically by DNA methylation at its promoter (Yasaei et al., 2013). The 

immortal clones generated from soluble nickel and IR are presumed to have been 

generated by a single hit (classed by the authors as ‘Type I immortalisation’) (Trott et al., 

1995, Newbold et al., 1982) ultimately silencing p16 expression by homozygous deletion 

(X-rays) or promoter methylation combined with single copy number loss (nickel). In 

contrast, a two-step model was proposed for B(a)P-induced immortal SHD clones, 
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whereby the initial event was inactivation of p53 by point mutations (primarily G to T 

transversions) followed by a ‘second hit’ after 20 population doublings which targeted the 

p16-Rb pathway, either by p16 single copy allele loss or epigenetic silencing of its 

promoter, plus p15 or Rb1 transcript down-regulation (Yasaei et al., 2013). 

Work presented in this thesis focused on the mechanisms by which senescence bypass 

was induced (via MT) by benzo(a)pyrene in primary SHE cells. In contrast to the SHD work 

described above, only 33 % of immortalised B(a)P MT clones contained potentially 

inactivating p53 point mutations. In two or more instances (BP MT9 and BP MT10) the 

p53 mutations conferred cellular growth advantages which were clonally selected for, and 

the p16 gene promoter was shown to be heavily methylated, consistent with a ‘two-step’ 

(Type II – see explanation above) process leading to senescence bypass and the 

generation of established the cell lines. This is also consistent with an observed decreased 

proliferation rate for BP MT10 during the first 20 population doublings, despite no actual 

senescence or crisis-like phenotype observed. (Expression analysis was unfortunately not 

completed for BP MT9 and BP MT10 due to time constraints).The growth kinetics of 

BP MT11 and BP MT12 were not characterised but, in addition to p53 mutations, these 

clones are likely to be missing one allelic copy of the entire CDKN2A/B locus (more CNV 

repeats are necessary or use of other methods to confirm the result) and they expressed 

p16 and p15 at low levels which is also indicative of a two-step immortalisation process.  

The remaining 67 % of BP-MT colony-derived SHE cells that immortalised did not carry 

p53 mutations affecting the amino acid sequence or indeed even point mutations in p16 

transcripts. From the analysis performed on SH dermal cells, all but one B(a)P-induced 

SHD clone were shown to overexpress p16 (Yasaei et al., 2013). In contrast the majority of 

SHE immortalised clones did not upregulate p16 transcription; mRNA levels in BP MT 

clones were either comparable to the untreated DMSO control group or down-regulated 

by between 50% and 90 %. 40 % of BP MT immortal clones were found to be heavily 

methylated at the p16 promoter, but this did not always correlate with gene silencing. 

However, as methylation could be be specific to B(a)P-exposure this does indicate that, in 

addition to its well characterised mutational mechanism, B(a)P can induce epigenetic 

effects and thus act as a non-genotoxic carcinogen too. 



Page 204 of 226 

BP MT7 and BP MT8 expressed p16 minimally and their gene promoter was methylated. 

These colony-derived cells were spindle-shaped, retained MT characteristics reached high 

cell densities in culture without an observed cell crisis. When treated with the 

demethylating agent 5­aza­dC, there was increased expression of p16 and removal of 

methyl groups at the p16 promoter which, in BP MT7, was sufficient to induce 

senescence. The data suggest that DNA methylation can negatively regulate p16 gene 

expression, although the presence of methylation was not always predictive of 

transcriptional silencing. This is reminiscent of Type I kinetics induced by nickel (Yasaei et 

al., 2013) but, given that ARF is also downregulated, there may be cooperative events 

additionally taking place to regulate p53 negatively (via increased Mdm2 availability) 

despite increased levels of Rb1 transcripts. 

