

GENERATION OF 3-D SYNTHETIC

AUTOSTEREOSCOPIC INTEGRAL

IMAGES USING COMPUTER

SIMULATED CAMERAS

A thesis submitted in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

By

Shafik Salih

Electronic and Computer Engineering

School of Engineering and Design

Brunel University

March 2014

i

Abstract

__

Production of artificial Three-Dimension (3-D) images was the aim of many researches over

hundreds of years. 3-D images are the images that create sense of depth when viewing them.

3-D images are closer to the real world scenes than 2-D images due to the 3-D effect or the

sense of depth the 3-D images provide. Sense of depth can be caused by binocular cues

including convergence and parallax. Convergence is created by the difference between the

angles of the left eye and the right eye viewing axes. Parallax is the effect of viewing with

one eye a view of the scene that is inherently shifted to the view seen by the other eye.

Several techniques have targeted the creation of 3-D images with the mentioned cues. The

technique is preferred when it is able to create 3-D images so that the viewer can view these

images without wearing special glasses and the occurrence of viewer fatigue. Integral

photography that was invented in 1908 is able to meet the previous requirements. Based on

integral photography, several techniques, research and studies have been published.

The purposes of this thesis include the computer simulation of flexible integral photography

systems, the computer generation of good quality 3-D static and animated integral images

using the simulated systems, optimising the generation process to be more accurate, less

expensive, more effective, and faster, and producing a portable specialist software tool to

achieve these targets. New techniques and algorithms are needed to meet these purposes.

A literature survey was carried out about the closest researches and studies to the subject of

computer-generated integral images; these were compared with the new techniques

introduced in this study to prove the advantages and the necessity of these new techniques.

The closest technique to the suggested techniques was implemented using more developed

tools to compare the quality of the resulting integral images with the targeted integral images

that are going to be produced using the tools and algorithms proposed in this thesis. A

method to simulate an imaging system and produce integral images based on the new

technique of dividing the view volume of the scene was introduced, explained, proved, and

implemented with a program designed for this purpose. To optimise the processing time and

the image quality, the previous method is developed, new features are added to the resulting

integral images, and better performance was achieved by introducing the method of

ii

Displacing the Virtual Camera Target (DCT). Application software with Graphical User

Interface is designed and implemented to allow users to select the required parameters of the

imaging system and the required features of the resultant integral images. The software tool

that is based on the developed techniques and employing OpenGL is useful to simulate the

imaging systems, tune their parameters before the actual implementation of these systems,

and as a result, save time and materials when designing these systems.

The introduced techniques and the software tools are faster, more effective, and cheaper

original methods to help in optimising both the integral imaging systems and the quality of

integral images. These software tools based on the new techniques can be used on a wide

range of devices and platforms because these are employing the portable Application

Interface OpenGL. With these methods, integral imaging systems are simulated, and

optimised; good quality static and animated integral images were created.

iii

Acknowledgments

I would like to express my thanks to Professor Amar Aggoun for the great support he has

given me during this research.

Thanks to Dr Emmanuel Tsekleves for his constant help and support.

Thanks to Dr Maysam Abbod for his wholehearted help and support.

Special thanks to Professor Luiz C. Wrobel for his help and financial support.

I thank the School of Engineering and Design at Brunel University for providing the funding

for this research.

Many thanks to the employees in CEME Company, East London, and my colleagues in the

High Speed Sustainable Manufacturing Institute who helped me and participated in the

assessment test and the integral images evaluation process I conducted in CEME Company.

My thanks to my wife Nesrin Eshtay for the encouragement she has given me.

iv

Contents

Abstract . i - ii

Acknowledgments iii

Contents. iv - vii

List of Figuresviii - xi

List of Tables. xii

List of Acronyms ivi

List of Definitionsivi

Chapter 1 1-10

Introduction

1.1. 3-D Imaging 1

1.2. 3-D Imaging systems . 1

1.3. Aim and objectives. 3

1.4. Contributions to knowledge. 5

1.4.1. Dividing Image Volume using OpenGL (DIVGL) algorithm. 6

1.4.2. Displacing the Camera Target (DCTarget) algorithm. .6

1.4.3. Application software. 7

1.4.4. A method to evaluate the integral images. .7

1.5. The thesis structure. 8

1.5.1 Chapter 1 . 8

1.5.2 Chapter 2. 8

1.5.3 Chapter 3. 8

1.5.4 Chapter 4. 9

1.5.5 Chapter 5. 10

1.5.6 Chapter 6. .10

1.5.7 Chapter 7. .10

Chapter 2 11-38

A Literature Survey on the Computer Generation of Integral Images

2.1. Introduction . 11

2.2. Autostereoscopic 3-D images . 11

2.2.1 Multiview imaging technique. .12

v

2.2.2 Integral imaging technique13

2.3. Computer generation of autostereoscopic 3-D images. 14

2.3.1. Computer Generation of Multiview images . 14

2.3.2. Computer Generation of Integral imaging .15

2.3.2.1. Image processing for 3-D display . 15

2.3.2.2. The simulation environment for generating integral images.18

2.3.2.3. Invert the pseudoscopic image to produce an orthoscopic image. 20

2.3.2.4. Integral photography systems using a High Definition Television camera. . . .22

2.3.2.5. Displaying 3-D integral images. .23

2.3.2.6. The field of view of integral imaging systems . 26

2.3.2.7. Animated Computer-Generated integral images .30

2.3.2.8. The software used to render integral images. .32

2.3.2.9. Lens arrays for 3-D imaging systems. 34

2.3.2.10. Computer reconstruction of 3-D images. 35

2.3.2.11. Depth of field improvement in the 3-D integral imaging systems. 36

2.4 Summary. 38

Chapter 3 39-86

Computer Generation and Rendering of Integral Images Using OpenGL

(DIVGL)

3.1. Introduction. .39

3.2. Computer generation of integral images with OpenGL using Forward Projection

rendering model. 40

3.2.1. The Forward Projection Finite-Sized Aperture Rendering Model 43

3.2.2. The Forward Projection Pinhole Rendering Model . 49

3.3. Computer generation and rendering of Integral Images with the method of dividing

image volume using OpenGL (DIVGL) . . 52

3.3.1. The method of dividing image volume . 53

3.3.2. The capture stage .60

3.3.2.1. The clipping windows. 63

3.3.2.2. The analogy between the lens effect and the viewport mapping in OpenGL. . 65

3.3.2.3. The resulting integral images. .69

3.3.3. The replay stage. .73

vi

3.3.4. Perspective projection using spherical lens array. 74

3.3.5. The implementation of the integral images computer generation method DIVGL. 79

3.3.6. Generating animated scenes with DIVGL algorithm . 84

3.4. Summary. .86

Chapter 4 88-155

Computer Generation and Rendering of Integral Images by Displacing the

Virtual Camera Target (DCTarget)

4.1. Introduction. .88

4.2. The pickup stage . 90

4.3. The new target point calculation in relation to the rotation angles of the camera. . . . 100

4.4. The image plane rotation angles calculation. .104

4.5. The reconstruction stage . 115

4.6. Displaying the image behind and in front of the display screen. 120

4.7. Animated integral images. 124

4.8. Implementation and Results. 133

4.9. Improvements. 138

4.9.1. Using two different resolutions . 138

4.9.2. Display the scene in front and behind the display screen. 143

4.10. Camera model .154

4.11. Summary. .155

Chapter 5 156-190

The Autostereoscopic Integral Images Generating Tools

5.1. Introduction .156

5.2. The integral images production system structure. 156

5.3. The application components and integral images production stages. 158

5.3.1. Three-Dimension images generation. .158

5.3.2. Import 3-D images. .158

5.3.3. Integral images production algorithm . 159

5.3.4 Integral images display devices . 159

5.3.5. Graphical Unser Interface. 160

5.3.5.1. Loading the models and textures . 162

vii

5.3.5.2. Combo boxes. .167

5.3.5.3. Buttons. .172

5.3.5.4. Sliders. 174

5.3.5.5. Cameras . 177

5.3.5.6. Lights . 179

5.4. Flow-chart and sequential process. 180

5.5. Examples and results . 184

5.6. Set up and installation . 182

5.7. Summary . 189

Chapter 6 191-221

Evaluation of the 3-D autostereoscopic integral

6.1. SUBJECTIVE QUALITY ASSESSMENT . 191

6.1.1. Quality of Experience. 191

6.1.2. Subjective Test Conditions . 193

6.1.3. The Test description . 202

6.1.4. Analysis and results . 206

6.1.5. Viewers Feedback . 212

6.2 COMPLEXITY AND SPEED OF RENDERING EVALUATION. 214

Chapter 7 222-228

Conclusions and Further Work

7.1 Conclusions . 222

7.1.1 Findings . 223

7.1.2 Limitations . 226

7.2 Further work . 227

Appendix 1 229

Appendix 2 230

Appendix 3 233

Appendix 4 234

Publications 153

References 254-263

viii

List of Figures

Figure 2.1: left: autostereoscopic image viewing, right: stereoscopic image viewing [1] . . . 12

Figure 2.2: left: lenticular lens array, right: Multi-view image viewing [20] 13

Figure 2.3: left: pickup stage of integral imaging process, right: replay stage [4] 13

Figure 2.4: PID integral imaging generating method [3] . 16

Figure 2.5: left: block diagram of simulation tool, right: generated integral image [11] 19

Figure 2.6: The system that is built by Davies and McCormick [12] 20

Figure 2.7, Diagram of NHK real-time IP system [26] . 23

Figure 2.8, Schematic diagram of CGH 3D display system. [46] . 28

Figure 2.9, Schematics of the CGIP system. [48] . 31

Figure 2.10: Single stage capturing setup for production of orthoscopic real images [49] . 34

Figure 2.11: left, 3-D projection II using a micro-convex-mirror array, right, direct pickup of

elemental images using a micro-concave-mirror array [66] . 37

Figure 3.1: The original object . 47

Figure 3.2: Orthoscopic/lentecular. .48

Figure 3.3: Perspective/lentecular. 48

Figure 3.4: Perspective/micro lens. .48

Figure 3.5: 8 sub-images of the scene projected from 8 projection points. 50

Figure 3.6: The integral image of the scene composed from the sub-images of Figure 3.5. . 51

Figure 3.7 a: The integral image of Figure 3.5 with inverted pixel columns 51

Figure 3.7 b: The method of inverting pixel columns . 51

Figure 3.8: A horizontal cross section of the projection system. 53

Figure 3.9: A symmetric perspective projection frustum formed from the frustums imaged by

the lenslets . 54

Figure 3.10: A cross section of a single lenslet with its view volume 54

Figure 3.11: The frustums cluster for a few lenslets and the clipping planes. 55

Figure 3.12: A 3-D presentation of a lenslet and its frustum . 56

Figure 3.13: A view volume divided to frustums . 58

Figure 3.14: An OpenGL 2-D simple scene. .70

Figure 3.15: The integral image resulting from the projection of the simple scene.70

Figure 3.16: A 2-D image to be converted and displayed as a 3-D integral image.72

ix

Figure 3.17: The 3-D content of the 2-D image shown in Figure 3.16. 72

Figure 3.18: The pickup and replay stages of an orthogonal virtual integral image. 73

Figure 3.19: The pickup and replay stages of a pseudoscopic real integral image. 74

Figure 3.20: Spherical microlenses and rectangular viewports of 8×8 pixels.75

Figure 3.21: An image formed by a microlens array of 128×128 microlenses with 8×6 pixels

each .76

Figure 3.22: An image formed by a microlens array of 128×96 microlenses with 8×8 pixels

each. .76

Figure 3.23: The image formed by a microlens array of 64×64 microlens with 16×16 pixels,

the elemental images are inverted around the centre. .77

Figure 3.24: The image formed by an orthogonal microlens array of 128×128 microlens with

8×6 pixels. .77

Figure 3.25: Computer generation of integral images flowchart Based on DIVGL

Algorithm . 78

Figure 3.26: 3-D animated integral images generated using DIVGL algorithm.3.3.7. The

scene dimensions and the object points coordinates .83

Figure 4.1: The micro-image is a perspective projection of a part of the scene. 92

Figure 4.2: A horizontal cross section showing a camera with different image planes.96

Figure 4.3: The camera space and 3 virtual positions of the image plane.98

Figure 4.4: Orthographic projections at different rotation angles in the pickup stage, and the

objects reconstruction in the replay stage . 106

Figure 4.5: The orthoscopic virtual reconstruction stage . 116

Figure 4.6: Two ways of the objects reconstruction in the replay stage, producing an

orthogonal virtual image, and a pseudoscopic real image. 120

Figure 4.7: The generation process of integral images based on DCT algorithm. 125

Figure 4.8: An integral image produced by the application software using DCT method. . 134

Figure 4.9: The 2-D COLLADA scene before conversion to a 3-D integral image 134

Figure 4.10: 2-D image rendered with Irrlicht engine. 135

Figure 4.11: 3-D integral image rendered based on DCTarget algorithm with Irrlicht engine,

spherical lenses array mode . 136

x

Figure 4.12: DCTarget -based animation of integral images rendered to be viewed with a

cylindrical lens array. The images are selected frames from an animation, the frame numbers

are respectively 1, 150, 281, 420, 601 and 796. 137

Figure 4.13: DCTarget -based integral image to be viewed with a cylindrical lens array. . 138

Figure 4.14: Left, replayed pixels. Right, mapped groups of pixels in the capture stage. . 140

Figure 4.15: Capture, midway, and replay stages of producing integral images 142

Figure 4.16: Integral images rendered for different focal length values: 5 mm (upper left),

12.5 mm (upper right), and 50 mm (lower left), and 62.5 mm (lower right). 151

Figure 4.17: The suggested camera model 154

Figure 5.1: The integral images production stages 164

Figure 5.2: A simple GUI to set the parameters to render Integral Images 165

Figure 5.3: An Open Model File & Texture dialog box. .162

Figure 5.4: A diagram of the steps implemented to create interface control tools.181

Figure 5.5: A flowchart of the integral image process based on DCT algorithm. 183

Figure 5.6: The 2-D scene for rendering with a cylindrical lens array 185

Figure 5.7: The resulting integral image based on DCTarget when using a cylindrical lens

array and displayed on normal PC screen 185

Figure 5.8: The 2-D scene for rendering with a spherical lens array 186

Figure 5.9: The resulting integral image based on DCTarget when using a spherical lens array

and displayed on a normal PC screen . 186

Figure 5.10: An example of an integral image of a single model . 187

Figure 5.11: The integral image of a single model viewed with a cylindrical lens array. . 187

Figure 5.12: An example of a model and texture background .188

Figure 5.13: The model and texture integrated image viewed through a lens array 188

Figure 6.1: Training Globes, 3-D integral images generated with a third method 193

Figure 6.2: Rotating cube, a 3-D integral images video generated with DIVGL method . . 194

Figure 6.3: Axe man 1, a 3-D integral image generated with DIVGL method. 195

Figure 6.4: Cutlery, a 3-D integral image generated with DIVGL method 195

Figure 6.5: Globe, a 3-D autostereoscopic integral image generated with DIVGL method .195

xi

Figure 6.6: Angel in the castle, a 3-D autostereoscopic integral image video generated with

DCTarget method . 196

Figure 6.7: Boy, a 3-D integral image generated with DCTarget method 197

Figure 6.8: Angel and warriors, a 3-D integral image generated with DCTarget method 197

Figure 6.9: Axe man 2, a 3-D integral image generated with DCTarget method. 197

Figure 6.10: video Actor, 3-D integral images generated with ISTM method [8/page 131].198

Figure 6.11: Ghost, a 3-D integral image generated with ISTM method [8/page 47] 198

Figure 6.12: Pots, 3-D integral images generated with ISTM method [8/pages 58-64-67]. .199

Figure 6.13: Network, a 3-D integral image generated with ISTM method [8/page 126] . . 199

Figure 6.14: Ballerina, a 3-D integral image generated with ISTM method [8/page 131]. . 200

Figure 6.15: 3-Tee, a 3-D integral image generated with ISTM method [8/page 143] 200

Figure 6.16: An example of the images displayed in the assessment. 206

Figure 6.17: the opinions average RMS of 23 viewers for the three methods 207

Figure 6.18: MOS of each image of the 3 groups . 208

Figure 6.19: MOS of each criteria for each image of the 3 groups. 209

Figure 6.20: the average RMS of the opinions of 23 viewers about the three methods. . . . 210

Figure 6.21: the average RMS of the opinions and the RMS of the opinions combined . . . 210

Figure 6.22: MOS of the criteria scored by viewers for each method.211

Figure 6.23: MOS and RMS of the criteria for each method . 211

Figure 6.24: The flowchart of the integral pinhole mesh model [8] 215

Figure 6.25: The flowchart of the Finite-sized aperture model [8] 216

Figure 6.26: The flowchart of CGIP method [48] . 216

xii

List of Tables

Table 4.1: Values of α and t_new in relation to image_index. 113

Table 4.2: The new locations of the columns indexed with m . 150

Table 5.1: The enumerators and the GUI elements. 162

Table 5.2: The enumerators and the event types. 163

Table 5.3: The GUI buttons and their functions .173

Table 5.4: The GUI scrollbars and their functions ..177

Table 6.1: the demographic data the participants have shared ..202

Table 6.2: a comparison between the three methods and the optimized ISTM. 208

Table 6.3: Feedback provided by the assessment participants. 213

Table 6.4: A comparison between different methods on the basis of complexity 221

xiii

List of acronyms

__

2-D Two- Dimension

3-D Three-Dimension

AII: Animated Integral Images

AIST: The National Institute of Advanced Industrial Science Technology

AOV: angle of view

API: Multi-Platform Application Interface

APS: Application Software (DCTarget)

c: camera location (DCTarget)

CCA: Camera Central Axis

CCD Charge Coupled Device

CGH: Computer-Generated Holographic

CGIP: Computer-Generated Integral Photography method

COMPSAII: a 3-D computational Synthetic Aperture Integral Imaging

CP: Centre Point

CT: Camera Target

curv: the value that measures the radius of the lenslet curvature

DCAJ: Digital Content Association of Japan

DCTarget Displacing the Virtual Camera Target

DIVGL Dividing Image Volume using OpenGL

f : focal length

f: forward vector (DCTarget)

F: the real distance between the image plane and the pinhole

f32: a special type of real variables defined in Irrlicht

FII: Final Integral Image

Fl: focal length of the lens (DCTarget)

FPD: Flat Panel Display

FOV: field of view

fn: file name

fps: frames per second

xiv

GUI: Graphical User Interface (DCTarget)

h: the number of vertical pixels in the display screen (DCTarget)

hl: height of the image plane or the screen (DCTarget)

HDTV: High Definition Television

HMI Human machine Interface

IIs Integral Images

IP: Integral Photography

ISTM: Interpolative Shading Technique Method

LCD: Liquid-Crystal Display

LCLV: liquid-crystal light valve

Left plane: the left vertical clipping plane

LPS: Light Point Sources

M: the maximum number of choices the viewer can chose

m: indicates the positions of the image plane (DCTarget)

m: the required projections for each object point in the scene (DIVGL)

MaxW: the maximum weight of the choices

MD2: MD2 files format

MI: Multi-view Imaging

mode: specifies the mode of the projection

model_mode: specifies the model mode

MOS: Mean Opinion Score

MR: the resolution of the final image

N: the number of horizontal pixels in the elemental image (DIVGL)

n: the number of horizontal pixels under a lens with the width of Pt (DCTarget)

N: the total number of effective lenses (DCTarget)

N: the total number of viewers

n: the total number of lenslets (DIVGL)

n2: the refractive index of the lenslet

Na: The numerical average

NHK: The Science and Technical Research Laboratories in Japan

ob2: Object 2

ob2': Object 2 virtual image

OpenGL: Open Graphics Library

P: the real width of the lenticular lenslet or the diameter of the micro lens

xv

p: the width of the pixel (DIVGL)

p: Width of pixel (DCTarget)

p0: point from the object ob2 in the scene

p0': point from the object ob2 image ob2'

PAP: a pinhole array on a polarizer of liquid crystal display LCD

PC personal computer

PID: Processing of Images for 3-D display

pitch: the value that measures the pitch or the width of the lenslet

pos: the vector components of a point from the object

Pov-Ray: Persistence of Vision Raytracer.

PP: the coordinates of a projection point on the aperture

Pt_l: Pitch of lens (DCTarget)

Q : the image quality

QoE: Quality of Experience

R: the resolution of the sub-images (DCTarget)

R: the original target point t0 (t0x, t0y, t0z)

r_x, r_y, r_z: the projections of the distance between the initial camera target and the camera

centre on x, y, and z axis

RGB pixel red green blue pixel

Right plane: the right vertical clipping plane

s: side vector (DCTarget)

SAII: the synthetic aperture technique

sc: the resolution measured as a number of pixels per mm

shift: the horizontal and the vertical shift the user apply to adjust the integral image

on the display

slot_index: the x-coordinate of the frustum centreline

SLM: Spatial Light Modulator

SPH: used for spherical lenses

STRL: Science & Technology Research Laboratories (Japan)

t_zerox, t_zeroy, and t_zeroz: real variables to hold the x, y, and z coordinates of the initial

position of the camera target

thick: the value that measures the thickness of the lenslet

top: the coordinate of the top horizontal clipping plane

up: upper vector (DCTarget)

xvi

UNS: Ubiquitous Network Society

Vf: the final coordinates of the intersection point between the image plane and the

ray that started from the projection point and passed through the object point

and the lens array x, y

VNi: the number of viewers who selected the choice i

w, b, y, r, and g: shown the rays with the colours brown, blue, yellow, red, and green

w: the number of the horizontal pixels (DCTarget)

Wab: the width of the clipping window of the frustum

wl: Width of the image plane or the screen (DCTarget)

Wp: the weight percentage

Wi: the weight of the choice

Yl: the numerical value of the depth of the reconstructed point ob2'

Za: the proportion of plane Aʹ selected location that varies between 0 and 1

Zab: the absolute value of the distance between the projection reference point and

the near clipping plane

zFar: the point distance to the far-depth clipping plane

zNear: the point distance to the near-depth clipping plane

α: horizontal rotation angle (DCTarget)

α: rotation angle

β: vertical rotation angle (DCTarget)

𝜃0: the maximum value of the angle θ

µ: the number of lenslets

zv: the Z-coordinte of the lens array vertex, it is set to be 0

xvii

List of definitions

3-D Holoscopic imaging: the methodology of generating and displaying spatial images with a

3-D effect so that a real volume is added to the viewed images.

3-D Max: a computer program used to generate scenes and create images in the 3-D

space.

Anaglyphs: is the name given to the stereoscopic 3D effect achieved by means of encoding

each eye's image using filters of different (usually chromatically opposite)

colors, typically red and cyan.

Animated films: made of a series of static integral images using the application software.

Aperture: a hole or an opening through which light travels

Application software: a set of one or more programs designed to carry out operations for a

specific application.

Array of microlenses: an array of spherical microlenses situated regularly in rows and

columns within a lenticular sheet.

Autostereoscopic imaging: Is any method of displaying stereoscopic images (adding

binocular perception of 3D depth) without the use of special headgear or

glasses on the part of the viewer.

Bi-linear interpolation: an extension of linear interpolation for interpolating functions of two

variables on a regular 2D grid.