The cell crisis observed in MT clones that escaped senescence, but that appeared to 

require secondary events, correlated with a single allelic loss at two of more genomic 

regions within the CDKN2A/B locus in three BP MT colony-derived clones (BP MT1, 

BP MT3, BP MT6). Hemizygosity in these instances always involved ARF exon 1β plus one 

of p16’s two exons and was linked to downregulation of p16 over successive passages (i.e. 

over an estimated 20-40 population doublings). Senescence bypass in BP MT6 was 

seemingly more complex; despite CDKN2A allelic loss and a 50 % reduction of p16 

expression in this clone, its mRNA levels were still comparable to the DMSO control 

group. Additionally, its p16 gene promoter was methylated but this was not sufficient to 

reduce p16 transcripts compared with the DMSO controls. Of the clones treated with 5-

aza-dC, activation of p16 in BP MT6 was similar to that observed in the treated SHE 

primary control, and methyl groups were not lost at the time points tested, thus 

demonstrating that methylation of the p16 promoter is not always predictive of its 

expression. However, there was over 10-fold induction of p15 expression during the cell 

crisis (compared to the DMSO group) which was subsequently heavily reduced (2­3 fold 

above the control) in BP MT6 cells post crisis. This secondary event was paralleled by a 

slight reduction in p16 expression following crisis, and CNV analysis indicated 

hemizygosity of p15. This supports the importance of p15 as a tumour suppressor gene in 

the regulation of senescence in Syrian hamster which was also hypothesised to have a 

role in SHD immortalisation when transcriptionally silenced (Yasaei et al., 2013). 
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A reduction of p16 gene expression in BP MT4 was observed following a senescence-like 

cell crisis but transcriptional repression cannot be explained by mutation, allelic loss or 

DNA methylation. One possibility is that upregulation of BMI-1 had a silencing effect 

either: (i) by acting as a transient negative transcription factor by directly binding to p16 

DNA elements (Meng et al., 2010), or (ii) acting indirectly, by recruitment and assembly of 

Polycomb group repressor complexes bound to chromatin (Jacobs et al., 1999) which, if 

maintained, could have a more long lasting effect. BMI-1 was strongly expressed in two 

type II BP MT clones which had single copy number loss of the CDKN2A/B locus, and BMI-

1 transcripts was generally more abundant in BP MT clones than in the DMSO control 

group (3 to 4-fold increases). The data suggest that elements upstream of p16 are altered 

in immortalised BP MT clones co-operating to suppress senescence pathways and extend 

cellular lifespan.  

Finally in the remaining immortal clones (BP MT2 and BP MT5) expression of p16, p15 or 

ARF was minimal but both cell lines retained both allelic copies of the CDKN2A/B locus 

and p53, were partially methylated at the p16 promoter and possessed no known 

translated p53 or p16 inactivating point mutations. Additional unknown events may have 

cooperated towards the bypass of senescence. Rb1 in BP MT5 was transcriptionally 

repressed and this could possibly have been due to inactivating gene mutations, copy 

number loss or deregulation of other upstream regulators. p53 activity is controlled by 

post-transcriptional modifications that may have been be disrupted, so that increased 

transcription had little or no effect in activating cell cycle arrest and/or Rb1 may have 

been hyperphosphorylation and deregulated. Mdm2 downregulation is also largely 

unexplained as it is generally associated with oncogenic activity, but may be a 

compensatory cellular mechanism attempting to activate p53-mediated cell-cycle arrest. 

ARF signalling is also largely inactivated which may point towards upstream mediators 

failing to sense genetic damage and initiate signalling cascades. The cell cycle regulator 

p21 was also not investigated and, similarly, expression of cyclin kinases was not 

examined; both of these studies would complement the work presented here. 

CTAs based on the Syrian hamster allow the study of oncogene- and stress- induced 

senescence in isolation from that initialised by replicative senescence (caused by 

telomere attrition), as rodent models do not require the reactivation of telomerase for 
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immortalisation (Russo et al., 1998). This is favourable for a mechanistic understanding of 

senescence bypass but cannot fully predict the transforming potential of chemicals in a 

human model, which would be the ideal goal (Creton et al., 2012). The data presented 

here demonstrates the mechanistic relevance of the SHE CTA to carcinogen-induced 

senescence bypass. Despite the assay’s subjectivity, MT characteristics did predispose 

colonies to evade senescence barriers and led to unlimited growth potential in 10-30 % of 

colonies (depending on the study) following exposure to B(a)P. It should be reassuring to 

toxicologists that morphological transformation in the Syrian hamster embryo system can 

lead to the deregulation of pathways regulating senescence, and these endpoints are in 

part shared by human systems. Certainly, the mode of action of various compounds and 

their concentrations is likely to influence the relationship between MT and immortality 

and pathway components may be targeted differently as seen with the SHD system 

(Yasaei et al., 2013). It would be unrealistic to expect all colonies to be picked from every 