Binocular: binocular vision is the vision in which creatures having two eyes use them

together.

Blender: another program to generate scenes and 3-D objects in the 3-D space.

Bottom plane: the coordinate of the bottom horizontal clipping plane

Capture stage: the imaging stage in which the scene is captured and the first image is taken

Central Processing Unit: the hardware within a computer that carries out the instructions of a

computer program by performing the basic arithmetical, logical, control and

input/output operations of the system.

Clipping window: The region against which an object is to be clipped

Convergence: is created by the difference between the angles of the left eye and the right eye

viewing axes.

Cylindrical lens array: an array of cylindrical lenses, each lens has a curvature surface and a

plane surface

Electro-floating display systems: The image floating is an antiquated 3D display technique, in

which a large convex lens or a concave mirror is used to display the image of a

real object to observer

Elemental image: is the micro image that is formed by a single micro lens array.

Frustum: the volume that contains everything can be visible on the screen after

perspective projection.

Holography: a technique which enables three-dimensional images (holograms) to be made

http://en.wikipedia.org/wiki/Stereoscopy
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Cyan
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Stereoscopy
http://en.wikipedia.org/wiki/Binocular_vision
http://en.wikipedia.org/wiki/Visual_perception
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Three-dimensional

xviii

Image plane: the plane where the micro-images produced by the microlense array are

captured and saved.

Integral image: the image that is created with the integral imaging technique.

Integral photography: displaying a 3D image without the use of special glasses on the part of

the viewer.

Interpolative shading: technique for surface shading in 3D computer graphics, provides a

better approximation of the shading of a smooth surface.

Irrlicht: an open source game engine written in C++.

Lenslet: are small lenses, can be spherical or cylindrical

Lenticular sheet: a set of adjusting cylindrical or spherical lenses.

Maya: a similar program to 3-D Max.

Microlense: a single lens of the microlense array.

Microlens array: an array of spherical microlenses.

Model matrix: convert from object space to world space.

Model-View matrix: the model matrix multiplied by the view matrix.

Multi-view imaging: multi-view imaging scenario where a number of cameras observe

overlapping, translated sub-images of a larger scene.

Object point projection: the trace of an object point on the image plane when the ray of that

object point hit the image plane.

Object point: is a 3-D point with 3-D coordinates. Each computer-generated 3-D object is

formed of a number of object points forming the geometric structure of the

object.

Open source ray-tracing package Pov-Ray: a ray tracing program which generates images

from a text-based scene description, and is available for a variety of computer

platforms.

OpenGL: a cross-language, multi-platform application programming interface (API) for

rendering 2D and 3D vector graphics.

Orthogonal image: the image of an object in which the near points in the real object appear as

near points in the image, and the far points appear far points in the image.

Orthographic projections: a means of representing a three-dimensional object in two

dimensions, in this method, the projection lines are parallel to each other.

Parallax: is the effect of viewing with one eye a view of the scene that is inherently

shifted to the view seen by the other eye.

Perspective projection: provide additional realism by making objects in the distance appear

smaller than objects close by.

Pickup stage: the capture stage. The first stage in imaging in which the scene is captured

Pinhole array: an array of adjusting pinholes and located on the same distance to each other in

regular rows and columns. Pinhole can be real or imaginary tool to capture the

image. A micro image is formed from each pinhole so that a cluster of micro

images are formed to be displayed as a 3-D image in the replay stage.

Pixel value: is the digital data that describe the Red, Green and Blue (RGB) colours of the

pixel in the display or the capture array. Each colour is expressed with a byte

of 8 bit.

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Game_engine
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Language-independent_specification
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/2D_computer_graphics
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Vector_graphics

xix

Plano-convex lenslet: Plano Convex Lenses are Optical Lenses with a positive focal length,

one surface is plane and the other is convex.

Plano-Convex cylindrical lenses: an array of Plano-convex lenslets.

Polarisation: A polarized 3D system uses polarization glasses to create the illusion of three-

dimensional images by restricting the light that reaches each eye, an example

of stereoscopy.

Pseudoscopic image: is the image that is created in the first stage of integral imaging by a

lens array in which the object point coordinates are reversed in z direction, x

and y coordinates are rotated 180 degrees around the centre of the microlens.

Ray-tracing technique: a technique for generating an image by tracing the path of light

through pixels in an image plane and simulating the effects of its encounters

with virtual objects.

Real system: Real camera that captures real scenes and produces images of the scene

Replay space: the space where the recorded images are displayed and displayed to viewers

Reverse tracing: is the virtual tracing of the ray that would hit its pixel in the image plane.

Screen resolution: is the intensity of the pixels in the screen. It is measured by dpi or dot per

inch. The number of pixels that occupy on inch on screen is the resolution.

Semi-cylindrical array: Plano-Convex cylindrical lenses

Spherical lens array: an array of spherical lenses in which one surface is plane and the one is

spherical.

Stereoscopic imaging: is a technique for creating or enhancing the illusion of depth in an

image by means of stereopsis for binocular vision.

Sub-image: The micro image that is formed of the rays of lights after leaving a single

spherical or cylindrical microlense.

View matrix: the matrix that converts a point from world space to camera space by

multiplying the point coordinates by that matrix.

VRML2: file format containing the object mesh and animation to a scene file with the

integral imaging format.

XML: The configuration file can include the essential initial settings of the

 application such as the default model and texture, the welcome message etc…

http://en.wikipedia.org/wiki/Polarization_(waves)
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Stereoscopy
http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/Stereopsis
http://en.wikipedia.org/wiki/Binocular_vision

1

Chapter 1

Introduction

1.1 . 3-D Imaging

3-D imaging or 3-D Holoscopic imaging term used in this thesis means the methodology of

generating and displaying spatial images with a 3-D effect so that a real volume is added to

the viewed images. Therefore, the concept of 3-D imaging should be distinguished from the

3-D imaging that is used to represent images in the 3-D world on 2-D display devices. 3-D

Holoscopic imaging methodology uses the principal of “Fly’s eye” and hence allows natural

viewing of objects (i.e. fatigue free viewing) [50] [103] [90] [83].

1.2 . 3-D Imaging systems

Various types of imaging systems are developed or under development, these include two

main groups: stereoscopic and autostereoscopic imaging systems. Stereoscopic imaging

systems require glasses to view the 3-D effect of the images, whereas, autostereoscopic

imaging systems do not require glasses and the Integral Images (IIs) can be seen with naked

eyes. Examples of stereoscopic imaging systems are anaglyphs, polarisation, and time

sequence. Examples of autostereoscopic imaging systems are holography, tracing systems,

and imaging systems based on lenticular sheets. The main categories of the systems based on

lenticular sheets are multi-view imaging and integral imaging.

The integral imaging principal was first suggested by Lippmann in 1908 [18] [67] [89] [84].

The idea of integral imaging is to capture the scene with an array of microlenses so that each

microlense forms its own sub-image on a common image plane, then the cluster of sub-

images is mounted by a microlense array with the same characteristics of the capture

microlense to be viewed. An image with 3-D effect and continuous parallax can be viewed

from different directions. Lippmann’s principal was the subject of a number of studies and

lots of research. Various embodiments based on Lippmann’s principal were developed and

implemented practically with different flavours.

2

In the proposed techniques that are described in Chapters 3 and 4, the targeted 3-D IIs are

generated based on the pixel values that are forming the image. The pixel values and the

coordinates of the pixels on the 2-D recorded images are calculated by reverse tracing the

rays from the pixel to the object point in the scene that generates the ray. The value of the

pixel is equal to the colour value of that object point. Reverse tracing the ray is the virtual

tracing of the ray that would hit its pixel in the image plane. The location of the pixel on the

image plane is defined by the coordinates of the point that is supposed to be hit by the ray.

The coordinate’s calculation is based on the characteristics of the optical devices used to

capture the image and object points coordinates. The quality of the displayed images is

dependent on the display screen resolution, the higher resolution of the screen the higher

quality of the IIs. Therefore, when the images are displayed on normal screens such as a PC

screen, the quality of images is limited due to the relatively low resolution of the usual

display screens. The limited resolution means that the number of pixels is proportionally low

to the point that the area of the screen that is employed to display an elemental image

contains a low number of the pixel. Thus, the elemental image cannot accommodate enough

information and pixel values for the part of the scene that is imaged and stored in the

elemental image; as a result, the quality of the displayed image on a screen is relatively

proportional to the resolution of the display screen.

The resolution of the display device is a vital factor to display good quality IIs, then, if a

higher resolution display device was employed, a better quality can be achieved. Nowadays,

the available printers can print images with much higher resolution than the available display

screens. The number of dots that can be printed in the same area is higher than the number of

pixels the same area can contain. When an elemental image is formed, the object points are

projected on the image plane and each elemental image is occupying an area with a number

of pixels equals to that of the intended display screen. The elemental images that are

calculated in the application software are formed in a way that the size of each pixel is

considered equal to the size of a single dot. The number of pixels per inch is considered equal

to the number of dots, therefore, the number of pixels accommodated in the same area would

be higher, and as a result, the resolution would be higher.

Real-time integral imaging is not available in the achieved application; however, the research

can be extended and the application software can be developed to be able to produce real-

time IIs. To develop a system for real-time applications, the system should be rebuilt to

3

include a physical part accompanied with a software part forming an embedded system. The

actual application software simulates the capturing stage of the image. The scene is a

computer generated virtual scene, whereas, in real life, the integral imaging camera should

capture the real scene, store the 3-D II data in a memory to be replayed either directly or

indirectly and the data should be able to be transferred through communication channels and

replayed remotely. The suggested system can include a pinhole array, spherical lens array, or

cylindrical lens array to capture the scene. The image is captured with a Charge Coupled

Device (CCD) and stored in a memory. An interface HMI can be employed to select the

required parameters of the system. The image data can be processed using a microcontroller

to correct the pseudoscopic image and create an II to be displayed by a display device with

the selected parameters. Computer processing of the images to produce IIs replaces some of

the physical equipment in the real integral camera such as these that are needed to correct the

pseudoscopic image.

1.3. Aim and objectives

This study is focused on simulating flexible integral photography systems, generating good

quality 3-D static and animated integral images using the simulated systems, producing a

portable specialist software tool supplied with Graphical User Interface to achieve these

targets, and proposing original techniques and algorithms to meet these purposes. In addition,

it is aimed to optimise the integral images generation process to be more accurate, less

expensive, more effective and faster. In order to compare the new developed techniques and

the resultant integral images to previous techniques and the integral images produced with

these techniques, investigating the previously developed techniques and methods in the field

of computer-generated integral images, and implementing the closest technique are required.

The ideal scenario in generating 3-D images is the one that provides a perfect image by

including information on the recorded image about the view of the scene from every angle.

However, the best that can reasonably be achieved today is a less rigorous approach and

information reduction is a key factor [8]. A trade-off between the size of information and the

images accuracy can be applied in the case of generating 3-D images. Therefore, the

techniques proposed in this thesis focused on reducing the size of data needed to be collected

and processed to generate 3-D integral images (II), whereas, maintaining a high quality of the

resulting 3-D IIs. The new developments on computer applications allows Lippmann’s

4

principal of generating IIs to be implemented and simulated using the computer graphics

applications. A number of studies were carried out to generate IIs using computer

applications and methodologies based on Lippmann’s principal. However, the existing

methodologies are in need for more developments and enhancements to render better quality

3-D IIs with fast and effective computations. Using new and different technologies to

produce 3-D IIs is useful to investigate the features and the benefits they can add to the

process of producing such images. For practical implementation, it can be useful to produce

application software to create 3-D IIs instantly starting form computer generated scenes so

that the application is portable between different operating systems and able to deal with

various image formats and different software programs. Computer generation of integral

images is a simulation process of the real systems devoted to implement 3-D IIs; therefore, it

can be useful to design special application software to simulate these systems so that the

application helps the designer to select the parameters of the system devices and generate the

required 3-D images based on the selected parameters. Therefore, this thesis is meant to focus

mainly on the mentioned goals in an attempt to add some new features to the field of

computer generation of IIs. The area of Computer Generation of Integral Images is the

precise area of this study, and the main aim of the presented research is the production of

computer generated integral images using algorithms, methods and tools more convenient for

faster-to-produce, better quality and easier-to-tailor integral images, with lower

computational, time and material costs. In order to achieve the required goals, a development

strategy was proposed to bring the research from the theoretical ideas to the software

implementation of the suggested ideas using computer tools and finally the actual production

of the 3-D autostereoscopic integral images. The suggested methods that were meant to

produce IIs and the software application tool that was designed to produce such images can

be useful to simulate the process of producing IIs with a real integral camera. In addition, the

designed software tool that is based on the suggested method is able to produce IIs starting

form computer generated scenes and animations. The images and animated scenes can be

designed using computer applications such as 3-D Max, Maya, and Blender, and then

imported by the application software. In the application software, the suggested algorithms

are applied to the imported images to be converted to autostereoscopic IIs with 3-D effect.

The application software is supplied with a Human Machine Interface (HMI). HMI allows

the user to select the features of the desired IIs and the virtual characteristics of the devices

that are supposed to capture and display the IIs in the simulated real system. For example, the

type and size of the lens array, the focal length and pitch of the lenses, the resolution and the

5

number of pixels of the targeted display screen etc. These characteristics are chosen to be

identical to the characteristics of the available physical devices that are supposed to be used

in the display stage. If the application is used to simulate a real 3-D integral imaging camera,

the ability to tune and select the parameters of the devices can be a helpful feature for the

experimental design of that camera as this feature gives the user the capability to optimise the

parameters and characteristics of the physical devices that would be used. The process of

selecting the suitable parameters to obtain the best image quality for the different available

devices and the input images is a useful way to save time and materials in the attempts to

design a real camera. The optimised characteristics of the devices can be decided with the

help of the application software before the actual implementation or usage of these devices;

also, the selection of these parameters is based on the availability of the devices. For

example, the resolution of the display screen is chosen based on the resolution of the

available personal computer (PC) screen with which the IIs are supposed to be displayed. The

images data can be saved and then displayed on normal display screens such as the screen of

a PC. The display screen should be covered with a spherical or lenticular lens array with the

same characteristics that were selected in the application software.

1.4. Contributions to knowledge

Up to my knowledge, contributions to knowledge are as follows:

 Dividing Image Volume using OpenGL (DIVGL) algorithm for generating good

quality computer-generated 3-D autostereoscopic integral images.

 Displacing the Camera Target (DCTarget) algorithm for generating good quality

computer-generated 3-D autostereoscopic integral images with a faster and less

complicated process.

 Flexible and user friendly application software to implement the above mentioned

algorithms and produce the required integral images.

 A method to evaluate the quality of the integral images based on the subjective

evaluation of each one of the factors that are affecting the image quality of an integral

image and related to the method of generating the images.

The above contributions are explained briefly in the flowing paragraphs.

6

1.4.1. Dividing Image Volume using OpenGL (DIVGL) algorithm

DIVGL is a simple and fast method to generate IIs using OpenGL library, in this method, the

scene is a virtual computer generated scene. The capturing stage is simulated with the

assumption of using a pinhole array, spherical lens array or cylindrical lens array to capture

the image. The object is partially projected on each pinhole or lens to form an elemental

image. The problem with displaying II is the limitation in display device resolution. In

DIVGL method, the elemental images are formed by projecting the object partially on the

image plane so that the elemental image is the perspective projection of a proportionally

small part of the space that holds the scene and then the elemental images are processed to

correct the pseudoscopic image. When the image is replayed, the different parts of the scene

are replayed and their rays are intersected in the replay space forming the autostereoscopic

images of the objects. The higher resolution of the display device, the larger part of the scene

projection can be accommodated in the elemental image and then the quality is higher,

ideally, if each elemental image holds the image of the whole scene, the quality is maximised.

1.4.2. Displacing the Camera Target (DCTarget) algorithm

DCTarget method is based on DIVGL method. DCTarget is a simulation with orthogonal

projections of the perspective projection that is used in the method DIVGL that it is in its turn

a simulation of the real imaging process. In DCTarget method, the II is composed of pixels

selected from a number of orthographic images. Each orthographic image is the orthographic

projection of the scene on an image plane rotated with a specific angle equals to the rotation

angle of the virtual camera target. Specific pixels are selected from several orthographic

images and mapped to a single image. The IIs and videos are generated with the application

software from computer generated models and animations. The method provides fast

generation of 3-D stereoscopic IIs with good full colour quality. In addition to the advantages

of OpenGL rendering, DCTarget method reduces the time and computational efforts needed

to project the scene. A reverse ray tracing approach was introduced and applied, in which the

rays calculated starting from the image plane pixels that are supposed to receive the rays from

the object points and ending with the object points. With this approach, several drawbacks are

7

avoided. The tool that was created and employed to implement and test the algorithms is

called the application software. One of their would-be practical applications is the printed

integral images.

1.4.3. Application software

The cross language OpenGL (Open Graphics Library) was selected to be employed in the

application software. Using the multi-platform application interface (API) OpenGL provides

the software with valuable advantages and important features for graphics applications such

as the ability to interact with a graphical processing unit to perform graphical functions faster

than software applications running on normal Central Processing Unit. In addition to the

ability to rendering images faster than other APIs, OpenGL is portable and able to run on

different platforms. The application software is portable and able to import different

computer generated images and animations produced by different software applications and

formed in different formats. The imported images are converted to 3-D IIs with applying two

different algorithms. The first is Computer Generation and Rendering of IIs using OpenGL

(DIVGL). The second algorithm is Computer Generation and Rendering of IIs by Displacing

the Virtual Camera Target (DCTarget).

In order to optimise the quality of the displayed IIs, a technique was suggested to print the IIs

that are calculated by the application software using a printer on a transparent thin film. The

film is illuminated with either an artificial light or natural day light on the back, and then the

lens array sheet is placed on the top of the film. In this case, the resolution of the screen

should be selected in the HMI to be equal to the resolution of the printer that is supposed to

be used. With this option, we can control the resolution of the recorded image to be higher

than the resolution of the image captured in real life 3-D imaging, and then, images with high

resolution can be printed. This technique can be useful to display the produced static

autostereoscopic 3-D IIs in advertisement panels, stable images or other applications where

the animation of the 3-D IIs is not required.

1.4.4. A method to evaluate the integral images

Several factors can affect the quality of the computer generated 3-D autostereoscopic integral

images. Some of these are related to the devices and tools used to generate and display the

8

images. Other factors are related to the method of generating the integral images. This

method is an attempt to evaluate the quality of experience and express it with a numeric value

calculated from the results of a subjective evaluation of the factors that can affect the quality

of experience and can be related to the method or the algorithm used for generating the

integral images. These factors are determined as the following five factors: comfort measures

the comfort the image cause to the viewer. Crosstalk measures the smoothness of switching

between the integrated images when the viewer moves from one position to another in respect

to the displayed integral images. Parallax is a one of the integral mages characteristics, this

factor measures how clear and noticeable to view the parallax feature in the integral image.

Depth factor measures the depth perception of the image in the viewer point of view, the

depth of the viewed scene on both the two sides of the display screen. View angle is the angle

through which the viewer can view the integral image when moving around the display

screen; the higher view angle allows higher freedom to the viewer for moving without losing

the integral image view.

1.5. The thesis structure

1.5.1 Chapter 1

An introduction with lists of structure items, objectives, and contributions.

1.5.2 Chapter 2

Includes a literature survey in which the latest approaches, methods and theories about the

subject of computer generation of IIs are accessed. The survey emphasises on the

fundamentals and state-of-the art of the area of computer generation of IIs. The main

concepts of the different techniques approached for generating IIs are defined, analysed,

evaluated and compared to the techniques that are proposed in this thesis. The survey

includes a brief explanation and analysis of a number of the existing research papers,

methods and techniques in the areas of 3-D imaging and IIs generation that are related to the

specific field of this study (i.e. computer generation of integral images).

9

1.5.3 Chapter 3

Explains the method of Computer Generation and Rendering of IIs using OpenGL (DIVGL)

and tries to prove theoretically and practically the validity of the approach. In the practical

implementation, a virtual pinhole array was considered as the capturing tool that is used in

the capture stage. A spherical lens array or a cylindrical lens array can replace the pinhole

array to produce IIs that are more accurate. Cylindrical lens array was simulated by

considering a group of adjusting pinholes so that the aperture that simulates each cylindrical

lenslet is a vertical gap with a minimal width and a length equals to the length of the vertical

lenslet. The theoretical concept was applied and implemented in the application software.

Good quality IIs with 3-D effect were produced and shown. In addition, other aspects and

results are declared in Chapter 3. In the theoretical and practical implementation, several

obstacles were encountered and resolved. In addition, Chapter 3 includes a replication of the

method proposed and implemented in De Montfort University (The UK) by Graham

Milnthorpe. The IIs were generated using interpolative shading techniques, which is a slow

method. In order to speed up the process of generating IIs and produce full coloured IIs with

high quality, the method was modified and implemented using OpenGL application interface

in C++ environment.

1.5.4 Chapter 4

Explains the method of Computer Generation and Rendering of IIs by Displacing the Virtual

Camera Target (DCTarget). The rendering technique is based on the technique DIVGL that is

proved in Chapter 3. The validity of the method is theoretically proved and practically

implemented with the assumption of using a pinhole array as the image-capturing tool. IIs

that are more accurate can be rendered if a virtual spherical or cylindrical lens array replaced

the pinhole array, however, in this case, more complexity is added to the calculations, and

rendering the images is slower. An additional enhancement was proposed aiming to produce

IIs showing the objects situated both behind and in front of the display screen to make the

images appearing more realistic. The proposed method was implemented with the application

software and a variety of examples of resulting images is provided. Animated 2-D scenes

generated in 3D Max or Blender are converted to 3-D animated IIs using the application

software. Good quality IIs were rendered and other enhancements are proposed and added to

the resulting 3-D images.

10

1.5.5 Chapter 5

Describes the plug-in tool or the application software that is used to render the 3-D IIs based

on the proposed methods. Application software user selects the required parameters and

characteristics needed for the required images, then operate the software that is supposed to

import the computer-generated scenes or animations, apply the mentioned algorithms on the

image data, and then convert the 2-D computer generated images to IIs with 3-D effect. To

make the plug-in tool portable and able to use with different applications, several software

issues were solved. In addition, Chapter 5 includes explanation about the software, the code

and the employed HMI, guidance about how to install it and use it, the connections with other

applications, and the obstacles that were faced and solved.

1.5.6 Chapter 6

In chapter 6, a subjective quality evaluation of the generated integral images was explained.

The subjective assessment has taken place in a research institute within an industrial

company. The 23 viewers who participated in the quality assessment are highly educated with

good experience and knowledge in the field of image processing and 3-D technology. The

assessment was carried out on the images generated with the two introduced methods (i.e.

DIVGL and DCTarget) and a third method introduced in [8]. The compared methods are

aiming to produce computer-generated 3-D autostereoscopic integral images. The evaluation

and quality comparison were based on the introduced evaluation method in which five

criteria of the image quality were evaluated individually and then the overall evaluation is

calculated. The results of the subjective assessment are analysed and the advantages of the

introduced methods of generating 3-D images were proved. The feedback provided by the

participant was also analysed in this chapter and results are shown. An analytic assessment is

carried out on the speed and complexity of the introduced methods against other close

methods. The advantages of the introduced methods over the other methods in terms of

complexity and speed were demonstrated.