CTA conducted, but it may be advantageous to isolate a statistically robust number of MT 

colonies and, as performed here, conduct a detailed molecular analysis to gauge an 

unknown compound’s mode of action. 

Now that the Syrian hamster genome has been sequenced it opens the door to more in-

depth analysis of the model which would complement MT colony screening at a 

molecular level for pathway analysis. There is scope for improved primer design 

applicable to relevant gene targets and predicting protein structures in order to find 

suitable antibodies for protein expression. The sequence analysis presented here further 

confirms similarities between the human and SH genomes in terms of the CDKN2A/B 

gene structure, i.e. exonic regions of p15, p16 and ARF (Muscarella et al., 2001). Its 

chromosomal location in the Syrian hamster is yet to be identified, but the locus is 

predicted to encompass under 45 Kb according to aligned but not continuous WGS 

sequences, a figure which is roughly comparable to the estimated 37-40 Kb CDKN2A/B 

locus in humans. Interestingly, the Syrian hamster p16 gene is more homologous to its 

human counterpart than rat and mouse sequences, which might correlate more closely to 

conservation of structure to function. It is known that ARF plays an important role in 

regulating senescence bypass in mice (Kamijo et al., 1997, Sharpless et al., 2004) but, in 

humans, cell senescence seems to be effected mainly via p16. In hamsters it has been 
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suggested that p16 is also the key player (Yasaei et al., 2013) but the reasons for the 

difference with mice are unclear. 

One advantage of using the SHE-MT assay for predicting carcinogenicity is that it shows 

good concordance with rodent bioassay data (80-90 %) as well as sensitivity and 

specificity (LeBoeuf et al., 1996). Ideally, implementation of CTAs into regulatory testing 

should offer a highly predictive and sensitive assay representative of the human system 

(Vasseur and Lasne, 2012). Efforts are underway in our laboratory to understand fully the 

mechanisms of normal growth barriers using mammary epithelial cells (HMEC) in order to 

develop a human-based cell transformation assay. Normal HMECs will proliferate for 

15­30 population doublings before overexpressing p16 and entering senescence; this first 

stage is named ‘stasis’ (the equivalent of which in rodents is OIS/SIPS). Under stressful 

culture conditions like starvation, stasis can be spontaneously bypassed and the resulting 

post-selection cells do not express p16 but continue to proliferate for a further 30-70 

population doublings until telomere shortening induces cell cycle arrest. This stage is 

called ‘agonescence’ when p53 is functional, or ‘crisis’ if p53 is inactive, and corresponds 

to replicative senescence (Stampfer and Yaswen, 2003). Deletion or inactivation of p53 

has been associated with increased rates of acquiring immortality and coincides with the 

reactivation of telomerase (Stampfer et al., 2003). When treated with carcinogens, such a 

B(a)P, the second stringent barrier can be avoided by reactivating the catalytic 

component of telomerase (hTERT) and is associated with large but stable karyotype 

changes on the short arm of chromosome-3 (Linne et al, unpublished data). 

Carcinogenesis can therefore be modelled at different stages in the progression of HMEC 

to immortalisation by selecting pre- or post-stasis cells and would provide human 

mechanistic insight into bypass of premature senescence (SIPS/stasis) and replicative 

senescence respectively.  
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7.2 Conclusion and future perspectives 

Understanding the molecular underpinnings of intrinsic barriers to uncontrolled cell 

growth opening the gate to tumour development is essential in order to model 

carcinogenesis. With an increased requirement for the reduction of rodent bioassays used 

in compound testing, toxicologists must rely on approved in vitro models for their safety 

assessments (Creton et al., 2012). The SHE CTA is a subjective assay by the nature of its 

endpoint of visual scoring of morphologically transformed colonies; good practice and 

standardised training can minimise laboratory variability (Vasseur and Lasne, 2012). 