1.5.7 Chapter 7

Summarizes the conclusions obtained from the research and declares the extent to which the

aims of the research were met.

11

Chapter 2

A Literature Survey on the Computer Generation of Integral

Images

2.1 Introduction

In this chapter, a literature survey is carried out on the theories and techniques approached to

produce computer generated 3-D integral images. The work that is explained in this thesis is

placed in the context of other works that have been done in the field. Some of the papers,

theories and studies on which this study is based are explained. The differences between

these techniques and the work of this thesis and the advantages of this work over the previous

techniques are highlighted. This survey implies on an attempt to declare how this work is

added to these techniques and enrich the field of computer generation of integral imaging.

The papers and techniques that are reviewed in this chapter are selected among others

because they are the closest to what is done in this thesis.

2.2 Autostereoscopic 3-D images

Images with 3-D effect are more realistic and closer to the real world images as they create an

influence on the human eyes similar to that created by real objects. In general, 3-D images

and videos are preferred over the traditional 2-D images. There is growing evidence that 3-D

imaging techniques will have the potential to establish a future mass-market in the fields of

entertainment (television, video game) and communications (desktop video conferencing) [1]

[74] [93] [95]. Adding a third dimension to the traditional 2-D images and videos was the

subject of many different approaches and inventions. Viewers need to wear special glasses to

be able to see the 3-D effect of several types of 3-D images and videos. The need for such a

device can form a practical obstacle in some cases when the viewer is not prepared to watch

3-D images [96] [75]. For example, if 3-D images are meant to be used for advertisement. In

order to implement free viewing 3-D display, different methods were introduced aiming to

produce autostereoscopic images.

12

Figure 2.1: left: autostereoscopic image viewing, right: stereoscopic image viewing [1]

Stereoscopic technique is easy to realize, can produce large images, and high resolution.

However, it needs glasses to evoke 3-D visual effect, provides observers with only horizontal

parallax, only few number of viewpoints, and it causes visual fatigue because of the

convergence-accommodation conflict. Autostereoscopic technique solves some of these

problems. Several groups have demonstrated autostereoscopic 3-D displays [2] [99] [94].

True autostereoscopic 3-D display systems should have parallax in all directions and present

images [1] [68]. Multiview Imaging and Integral Imaging (II) are popular methods for

realizing autostereoscopic images. Figure 2.1 illustrates the difference between viewing an

autostereoscopic image and a stereoscopic image. The former one does not need any glasses

to be seen whereas, the later one needs a vision tool to be viewed (i.e. special glasses).

2.2.1 Multiview imaging technique

Multiview imaging technique is based on the idea of multiplexing at least two images of the

scene taken from different points by either real cameras or virtual cameras. The resulting

image is displayed under a sheet of microlens array or lenticular lens array. If the viewer is

positioned in a correct location in respect to the display, each eye would see a different image

at the same time, and then the viewer would be able to view the third dimension of the image.

However, autostereoscopic display based on this principle does not produce a fully accurate

3-D representation of the scene [3] [98]. Multiview stereoscopic system employs lenticular

lenses to play the role of a multiplexer with which the correct views of the scene are selected,

displayed and specific views of the scene are seen by the left and right eyes dependent on the

location of the viewer. In real life, a set of cameras is needed to produce such a collection of

images and create a multiview stereoscopic system [20] [21] [22]. Figure 2.2 shows a

lenticular lens array to view Multi-view images and the Multi-view image viewing.

13

Figure 2.2: left: lenticular lens array, right: Multi-view image viewing [20]

2.2.2 Integral imaging technique

Integral imaging (II) is based on Integral Photography proposed by Lipmann in 1908. The

methods proposed in II tended to improve the spatial resolution, enhance the limited depth of

field, to expand the viewing area, or to solve the problem of the overlapping between the

adjacent elemental images in the pickup stage. II systems are useful for other applications

such as object recognition, the acquisition of the 3-D mapping of polarization distribution,

and providing the input signal for electro-floating display systems [65] [97]. II can provide

observers with true 3-D images with full parallax and continuous viewing points. II

disadvantages include the limitation in viewing angle, depth of focus, and resolution of 3-D

images. In addition, images produced by direct pickup II are pseudoscopic (depth-reversed)

images.

Figure 2.3: left: pickup stage of integral imaging process, right: replay stage [4]

Integral imaging technique is different to multiview technique as a single camera is used to

capture a full volumetric optical model of the scene [17] [69]. In order to form an optical

model of the scene, the microlens array or the lenticular lens array that is used in integral

imaging production process samples the information coming from the scene in the capture

stage and reconstructs the information in the replay stage. Integral imaging technique has

14

many advantages over the multiview technique. The advantages include the ability to produce

a higher quality of the 3-D images with the integral imaging technique. Figure 2.3 shows the

pickup and the replay stages of a typical integral imaging process.

In the case of integral imaging technique, the viewer is able to view the scene clearly from

any angle within the field of view that is related to the characteristics of the pickup and

display devices. The viewer can move from one angle to another while the image smoothly

changes. In contrary, multiview technique allows viewer to view the scene clearly from

specific angles, and images jump when moving from one angle to another. In addition,

integral imaging technique provides horizontal and vertical parallax.

2.3 Computer generation of autostereoscopic 3-D images

The mentioned techniques are supposed to be implemented using physical devices in the

capture stage as well as in the display stage of the images. The computer generation of

autostereoscopic 3-D images is the simulation of the real imaging that is implemented using

computer tools and applications. Several types of real cameras have been designed to produce

such images. Producing autostereoscopic images with these real devices is expensive and

sometimes invisible. For example, if the 2-D scenes are computer-generated scenes and 3-D

autostereoscopic images of these scenes are required, in this case, 3-D autostereoscopic

images can be produced using a computer generation technique.

In this thesis, cheap and fast computer generation techniques can be employed to produce

good quality autostereoscopic integral images are introduced and implemented. Other works

in the field of computer generation of multiview and integral images are discussed and

compared to the new methods.

2.3.1 Computer Generation of Multiview images

In the existing techniques, the distance between the viewer and the screen counts and does

not allow the viewer to see a different region with each eye on a long distance due to the

limited resolution of the screen. On a long distance, the angle of view of each eye is the same

as the other eye, the eyes will be seeing the same pixels, and then the same view will be seen

15

by each eye. This disadvantage is avoided in the techniques introduced in Chapters 3, 4, and

5 as the 3-D images are produced from the intersection of the rays emitted from the screen.

Referring to the method introduced in Chapter 4, the orthographic projections simulate the

perspective projection of the scene with the same lenses array. The projection of the points on

the image plane is equivalent to the perspective projection with the same microlens array.

In the multi-view imaging technique, each eye views the scene from a different angle,

therefore, the images can be combined incorrectly and that causes the image to be discrete.

This disadvantage can be avoided when the images are real images formed from the

intersection of the rays emitted from the pixels as it is the case in the introduced techniques,

and therefore, the resulting integral images are more accurate.

2.3.2 Computer Generation of Integral imaging

G. Lippmann was the first to propose the idea of integral photography [18] [81] [87]. The

method was developed by Ives [19]. 3-D Holoscopic imaging (also referred to as Integral

Imaging) is a technique that is capable of creating and encoding a true volume spatial optical

model of the object scene in the form of a planar intensity distribution by using unique optical

components [4] [70]. II provides autostereoscopic intensity images with full parallax, free of

any viewing device [5] [71]. In II technique, a microlens array is used to capture the image so

that each lens views the scene from a different point and parallax information is recorded. 3-

D image can be viewed when the parallax information is replayed. A number of methods and

studies are focused on in the following paragraphs to highlight the differences to the

approaches suggested in this study. The advantages and disadvantages of each method are

stated. The reviewed papers and studies are selected based on the common points they share

with the suggested methods.

2.3.2.1 Image processing for 3-D display

In 2008, Thomas and Stevens [3] patented a method to represent and display a 3-D model as

a 3-D image called processing of images for 3-D display (PID). The images in PID method

are several orthographic projections of the model at different viewing angles, multiplexed and

presented under a spherical or cylindrical lens array so that different images are presented at

16

different viewing angles. When the images are viewed from a specific viewing angle, the

inventors claimed that the orthographic projections are demultiplexed. Parts from different

orthographic images are viewed and the appearance of a perspective image is provided.

Figure 2.4 shows PID integral imaging generating method.

Figure 2.4: PID integral imaging generating method [3].

With PID method, the need for several cameras is avoided; in addition, the quantity of

computer processing needed to generate equivalent images and simulate the multiple cameras

is reduced. However, due to the manner of capturing, multiplexing, displaying and viewing

the images, PID method can be classified as a multiview imaging technique. Therefore, the

multiview imaging disadvantages exist in PID method. These advantages include the flipping

artefact that is caused by the limitation of the number of multiplexed images that is equal to

the number of pixels located under each lens, and the lack of smooth switching form one

view to another. In comparison to the method of Displacing Camera Target (DCTarget),

DCTarget can be considered as an integral imaging technique in which the number of

samples of the scene is much higher than that of the PID method as it is equal to the number

of lenses. Hence, while the viewer is moving, there would be smooth switching between the

views that are formed by the integration of the adjusting samples, and as a result jumping is

invisible. The multiview imaging characteristics in PID method are expected to appear as the

entire orthogonal image is multiplexed with the other images and their pixels are interlaced

on the image plane. On the other hand, the width of the multiplexed image is higher than the

width of the individual image and the resolution of the viewed images is lower than the

resolution of the multiplexed image because the projections are minimised to a lower

resolution. In the DCTarget method, only the selected pixels are recovered, picked up, and

mapped to the Final Integral Image FII. In DCTarget, the width of each orthographic image is

17

equal to the width of the FII; hence, the entire scene is integrated and viewed from each

viewing point with a high resolution similar to that of the resulting image.

In claim number 14, the inventors claimed that the perspective qualities are formed from

portions of the orthographic projections, the image is formed when the multiplexed images

are demultiplexed. The perspective qualities in the DCTarget method are formed from groups

of discrete pixels selected from the different orthographic images taken at specific angles

corresponding to the angles of rays in a perspective projection. The image at the display is

formed by the integration of the discrete projection points. With DCTarget approach, more

accurate perspective images are formed as integrated images.

At a normal distance from the display screen, the eye of an observer receives rays from

different images at the same time, and each eye can view a different combination of

demultiplexed images. Stereo image exhibiting parallax and binocular vision occur when the

two eyes view the scene from two different viewing angles. In order to provide such an

image, each eye should view the scene from a different angle. In PID method, each eye sees a

combination of orthographic images taken at different angles and the other eye sees the same

or slightly different combination, which is not the ideal condition to produce stereo images

with parallax and binocular vision. In the DCTarget method, stereo image providing parallax

is verified by the virtual and real integration of the object points that allows the viewer to

view the integrated objects from two different angles. In addition, the views seen in PID

method are orthographic images, whereas, the views seen with the method of DCTarget are

more conventional and natural because they are perspective images despite the fact that they

are generated form orthographic images.

With PID invention, the rotation angles of the orthographic projections are meant to

compensate the changing of the viewing angle. If the images taken were perspective, and the

viewing angle changes, the viewer sees different perspective images, which is uncomfortable

to the viewer. However, with PID method, the viewer sees different portions of several

orthographic images for a specific viewing point, and then the changing viewing angle

provides an automatic selection of which image is seen because the viewing angle is constant

for each orthographic image but differs from one image to another. As a result, with this

method, the viewer is supposed to see a perspective and natural image. The viewing angle is

the angle between the direction of view and the screen.

18

In order to view correct and accurate images with PID method, the viewing angle of the

viewer should be equal to the viewing angle of the orthographic image that should be seen

from the specific viewing angle of the viewer. In other words, the accuracy and the quality of

the display is dependent on the viewer’s viewing angle that is dependent in its turn on the

position of the viewer in respect to the display screen. In the DCTarget method, the quality

and accuracy of the display is independent to the viewer position or viewing angle because

the images seen by viewer are perspective-integrated images. If the way of selecting the

image plane rotation-angles of the orthographic images, extracting the pixels, and mapping

them to the FII are correct, the image perspective features are created. In such a way, the

perspective projection of the scene is simulated, and the viewed images are perspective. In

the DCTarget display, all the advantages of the integral images are available including the

independency to the viewer location and viewing angle.

2.3.2.2 The simulation environment for generating integral images

3-D video systems have been for decades pursued as the video format of the future. Various

approaches for providing a perceived depth have been invented [13]. Based on the method of

DCTarget, animated images were produced using the application software. The animated

images generated in separate applications such as 3-D Max are converted using the

application software to animated images with depth perception. Each 2-D frame of the

animation is converted apart to 3-D frame, and then the images are played in sequence to

form an animated images or video display. Olsson and Xu [11] created simulation

environment for a simple definition of complex scenes to form integral images and allow

those integral images to be synthesized. The technique introduced in this paper will be

compared to DCTarget technique to represent the advantage and disadvantage of each

technique over the other. Figure 2.5 illustrates the block diagram of the mentioned simulation

method, and an example of the generated integral image, the middle one is the 2-D image of

the generated 3-D image (right).

A generic integral image description model was proposed to which different integral imaging

techniques can be transformed and used by a simulation tool. The technique used in this

simulation environment was ray-tracing technique. The simulation environment that allows

using the model includes with two parts, an interactive tool with a graphical user interface

19

(GUI), and a rendering engine based on the open source ray-tracing package Pov-Ray. The

interactive tool provides access to a generic scene description language to define scenes with

different complexities, and allow user to modify the scene, generate the integral imaging

sequence and store the sequence. In comparison to DCTarget method, the application

software is used to implement the algorithm and produce the video stream of integral images.

It is obvious that DCTarget is more flexible as a wider range of 2-D static and animated

scenes can be converted immediately to images and video with 3-D perception, whereas, the

mentioned system is limited to the scenes that can be created and modified by the user using

Pov-Ray description language. In addition to the complexity of the system, generating

integral images with ray-tracing technique is expensive in general, as it needs a large number

of computation processes; in contrary to the DCTarget method that uses projection

techniques, therefore, DCTarget technique is faster and cheaper. Moreover, ray-tracing

advantages are provided in this technique despite that a projection technique is used.

Figure 2.5: left: block diagram of simulation tool, right: generated integral image [11]

A simulation of the ray-tracing technique is implemented in DCTarget, in the pickup stage,

the incident rays that are received by the pixels in the image plane are traced back to the

object points. The value of pixel in the rotated image plane that holds the intersection point

between an incident ray received by a pixel in the final image plane and the rotated image

plane is the pixel value that is assigned to the pixel in the final image plane. Ray tracing from

the pixels in the image to the object points is simulated using the orthographic projections of

the scene object points. Another advantage of the DCTarget method is the application

software that allows using more complex and accurate scenes with various types to be

converted to 3-D integral images in a friendly environment. The GUI in DCTarget is more

flexible and allows user to tune and change a variety of parameters in the system including

the lens array parameters and the simulation mode.

20

2.3.2.3 Invert the pseudoscopic image to produce an orthoscopic image

The process of using a microlens array to capture an image of the scene, record it on a film

and replay the scene using a microlens array causes the replayed image to be inverted in

depth and pseudoscopic image is created. To produce an orthoscopic image, a second stage

must be introduced to invert the pseudoscopic image and produce the required image. Davies

and McCormick have developed an optical system to solve this problem [12] [88]. In

addition, the system provided the possibility of imaging the scene and displaying a part of it

in front and the other part behind the display screen at the same time. Figure 2.6 represents

the system that is built by Davies and McCormick.

Sokolov proved that a pinhole array could be used to capture a scene and create integral

images [15]. This model was implemented with a software model and integral images were

produced and displayed on the flat surface of a microlens array [16] [77]. The pinhole array is

simulated in DCTarget method as the tool used to produce integral images in a fast, cheap

and efficient way with the ability to change the parameters of the pinhole array.

Figure 2.6: The system that is built by Davies and McCormick [12].

An integral imaging system was developed at De Montfort University by the Imaging

Technologies Group, the system performs capture and replay in real-time capability [23] [24].

Milnthorpe designed a software model to simulate an optics system to render static and

dynamic images in integral format [8] [14]. The system depicted in Figure 2.6 was employed

21

in the previous studies to overcome the problem of pseudoscopic images produced in the first

stage. The scene in this system can be replayed in front of and behind the decoding array. The

model simulates the described system, each macrolens centre of the 2nd macrolens array is

considered as a viewing point or a projection point from which the mode starts, and each

macrolens centre behaves as a pinhole producing a pseudoscopic image of the original scene,

whilst, the output of the 2nd macrolens is the aperture .

Starting from the projection points, each part of the scene is imaged in adjacent micro images

to produce and encode intensity distribution that contains directional information needed to

display integral images. A basic projection process is implemented on the vertices (i.e. object

points) and the triangles forming the surfaces of the objects. Shading is implemented at a

fundamental level as the basic calculations are carried out within the application software that

is written for this purpose. Thus, the projected scenes are simple, the resulting integral images

are less complicated and their quality is lower than those produced using more developed

application interfaces such as OpenGL and DirectX in which other effects can be added to the

scenes and therefore the quality of the resulting integral image is higher.

In DCTarget method, OpenGL is used and scenes created in applications such as 3-D Max

can be converted to scenes with 3-D effect. Rays are traced form the aperture to the image

plane to calculate the location in which the rays that are starting from the projection points

intersect the image plane. Accurate calculations were applied in the ray tracing process taking

into account the effect of the lenses on the ray direction and the intersection points in the

image plane. The projection in this approach is applied to the pseudoscopic image in the

second stage of imaging, whereas, in DCTarget method the projection is applied to the scene

in one stage while the second stage of converting the pseudoscopic image to an orthoscopic

image is implemented in the application software by mapping the pixels of the rendered

image. For that reason, DCTarget method is easier. In this method the projection and ray

tracing start form the projection point, whereas, in DCTarget the ray starting point is the pixel

in which the value of the projection is stored and ended in the object points. The pixel values

in DCTarget method are accurately calculated because the ray starts from the pixel; whereas

the rays start from the projection points in the described method.

The number of projections can be less or greater than the projections required to project the

scene because of the pixel dimension. A pixel in the image plane can receive more than one

22

ray from different object points at the same time. Therefore, one pixel value can overwrite

the others. That is due to the arbitrary distribution of the object vertices that can cause

adjacent vertices to be projected to the same pixel when the angle between their rays is less

than the angle that compass the pixel. These cases are avoided in the method of DCTarget,

and as a result, DCTarget method produces a more accurate image with higher quality.

An object point in this method can be imaged in adjacent micro images if the location of the

object point is suitable in respect to the projection points and the lens array. If the object point

is located at a distance to the lens array closer than a specific distance, the object point will be

imaged more than once in the same micro image. Whereas, an object point is not imaged in

adjacent micro images if the object point is located at a distance greater than a specific

distance, and therefore, flipping occurs and the quality of image is dependent on the location

of the object points. In DCTarget, the object points are imaged for granted in adjacent micro

images regardless their locations, and the flipping caused by imaging the object points in

non-adjacent micro images is avoided, and as a result, the image quality is higher. DCTarget

method in comparison with this method is faster, less expensive; the quality of the resulting

image is higher.

2.3.2.4 Integral photography systems using a High Definition Television camera

The Science and Technical Research Laboratories in Japan NHK have developed a real-time

Integral Photography (IP) system using a High Definition Television (HDTV) camera and an

optical fibre array [26] see Figure (2.2). The integral imaging camera produced by NHK uses

HDTV to capture each image field directly with a lens that projects images to CCD. The

resulting image is an orthoscopic integral image at the display end. Gradient-index lenses are

used to overcome the problem of overlapping image fields as they are supplied with optical

barriers between the microlenses [27]. Figure 2.7 depicts the NHK real-time IP system.

In the paper published by Naemura et al [25] from the University of Tokyo, the authors

proposed and implemented a method of synthesizing arbitrary views from IP images captured

by the HDTV camera. In this method, a graphics system utilizing IP images from HDTV

camera as an input was implemented and images from different perspectives were

synthesised and rendered. Sixteen CCD cameras are used to capture light rays and the

resulting 16 video signals are combined together to form the input of a graphics system. The

23

light rays that pass a plane are stored as data of 4 dimensions. When the light ray data is

acquired and selectively picked up from the data space, the image is synthesised as it is seen

from an arbitrary perspective.

Figure 2.7, Diagram of NHK real-time IP system [26].

The system employs a microlens array to capture and display 3-D scenes. The rays for each

direction that are passing through the centre of each lens with specific location form an

elemental image. The elemental images are recorded and reproduced by selecting one pixel

from each corresponding elemental image to synthesise the targeted integral image.

The method is complicated and relying on a large number of the images produced by the

HDTV camera, the position of the viewer is critical, and the selected pixels are based on the

position of the viewer. In DCTarget method, the integral images produced are based on a

computer-generated model, the resulting integral image is fully produced with computer

applications, and the quality of the image is independent of the position of the viewer. This

technique was proposed, implemented and revealed in the paper written by Adelson, and

Wang [30].

2.3.2.5 Displaying 3-D integral images

Various methods were proposed to display 3-D autostereoscopic integral images using

computer generated elemental images. Seoul National University introduced the method of

reflection type integral imaging scheme for displaying 3-D Images that is equivalent to the

conventional transmission-type integral imaging method [29] [82]. In the later method, a

convex lens array is used and the image is integrated by rays that are passing through the lens

array, while a concave mirror array is used in the former method instead of the lens array and

24

the integral image is formed by the intersection of rays reflected on the concave mirror array.

Rays are emitted from an elemental image array that is placed in front of the mirror array or

behind the lens array. Elemental images are generated by computer graphics tools. At the

display stage, the elemental images are integrated at an object point. In order to display an

entire object, the elemental image for each object point is generated.

In comparison with DCTarget method, the method of generating elemental images is

expensive as the time needed to calculate the location of each pixel apart in the elemental

image for the object points is relatively high. In addition to the complexities of ray tracing

method, reflection type integral imaging scheme implies on other complexities due to the

need for a beam splitter. Beam splitter is used in this scheme to help capturing the integral

images without the obstacle of the display panel. To eliminate this restriction, the mirror

array can be placed to be oblique rather than parallel to the display, this would increase the

complexity of the calculations needed to produce the elemental images, and therefore, if such

a position of the mirror array is required, the elemental images produced by computer

graphics tools should be modified.

Reflection type method provides a limited view angle, while the view angle can be increased

and maintained by tuning some of the parameters in the alternative transmission type Integral

Photography with lens array. The calculations of the elemental images are affected by the

position of the beam splitter, the size of the elemental image array, and other factors. If the

size of the elemental image array is too large, restrictions on the display will occur due to the

difficulties accompanied with placing the beam splitter, the mirror array and the elemental

image array. The mentioned letter suggested a modified reflection type integral imaging

approach to go around the problem of the large size of the elemental image array in the

system. In the suggested approach, the concave mirror array is placed on a concave surface.