The experimental work conducted in this project and described in detail in this thesis 

demonstrates that, although MT does not always equate to senescence bypass and cell 

immortalisation in the Syrian hamster embryo model, it does increase the probability of 

the acquisition of unlimited growth potential in MT colony-derived cells. Inactivating 

mutations in p53 were observed in 30 % of immortal MT B(a)P-induced clones and 

expression of p16 was commonly downregulated. Growth kinetics indicated secondary 

events to MT were necessary for the evasion of senescence barriers, and these were 

associated with an allelic loss of p16 at later time points along with its transcriptional 

repression. No inactivating mutations of p16 were observed. However, the p16 promoter 

was found to be subject to DNA methylation in immortal colony-derived cells but was not 

always associated with p16 downregulation; removal of methyl groups using the 

demethylating agent 5­aza­dC was accompanied by increases in p16 expression in some 

instances. Another common feature was overexpression of BMI-1, which lies upstream of 

p16 in the same anti-proliferative signalling pathway and is likely to have contributed 

towards the repression of p16. 

With the completion of the Syrian hamster genome sequencing, it was possible to 

perform a comparative analysis of the CDKN2A/B locus which confirmed its conserved 

genomic structure and sequence homology for p16, p15 and ARF with humans. Increased 

sequence availability should now permit better molecular understanding of both SHD and 

SHE models, which was not previously possible. Repressive interactions between BMI-1 

and p16 ought to be confirmed, for example by chromatin immunoprecipitation (ChIP) 

analysis, and other members of the Polycomb group repressor complexes such as EZH2 
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could also be examined. It is proposed that protein expression and modifications of key 

regulators of the cell cycle be further investigated, once the appropriate antibodies are 

identified, to include p16, pRb and p53. Downstream targets such as p21 and cyclin 

kinases may be abrogated and further explain mechanisms of senescence bypass. 

The Syrian hamster remains an excellent cell model for studying OIS/SIPS and its bypass in 

isolation without to the requirement for reactivating telomerase (Russo et al., 1998, Trott 

et al., 1995). The extra genetic sequence information now available should aid the 

understanding of SH carcinogenesis at a molecular level and draw out any species-specific 

pathways. Both SHE and SHD assays have been shown to be mechanistically relevant in 

simulating human toxicological studies and respond to both genotoxic and non-genotoxic 

carcinogenic insults (Yasaei et al., 2013).  

Eventually, implementation of a fully characterised human CTA would be highly 

advantageous for predictive toxicology, but caveats will still remain. Due to their cell-

based nature, transformation assays are restricted to certain cell types and are not fully 

representative of how cells are organised in three-dimensional space let alone the human 

body. Ideally, a three-dimensional model might ultimately be implemented. By their very 

nature, such assays will always have their own limitations and shortcomings. Thus, as 

complete a picture as possible for safety testing (in multiple systems) is necessary to 

provide a ‘weight-of-evidence’ approach capable of covering different angles of risk 

assessment.  
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8 Appendix 

 
Table 1: List of all primers and probes 
 

Gene expression real time PCR primers 

GAPDH 

5’-TTGTTGCCATCAATGACCCCTT-3’(forward) 

5’-CGTTCTCAGCCTTGACTGTGCCTT-3’ (reverse) 

Beta-actin 

5’-ATGGCCAGGTCATCACCATT-3’(forward) 

5’-TGTAGTTTCGTGGATGCCACA-3’ (reverse) 

p16 (Cdkn2a) 

5’- AGAGGTTCGGGCTTTGCT-3’ (forward) 

5’-CTACTTGGGTGTTGCCCATC-3’ (reverse) 

ARF (INK4A) 

5’-GCAGGTTCGTGGTGACTGT-3’ (forward) 

5’-CTCGCTAGCATCAACAGCAG-3’ (reverse) 

p53 

5’-CCCCCAAAGAGTGCTAAACGA-3’ (forward) 

5’-CAGTTCCAAGGCCTCATTCAA-3’ (reverse) 

p15 (Cdkn2b) 

5’-CTGTGAGAGGAGGACAAGGG-3’ (forward) 

5’-CATCATCATGACCTGGATCG-3’ (reverse) 

Mdm2 

5’-CACAGGTCCCTTTCCTTTGA-3’ (forward) 

5’-TGAATCCTGATCCAGCCAAT-3’ (reverse) 

Rb1 

5’-CGCCTTCTGTCTGATCATCCA-3’ (forward) 

5’-TTGGTCCAAAT GCCGGTCT-3’ (reverse) 

BMI-1  

5’-CTGGAGAAGAAATGGCCCTCT-3’ (forward) 

5’-TTCTCCCGCATTTGTCAGC-3’ (reverse) 

 

Sequencing primers 

p53 

Exons 2-4 

5’-GCTTCCCTGAAGACCTGAAG-3’ (forward) 

5’-CCAGACGGAAACCATAGTCG-3’ (reverse) 

Exons 4-6 

5’-CTGGCCCCTCTCATCTTCT-3’ (forward) 

5’-ACTGTGCCGAAAAGTCTGCT-3’ (reverse) 

Exon 6-9 

5’-CCGAGTGGAAGGAAATATGC-3’ (forward) 

5’-TGTTTTTCTCTTTGGCTGGG-3’ (reverse) 

 

p16 (Cdkn2a)  

5’-ATGGAGCCCTCTGCGGACG-3’ (forward) 

5’-GGGGTGGTCCGCGAAATCC-3’ (reverse) 

Tm
°
C 

 

59 

 

 

59 

 

 

59 

 

 

59 

 

 

59 

 

 

57 

 

 

57 

 

 

57 

 

 

59 

 

 

 

 

 

 

57 

 

 

57 

 

 

57 

 

 

59 
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Bisulphite sequencing primers 

p16 promoter (457 bp upstream region) 

5’- TTGGTTTATTAGTTTAGGAGATTTA -3’ (forward) 

5’- ATACTACTCCAAATACTCCCCTATC-3’ (reverse) 

 

Copy number variation primers (PrimerDesign Ltd) 

ARF exon 1β [AF443796]- FAM labelled 

Undisclosed 

p16 (Cdkn2a) exon1α [AH010240] - FAM labelled 

Undisclosed 

p16 (Cdkn2a) exon2 [AH010240] - FAM labelled 

Undisclosed 

p15 (Cdkn2b) [NM_001281539] - FAM labelled 

Undisclosed 

p53 (p53) exons 7-8 [NM_001281661] - FAM labelled 

Undisclosed 

SDHA – VIC labelled 

Undisclosed  

 

Methylation specific PCR primers 

Modified/methylated p16 exon 1α (100bp) 

5’-GCGGTTGTTTAGGGTCGC-3’ (forward) 

5’-CTACCTAAATCGAAATACGACCG-3’ (reverse) 

Modified/un-methylated p16 exon 1α (143bp) 

5’-GGAGTAGTATGGAGTTTTTTGTGGAT-3’ (forward) 

5’-TATACCTAAATCAAAATACAACCA-3’ (reverse) 

Modified/methylated p16 promoter 

5’-TTTAGGTAGAAGATTCGATTGTCGT-3’ (forward) 

5’-AACGAACTCACTAAACCTCACGAA-3’ (reverse) 

Modified/un-methylated p16 promoter 

5’-TTTAGGTAGAAGATTTGATGTTGT-3’ (forward) 

5’-AACAAAACTCACTAAACCTCACAAA-3’ (reserve) 

 

 

 

Tm
°
C 

 

 

56 

 

 

60 

 

60 

 

60 

 

60 

 

60 

 

60 

 

 

 

54 

 

 

54 

 

 

 

56 

 

 

56 
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