In this approach, the elemental image array would be more intensive and higher resolution

would be required to locate the elemental images on a smaller surface than the one required

for the flat mirror array, or the size of the mirror array should be larger to keep the same

resolution and the size of the elemental image array. In addition, the calculations of the

elemental images would be modified to fit in the new system, and additional calculations

should be added to map the pixels of the elemental images to the new flat surface. In order to

keep the object integration points in the correct positions, using concave mirror array implies

25

on the fact that the original elemental images would be placed on different x, y and z

coordinates rather than on the same surface when the flat array is used. Therefore, additional

calculations are needed to map them to the same flat surface so that the implementation of the

method becomes visible. As a result, both the two suggested reflection type and the modified

reflection type of the integral imaging are very expensive, complicated and able to be

replaced with the transmission-type physical implementation in which lens array is used.

In Japan, governmental and independent bodies recommended and proposed R&D related to

the 3-D technology to be conducted as one of the strategic programmes to achieve the

Ubiquitous Network Society (UNS), and Universal Communication. NTT DoCoMo

developed an LCD-3-D display using a slanted lenticular lens producing high-density

directional images. Toshiba produced a flatbed 3-D display showing 3-D images. Integral

imaging, micro-lenses, and software to create the 3-D image were used. Sanyo employed a

step barrier method with multiple parallax images. (STRL) of NHK developed 3-D display

with LCD using an electro-holography method using high order refraction to overcome two

problems: aliasing and narrow viewing zone. They were trying (2006) to develop 3-D video

system using integral photography method. The National Institute of Advanced Industrial

Science Technology (AIST), Keio. University and Burton Corporation have developed a

“real 3-D” display in space, while most of the 3-D displays were pseudo-3-D images based

on 2-D planes using the human binocular disparity. 3-D consortium released the 3-D contents

and safety guideline called “IWA3” and conducted a survey about the growth of the 3-D

market showing the market in Japan will grow rapidly. Digital Content Association of Japan

(DCAJ) has conducted a survey on 3-D contents. The survey report predicted a huge market

of the 3-D display using Flat Panel Display (FPD) with broadband penetration by 2015 [62].

A system proposed by Choi and Okano [35] aimed to build display devices to convert

between 3-D and 2-D. The proposed method here solves the problems of a previous approach

that needs a huge lens and a large space by adopting (PAP) a pinhole array on a polarizer of

liquid crystal display LCD. This method enhances the optical efficiency in the 2-D display

mode ten times more than the use of pinholes on a mask. In this method, Light Point Sources

LPS are generated from a parallel light and lens array, the liquid crystal switches between 3-

D and 2-D modes by eliminating and generating the LPS. The LPS can be formed by the light

passed through the small apertures while the light is blocked elsewhere. Thus, there is no

need for the large size and therefore, the size would be reduced.

26

The optical efficiency would be low as only a small amount of light can transmit through the

small apertures. On the other hand, the pinholes should be removed when in the 2-D mode in

order to display high quality images, while the pinhole panel cannot be removed electrically

for higher optical efficiency. To solve the problem, this system uses PAP instead of the

pinhole array, when the induced light is polarized orthogonally with the PAP, the PAP is a

pinhole array and the 3-D mode is applied.

2.3.2.6 The field of view of integral imaging systems

The field of view (FOV) of integral imaging systems at the capture stage is limited by the

aperture of the system; however, several studies were carried out in attempts to increase FOV

and viewing angle. Stern and Javidi from University of Connecticut proposed a 3-D

computational Synthetic Aperture Integral Imaging (COMPSAII) technique to increase the

FOV and the viewing angle. The FOV angle determines the maximal viewing area or the

range in which the viewer can move laterally [33]. In order to increase the aperture, the study

suggested creating a relative motion between the object and the system, in other words,

moving either the object or the system. In the capture stage, the object is scanned laterally

from different locations and the resulting images are combined together with a computational

generated method to form an integral image as if it is taken with a higher aperture system.

The FOV for an integral image is limited by the exit angle [34] [76]. The exit angle is

selected so that the elemental images that are formed by each lenslet do not overlap and the

exit angle is equal to the maximum angle the viewer can move in front of the display screen

while viewing the image. The limitation of the exit angle value imposes limitations on the

object size that can be entirely imaged without overlapping the elemental images. In addition,

the FOV is limited by the finite aperture of the optical devices such as the pickup lenses that

are employed to focus the images behind the lens array. Degree of limitation is dependent on

the viewing point; the further viewing point from the lens array is the more limitation.

In SAII technique, the viewing point is supposed to be at infinity and on this basis, the

computer reconstruction is obtained by sampling the II on a grid with lattice constant of the

pitch size. The viewing angle is the field from which the whole object can be seen. With SAII

technique, the study suggested that the viewing angle and the FOV are increased by

27

increasing the aperture of the system that can be implemented synthetically by taking

multiple exposures while moving the II system relative to the object in a perpendicular plane

to the optical axis. The image formed by combining the II captured by scanning the object is

equivalent to the image that would have been formed by a system with enlarged aperture.

Moving the elements of imaging system implies on mechanical restrictions and difficulties

and therefore, other limitations would be added to the imaging process such as the limitation

on imaging a moving object or animated scenes, then the system should be very fast to image

moving objects. In DCTarget method, the capture stage is computationally simulated,

therefore, the target of using a system with an enlarged aperture can be reached by changing

the characteristics of the lenses (i.e. decrease the thickness of the lenses and increase the

number of the individual images or increase the lenslet lattice pitch). However, DCTarget

method is meant to form integral images of scenes generated by 3-D computer graphics

applications such as 3-D Max.

Another attempt to enhance the viewing angle of a 3-D display system was proposed and

implemented in Seoul University. The system was a full parallax Computer-Generated

Holographic (CGH) with an enhance viewing angle implemented by combining an integral

lens array and colourized synthetic phase holograms displayed on a phase-type spatial light

modulator. Holography is a 3-D technique that provides images with high resolution and

sufficient depth information, but holography systems are complicated and the images has low

viewing angle and requires a wide bandwidth, whereas II provides continuous viewing when

the viewer moves, and full parallax without the need for special viewing devices. Computer

generated hologram is made by a computer application that calculates and produces the

image of an imaginary object. Spatial Light Modulator (SLM) is used to implement the

amplitude or phase modulation of the CGH. The diffraction efficiency of the phase

modulation is proportionally high which is an advantage added to having variety of

applications [45] [72].

Real-time holographic display became possible due to the facilities offered by the recent

technology development including the fast computers and advanced computational methods.

The new technologies provided fast computation and holographic representation of 3-D data.

On the other hand, some disadvantages are still accompanied with real-time holography such

as the limited bandwidth of the communication and electronic devices. In DCTarget method,

the computations needed to form the images are reduced by selecting one pixel for each

28

micro image from a single orthogonal projection of the scene and repeat that for a limited

number of projections to form the whole image. Alternatively, the scene must be projected a

number of times equal to the number of micro lenses in the display device. In addition to the

advantages II provides, producing II with DCTarget method is less complicated than the

suggested holographic method, faster and less information is processed. The authors reduced

the information content of the holographic patterns by introducing a Fourier-transformed

synthetic phase hologram for an autostereoscopic 3-D image display system [46].

Figure 2.8, Schematic diagram of CGH 3D display system. [46].

The researchers in Seoul University implemented a dynamic autostereoscopic 3-D display

system using colour-dispersion-compensated method to produce full-colour 3-D images [47].

DCTarget method produces full-colour display integral images, the information content of

the images including the colour information is derived from the computer-generated scenes

and the colours of the images are kept with the same quality. However, the mentioned

systems proposed by the authors have a small viewing angle, limited bandwidth and low-

resolution problems. In the proposed CGH display system, a computer-generated 3-D image

can be used as an input. The CGH is calculated and processed for full colour and then loaded

to a spatial light modulator. Relay optics are used to carry out Fourier transformation and

magnification of the phase modulated information that are outputted from the previous

process.

Finally, a lens array is used to display the 3-D integrated image with a large viewing angle

without the need for glasses to view the 3-D effect. In comparison with DCTarget method,

the system and the devices needed are complicated and the computational costs are higher,

whereas, the resulting images can have a similar or higher quality and viewing angle. In CGH

system, the viewing angle is dependent on the resolution, the higher resolution the higher

29

viewing angle, in CGH the pixel pitch is smaller than the normal LCD display device pixel

pitch, therefore, the elemental images are higher resolved and the viewing angle is higher. In

the integral imaging systems, the elemental images are calculated by ray tracing methods

taking into consideration the pitch of the lens and the size of the pixels. On contrary, in CGH

system, the elemental images are calculated by the scalar diffraction theory.

Beside the advantage of increasing the viewing angle, CGH system has disadvantages such as

the complexity of calculations, the complexity of building the physical system, and the

difficulty of the simultaneous real-time processing from the pickup stage to reconstruction

and display stages. Using DCTarget method, the dimensions of each elemental image as well

as the number of pixels in each elemental image can be calculated so that the elemental

images are highly resolved. The calculated elemental images can be stored and processed to

generate integral images with high resolution and as a result, a high viewing angle can be

theoretically achieved. However, the limited resolution of display devices imposes limitations

on the viewing angle of the displayed integral images generated by DCTarget method. The

real-time calculations and processing of DCTarget images is simpler, and therefore, it is

faster than the calculations used in CGH method. In addition, the implementation of the

DCTarget system is easier because all the stages of the system apart from the display stage

can be implemented using computer software applications.

The paper written by Jang and Javidi [33] suggested a technique in which the field of view is

increased. In Integral Imaging technique, if the intensity and direction information about the

rays were recorded in the device, the image would be reconstructed by regenerating the rays

with the same direction and intensity information. If the directions of the reconstructed rays

are the opposite of the recorder rays, a pseudoscopic real Image will be formed. If the

directions of the reconstructed rays are the same as those of the recorded ones, an orthoscopic

virtual image will be formed (e.g. the hologram).

In II, CCD device is recorded with either pinhole array or a lenslet array. Each pinhole or

lenslet samples the ray information at its location. To reconstruct the image from the recorded

elemental images requires a Spatial Light Modulator (SLM) such as LCD, and a pinhole

array to select the proper ray directions. The pinhole samples a limited amount of the ray

information that is determined by the lenslet pitch, therefore, the maximal viewing resolution

of the reconstructed image is limited by the Nyquist sampling resolution. The pitch cannot be

30

chosen arbitrary because of diffraction. The optimal lens size was suggested to be 1 or 2 mm

in ordinary viewing circumstances. A no stationary lenslet array technique was suggested to

overcome the Nyquist resolution limit determined by the spatial sampling rate of the lenslet

array. The lenslet arrays for the pickup and display are synchronously vibrated in front of the

CCD and LCD devices. CCD and LCD are foxed. The spatial sampling rate would be

increased. Fast CCD and LCD devices are required to represent the no stationary elemental

images. This technique also increases the viewing angle of the reconstructed 3-D image.

In the synthetic aperture technique (SAII), the lenslet arrays, CCD, and LCD are vibrated

synchronously to enlarge the effective II system aperture. This approach increases the field of

view, and improves the viewing resolution without additional image processing except the

time-averaging effect in the observer’s eyes. In the experimental approach, LCLV (liquid-

crystal light valve) was used; this optically addressed device provides a higher resolution than

the commercial LCDs do. This technique is suitable for moving objects or when the system is

on move. The system should move in the same direction of the object.

2.3.2.7 Animated Computer-Generated integral images

Researchers at Seoul University proposed a Computer-Generated Integral Photography

method (CGIP) [48]. Picking up process was replaced with computer generation to generate

the elemental images in CGIP method. CGIP system is formed from a computer system and

display devices, therefore, it is similar to DCTarget system in terms of simplicity, and cost

effectiveness. The animation in CGIP is presented by the time-varying elemental images,

whereas, in DCTarget method, the animation is implemented by the projection of each frame

of the animation generated in the specialist computer applications such as 3-D Max. The

integral images that are formed from the different frames are displayed in sequence with an

acceptable frequency so that the viewer is able to view the animation without flickering.

Objects captured with a number of normal cameras can be displayed in quasi 3-D if each

camera captures a scene of the view with a different depth. The CGIP method is realized with

software tools; therefore, it shares an advantage with the DCTarget method that is the

flexibility of changing the parameters of the system such as the elemental image size and

shape. This is useful to analyse the systems, optimise the parameters of the system and as a

result optimise the quality and characteristics of the integral images. The resolution of the

31

integrated images that are produced by the CGIP is inherently limited by the parameters of

the system devices such as the lens thickness and pitch. The CGIP process uses computer-

generated images to be the source of the integral images instead of the process of capturing

real objects. The resulting pseudoscopic image is corrected to be orthoscopic image by the

method of rotating the elemental images centrosymmetrically so that the revered depth is

corrected when it is displayed on the display screen. Converting the pseudoscopic image to

orthoscopic image using computer applications is the digital alternative of the complicated

and expensive real conversion methods using lenses and physical devices. In DCTarget

method, the conversion is more effective and more realistic as the resulting image can be

either virtual- orthoscopic, real- orthoscopic image, or virtual- orthoscopic and real-

orthoscopic image appearing in front and behind the display screen. The two methods,

DCTarget and CGIP use software tools to achieve such a conversion but DCTarget method

allows the user to select the mode of display and select a specific plane in the scene to display

the part of scene behind it as a virtual orthoscopic image and the part in front of it as a real

orthoscopic image. Figure 2.9 shows the schematic of the CGIP system.

Figure 2.9, Schematics of the CGIP system. [48].

In CGIP method, the lens array used to capture the images of an object and create the 2-D

elemental images of the integral mage is got rid of, and instead, the elemental images are

generated by a computer. The x-y coordinates of the elemental images of an imaginary object

are calculated and mapped to an array of 2-D information. This process is implemented on

each point of the object taking into consideration the depth information that is more

expensive and slower than the process that is carried out in DCTarget method in which a

limited number of projections are applied and then the pixel values are selected from these

projections in a faster and easier algorithm.

32

Another feature is added to the images created with CGIP method is the correction of the

pseudoscopic image that results from the first stage of the image capturing. The correction is

based on the algorithm of reversing the locations of the pixels that are forming an elemental

image around the centre of that elemental image. However, at the display stage, the resulting

orthoscopic image of this algorithm is viewed as if it is located in one side of the display

screen. Whereas, in DCTarget method, an orthoscopic real image can be created with the

possibility to display a part of the image as an orthoscopic real image in front of the display

screen and the other part as an orthoscopic virtual image behind the screen. To implement

such an image in DCTarget, the part in front of the screen of the pseudoscopic real image is

converted to an orthoscopic real image, and then displayed on the same final integral image

together with the part that is located behind the screen as an orthoscopic virtual image.

The image mapping process calculations in CGIP method start with the calculation of the

centre of each elemental lens, then the virtual object is considered as a combination of planes

with different depths so that the depths change along the depth direction. For each object

point, a set of elemental image points are obtained and plotted. The object point coordinates

x-y-z determine the centre of the corresponding elemental images, the number of the related

elemental images and the points on the plotted image of the object point in question. The

process is repeated for each object point until a set of elemental image is plotted. For a scene

with more than one object, the process is applied to each points of every object; the hidden

parts of the scene are considered and plotted despite that they should not be viewed;

therefore, unwanted and unnecessary calculations are carried out. For this reason, CGIP

method is not the best for multi objects scenes. DCTarget method provides the possibility to

project the scene taking into consideration the hidden parts of the scene and plotting only the

viewable parts of the scene from the angles within the viewing field of the viewer.

2.3.2.8 The software used to render integral images

Within the Prometheus project, Price and Thomas [43], a pinhole approach that will generate

images in real-time is presently being developed and is the second software model developed

by this research. The reduced content integral images produced, using a limited number of

projection points, are sufficient for TV purposes.

33

The OpenGL software package was used in DCTarget method as the application interface to

render the integral image content. POV-Ray software package that is based on the technique

of ray tracing can be used to generate integral images with ray tracing algorithms. In Athens

University, POV-Ray software was used to implement a method to generate integral images

based on ray tracing technique [49]. The mentioned work at Athens University focused on the

conversion of 3-D computer generated models to integral images. A technique was proposed

to simulate the first stage of producing orthoscopic real and virtual integral images, which is

the capture stage. The proposed technique provided the possibility of producing integral

images for square and hexagonal microlens arrays. The quality and complexity of the integral

images produced by this method are higher in comparison to those of the images produced by

some other methods.

The first stage of integral images generation was simulated using POV-Ray ray tracing

software package. In the capture stage, an imaging lens is employed to focus the image of the

objects that is formed as a pseudoscopic image; the image in the image space can be captured

by a lens array that creates the elemental images of the scene on the pickup image plane. If

the lens array was placed in the image space between the imaging lens and the image of the

object, the image that is formed on the pickup plane is virtual pseudoscopic, then the image is

rotated with 180˚ to correct it and convert it to an orthoscopic image. The replayed integral

image would be 3-D orthoscopic real image. If the object image that is formed with the

imaging lens was located between the lens array and the imaging lens, the image information

about this object that are recorded on the pickup plane represent a pseudoscopic real image.

Then this image is rotated 180˚ around the centre of the elemental image and the image

resulting in replay stage is a virtual orthoscopic image.

Figure 2.10 shows the single stage integral photography capturing for production of

orthoscopic real images performed by the research group at Athens University. In DCTarget

method, the virtual capturing stage is implemented with the assumption that a pinhole array is

used to form the elemental images of the scene on the image plane instead of an imaging lens

and spherical lens array. Therefore, the calculations needed to render the integral image are

fewer, can be performed faster and easier which is a good advantage in the case of rendering

real-time animated integral images.

34

Figure 2.10: Single stage capturing setup for production of orthoscopic real images [49].

The technique used in DCTarget of orthogonal projection provides even faster and easier way

to render the integral images. In addition, the software package used in DCTarget is OpenGL

application interface and other related libraries instead of POV-Ray ray tracer package that is

used in Athens University technique. OpenGL is an efficient application employed to render

very good quality and complex scenes using mathematical techniques based on calculating

the matrices that generate the scene. Therefore, calculating the integral images would be

faster than the POV-Ray based technique of ray tracing in which each point is calculated

apart, adding the need for more efforts and time to the integral images rendering process.

The quality and complexity of the integral images produced by DCTarget method are higher

due to employing applications such as 3-D Max with OpenGL software tool to render the

images. Using these applications instead of POV-Ray allows the designer to create more

complex scenes and higher quality. In addition, with OpenGL the images are rendered faster

which is a suitable feature to produce real-time animated integral images.

2.3.2.9 Lens arrays for 3-D imaging systems

The key components in the II technique described in reference [61] [59] are multiple arrays

of lenses that relay, invert, and encode a range of views of the object. The microlens array

was developed for a camera designed by Davies and McCormick [12]. This camera uses

two-dimensional arrays of Plano-spherical lenses throughout. It is the first single stage large

aperture camera to be used for directly recording, in transmission, images that replay with full

parallax and orthoscopic perspective. A recording is made with a photographic plane or

electronic image sensor placed in the focal plane of the lens array. To replay the 3-D image

the light paths are reversed and the lens array generates light beams that intersect and form

the integral image.

35

The image transfer screen is a pair of microlens arrays separated by the sum of their focal

lengths. This inverts the depth and generates a pseudoscopic image. Real images of the 3-D

object is formed by a large lenses array, 39mm pitch hexagonal lens and relayed to the

encoding screen by a similar array. The recorded image is replayed when the light paths are

reversed and a single-lens array is used as a replay screen to generate an orthoscopic image.

To widen the field of view the aperture ratio is made as high as f/2 (i.e. the focal length

divided by the effective aperture diameter). Lenses can be formed by melting photo-resist,

graded exposure in photo-resist, or formed as replica of an ion-etched master. The image

transfer screen formed is a pair of large lens arrays formed by melting resist arrays on 9mm

thickness glass substrates.

The encoding screen is the lens array placed in front of the photographic emulsion to record

the 3-D image. Close-packed lens array is necessary to obtain maximum view ability in the

reconstruction. Master array was made using ion-etching technique and replicas were made

by casting resin on glass substrate. The replay screen is placed in front of the recording to

reconstruct the 3-D image. When using the encoding screen to replay 3-D images, a variety

of different size images can be displayed when it is required by selecting the appropriate

pitch and size lens arrays; however, the lenses have large sag heights. Therefore, a diamond-

machined master method was used.

2.3.2.10 Computer reconstruction of 3-D images

The computer-based image retrieval provides the ability to improve the quality of the image

such as contrast, resolution, and brightness with numerical techniques. With his method, there

is no need for special purpose devices to display the 3-D image such as high quality LCD or

micro-optics [63] [73]. Okano proposed using 3-D integral images on LCD for 3-D

television, and using gradient-index lenses to tackle problems such as orthoscopic -

pseudoscopic conversion or interference between elemental images [13] [58]. The optical

reconstruction method proposed in [34] and [74] may introduce a resolution limitation in the

3-D integral imaging. The optical integral imaging introduces different problems. These

problems can be exceeded with using the digital 3-D image reconstruction method.

A computer-based integral imaging using high-density television camera was proposed in

[25]. It is a simple method to produce a 3-D integral image. The system consists of a

36

microlens array to form the elemental image array of the 3-D object, and a CCD camera to

record the image array. The image is reconstructed using a computer by extracting pixels

periodically from the image array. Image processing can be employed afterward to improve

the image. The image data can be sent via the internet and displayed without the need for

special devices. In the system, a camera lens is inserted in between the CCD camera and the

microlens array to form the image array on the CCD camera. The magnification of the lens is

adjusted so that the size elemental image array becomes the same as the size of the tip of the

CCD camera. The computer reconstructs the image by extracting a pixel from the elemental

image array every a number of pixels equals to the number of pixels existing in each

elemental image. The resulting image is viewed from different locations using a microlens

array. The resolution is determined by the resolution of the CCD camera and the number of

the lenses in the microlens array. The image is later processed to improve the quality, contrast

and brightness and reduce the speckle noise. A sequence of images can be reconstructed and

animation can be created using an animation technique that allows the image information to

be sent via the web.

The integral Imaging system gives a pseudoscopic image when operating in the standard

conditions. The technique proposed in [65] [80] is a way to produce real, orthoscopic,

undistorted, integral images by direct pickup. The technique is based on a smart mapping of

pixels of an elemental images set. II technique works without incoherent light and provides

auto-stereoscopic images without the need for glasses. The problem of overlapping between

the adjacent elemental images in the pickup stage was tackled with the gradient-index

microlens approach and the use of a barrier array [86] [91].

2.3.2.11 Depth of field improvement in the 3-D integral imaging systems

Refraction and other factors cause the limitation in the depth of field of 3-D integral imaging.

Reducing the numerical aperture of the microlens improves the depth of field but that costs

the decline in the spatial resolution. The amplitude modulation of the array of phase elements

method can improve the depth of field with no deterioration of the spatial resolution [64]

[79]. In order to improve the limitation of the depth of field of the lenses, in the past, methods

based on the synthesis of the real and virtual image fields, non-uniform focal lengths, and

aperture sizes were proposed.

37

The method proposed in [64] enlarges the depth of field without affecting the spatial

resolution. For that method, the Equations that describes the diffraction behaviour of the

pickup of the integral imaging system is extracted. The depth of field is determined by the so-

called Rayleigh range. The size of pixel highly affects the depth of field and resolution. The

authors of [64] stated that if the lenses were covered with a circular obscuration on the central

parts with a diameter of sigma, the depth of field would be higher. The more the sigma

coefficient for the cover the more the depth of field will be, but the smaller the light

efficiency of the system and the more the optical aberration. Because of these reasons, they

proposed to modulate the amplitude transmittance with the so-called binary modulator that

provides 50% efficiency and doubles the depth of focus of the system. The binary modulation

worsens the resolution of the points with low depth coordinate z of the object.

Figure 2.11: left, 3-D projection II using a micro-convex-mirror array, right, direct

pickup of elemental images using a micro-concave-mirror array [66].

The authors stated that the technique proposed in [66] uses micro-convex-mirror array will

solve several problems of the II including the limited number of pixels in the systems using

microlens array, the limited viewing angle problem, and pseudoscopic to orthoscopic image

conversion problem. The use of micro-convex-mirror array increases the viewing angle

significantly because it is easy to make micro-convex-mirror array with a small f-number

with negligible aberration. Orthoscopic virtual images are automatically displayed. Flipping-

free observation of 3-D images occurs without the use of optical barriers because each

elemental image is projected onto only its corresponding micro-concave mirror. Figure 2.11

shows an optical setup for experiment on 3-D projection II using a micro-convex-mirror array

on left, and direct pickup of elemental images using a micro-concave-mirror array on right

[66].

38

2.4 Summary

Several approaches in the field of computer-generated integral images were reviewed and

compared to the techniques that are introduced in this thesis. The additional features in the

introduced techniques that are added to the previous approaches were highlighted. The work

in question was placed in the context of other works that are achieved in the same area of

research. Other related studies were selected and explained briefly.

The 3-D autostereoscopic integral imaging field, and the computer generation of integral

images approach were defined and the new study was placed in the context of the other works

in the same field.

The selected studies were close to the suggested techniques that are implemented to produce

computer-generated 3-D autostereoscopic integral images in one aspect or more. In each

previous work, the technique was compared to the suggested methods in this study and the

advantages and disadvantages of one over the other were highlighted.

It was proved that the new techniques have advantages over the previous work. In addition,

the new methods are different to the previous ones and original. The need for the new

techniques has been justified.

39

Chapter 3

Computer Generation and Rendering of Integral Images Using

OpenGL (DIVGL)

__

3.1. Introduction

Integral Imaging (InI) is a method to acquire and display 3D images and movies. InI provides

autostereoscopic intensity images with full parallax, free of any viewing device [4] [92]. InI

is based on the integral photography (IP) technique that was proposed by Lipmann in 1908, in

the capture stage the micro lenses array forms a cluster of elemental 2D images on an array of

image sensor (Charge Coupled Device CCD).

A 3D image is reconstructed with the elemental images in the display stage using another

micro lenses array. Each elemental image records information from a different perspective.

The 3D image is reconstructed in the image space by the intersection of the rays produced by

the micro lenses.

This chapter includes two main parts 3.2 and 3.3. In part 3.2., the model used is called

Forward Projection rendering model. The method was used in the thesis titled “Computer

Generation of Integral Images Using Interpolative Shading Techniques” [8] [78]. The method

is implemented in this thesis with OpenGL in the environment of C++. The method was

implemented in the mentioned thesis using simpler tools and less professional rendering

application. The aim of the new implementation of the method is producing higher quality

integral images to be compared with the integral images produced by the new methods that

are introduced in this thesis.

In the part 3.3, the method called Computer Generation and Rendering of Integral Images

with the Method of Dividing Image Volume Using OpenGL is introduced. Perspective

projection mode using virtual cylindrical lens array, and perspective projection mode using

virtual spherical lens array were implemented. Some computer generated integral images

using the two types of virtual lenses are provided.

40

3.2. Computer generation of integral images with OpenGL using Forward

Projection rendering model

The research with the title “Computer Generation of Integral Images Using Interpolative

Shading Techniques” [8] was carried out in De Montfort University (Leicester) by Graham

Milnthorpe. The fast computer generation of integral images is the main target of the

mentioned thesis. This fast method is used for the generation of integral images in real-time.

The ray tracing method is a slow process because the intensity of each pixel is calculated

apart by tracing the path of light through it.

The alternative is the forward projection method whereby most of the pixel intensities are

estimated by bi-linear interpolation. Thus, the time and the computation costs needed to

calculate the pixel intensities in this method are obviously lower. Forward geometric

projection technique is used to both capture the image and replay the pixelated surface.

In the capture stage, the image plane is a set of pixels employed to receive the projected

object image and record it. A lens array is positioned on the image plane, and selected

projection points are considered to project the object image on the image plane through the

lens array. The object is located in the space between the lens array and the projection points.

In the replay stage, a lens array similar to the one that is used in the capture stage is

positioned on the film on which the image in the capture stage was recorded. The viewer can

view the 3-D image through the lens array.

The viewer should be able to move and watch the 3-D integral image from different points

without flipping. The integral image can be produced by using various projection points

forming different perspectives. Two methods are used, and the number of the projection

points is dependent on the selected method. In the first method, the projection points were

calculated based on the depth of scene so that two projection points encompass the space

imaged by a single lenslet. In the second method, the number of the projection points is

selected to be equal to the number of horizontal pixels located under each lenslet.

41

The thesis tried to proof that the computer generated integral images can be produced using

forward geometric projection. The technique of Forward Geometric Projection has few

advantages over the traditional Ray Tracing technique. The rays in the Ray Tracing technique

are extrapolated from the pixels through the pinholes and intersected with the object points.

Therefore, some of the object points are imaged in the lenslets but not all of them. Whereas,

in the projection technique, if the scene was represented with triangular mesh data, the pixel

hits are calculated for the triangle corners projected on the image plane and then the pixel hits

for the whole triangle points are calculated.

Another advantage is that the processing time is shorter, because in the ray tracing technique,

each pixel hit must be calculated by tracing the ray and its intersection with the object is

calculated, whereas, in the projection technique, the pixel hits are calculated with applying an

algorithm. Two derived methods for producing integral image animation using interpolative

shading were described. The first method is based on the forward projection through pinhole

mesh model (pinhole model). The second method is based on the forward projection finite-

sized aperture mesh model (finite-sized model).

In the pinhole model, an integral image is generated using a pinhole technique in which an

object is created with all the triangles forming the object mesh. The points between the

triangles corners are calculated to form the triangle’s sides and connect the vertices of the

object to each other with the resulting lines. Then the algorithm that is used to generate the

projection on the image plane is applied to each point of the object points including the

generated and calculated ones. For each point of the object, the pinholes seen by the point are

calculated. The pinholes are the vertex of the lenslets through which a ray from the object

point is passed to hit a certain pixel. In order to calculate the pinholes covered by a point, rays

from the extreme borders of the aperture are passed through the object point in question and

then through a pinhole. The pinholes located in between the extreme passed pinholes are

counted and considered for each project point, these are the pinholes seen by the point. For

each point and each pinhole seen by this point, a virtual ray is passed by the virtual lens array

through the pinhole, the refraction effect of the lenslet on the ray is taken into account, and

then the pixel hit by the ray is calculated and its intensity is worked out. When all the pixels

and their intensities are calculated for all the object points and all the pinholes, the total

image is written and ready to replay.

42

In the finite-sized model, the same process of the pinhole model is repeated with few

differences. In the pinhole model, only rays that are passing through the vertex of the lenslets

are considered, and the location and intensity of the pixels hit by these rays are calculated. In

the finite-sized model, the rays are extrapolated from each object point to a number of

locations on the curved surface of any lenslet within the coverage of each point. The

refraction effect on the rays and the deviation of the location hit by the rays on the image

plane, the location of the affected pixels, and intensity of the affected pixels are calculated

for all the projection points, all the object points, all the lenslets, and all the considered

locations on the lenslets curved surfaces.

The scene is created with all its objects. The vertices of each object are found and connected

to each other with lines. For each projection point, the lenslets seen by this point are taken

into account one by one and the curved surface of the lenslet is divided to equally spaced lens

points. Then the rays are transmitted through each lens point with calculating the refraction.

The process is repeated for each lens point on each lenslet seen by the object point. At the

end of all these calculations, the image will be written as a set of pixels intensities saved on

the film located in image plane. The problems associated with these calculations were solved

including the problem of integer and non-integer number of pixels under each lenslet.

However, the image generated from this model has spherical aberration and defocus effects

as for image captured using real optics. The pinhole model is faster because of the extra

computation needed to generate the volumetric image in the finite-sized model.

Two approaches were used to carry out interpolative shading on the integral images. The first

approach is implemented in the image plane on the points projected form the object space

after linking them with lines to form the perimeters of the triangles forming the mesh of the

object. The lines are calculated by allocating a number of points between each two corners of

the triangle, and then projecting these points separately to the image plane.

The projected points on the image plane have no identities to state they are belonging to

specific triangle or line. The interpolative shading is applied to these points in the image

plane regardless the relation between each other or between them and the triangles they were

belonging to in the object triangular mesh. The other approach requires drawing and saving

of the perimeter points in object space before translating the whole perimeter. The projected

points must be given an identification number so that the translated object point on the image

43

plane can be identified by these numbers so that the perimeter and triangle to which it is

belonging can be identified.

3.2.1. The Forward Projection Finite-Sized Aperture Rendering Model

In this model, the second approach is applied. The rays are intersected with the lenslet

curved-surfaces and then refracted before hitting the pixels on the image plane. This model

acts as a software model for a real finite-sized aperture integral imaging camera; the program

includes variables to be changed to provide its design parameters. In order to produce the

required integral images, an object file format VRML2 was developed and designed to

contain all the required variables as input such as the optical variables, giving the user full

control for either static or dynamic displays. Two-steps software was developed to analyse

and translate VRML2 file format containing the object mesh and animation to a scene file

with the integral imaging format. The other task is to accept texture-mapping details.

The shading modes used in the implementation are flat, Gouraud, and Phone, the lens array

modes are the lenticular lens array with cylindrical lenses, and micro lens array with spherical

lenses, while the projection modes are orthogonal and perspective. The modes result on an

overall 9 possible implementation modes. In the case of lenticular lens array, the lenslets

form an array of vertical cylindrical array, each one is a plano-convex lenslet where the back

is flat and the front side is convex. Single micro lens in the micro lens array has a flat back

and a spherical front side. Transformation including scaling, rotation, translation, adding

colours, and animation are immediately applied to the vertices coordinates at the basic level.

The normal on each triangle is calculated by implementing cross product on two of the

triangle’s vectors. The normal of a common vertex between neighbouring triangles is

calculated by averaging the normal vectors of the adjacent triangles. The algorithm employed

to calculate the normal vectors of the vertices is an original contribution as the thesis stated.

The vertices normal vectors are needed to distinguish the scene vertices from the hidden

ones. The resulting perimeters of the triangles in the object space are saved. A light vector

was created and the light contribution for each projected point is calculated from the angle

between the projectors and the light vector. Also, roughness of the surfaces, brightness, the

ambient and defuse were set up and calculated for the triangles corners before projecting and

shading.

44

The semi-cylindrical and spherical arrays give parallax in the horizontal direction and omni-

directional parallax. In the micro lens case, the aperture is a square with a limited number of

projection points distributed horizontally and vertically on the aperture. A spherical array

gives parallax in both the horizontal and vertical directions. In the lenticular array case, the

projection points are distributed horizontally on the aperture.

The finite-sized aperture models produce integral images mush faster than the integral ray

tracing technique [8]. In the forward projection finite-sized aperture model, the rays are

traced from the projection points to the object points. The rays are then traced from the

curved surface of the lenslets to the image plane. The aim of that is calculating the exact

location of the ray intersection with the surface so that the final location of the ray on the

image plane is calculated and the pixel hit by each ray is located and determined. As a result,

the whole image is calculated and saved to be ready for display in the replay stage. These

calculations are done and the images were produced using a program written in C

programming language in which different implementations were performed for each of the

three groups of modes (i.e. lenticular orthoscopic, lenticular perspective, and microlens).

The methods and the necessary Equations that were used in the original thesis were modified

and implemented using the application programming interface OpenGL in the environment of

Visual C++ programming language. Several libraries used by OpenGL were employed to

implement the projection process and the required calculations. In the original thesis, the

calculations and the derived Equations aimed to tracing rays from aperture to image plane.

The relation between the variables and the coordinates of the final point of the rays can be

described in the form of the following function F:

F (pos, PP, thick, curv, pitch, zv, sc, n2, shift, mode, model_mode) = Vf

The output is the final location of the traced ray and the arguments are as follows:

pos = (pos [1], pos [2], pos [3]), the vector components of a point from the object, or the

coordinates of a point from the object.

PP = (Xpos, Ypos, Zpos), the coordinates of a project point on the aperture.

thick is the value that measurs the thickness of the lenslet .

curv is the value that measures the radius of curvature of the lenslet.

pitch is the value that measures the pitch or the width of the lenslet.

45

zv the Z-coordinate of the lens array vertex, it is set to be 0.

sc = dpi/25.4 dots per millimetre, the resolution measured as a number of pixels per mm, the

resolution is selected to be equal to the normal resolution of a PC screen.

n2 the refractive index of the lenslet.

shift is the horizontal and the vertical shift horiz_shift and vert_shift the user apply to adjust

the integral image on the display. These are zeroed in the examples.

mode specifies the mode of the projection, if the mode is lentecular orthoscopic, (mode) takes

the following values: 1, 4, and 7.

If the mode is lentecular perspective, (mode) takes the following values: 2, 5, and 8.

If the mode is microlens, (mode) takes the following values: 3, 6, and 9.

model_mode specifies the model mode, if the model mode is finite-sized model, the

model_mode takes the value 1, if the model mode is a pinhole model, and the value of

model_mode is 2.

Vf the final coordinates of the intersection point between the image plane and the ray that

started from the projection point and passed through the object point and the lens array x, y,

and z coordinates on this point are respectively vf [0], vf [1], and vf [2].

In the original thesis, the final intersection point with the image plane for each ray was

calculated as a pixel coordinates. In OpenGL, the intersection point for each ray with the

image plane is calculated as a point with specific coordinates. With OpenGL functions

defined and embedded in the OpenGL display program that is written and implemented in the

environment of Visual C++ and supported by the libraries linked to the program such as

GLUT and GLEW, OpenGL implements the projection process and provides the intensity

needed for the corresponding pixel. For example, the function:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) that is used when

creating top-level windows, sub-windows, and overlays to determine the OpenGL display

mode for the to-be-window or overlay. In addition, some other tasks that have to be

implemented within the C code in the original thesis are now implemented with OpenGL

functions such as glLightModelfv[], GLfloat lightColor[], GLfloat lightPos[], and

glLightfv[]. These functions are used to set the colour and position of the light and calculate

the effect of the light in the scene. The functions glTranslatef[], glRotatef[],and glScalef []

46

are used for translate, rotate and scale the scene points respectively. In the original thesis, all

these calculations had to be done on a lower level such as multiplying and adding vectors,

whereas, all these basic calculations and other tasks are included in OpenGL functions.

Figure 3.1 shows an object chosen as an example of a 3-D object created in Blender and

displayed with OpenGL. The 3-D object is projected and the result is displayed. The mesh

with its UV mapping is exported from Blender to an MD2 file with the name tris0.md2; the

texture used for UV mapping is saved in a file called tris0.bmp. MD2 files can be imported,

loaded to the VC++ environment, and then displayed with OpenGL graphical interface.

In order to load MD2 files, VC++ function defined in the file called md2_format.ccp is used.

The function load("filename.md2") from the class MD2Model is called to load an MD2 file.

This loader was modified to generate integral images as required. The header file of the

loader is md2_format.h; this header file was often modified to suit the application as required.

The file lens_array.cpp is the file that contains the calculations needed to project the object

points on the image plane. The calculations here are based on the Equations derived by the

original thesis. Projection is implemented with different modes including: lenticular

orthoscopic (1, 4, and 7), lenticular perspective (2, 5, and 8), and micro lens (3, 6, and 9). In

addition, two models are included: finite-sized (1), and pinhole (2). The header file of the

later file is called lens_array.h. The file main_OPENGL_BRUNEL.cpp contains the main

function of the program.

The program will ask the user to assign a value to thick, curv, pitch, the projection point

coordinates Xpos, Ypos, Zpos, zv, the mode, and the model mode. In the following examples,

the values are fixed as they are stated below:

Figure 3.2: thick=3, curv=1.05, pitch=0.6, zv= -5.0, Xpos = 0.0, Ypos = 0.0, Zpos = 30,

mode=1, model_mode=1.

Figure 3.3: thick=3, curv=1.05, pitch=0.6, zv= -5.0, Xpos = 0.0, Ypos = 0.0, Zpos = 30,

mode=2, model_mode=1.

Figure 3.4: thick=3, curv=1.05, pitch=0.6, zv= -5.0, Xpos = 0.0, Ypos = 0.0, Zpos = 30,

mode=3, model_mode=1.

47

The selected model here is finite-sized. The mode is selected to be 1, 2, and 3. Figure 3.2

represents the orthoscopic projection of the glob on the image plane through a lentecular lens

array. Figure 3.3 represents the perspective projection of the glob on the image plane through

a lentecular lens array. Figure 3.4 represents the perspective projection of the glob on the

image plane through a micro lens array.

The resulting images were not as they were expected. The reason is that the number of the

object points are very limited, or the number of triangles are very limited, whereas, the pitch

of the lenslets is much smaller than the perimeters of the triangles forming the mesh of the

object.

In OpenGL the object points are projected and the positions of the projected points on the

image plane are calculated for each one of these points. The resulting intersection points on

the image plane (i.e. the PC screen) are connected to each other to form new triangles and

these triangles are shaded and coloured with the suitable colour. The resulting images are a

cluster of proportionally large triangles forming wrongly shaped objects. In order to enhance

the images, a larger number of points or triangles should be employed to build the objects. If

the lengths of the triangle perimeters are small so that the whole triangle’s projection on the

image plane can be ideally accommodated under a single lenslet, in this case, the resulting

images would be shaped correctly forming the required integral images. As a result, the

images would be suitable to repay with a system similar to that of the virtual capture stage.

Figure 3.1: The original object.

48

Figure 3.2: Orthoscopic/lentecular.

Figure 3.3: Perspective/lentecular

Figure 3.4: Perspective/micro lens.

49

3.2.2. The Forward Projection Pinhole Rendering Model

The Finite-sized aperture model as well as the pinhole model (3D-from-2D) enables

perspective integral images to be produced by allowing the access of each projection point on

the aperture to the whole lens array. In the Forward Projection Pinhole Rendering Model, the

object points are mapped directly to the pixels so that each lenslet behaves as a pinhole

camera. The rays are allowed to pass only through the vertex of each lenslet. Integral images

were generated by extracting pixel intensity information from captured 2D images of a scene

from different viewpoint positions. This pixel intensity information is the same as the one

that is produced if the virtual lens array was present and the lenslets modelled as pinholes.

3D-from-2D image can be composed from different sub-images taken by projecting the scene

from different projection points. The mode in this model is set to be lenticular perspective

and both the mode, and the model_mode variables take the value of 2 in the program. Several

projection points are selected from the aperture and each projection of the scene on the image

plane is a sub-image. In each sub-image, the pixel columns are placed under the cylindrical

lenslets in groups, each group of the pixel columns are located under a lenslet. If the number

of columns in each group is G+1, to compose the integral image by multiplexing the sub-

images, the Nth group of the integral image is composed from the Nth group of each sub-

image by placing the nth pixel column from the nth sub-image in the (G-n)th location in the

integral image group. In the declared approach, the pixel columns are inverted in each group,

the aim of that is to reflect the fact that the ray that is passing through the pinhole intersects

with the image plane in the end of the group that is opposite to the end of the projection point,

otherwise the image will be pseudoscopic. For example, if the number of pixel columns is

1024, the number of the columns under each lenslet is G = 7th. The number of groups is N =

128. The first group of the pixel columns is composed as follows: the 0th column of the first

group of the first sub-image is placed in the G-0 = 7th location in the first group of the integral

image. The 1st column of the first group of the first sub-image is located in the 6th location,

the 7th column is located in the location 0 of the first group in the integral image, and so on.

The software used for the finite-sized model was modified to be used for the pinhole model

by assigning 2 to the model mode. In addition, in order to form the integral image, a set of

OpenGL and VC++ functions and scripts were employed to implement the mentioned

projections and interleaving the pixel columns extracted from the different sub-images. The

50

window size, lenslet width, the number of pixel columns under each lenslet, and the other

constant parameters are selected and fixed in the program as a special case, however, these

parameters can be changed either manually or after some modifications, by answering

questions immediately on the screen when the program start running.

Figure 3.5: 8 sub-images of the scene projected from 8 projection points.

Figure 3.5 shows the 8 sub-images of the earth scene projected on the image plane. The first

image on the right in the upper line is the projection from the left projection point on the

aperture, the middle image in the upper line is the projection from the second projection

point, the first image on the right in the second line is the 4th image and so on. The program

projects the scene from the projection points in sequence and extracts from each resulting

sub-image the pixel columns needed to form the integral image and save them. Once all the

projections are performed, the information saved in memory is used to produce the integral

image shown in Figure 3.6. The resulting integral image is a suitable pattern to be seen by

placing a real lenticular array providing it is similar to the one used in the capture stage. The

image in this case is a 3-D pseudoscopic one. To see a real scene, the pixels should be

inverted as explained above.

51

Figure 3.6: The integral image of the scene composed from the sub-images of Figure 3.5.

Figure 3.7 a: The integral image of Figure 3.5 with inverted pixel columns.

Figure 3.7 b: The method of inverting pixel columns.

52

Figure 3.7 shows the integral image with the pixel columns inverted around the central

columns of the column groups superimposed by the lenslets. The 3-D image resulting from

viewing the pattern shown in Figure 3.7 using a lenticular lens array similar to the virtual one

that was used in the capture stage is expected to be a real image. The mode in both images

was lenticular perspective with mode =2. The time needed to produce a single static image

was about 2 seconds with a relatively weak PC. If we need to generate an animated integral

image with this method, we need 24 images per second. Therefore, we need a more powerful

machine. With that PC, each one second of the video needs 48 seconds processing time, then

a 48 times faster machine is required.

3.3. Computer generation and rendering of Integral Images with the

method of dividing image volume using OpenGL (DIVGL)

The suggested method is meant to be able to produce 3D static integral images and movies.

The capturing stage is implemented digitally using OpenGL library in the environment of

C++ programming language. The resulting 2D image is displayed on the screen of the normal

PC. In order to create the integral images, different modes can be approached. The modes of

creating integral images include the following:

 Perspective projection mode implemented using a cylindrical or Plano-convex

cylindrical lens array with the simplification of using virtual vertical holes at the

pickup stage.

 Perspective projection mode implemented using spherical lens array (micro lenses)

with the simplification of using an array of pinholes at the pickup stage.

 Orthogonal projection mode implemented using cylindrical or Plano-convex

cylindrical lens array with the simplification of using virtual vertical holes at the

pickup stage.

 Orthogonal projection mode implemented using spherical lens array (micro lenses)

with the simplification of using an array of pinholes at the pickup stage.

In this chapter, the methods based on the first two modes will be briefly discussed and some

examples of the resulting integral images will be shown.

53

3.3.1. The method of dividing image volume

Referring to Figure 3.8, each point of the OpenGL scene is projected onto the image plane.

The computer screen is now playing the role of the image plane. Practically, the image plane

can be a CCD. The normal PC screen resolution is proportionally small (e.g. 90 dpi), for this

reason, the elemental images that are going to be generated on the PC screen are not

representing the whole scene but each elemental image represents part of the scene. For

example, a 2-D elemental image with the width of eight pixels and the length of 768 pixels is

created by each Plano-Convex cylindrical lenslet. Each one of the lenslets works as a separate

set of pinhole cameras with an adjacent vertical set of pinholes located on the vertex of the

convex surface of the lenslet. For approximation and simplifying calculations, we will

consider virtual adjacent vertical barriers with vertical holes between every neighbouring two

barriers. The vertical holes can be considered as a collection of pinholes. With this

approximation, the collection of pinholes positioned on the vertex of the vertical lens is

forming a continuous vertical opening (aperture) through which the lenslet (sees) the scene.

Each lenslet can see a part of the scene through its aperture; therefore, it can only picture the

part of space the lenslet can see. The accuracy of the 2-D elemental images and the quality of

the produced 3-D image are proportional to the resolution of the screen on which the scene is

projected. Therefore, in the case when a display device with a higher resolution is employed,

a wider volume of the space can be seen by the virtual lenslet and projected on the image

plane with a better approximation. Figure 3.8 shows a horizontal cross section of the

projection system showing the virtual pickup stage and the real replay stage of the integral

imaging process. The field of view that is seen by one of the lenslets is highlighted. The

lenses can be cylindrical or spherical.

Figure 3.8: A horizontal cross section of the projection system.

54

Considering Figure 3.8, each lenslet images a part of the space called “frustum”. Frustum is

the volume that contains everything can be visible on the screen after perspective projection.

The volume has the shape of a pyramid of which the apex is located at the lenslet vertex. The

base of the pyramid is the far clipping plane and it is truncated at the near plane that makes

the shape of a frustum. The collection of all the frustums imaged by the lenslets forms a

single frustum as shown in Figure 3.9. The base of that frustum is the far clipping plane and

its near clipping plane is the plane that contains the collection of viewports. The scene is

projected on that plane. The image formed from the perspective projection on the plane that is

containing the viewports is mapped to the image plane (CCD) so that the reverse effect of

passing through the pinhole is reflected.

Figure 3.9: A symmetric perspective projection frustum formed from the frustums

imaged by the lenslets.

Figure 3.10: A cross section of a single lenslet with its view volume.

The Plano-Convex cylindrical lenses used in the capture stage are just virtual lenses.

Cylindrical lenses have a spherical radius in one axis only, thus they magnify in just one

direction, and they will change a point image into a line image [55]. The effect of the

55

projection process is approximately similar to the effect of the real lens on the image when

each lenslet changes the width of the image and compresses it in the horizontal direction

without altering its height. The following two processes are identical: the perspective

projection with a symmetrical frustum view volume through a viewport, and the real

projection using an array of cylindrical lenses. A cross section of a single lens with the view

volume of the lens, the clipping plane and the viewport is represented in Figure 3.10.

Figure 3.11 shows a horizontal cross-section of the frustums cluster and clipping planes for a

few lenslets. A 3-D presentation of the lenslet and its frustum with the clipping planes is

depicted in Figure 3.12.

Figure 3.11: The frustums cluster for a few lenslets and the clipping planes.

The dimensions of the viewport for each frustum should be selected to be equal to the

dimensions of the elemental image. In this case, the elemental image of the part of the scene

that is enclosed within the symmetric frustum when it is seen through a cylindrical lens and

recorded on a CCD film situated at the flat side of the lens, is identical to the perspective

projection of that part of the scene that is projected through the viewport. When a cylindrical

lens array is used, the elemental image on the view plane should be horizontally reversed,

whereas, it should be reversed horizontally and vertically when a micro lens array in used.

56

Figure 3.12: A 3-D presentation of a lenslet and its frustum.

The number of lenslets in the virtual cylindrical array is selected based on the characteristics

of the display device. For example, the display device is a computer screen with w×h pixels.

As mentioned above, the cylindrical lenses keep the height of the image and change the width

as an effect of their spherical radius, for this reason, the height of the elemental image formed

by the cylindrical lenslet has the same height of the image that results from perspective

projection of a scene through a viewport with the same height. Thus, in order to create the

elemental image for the lenslet, we need to create the equivalent perspective projection of the

part of the scene. Each lenslet of the lens array creates an image of the scene from a different

point of view because the cylindrical lenslets are an ensemble of vertical lenses positioned

one next the other, then, each vertical lenslet has different x-coordinates in the global

coordinate system. However, all the centres of the lenslets are on level with each other so that

they have the same y coordinates and the same z-coordinates in the global coordinate system.

At the same time, each lenslet has its own local coordinate system as it plays the role of a

separate camera that produces its own elemental image on the image plane. The resulting

image is a collection of elemental images situated side by side each of them is an image of a

part of the scene taken from a different point of view. Each elemental image can be a

compressed image of the objects contained in the lenslet frustum if we could manage to use a

CCD with a sufficient resolution.

In our case, we aim to produce a computer image displayed on a computer screen to simulate

and replace the real image that is supposed to be generated using a cylindrical lens array. In

this case, we can generate elemental images so that each of them is the projection of the part

57

of scene that is comprised within the frustum just if we use a computer screen with an

adequate resolution. For example, if the width of the lenslet is 3 mm, and the width of the

screen is 120 pixels, the whole image that needs a width of 120 pixels to be displayed on the

normal computer screen can be accommodated on the space of the elemental image when the

resolution is higher than 120 pixels/3 mm = 1016 dpi. When the resolution is lower than that,

the elemental image would be approximated. In our example, the lenslet width was selected

to be 3 mm or 8 pixels on the monitor of 90 dpi resolution. In other words, the higher display

device resolution the higher quality of the generated integral image.

When the image of the original scene is projected and displayed on the computer screen

without passing the rays through a lens array or the vertical openings, the image would be

accommodated on a screen with the specified dimensions w, and h. If the rays were passed

through the lens array, each lenslet would compress a part of the image with specified width

and height. The width and height are some of the parameters of the symmetric frustum that

determine the view volume of each lenslet. For example, the height can be selected to be the

same as the height of the original image but the width is selected to be m = 8 times higher

than the width of the lenslet. In this case, if the lenslet width is 8 pixels, the width that is

compressed will be equivalent to 64 pixels of the 2-D image that is supposed to be displayed

without a lens array.

OpenGL will automatically apply approximation in mapping the image to the pixels when

displaying the projected elemental image. Each lenslet is now considered as a camera

imaging a 64 pixels equivalent window of the image. Each lenslet will see the view volume

that is shifted across the x-axis by a distance equals to the pitch of the lenslet. In Figure 3.13,

window 5 is a window in a clipping plane that is perpendicular to the centreline of the

perspective projection frustum through which the lenslet number 5 can see the view volume.

Window 6 is a window in the clipping plane that is perpendicular to the centreline of the

frustum of the lenslet 6, which is shifted by the lenslet pitch from the neighbouring frustum

of lenslet number 5 and so on. As an example, a virtual vertical cylindrical lens array of 128

lenslets with 8 pixels width will be used to form an integral image with a width of 1024 pixels

and a height of 768 pixels.

In order to specify the symmetric frustum that contains the view volume that is intended to be

projected, and get the perspective projection of the part of scene within this view volume, we

58

need to multiply the current matrix with the perspective matrix, the following OpenGL

function can be used to do this task [57]:

glFrustun (GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble

nearVal, GLdouble farVal)

Left and right specify the coordinates for the left and right vertical clipping planes. Bottom

and top specify the coordinates for the bottom and top horizontal clipping planes, nearVal

and farVal pecify the distances to the near and far depth clipping planes. Both distances must

be positive. The values of Left, right, bottom, and top are normalized, and thus, these

dimensions have the normalized values of 1, 1, 1, and 1 respectively. Bottom and top are

selected to have the fixed normalized values -1 and +1 respectively. The maximum and

minimum coordinates of the horizontal clipping planes are used to determine the bottom and

top sides of the frustums; this means that the elemental images will have the maximum height

which is in our example h = 768 pixels.

Figure 3.13: A view volume divided to frustums.

In order to calculate the left and right clipping planes, in Figure 3.13, the planes that are

perpendicular to the image plane, parallel to the plane X = 0, and passing through the vertex

of each cylindrical lenslet would be considered. Each cylindrical lenslet at the coordinate x

has a plane with the Equation X = x that is perpendicular to the image plane and contains its

vertical opening or the collection of its pinholes. If the plane X = x is projected on the plane Y

= 0 the projection would form the centreline of the perspective projection frustum. The

59

projection reference point of the perspective projection frustum is located on the vertex of the

lenslet. For each lenslet, the centreline is the line that passes through both the centre of the

clipping window and the centre of the elemental image that is located on the image plane. For

any clipping plane that is parallel to the image plane and located between the far clipping

plane and the near clipping plane, the window resulting from the intersection of this plane

with the frustum is actually the window that is mapped to the viewport. Through this

window, the lenslet sees the scene, whereas, the scene is projected on this viewport.

The left and right parameters that are the first two arguments in the glFrustum function

specify the virtual window at any plane parallel to the image plane and standing between the

near and far clipping planes, these are normalized values rather than absolute values. Window

5 and window 6 In Figure 3.13 are examples of such windows. Each lenslet has a vertical

plane containing the centreline of its frustum. Each plane of these will intersect with the

clipping window through which the lenslet sees its own view volume. Therefore, there is a

number of such planes equal to the number of the lenslets (128 in our example). Each one of

these planes is on a distance P apart from each of its neighbouring planes on the x-axis,

where P is the pitch of the lenslet, or the width of each elemental image. If we consider any

clipping plane along the view volumes of the lenslets, the clipping windows of each of two

adjacent lenslets in this plane are shifted apart from each other by P. Then the number of the

centrelines of the frustums that intersect with the clipping window is equal to the lenslets

number. The width of the whole display window is equal to the entire number of P multiples.

For example, the clipping plane at the level 8 of frustum intersections is located away from

the pinholes plane by a distance equals to 8 times the focal length F. The clipping plane

contains the clipping plane 6 with the width of 8×P. Levels of frustum intersections are the

clipping planes that are containing the intersection lines of the vertical planes and forming the

different frustums of the lenslets. For example, in Figure 3.13, the frustums 5 and 6 intersect

with each other at level 1, the intersection line between the planes forming the frustums is

contained in the clipping plane at level 1.

It was mentioned above that the 3-D image is reconstructed in the image space by the

intersection of the rays produced by the micro lenses [4]. The cylindrical micro lenses replace

the micro lenses that are placed at the 2-D image produced by OpenGL. Referring to Figure

3.13, the object can be seen by different lenslets, these lenslets will form images of the object

points in the elemental images of each lenslet. If a lens array is used in the pickup stage and

60

its characteristics are similar to the one’s that is used in the display stage, the images of each

object point are replayed and the lens array will produce rays emanating from these lenslets

to intersect with each other forming a real and pseudoscopic 3-D integral image.

In the example mentioned above, each object point in the scene is supposed to be seen only

by a maximum of 8 lenslets, but that is just an approximation used due to the limitation in the

resolution of the display screen. Most of the object points that are situated on a distance from

the lenses array exceeding the level 8 can be seen by more than 8 lenses, the near clipping

plane is selected to be at a distance depending on the focal length and the lens’s pitch. The

part of scene that can be seen by each lens is the part that is contained in the view volume of

the symmetric frustum that is defined with the function glFrustum.

In the case when vertical lenslets array is used, the pixel intensity values of the elemental

image for each lenslet is read, saved, and then mapped to the location of pixels on the screen

so that all the vertical slots are displayed at the same time forming the integral image. The

location of the vertical elemental image on the computer screen is identical to the location of

the corresponding lenslet in the virtual lens array. The scenes were first built in 3-D Max, or

Blender applications, saved in MD2 files, and then exported to the environment of C++. Each

one of the scene objects can be saved in a separated file; however, all the objects can be

united in one scene and saved in one file.

The replayed 3-D scene is an image that implies on horizontal parallax. The horizontal look-

around is seamless because of the fact that the cylindrical lenses are abutting each other so

that the 3-D image produced by each lenslet contains many common points with the images

produced by the neighbouring lenslets. In the ideal case, when the resolution of the display

device is high enough, the total number of lenslets will see and image almost all the object

points.

3.3.2. The capture stage

The capture stage is a simulation of the process of creating a cluster of micro images of the

scene, which is processed and used to generate integral images. In order to create integral

images with horizontal parallax, virtual cylindrical or Plano-convex cylindrical lens array is

used. The virtual lens array superposes the image plane. The image plane is an array of pixels

charge-coupled device (CCD) employed to record the cluster of micro images formed by the

61

lens array. Each lens of the array captures a part of the scene and creates a micro image. To

achieve full parallax, a spherical micro-lens array is used. To simplify the process, the micro-

lens array is replaced with an array of pinholes. The simulation of the imaging process is

based on this simplification. Each virtual micro lens (or pinhole) plays the role of a mini

camera, and each micro image is a perspective projection of the scene or part of the scene that

can be seen through the aperture of that mini camera.

Figure 3.8 represents a horizontal cross section of the system showing the virtual pickup

stage and the real replay stage of the integral imaging process. One lens’s field of view is

highlighted. The lenses can be cylindrical or spherical. Each pinhole (or micro lens) in the

pickup stage sees a part of the scene called the micro-lens field of view. The micro image

formed by each lens is the image of the part of scene the lens sees, which is the entire part of

scene that is comprised within the virtual lens’s field of view. It is possible to consider the

micro image formed by each virtual micro lens as a perspective projection of the points of the

objects in the scene on the image plane through the lens or the aperture of the pinhole

providing that the points of the objects are located in the lens’s field of view. Regarding the

fact that the surface of the image plane on which the micro image is recorded contains a

limited number of pixels, it is possible to trace back all the rays of light received by the image

plane starting from the pixels of the micro image and ending with the projected scene points.

Figure 3.8 shows the incident rays that are hitting the image plane at the extreme left and

right pixels of the micro images.

In order to simplify the calculations in the pickup stage, the virtual micro lens array is

replaced by a virtual pinhole array. Using a pinhole array is an embodiment of the method,

however, using micro lens array is supposed to produce images with higher quality. In the

case of using micro lens array, the refraction of the rays should be taken into account when

the pixel values are acquired and calculated. As a trade-off between the quality and the

calculation complexity, a virtual pinhole array is considered instead of a micro lens array and

the image pixel values resulting in this approach are approximated image pixel values

supposed to be acquired when using micro lens array.

One of the tasks the application software can perform is the process of generating the integral

image by creating a cluster of micro images in which the number of micro images is equal to

the number of virtual spherical or cylindrical micro lenses used to capture and replay the

62

integral image. One perspective projection is needed to create each micro image. For

example, if the number of micro lenses is 100×100, the number of projections needed is

10000. In order to reduce the number of projections and perform faster and easier rendering

process of the integral images, the method of displacing the virtual camera target is

introduced.

The Camera Target (CT) is a point in the scene space at which the camera is focusing. The

Camera Central Axis (CCA) is the vertical axis that is perpendicular to both the lens array flat

surface and the image plane. The intersection point between the flat surface and CCA is the

Centre Point (CP). In this method the virtual lens array (or the virtual camera) that is utilized

to capture the micro images is rotated so that CT is displaced, whereas CP is fixed. The

global coordinates of CP are (0, 0, and 0). The rotation angle of CCA is equal to the rotation

angle of the image plane and the lens array. The initial position of the lens array and image

plane is the position when CT has zeroed x, and y coordinates, CCA has zeroed vertical and

horizontal rotation angles, and the image formed on the image plane in this position is

replaced with the Final Integral Image (FII).

If the micro lens array is used, the lens array and CCA are rotated vertically and horizontally,

and CT is displaced to occupy different positions within the x-y plane, whereas, the rotation

angles are only horizontal when using cylindrical lens array, and CT in this case is moving

along the x-axis. The scene is projected orthographically on the image plane, and the

resulting image is the orthogonal projection of the scene object points on the image plane.

The incident rays starting from the objects points and hitting the pixels on the image plane are

parallel to CCA and perpendicular to the image plane. Each time the micro lens array is

rotated, CT coordinates are changed and CCA rotation angles are revaluated, and a new

orthographic image is rendered. The technique used in this method is a process to compose a

perspective integral image that is called FII from the different orthographic images. Specific

pixels of every orthographic image are selected and mapped by value to the FII. The process

of mapping specific pixels from the orthographic projections to the FII simulates the

perspective projection of the scene with the same lens array. The projections of the scene

object points on the FII that result from the mapping process are equivalent to the perspective

projections of the scene object points on the initial image plane with the same micro lens

array.

63

The camera must be positioned at the frustum central point while the target is located in the

middle of the frustum clipping windows. Each point from the scene is seen from different

perspectives and its projections are represented by a number of elemental images. The

number of elemental images representing a single object point equals to the number of the

lenslets that can see that point through either the vertical wholes, the spaces in between the

barriers, or the pinholes.

Zab is the absolute value of the distance between the projection reference point and the near

clipping plane. Wab is the width of the clipping window of the frustum. Wab is the width and

length when micro lens array is used. F is the real distance between the image plane and the

pinhole (or focal length) measured with the length unit. P is the real width of the lenticular

lenslet or the diameter of the micro lens (the pitch). Zab, Wab, F, P and are linked with the

following relation:

𝑊𝑎𝑏

𝑍𝑎𝑏
 =

𝑃

𝐹
 (3.1)

For each elemental image, the current matrix will be multiplied by the frustum matrix to

produce a perspective projection of the part of the view volume that is determined by the

clipping window of the frustum. The clipping window is located on the near clipping plane.

The resulting matrix is multiplied by the scaling matrix that maps the clipping window of the

frustum to the viewport. The width and length of the viewport are selected to be equal to the

width and length respectively of the lenticular lens or the diameter of the micro lens. The

locations of the viewports are selected on the screen so that the resulting elemental images

are stuffed beside each other in the same way of the lens array used in the display stage. An

approximation is used when projecting the scene and mapping the pixels, this approximation

reduces the calculations needed to map pixels accurately on the image plane, therefore, a

pinhole model is used and the effects of the lens array on the rays are neglected.

3.3.2.1. The clipping windows

If the coordinates of the clipping window are normalized, and the clipping window is

comprised between the vertical clipping planes -1, +1, and the horizontal clipping planes -1,

+1, the width or length of the clipping window would be 2. The sub-windows are considered

64

as frustum clipping windows to project the scene on the image plane and produce the

corresponding elemental image for each lens. The normalized coordinates of the sub-

windows can be calculated from Figures 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13. The clipping

window of the frustum is supposed to be located on the near clipping plane, if the lenticular

lens array is used, the length of the frustum clipping windows should be the same as the

length of the lenses. From Equation (3.1), the width Wab will be:

𝑊𝑎𝑏 =
𝑃

𝐹
× 𝑍𝑎𝑏 (3.2)

Each object point in the scene is supposed to be seen by a maximum of 8 lenslets only, but

that is just an approximation used because of the limitation in the resolution of the display

screen. In fact, most of the object points that are situated on a distance from the lens array

exceeding the level 8 can be seen by more than 8 lenses. Thus, the part of scene that can be

seen by each lens is the part that is contained in the view volume of the symmetric frustum

specified with the arguments of the function glFrustum:

glFrustum(-1.0 + p×(slot_index - 3.5), -1.0 + p×(4.5 + slot_index), -1.0, 1.0, 2.7, 200) (3.3)

The near clipping window through which the lens sees the scene is defined with the first 4

arguments. If each clipping window has the width of 8×8 pixels, the whole clipping window

for the lens array has the same dimensions of the display screen (i.e. the computer screen).

The two dimensions (i.e. height and width) of the clipping window of the array are

normalized so that the clipping planes have coordinate positions at xmin = -1, xmax = +1,

ymin = -1, and ymax = +1. slot_index is the x-coordinate of the frustum centreline (in our

case the frustum centre plane). The first frustum centerplate of the first lenslet is located on

the same x-coordinate of the vertex of the first lenslet that is equal to P/2. The second centre

plane coordinate coordinate is slot_index = 1.5× P and so on.

Based on the previous assumptions, and referring to Figure 3.11, the whole screen or the

whole clipping window is equal in width to the width of the 128 lenslets, then the normalised

width of a single lenslet is equal to P = 2/128 = 1/64 = 0.015625 of the normalised width.

For a clipping window with the width of 8×P, the clipping window will be located at the

level 8 as it is depicted in Figure 3.11. The first lenslet in the far left is given the number 0.

65

Starting with the lenslet number 4 with the slot_index = 4, the normalized width of the

clipping window is Δ = 8×P = 8×0.015625 = 0.125. the left clipping plane of the 4th lenslet

has the normalized coordinate of -1+ P/2 = -1 + P×(4 – 3.5) = -1 + 0.0625, and the right

clipping plane coordinate = -1 + P/2 + 8×P = -1 + P×(4.5 + 4). In general, the left and the

right coordinates of the clipping windows for the lenslets between 4 and 124 are respectively

as follows:

X_left = -1.0 + p×(slot_index - 3.5) (3.4)

X_right = -1 + p×(4.5 + slot_index) (3.5)

The view volumes of the first 4 lenslets are partially contained in the scene view volume, and

the width of the clipping window for each lenslet is less than 8×P. For those lenslets, the

variable slot_index is less than 4, and the function glFrustum takes the arguments: -1 as the

normalised x-coordinate of the left vertical clipping plane and -1 + p× (4.5 + slot_index) for

the right vertical clipping plane, -1 and +1 for the top and bottom clipping planes:

glFrustum(-1.0, -1 + p×(4.5 + slot_index), -1.0, 1.0, 2.7, 200) (3.6)

The arguments of glFrustum function for the last 4 lenslets are as follows:

glFrustum(-1.0 + p×(slot_index - 3.5), 1.0, -1.0, 1.0, 2.7, 200) (3.7)

3.3.2.2. The analogy between the lens effect and the viewport mapping in OpenGL

Referring to Figures 3.9, 3.10, and 3.11, in order to state the analogy between the lens effect

and the viewport mapping in OpenGL, we need to know that that object descriptions are

transferred to the viewport using the transformation that maintains the same relative

placement of a point in the viewport as it had in the clipping window [5] [56]. In order to

transfer the global coordinate point into the same relative position within the viewport, we

require that:

𝑥𝜐 − 𝑥𝜐𝑚𝑖𝑛

𝑥𝜐𝑚𝑎𝑥 − 𝑥𝜐𝑚𝑖𝑛
 =

𝑥𝜔 − 𝑥𝜔𝑚𝑖𝑛

𝑥𝜔𝑚𝑎𝑥 − 𝑥𝜔𝑚𝑖𝑛
 (3.8)

66

𝑦𝜐 − 𝑦𝜐𝑚𝑖𝑛

𝑦𝜐𝑚𝑎𝑥 − 𝑦𝜐𝑚𝑖𝑛
 =

𝑦𝜔 − 𝑦𝜔𝑚𝑖𝑛

𝑦𝜔𝑚𝑎𝑥 − 𝑦𝜔𝑚𝑖𝑛
 (3.9)

where 𝑥𝜔, 𝑦𝜔 is the position in the clipping window that is mapped into position 𝑥𝜐, 𝑦𝜐 in

the associated viewport. 𝑥𝜐𝑚𝑖𝑛, 𝑦𝜐𝑚𝑖𝑛 , 𝑥𝜐𝑚𝑎𝑥 , and 𝑦𝜐𝑚𝑎𝑥, are the coordinates of the lower

left corner and upper right corner of the viewport respectively, whereas, 𝑥𝜔𝑚𝑖𝑛, 𝑦𝜔𝑚𝑖𝑛

, 𝑥𝜔𝑚𝑎𝑥, and 𝑦𝜔𝑚𝑎𝑥 , are the coordinates of the lower left corner and upper right corner of

the clipping window respectively.

On the other hand, the effect of the vertical Plano-convex lenslet on the image is almost

similar to the window-to-viewport transformation process that is implemented in OpenGL.

Figure 3.10 illustrates the projection of an object point through a vertical lenslet; the

refraction that is expected to occur is such lenslet is neglected. In addition, the vertex of the

lenslet is considered as the focal point of the lenslet. These approximations make the image

rendering process easier and faster, however, more accuracy can be achieved with

considering all these details, but the price is a longer rendering time, and expensive

calculations. Figure 3.10 shows the intersection between the frustum of a lenslet and the

plane that is parallel to the plane X-Z and perpendicular to the Y-axis. The point 𝑥′ is an objet

point located in the view volume of the lenslet, and 𝑥 is its projection on the image plane.

From the similarity between the triangles, and Thales formulas we can write:

𝑥𝜐 − 𝑥𝜐𝑚𝑖𝑛

 𝑥𝜐𝑚𝑎𝑥− 𝑥𝜐𝑚𝑖𝑛
 =

𝑥𝜔 − 𝑥𝜔𝑚𝑖𝑛

𝑥𝜔𝑚𝑎𝑥 − 𝑥𝜔𝑚𝑖𝑛
 (3.10)

Equation (3.10) is identical to Equation (3.8) that is implemented in OpenGL through the

transformation process. The length of the viewport was chosen to match the length of the

clipping window, and the vertical Plano-convex cylindrical lenses do not magnify in the y

direction. Thus, for a position 𝑥𝜔, 𝑦𝜔 in the clipping window that is mapped into

position𝑥𝜐, 𝑦𝜐, we have:

𝑦𝜐 = 𝑦𝜔 (3.11)

𝑦𝜐𝑚𝑖𝑛 = 𝑦𝜔𝑚𝑖𝑛 (3.12)

𝑦𝜐𝑚𝑎𝑥 = 𝑦𝜔𝑚𝑎𝑥 (3.13)

67

From Equations (3.10), (3.11), (3.12), and (3.13), we can write:

𝑦𝜐 − 𝑦𝜐𝑚𝑖𝑛

𝑦𝜐𝑚𝑎𝑥 − 𝑦𝜐𝑚𝑖𝑛
 =

𝑦𝜔 − 𝑦𝜔𝑚𝑖𝑛

𝑦𝜔𝑚𝑎𝑥 − 𝑦𝜔𝑚𝑖𝑛
 (3.14)

Equation (3.14) is identical to Equation (3.9) that is implemented in OpenGL through the

transformation process. From Figure 3.10, the point 𝑥𝜐𝑚𝑎𝑥 in the viewport is mapped to the

point µ in the image plane; also, the point 𝑥𝜐 is mapped to the point 𝑥 that is the final

projection of the point 𝑥′ and so on. The final projection points of the scene on the image

plane can be obtained by flipping the points in the viewport so that their positions are

reversed around the central vertical axis of the viewport. This is implemented in OpenGL by

mapping the pixels intensity values in the elemental image to their symmetrical pixels in the

opposite side with equal distances from the centre of the elemental image. The coordinates of

the vertical planes of the clipping window are identical to the x-coordinates of the clipping

window (i.e.(𝑥𝜔𝑚𝑖𝑛), and (𝑥𝜔𝑚𝑎𝑥)), whereas, the horizontal clipping planes will be -1, and

+1 in the case of using lenticular lenses and (𝑦𝜔𝑚𝑖𝑛), and(𝑦𝜔𝑚𝑎𝑥) in the case of using micro

lenses. The point at the apex of the lens or the pinhole is considered as a location of a camera

pointing on the middle of the symmetric frustum that contains the view volume that holds the

part of the scene supposed to be imaged by this camera. From the relation (3.8), any point in

the scene such as 𝑥 ′ contained in the view volume will be projected in reference to the

projection reference point. The reference point is the location of the camera and it is the

intersection point between the vertical hole located in between the two horizontal barriers of

the lenslet and the horizontal plane that contains the object point. The projection of point 𝑥 ′ in

the frustum’s clipping window is (𝑥𝜔). In the OpenGL application interface, the function

glFrustum describes the perspective matrix that is used to produce perspective projection.

The perspective matrix is multiplied by the current matrix and the resulting matrix replaces

the current matrix [57]. The perspective matrix is:

2𝑍𝑛

(𝑥𝜔𝑚𝑎𝑥 − 𝑥𝜔𝑚𝑖𝑛)
0

(𝑥𝜔𝑚𝑎𝑥 + 𝑥𝜔𝑚𝑖𝑛)

(𝑥𝜔𝑚𝑎𝑥 − 𝑥𝜔min)
 0

0
2𝑍𝑛

2
 0 0

0 0 −
(𝑍𝑓 + 𝑍𝑛)

(𝑍𝑓 − 𝑍𝑛)

(2𝑍𝑓. 𝑍𝑛)

(𝑍𝑓 − 𝑍𝑛)

 0 0 -1 0

68

Zf and Zn are the z-coordinates of the far and near clipping planes respectively. With

approximation, we will suppose that the clipping window is equal in size to the viewport or

the effective surface of the image plane where the total integral image content is displayed.

The value of 𝑍𝑎𝑏 can be selected in a way that each point in the scene is projected to two

elemental images at least. Each object point in the scene will be replayed by at least two

lenses, each projection of these should be done from different perspective so that the rays

starting from the point projections in different elemental images are intersected in a real or

virtual point to from the image of that object point. The selected minimum number of

projections is dependent on the available resolution of the screen, the higher resolution of the

screen the larger width of the clipping window that can be accommodated in the elemental

image, and therefore, the higher number of projections can be taken for the same object point.

If the clipping window of the frustum was selected to be located on the viewport, the number

of projections for each object in the scene is 1 and the number of elemental images that

contain the projection of each point is 1. The number of elemental images that is enough for

our purpose is 2 at least. To achieve that, we need to increase Zab to be able to include

projections of points in multiple elemental images.

If
𝑃

𝐹
 = 2/3, and the number of projections for each point is selected to be m, then

𝑚×𝑃

𝑚×𝐹
 = 2/3,

in this case Zab = m×F. Zab is identical to the selected distance between the projection

reference point and clipping window on the near clipping plane. The width of this clipping

window is supposed to be equal to the width of the image plane that is equal to n×P where P

is the pitch of the lenslets or the diameter of micro lens, and n is the number of lenslets or

micro lens in x or y direction. Therefore, each object point in the scene is supposed to be seen

by a maximum of m lenslets; this number is selected in dependence to the limitation of the

display screen resolution. The part of scene that can be seen by each lens is the part of the

scene that is contained in the view volume of the symmetric frustum defined with the

OpenGL function glFrustum:

glFrustum(left, right, bottom, top, zNear, zFar) (3.15)

where left is the coordinate of the left vertical clipping plane, right is the coordinate of the

right vertical clipping plane, bottom is the coordinate of the bottom horizontal clipping plane,

top is the coordinate of the top horizontal clipping plane, zNear is the distance to the near-

depth clipping plane, zFar is the distance to the far-depth clipping plane. The near clipping

window through which the lens sees the scene is defined with the first 4 parameters. When

the cylindrical array is used, each elemental image has the width of N×p. N is the number of

69

horizontal pixels in the elemental image, and p is the width of the pixel. m is the required

projections for each object point in the scene, the frustum clipping window has the width of

N×p×m. The total number of lenslets is n, the whole clipping window for the lens array has

the same dimensions of the display screen, the two dimensions (height and width) of the

clipping window of the array are normalized so that the clipping planes have coordinate

positions at 𝑥𝑚𝑖𝑛= -1, 𝑥𝑚𝑎𝑥 = +1, 𝑦𝑚𝑖𝑛 = -1, and 𝑦𝑚𝑎𝑥= +1. lenslet_index is the normalized

x coordinate of the frustum centreline (in our case the frustum centerplane). The left first

frustum centerplane of the first lenslet is located on the same distance from xmin = -1 of that

of the first lenslet vertex on left (i.e. P/2). The distance of the second centerplane to the left

edge is 1.5×P and so on. Based on the previous assumptions, the normalised width

corresponding to the width of a single lenslet is equal to p = 2/n of the normalised width. The

normalized width of the frustum clipping window is m×2/n. The first lenslet in the far left is

given the number 0, if zFar is chosen so that the frustums are enough to contain the whole

scene, and zNear is calculated from 𝑊𝑎𝑏 =
𝑃

𝐹
× 𝑍𝑎𝑏 × N×p×m =

𝑃

𝐹
× 𝑧𝑁𝑒𝑎𝑟, then:

𝑧𝑁𝑒𝑎𝑟 = N×p×m×
𝐹

𝑃
 = N×p×m×

𝐹

𝑁×𝑝
= m×F (3.16)

Then the OpenGL function glFrustum for the first m/2 lenslets will be:

glFrustum(-1.0, -1 + p×(m/2+ 0.5 + lenslet_index), -1.0, 1.0, zNear, zFar) (3.17)

For the lenslets from number m/2 upward to n – (m/2):

glFrustum(-1.0 + p×(lenslet_index - 0.5 + m/2), -1.0 + p×(m/2+ 0.5 + lenslet_index), -1.0,

1.0, zNear, zFar), (3.18)

For the lenslets from number n – (m/2)+ 1 upward to n-1:

glFrustum(-1.0 + p×(lenslet_index - 0.5 + m/2), 1.0, -1.0, 1.0, zNear, zFar) (3.19)

3.3.2.3. The resulting integral images

The pixels intensity values of the elemental image for each lenslet are read, saved, and then

mapped to pixel locations on the screen so that all the vertical slots are displayed at the same

time forming the integral image. The location of the vertical elemental image on the

computer screen is identical to the location of the corresponding lenslet in the virtual lens

array. Figure 3.14 shows a simple 3-D scene “cutlery” rendered with OpenGL. The scene was

first built in 3D max, and then exported by OpenGL via Blender and saved in MD2 files.

Each object in the scene was exported, saved and used as a separate MD2 file. Figure 3.15

shows the integral image resulting from the projection of the scene through the virtual lens

array.

70

Figure 3.14: An OpenGL 2-D simple scene.

Figure 3.15: The integral image resulting from the projection of the simple scene.

71

To define a clipping rectangle using OpenGL, the following function can be used:

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height)

x and y are the coordinates of the bottom left corner of the rectangle width and height are self-

explanatory. The simplified method is the case when the scene is projected on the image

plane through a virtual array of vertical holes (see Figure 3.12). The replayed 3-D scene

implies on horizontal parallax and the horizontal look-around is seamless because of the fact

that the cylindrical lenses are abutting each other so that the image produced by each lenslet

contains many common points with the image produced by the neighbouring lenslet. The

volumetric parts of the scene are intersected. The intersection can happen when at least two

lenslets replay the same point of the scene. When the same point from the scene is projected

on at least two different micro images, the replayed images can intersect and form a real

image in front of the display screen.

In the ideal case when the resolution of the display device is high enough, every lenslet from

the lens array can see all the object points, and then .every micro image contains information

about any object point in the scene. Due to the analogy between the real and the simulated

cylindrical lens array, the rendered micro images are almost identical to the micro images

achieved by the real cylindrical lens array.

In computer graphics, the cone of vision is approximated with a symmetric frustum, and we

can use a field-of-view angle to specify an angular size for the frustum [5]. Using the

viewport, we can control the position within the display window. The clipping window

selects what we want to see, the viewport indicates where it is to be viewed on the output

device [5]. In order to display a 3-D scene on a display device, the graphics packages perform

normalization, clipping routine, and viewport transformation. Object proportions are

maintained if we set the aspect ratio of the viewport area to the same as the clipping window.

Figure 3.16 shows a 2-D image created in Blender, exported to C++ & OpenGL environment,

converted and displayed as a 3-D autostereoscopic integral image using the method explained

above. Figure 3.17 is the 3-D image for the 2-D image shown in Figure 3.16 when a

lenticular lens array is used.

72

Figure 3.16: A 2-D image to be converted and displayed as a 3-D integral image.

Figure 3.17: The 3-D content of the 2-D image shown in Figure 3.16.

73

3.3.3. The replay stage

The lens array used to replay the image is supposed to have the same characteristics and

parameters of the virtual lens array used to capture the image. If the pixels of the micro

images in the viewport are mapped to the image plane without changing their positions in

proportion to each other, replaying the image produces an orthogonal virtual image. That is

because the rays emitted from the lenses in the replay stage that are belonging to the same

object point are in this case parallel to the projection rays of the same point in the pickup

stage. Therefore, the rays belonging to the same point intersect in a virtual point behind the

screen. As a result, the viewer will see an autostereoscopic orthogonal virtual image located

behind the screen, as it is depicted in Figure 3.18.

Alternatively, when the pixels of the elemental images in the viewport are rotated around the

centre of the elemental image in the case of microlense or flipped around the vertical central

column of the elemental image in the case of lenticular lens array, a pseudoscopic real image

will appear to the viewer. That is because the rays emitted from the lenses in the replay stage

Figure 3.18: The pickup and replay stages of an orthogonal virtual integral image.

74

Figure 3.19: The pickup and replay stages of a pseudoscopic real integral image.

that are belonging to the same object point are in this case flipped horizontally in comparison

to these of the same point in the pickup stage. Therefore, these rays of the same point

intersect in a real point in front of the screen. As a result, the viewer will see an

autostereoscopic pseudoscopic real image located in front of the screen, as it is depicted in

Figure 3.19.

3.3.4. Perspective projection using spherical lens array:

In order to simulate the elemental image formed by a spherical lens, the viewport now is set

to be rectangular with a width and a height equal to the diameter of the proposed lens array.

The spherical microlenses can be arranged in a way so that the microlenses are vertically

aligned in every other row, whereas, the microlenses in a row are shifted to the microlenses in

the next row with a distance that is equal to the microlens radius as it is depicted in Figure

3.20.

75

Figure 3.20: Spherical microlenses and rectangular viewports of 8×8 pixels.

The same discussion for the case of the cylindrical lens array is applicable for the case of the

spherical lens array. There are few differences between the two cases including the need for a

vertical scanning in addition to the horizontal scanning in the case of spherical lens array.

In the following example, the number of the elemental images in the horizontal direction is

128, and in the vertical direction 128. The screen is 1024×768 pixels; therefore each

elemental image is 8×6 pixels. In this example, the proportion between the width and height

of the elemental image is equal to that of the whole image displayed on the PC screen. The

number of the elemental images that are supposed to be formed is 128×128 = 16384. This

number is very high and this will cause the system to crash if the memory is insufficient.

The excessive projections of the scene can cause the system to run out of memory in the case

that the size of the video card memory, or the system memory are insufficient to meet the

requirements of the projection process, for this reason, when the projection number reaches a

specific stage the system crashes. Figure 3.21 shows the image formed on the image plane if

the scene that is shown in Figure 3.16 was projected through a microlenses array of 128×128

microlenses with the dimensions 8×6 pixels. Figure 3.22 shows the image that can be placed

behind a spherical microlenses array in which the diameter of a lens is equal to the length of

the elemental image side. Figure 3.23 is the image when the elemental image is 16×16 pixels.

In real life, the elemental images are pseudoscopic after passing through the lens array. In

order to simulate the effect of the lens on the image, the elemental images are inverted around

the centre in Figure 3.23. The case shown in Figure 3.24 is the one when the micro lenses of

each row in the microlens array are aligned vertically with the micro lenses in the other rows

(i.e. an orthogonal microlens array). The dimensions of the elemental images are 8×6 pixels

each.

76

Figure 3.21: An image formed by a microlens array of 128×128 microlenses with 8×6

pixels each.

Figure 3.22: An image formed by a microlens array of 128×96 microlenses with 8×8

pixels each.

77

Figure 3.23: The image formed by a microlens array of 64×64 microlens with 16×16

pixels, the elemental images are inverted around the centre.

Figure 3.24: The image formed by an orthogonal microlens array of 128×128 microlens

with 8×6 pixels.

78

START

CREATE ARRAYS

AND VARIABLES

LOAD SCENE

ADD TEXTURES

 SETUP

VIEWPORT

DETERMINE

FRUSTUM

SETUP CAMERA

AND LIGHTS

DRAW SCENE

WITH TEXTURES

 NO

 FULL PARALLAX?

 READ SLOT YES

 WRITE SLOT READ CELL

 WRITE CELL

 NO

 LAST SLOT? NO

 LAST COLUMN?

 YES

 NO

 LAST ROW?

 YES

SETUP VIEWPORT,

FRUSTUM AND SCREEN

DISPLAY IMAGE

AS A TEXTURE

PRINT SCREEN

SAVE IMAGE

 NO

LAST FRAME?

 YES

END

Figure 3.25: Computer generation of integral images flowchart.

Based on DIVGL algorithm.

79

3.3.5. The implementation of the integral images computer generation method DIVGL:

Referring to Figure 3.25, at the beginning, the variables are initialised. These variables

include the width and height of the display device screen on which the image is supposed to

be displayed. The ID of the objects and textures are the pointers to the memory locations

where the objects and textures data are saved. A dynamic array is available to be used to save

the image, the size of this array should be equal to the number of pixels in the screen

multiplied by the number of bytes employed to save each pixel. Normally, for an RGB pixel

we need 3 bytes:

unsigned char *pixels_index = new unsigned char[3×width×height];

To add a texture we need to save an image in memory as a texture and return the ID of the

texture, the function loadTexture() takes the file name of the image and returns a texture

handle which is the ID of the texture. The function initRendering() initializes the rendering

parameters such as the Depth-Test that makes sure that the objects hide from view partially or

entirely the objects situated behind them.

load () is another function called in the initialization process of the parameters. load () is a

function from the class MD2Model. It loads the scene file saved in MD2 format and returns

the ID of the loaded scene or a pointer to the memory where the scene data are saved.

In this particular application, the scene file format is MD2 and the loading tool is capable

only to load the MD2 files. The loading tool of the MD2 files or the files with the extension

.md2 is composed of two simple files, a header file with the extension .h called md2_format.h

and a C++ file with the extension .cpp called md2_format.cpp. In the header file, the external

variables needed to use globally in our application are defined such as the number of frames

numFrames and frame_index that indicates the frame numbers. In addition, in the header file

all the structures, and functions needed to load the MD2 files are declared. The .cpp file

md2_format.cpp includes 162 x-y-z coordinates for 162 normal used in MD2 files. In

md2_format.cpp file, all the functions needed to load MD2 files, textures, frames, and

animations are defined.

The function handleResize (int w1, int h1) sets up the view ports and the frustums depending

on the required parameters. The function glViewport ((column_index×w1), (row_index×h1),

80

w1, h1) sets up the dimensions of the viewport. The parameters of this function are

respectively the x and y coordinates per pixels of the lower left corner of the viewport, and

the width and height of the viewport. column_index and row_index are integer variables to

indicate the number of the columns and rows of the lenses respectively under which the

elemental image is located. In the case when cylindrical lenses are used, the number of pixels

in the vertical direction or the height in pixels of the lenses will be the same as the height of

the screen or the total image if it is different to the length of the screen.

Frustums are setup depending on the column index and row index as it is declared in the

capture stage. The coordinates of the horizontal clipping planes that determine the frustums

are calculated in the same way of the vertical clipping planes. 𝑧𝑁𝑒𝑎𝑟 and zFar should be

calculated to be used in the algorithm. If the number of projections is m = 8, the number of

horizontal lenses is 128, the number of vertical lenses is 128, the normalized lens pitch is p =

2/n = 2/128 = 0.015625, then, 𝑧𝑁𝑒𝑎𝑟 = m×c×F where F is the value of the focal length of

the lenses or pinholes. 𝑧𝑁𝑒𝑎𝑟 must be measured in the same length unit that is used in the

scene which was created in the 3-D application at first place. For example, if the dimensions

of the scene objects are measured in centimetres, the far and near planes z-coordinates will be

measured in centimetres. In this case, the focal length should be multiplied by a constant c

that converts the value of 𝑧𝑁𝑒𝑎𝑟 to be in centimetres. In the previous example, the focal

length is chosen to be 0.35 cm, in this case c = 1 and 𝑧𝑁𝑒𝑎𝑟 = 2.8. zFar is selected so that

the whole scene is contained in the view volume, for example zFar = 200.

The following loop is implemented to specify the frustums at each time we produce an

elemental image for full parallax content to be displayed using a microlenses array.

if (column_index < 4)

 {

 if (row_index < 4){

glFrustum(-1.0, -1 + p*(4.5 + column_index), -1.0, -1 + p*(4.5 +

row_index), 2.7, 200);}

 if (3 < row_index < 125){

glFrustum(-1.0, -1 + p*(4.5 + column_index), -1.0 + p*(row_index -

3.5), -1.0 + p*(4.5 + row_index), 2.7, 200);}

 else {

glFrustum(-1.0, -1 + p*(4.5 + column_index), -1.0 + p*(row_index -

3.5), 1.0, 2.7, 200);}

 }

if (3 < column_index < 125)

81

 {

 if (row_index < 4){

glFrustum(-1.0 + p*(column_index - 3.5), -1.0 + p*(4.5 +

column_index), -1.0, -1 + p*(4.5 + row_index), 2.7, 200);}

 if (3 < row_index < 125){

glFrustum(-1.0 + p*(column_index - 3.5), -1.0 + p*(4.5 +

column_index), -1.0 + p*(row_index - 3.5), -1.0 + p*(4.5 +

row_index), 2.7, 200);}

 else {

glFrustum(-1.0 + p*(column_index - 3.5), -1.0 + p*(4.5 +

column_index), -1.0 + p*(row_index - 3.5), 1.0, 2.7, 200); }

}

else

 {

 if (row_index < 4){

glFrustum(-1.0 + p*(column_index - 3.5), 1.0, -1.0, -1 + p*(4.5 +

row_index), 2.7, 200);}

 if (3 < row_index < 125){

glFrustum(-1.0 + p*(column_index - 3.5), 1.0, -1.0 + p*(row_index -

3.5), -1.0 + p*(4.5 + row_index), 2.7, 200);}

 else {

glFrustum(-1.0 + p*(column_index - 3.5), 1.0, -1.0 + p*(row_index -

3.5), 1.0, 2.7, 200);}

 }

The function drawScene() performs several actions using OpenGL, GLUT, and GLU

libraries. For example, clearing buffers and setting the current matrix mode are performed

with the functions glClear(), and glMatrixMode(GL_MODELVIEW) respectively. The later

one performs subsequent operations on the matrix GL_MODELVIEW, translate and rotate the

camera to a specific position with glTranslatef, and glRotatef respectively. The functions

ambientLight, lightColor and lightPos are called to set the ambient light, the colour of light

and the position of light in the scene respectively. The function draw() is a member function

of an object from the class MD2Model pointed to by a pointer defined at the beggining.

draw() draws the objects after applying on them rotation, translation and scaling if needed.

The textures that were loaded previously are mapped to the scene. The function update (int

value) will be called to repeat the cycle of loading scene and setting up the parameters of the

viewport, the frustum etc... The integer value is an ID of the function that is set to be 0. If

another similar function is needed, a different ID must be specified. Each time this function is

called, the previous step is implemented and new variables are created. In the case when the

rendering is meant to be for full parallax, an array is created to hold the pixel values of the

elemental image with specific row and column index. glReadPixels() allows to read a specific

area in the rendered image which is the area on the screen where the elemental image is

82

displayed. In the case of full parallax, the pixels will be read from the screen pixel by pixel

and mapped into the final image. The way of mapping is depending on the image we need to

display weather it is a virtual orthogonal image or a real pseudoscopic image.

To display a virtual orthogonal image we need to rotate the pixels with 180º around the centre

of the elemental image, whereas, we need to map the pixels as they were read from the screen

without rotation if we want to display a real pseudoscopic image. The elemental image that is

read from the screen is saved in the temporary dynamic array that is locally created each time

we call the function update(), and then it is saved in the array that was created at the

beginning. Pixel values with a size of 3 bytes each are saved in the array starting from the

RGB values of the first pixel on the bottom left corner of the screen. We save pixels on the

first row of the screen starting from the bottom left to the bottom right corner of the screen.

The second row to scan is the second line above the bottom line starting from the left pixel

and so on. For each micro image, we need to read the image pixels from the screen and map

them into the final image. If xi and yi are the local coordinates of the pixels of the elemental

image, w_temp and h_temp are respectively the width and height of the elemental image.

Each pixel is represented with 3 bytes, so the local index of a pixel within the local array is:

local_index = 3×(yi×w_temp + xi) (3.20)

The global index of the same pixel in the final image is:

global_index = 3×(row_index×w×h_temp + yi×w + column_index×w_temp + xi) (3.21)

The pixels are mapped to the image, each colour value is written with a byte of the array. The

first colour R (red) value, G (green) value, and B (blue) value are assigned to the pixeles

indexed with local_index, local_index +1, and local_index +2 respectively as follows:

pixels_index[global_index] = pixels_index_temp[local_index]; (3.22)

pixels_index[global_index + 1] = pixels_index_temp[local_index + 1]; (3.23)

pixels_index[global_index + 2] = pixels_index_temp[local_index + 2]; (3.24)

83

The resulting image is displayed as a texture. A new viewport is specified to hold the whole

image, and then the displayed image is printed and saved as a frame. If the scene is an

animated

Figure 3.26: 3-D animated integral images generated using DIVGL algorithm.

3.3.7. The scene dimensions and the object points coordinates

84

scene, each frame of the scene will be displayed apart and saved as a separated image. The

total collection of frames are imported to a video application such as Windows Live Movie

Maker which converts the frames to a movie to be displayed on a screen covered with the

suitable lens array. The image shown in Figure 3.21 is supposed to be displayed with

microlens array. In the code used to render this image, w_temp, and h_temp are temporary

width and height set to be 8 and 6 respectively. The small window of 8×6 pixels is scanning

the image horizontally from the lower left corner to the right and then vertically form bottom

towards the top until it reaches the upper right corner, therefore, the number of bytes in

memory will start with 0 and ends up with 3×1024×768. The OpenGL function read the

pixels values of the small screen in the same way (i.e. lower left to upper right indicated with

the local index), save them in an array of 3×8×6 elements, and then with the FOR loop the

values are saved in their corresponding location in the main array pixel_index. After scanning

the whole image the resulting array pixel_ screen that holds the pixels values will be

displayed on the screen using OpenGL functions after the row index reaches 128 and get out

the IF statement. The image will be loaded from an md2 file (e.g. tris0.md2).

3.3.6. Generating animated scenes with DIVGL algorithm

Animated scenes can be generated with DIVGL method by generating each frame of the

scene as a statics image and display the frames in sequence. Figure 3.26 shows samples from

the frames of an animated scene of a rotating cube.

In OpenGL, we can define the shapes of individual objects within a separate coordinate

reference frame for each object called local coordinates; the objects are placed into

appropriate locations within a scene reference frame called world coordinates [5]. In the

cutlery scene example, the individual objects are transferred in proportion to the scene

coordinates using the function glTranslatef (x1, y1, z1). The scene coordinates are selected in

proportion to the world coordinates. The scene is transferred using glTranslatef(x, y, z)

function so that x, y, and z are the coordinates of the origin of the local coordinates while

x1,y1, and z1 are the coordinates of one object in proportion to the origin x, y, z. The function

glFrustum(-1.0, 1.0, -1.0, 1.0, 2.2, 200) is used to determine the valid space for projection,

the last two parameters are the distances of the near and far clipping windows in proportion to

the origin of the world coordinates.

85

The scene in OpenGL was composed of few simple objects to demonstrate the method of

producing a 3-D integral image from a 2-D image. The 2-D image rendered with OpenGL in

the environment of C++ is displayed on the computer screen. The resulting image is meant to

be displayed as a 3-D spatial image using the suitable lens array positioned in front of the 2-D

displayed image. OpenGL coordinates are x, y, and z, the centre of the coordinates or the

point where x=y=z=0 is located at the centre of the screen. X-axis and Y-axis are the 2-D

axis of the screen. X-axis is the horizontal one directed from left to right; therefore, the

positive direction is from left to right. Y-axis is the vertical axis, the positive space is the

upper one and the negative space is the lower one. Z-axis is the perpendicular axis on the

screen directed to the positive space towards the viewer while the negative direction is the

opposite. The camera is always located at the origin of the virtual view; the camera is simply

the viewer. The camera has two coordinate systems, the local and the world coordinate

system. The local coordinate system in which the camera positions at its origin point (0, 0,

and 0) can be used when the camera is rotated as it is rotates around its local coordinates.

Whereas, the world coordinates are used when the camera moves and moves its world

coordinates. In general, we have local and world coordinate systems. Objects are positioned

in both the local and the world coordinate systems. The local coordinate system is used for

rotating objects, whereas, the global coordinate system is used for positioning objects in the

world [57].

Taking the scene of Figure 3.14 as an example, one of the objects in the scene is the (spoon)

in Blender, the length of the spoon is 315 units; the highest width is about 60 units. The

object is scaled in OpenGL with the factor of 0.05 for x, y and z, which makes the length and

width 15.75, and 3 respectively. This particular object in this example is located at the

OpenGL coordinate z = -10 after translation, while the OpenGL camera is located at local

coordinate z = 0. We usually suppose that the screen is located at the same z coordinate of the

camera, the camera in OpenGL and as a result, the scene in the computer screen can be

transformed by changing the camera location, rotating around the local coordinates,

translating the objects in the world coordinates etc... The scene is translated to z=-20 using

the function: glTranslatef(0.0f, 0.0f, -20.0f). In this case, the whole scene is moved by 20 GL

units to the negative space, therefore, the camera is at z=20 in GL coordinates. If we suppose

the origin of local and world coordinates are identical at the beginning, the camera

coordinates will be moved to GL coordinate z=+20, the whole scene with be shifted by 20

negative GL units in the camera relative space.

86

Once the scene has been modelled in world coordinates, a viewing coordinate system is

selected and the description of the scene is converted to viewing coordinates. The viewing

coordinate system defines the viewing parameters including the position and the orientation

of the projection plane (i.e. view plane) which we can think of as the camera film plane [5].

The view plane in our case is simply identical to the computer screen plane; the clipping

window is the selected window in which the OpenGL 2-D image is displayed. The length and

the width are specified with OpenGL window size in pixels, in this example the size is 1024 x

768 pixels. The view volume is the 3-D clipping region in space where the models are

located. The size of this region is defined by the selected clipping window and determined by

the near clipping plane and the far clipping plane, (see Figure 3.9).

An angle of θ = 45º is selected to be the field-of-view angle from which the symmetric

perspective projection frustum view volume is seen. The GLU function that sets up the view

volume is gluPerspective(45.0, 1024 / 768, 1, 200). The distance of the far clipping window

and the near clipping window from PRP are respectively 200 and 1, whereas, the proportion

1024/768 determines the dimensions of the clipping window in pixels.

The scenes used as examples are originally created in 3Ds Max or Blender. These scenes had

to be exported from either Blender or 3Ds Max to the environment of Visual C++, processed,

and displayed with OpenGL. The models are loaded to C++ using the MD2 files loader,

whereas, the texture images of the models in the format .bmp are loaded using the image

loader.

3.4. Summary

The Equations derived in other works that are employed to produce integral images in the

way of forward projection can be modified, adopted, and employed to produce integral

images with OpenGL in the environment of VC++. Both the finite-sized and the pinhole

projection rendering models can be implemented using these Equations with some

modifications. When implementing the finite-sized projection rendering model, errors

occurred due to the shortage in the triangles or the vertices forming the mesh of the object

and the complexity of the calculations. The integral image produced with the forward

87

projection pinhole rendering model is more accurate and more realistic. 3D-from-2D image

was successfully produced by using the forward projection pinhole rendering model for each

projection point of 8 projections and multiplexing the sub-images of the projections. Using

OpenGL and VC++ to produce integral images in both the two models is much easier, faster,

more flexible and more accurate than applying immediate calculations on the vertices of the

projected object at a lower level. The functions and the methods used in the programs reduce

the efforts, save the time needed, and produce better integral images at least with the pinhole

mode or 3D-from-2D model. In addition to the main operations that are needed on the object

mesh, other sub-processes were created in the scene at a low level (i.e. the vertices level)

such as lighting, shading, etc... These are now implemented professionally at a higher level

with better accuracy and quality using OpenGL functions.

The successful production of a static integral image with the multi-projection pinhole model

can be generalized to produce animated integral images with the same way. The main issue

with producing animated integral images with this way is the time. To produce a 3-D

animation with this method, a faster and more powerful computer must be employed.

Producing video images with this approach simulates the process of filming real animated

scenes with a 3-D video camera that is feasible according to the results of the experiments

explained above. With the method of integral images computer generation (DIVGL),

autostereoscopic images and films with 3-D effect can be produced by creating the scenes and

animations in 3-D applications without the need for physical equipment neither in the capture stage

nor in the depth inverting stage. The primary image resulting from the capture stage is pseudoscopic

but it does not need to be corrected for converting it from pseudoscopic to orthographic using

physical devices. The image can be simply corrected by mapping the pixels in the image plane to

produce virtual orthogonal images of the scene. Simulating the pickup stage allows the images to

avoid the possible degradation can be caused by the different stages of capturing and correcting the

image.

The method DIVGL produces integral images of scenes composed of several objects despite

of the limitation in resolution the record and display devices can provide. If the whole scene

is recorded, a very high resolution is needed to represent the details of the scene, whereas, the

resolution of normal devices is limited. Resolution is primarily limited by the number of

pixels for each elemental image in the pickup devices as well as the display devices. The

resolution of the available printing devices is much more than that of the record or display

devices, therefore, this method is suitable for producing printed integral images.

88

Chapter 4

Computer Generation and Rendering of Integral Images by

Displacing the Virtual Camera Target (DCTarget)

4.1 Introduction

Images with 3-D effect are more realistic and closer to the real world images as they create an

influence on the human eyes similar to that created by real objects. In general, 3-D images

and videos are preferred over the traditional 2-D images. There is growing evidence that 3-D

imaging techniques will have the potential to establish a future mass-market in the fields of

entertainment (TV, video game) and communications (desktop video conferencing) [1].

Adding a third dimension to the traditional 2-D images and videos was the subject of many

different approaches and inventions. In several types of 3-D images and videos, viewers need

to wear special glasses to be able to see the 3-D effect. The need for such a device can form a

practical obstacle in the situations when the viewer is not prepared to watch 3-D images. For

example, if 3-D images are meant to be used for advertisement. In order to implement free

viewing 3-D display, different methods were introduced aiming to produce auto-stereoscopic

images. Several groups have demonstrated auto-stereoscopic 3-D displays [2]. True auto-

stereoscopic 3-D display systems should have parallax in all directions and present images

[1]. Multi-view Imaging (MI) and holography are popular methods for realizing auto-

stereoscopic images. Auto-stereoscopic display based on the MI principle does not produce a

fully accurate 3-D representation of the scene [3].

3-D Holoscopic imaging, also referred to as Integral Imaging (II) is a technique that is

capable of creating and encoding a true volume spatial optical model of the object scene in

the form of a planar intensity distribution by using unique optical components [10]. II

provides auto-stereoscopic intensity images with full parallax, free of any viewing device [4].

In II technique, a micro lens array is used to capture the image so that each lens views the

scene from a different point and parallax information is recorded. Images with a 3-D effect

can be viewed when the parallax information is replayed. II has a number of advantages over

89

both holography and MI.

In this chapter, the method of Computer Generation and Rendering of Integral Images by

Displacing the Virtual Camera Target (DCTarget) is proposed. DCTarget method is aimed to

generate static and animated 3-D auto-stereoscopic integral images. The resulting 3-D images

and videos can be viewed with naked eyes without the need for special glasses. These 3-D

images can be displayed on a special screen provided with a spherical micro lens array or

lenticular lens array (i.e. cylindrical lens array).

The integral image is composed with pixels selected from a number of orthographic images.

Each orthographic image is the orthographic projection of the scene on an image plane

rotated with a specific angle that is equal to the rotation angle of the virtual camera target. A

plug-in tool or so called Application Software (APS) based on the methods DCTarget and

DIVGL is designed to convert computer generated 2-D images and animations to static and

animated 3-D integral images. 2-D images are the input of the APS. The parameters of the

virtual system are selected through Human Machine Interface (HMI) that is available in the

APS. The algorithm DCTarget or DIVGL is implemented and applied to the input images,

and then the required 3-D integral images are generated. The APS allows the user to tune the

rendering and system variables through the HMI. These variables include the lens pitch, lens

focal length, the number of lenses, the type of the virtual lens array used in the capture stage

as well as the display stage, the type of rendering, and other parameters. DCTarget algorithm

that is implemented with the APS can provide fast generation of high quality integral images.

Thomas and Stevens [3] used multiplexed orthographic projections to display a 3-D model as

a 3-D image, the images. However, images produced with this method can be classified as a

MI technique, and therefore, the MI disadvantages are available, whereas, in the DCTarget

method, pixels are selected from several orthographic images and mapped to a single image.

DCTarget is an II technique and the advantages over MI are available. R. Olsson and Y. Xu

[13] created a simulation environment to allow for a simple definition of complex scenes and

from those, integral images are synthesized. DCTarget with the APS and the graphical user

interface (GUI) is simpler and more flexible as a wider range of 2-D static and animated

scenes can be converted immediately to images and videos with 3-D perception. Sokolov

[15] proved that a pinhole array could be used to capture a scene and create integral images.

This model was implemented with a software model and integral images were produced and

90

displayed on the flat surface of a micro lens array [51]. II is one of the 3-D imaging

technologies based on a pinhole array or a cylindrical lens array to capture incoherent light

rays from different directions [31]. Pinhole array is considered and simulated in DCTarget

method as the tool used in the image capturing stage of the process that is aiming to produce

integral images. DCTarget is a fast, cheap and efficient way to produce high quality integral

images with the ability to select the parameters of the imaging system. DCTarget method

comprises two stages, the capture stage and the replay stage. The capture stage is simulated

with the application software, the output of this stage is the computer generated integral

image. The replay stage is implemented by displaying the computer generated integral image

on a screen provided with optical tools; the integral image is reconstructed and displayed as a

3-D auto-stereoscopic image.

4.2 The pickup stage

We need to prove that the micro-image formed under each pinhole when a pinhole array is

used to capture the scene (or microlens when a microlens array is used) is a perspective

image of a part of the scene, and then, the micro-image composed from pixels selected from

different orthographic projections of the scene are perspective images. In other words, these

micro-images are the same as the micro-images produced with DIVGL method.

Each lenslet produces a micro-image provided with the characteristics of a perspective micro-

image. If a micro-image formed under each lenslet is provided with X́ and Ý axis, x́, and ý

coordinates of the object point projection are inversely proportional to z coordinate of the

projected points in the scene. The expression for the x́, and ý display coordinates stated in

OpenGL for the perspective camera transformation suggest the same relationships between x

& z, and y & z in the horizontal and vertical directions respectively [54].

If the camera is located on the focal point of the lens or the pinhole that is considered as the

centre of the coordinate system, the coordinates of the object points and their projections on

the image plane are linked with the following formulas:

x́ = ((-a×x)/(b×z)) + c (4.1)

91

ý =((-á×y)/(b́×z)) + ć (4.2)

If each micro-lens is considered as a separated camera, for each micro-lens, the coordinates x́

and ý of the projection points on the image plane are shifted with x1 and y1 respectively

where x1 and y1 are the coordinates of the micro-lens in the image plane.

In the image plane, the centre point in the image plane is the centre of the coordinate system.

The coordinate system with X́ and Ý axis is a local one for each micro-lens in which the

centre of the micro-lens is the centre of its local coordinate system. The previous

relationships are correct for the local coordinates of each micro-lens. To make these

relationships correct in the global coordinate system of the image plane, the coordinates of

the micro-lens should be considered. The coordinates of the object points would be shifted

with x1 and y1, and then the relationships between the coordinates of the projection points in

the image plane and object points are:

x́ = ((-a×(x - x1))/(b×z)) + c (4.3)

ý = ((-á×(y - y1))/(b́×z)) + ć (4.4)

x́, and ý are the coordinates on the image plane, x, and y the coordinates in the scene, á, b́, ć,

a, b, and c, are constants related to the image settings.

In our case, each lens is considered as an independent camera, then, each lens has an

independent coordinate system with a centre located on the focal length of the lens, whereas,

the centre of the coordinate system in which the coordinates of the object points are measured

is located on the centre of the image plane (i.e. point c). Therefore, to use the same coordinate

system for the object points and their projections, the object points should be transferred to

the coordinate system of each lens, and the Equations 4.3 and 4.4 will be as follows:

x́ = -a ×(x – c1)/b ×z + c = ((- x + A)/(B ×z)) + C (4.5)

ý = -á ×(y – c2)/b́ ×z + ć = ((- y + Aʹ)/(Bʹ ×z)) + Cʹ (4.6)

92

where, A, B, C, Aʹ, Bʹ, and Cʹ are constants related to the image settings. If a cylindrical lens

array is used, (4.5) is applicable, whereas, the point with y = 0 in the central vertical line of

the lenslet is considered as the centre of the lenslet local coordinates. The centre of the local

Figure 4.1: The micro-image is a perspective projection of a part of the scene.

coordinate system is shifted in x direction only and then Equation (4.6) would be:

ý = (- y/(Bʹ ×z)) + Cʹ (4.7)

Referring to Figure 4.1:

aʹdʹ/aʹaʹʹ = F/Aaʹʹ (4.8)

aʹdʹ = aʹaʹʹ×F/Aaʹʹ (4.9)

xʹ- cdʹ = (xʹ-x)×F/z + F, cdʹ = c1 (4.10)

xʹ×z - c1×z + xʹ×F - c1×F = xʹ×F -x×F (4.11)

xʹ×z - c1×z = -x×F+ c1×F (4.12)

93

xʹ = ((-x×F+ c1×F)/(z)) + c1 (4.13)

xʹ = ((-x + c1)/(1/F×z)) + c1 (4.14)

The same discussion is valid for yʹ, if the constants are replaced, the last Equations for xʹ and

yʹ will be as follows:

x́ = ((- x + A)/(B ×z)) + C (4.15)

yʹ = ((- y + Aʹ)/(Bʹ ×z)) + Cʹ (4.16)

In the case of using a cylindrical lens array, (4.6) can be written as ý = - y/Bʹ ×z + Cʹ, where,

x́ and yʹ are the projection coordinates of the object points with the coordinates x and y in the

same coordinate system. A, B, C, Aʹ, Bʹ, and Cʹ are constants. Equations (4.5) and (4.6) are

identical to Equations (4.15) and (4.16) respectively, for each micro lens A, and Aʹ mean that

x coordinates of the object points are shifted but that doesn’t affect the relative positions of

the object point projections. Therefore, the micro-image formed under each pinhole is a

perspective image of a part of the scene. The capture stage is a simulation of the process of

creating a cluster of micro-images of the scene, which is processed and used to generate

integral images. In order to create integral images with horizontal parallax, cylindrical or

Plano-convex cylindrical lens array can be used. If the lens array is placed on the image

plane, which is an array of pixels charge-coupled device (CCD) employed to record the

cluster of micro-images formed by the lens array, each lenslet of the array captures a part of

the scene and creates a micro-image to be recorded on the image plane. Full parallax can be

achieved using a spherical microlens array. A simplification of the process is applied by

replacing the microlens array with an array of pinholes; also, the simulation of the imaging

process is based on this simplification. Each microlens (or pinhole) plays the role of a mini

camera, and each micro-image is a perspective projection of the scene or part of the scene

that can be seen through the aperture of that mini camera.

Referring to Figure 3.8 in which the pickup stage and the replay stage of the integral imaging

process are shown. Each pinhole (or micro lens) in the pickup stage sees a part of the scene

called the micro lens field of view. The micro-image formed by each lens is the image of that

part of the scene the lens sees, which is the entire part of scene that exists in the lens’s field of

94

view. It is possible to consider the micro-image formed by each micro lens as a perspective

projection of the points of the objects in the scene on the image plane through the lens or the

aperture of the pinhole providing that the points of the objects exist in the lens’s field of view.

Regarding the fact that the surface of the image plane on which the micro-image is recorded

contains a limited number of pixels, it is possible to trace back all the rays of light received

by the image plane starting from the pixels of the micro-image and ending with the projected

scene points. The incident rays striking the image plane at the extreme left and right pixels of

the micro images are shown in Figure 3.8.

In order to simplify the calculations in the pickup stage, the micro lens array is replaced by a

pinhole array. Using a pinhole array is an embodiment of the method, however, using

microlens array is supposed to produce images with higher quality. In the case of using

microlens array, the refraction of the rays would be taken into account when the pixel values

are acquired and calculated. As a trade-off between the quality and the calculation

complexity, the pinhole array is considered instead of microlens array and the image pixel

values resulting in this approach are approximated image pixel values supposed to be

acquired when using microlens array. One of the tasks the application software can perform

is the process of generating the integral image by creating a cluster of micro-images in which

the number of micro-images is equal to the number of spherical or cylindrical micro lenses

used to capture and replay the integral image. One perspective projection is needed to create

each micro-image. If the number of micro lenses is 100×100 = 10000, the number of

projections needed is 10000. In order to reduce the number of projections and perform faster

and easier process of rendering the integral images, the method of displacing the virtual

camera target is introduced.

The camera target is a point in the scene space at which the camera is focusing and the

camera central axis is the vertical axis that is perpendicular to both the lens array flat surface

and the image plane. The intersection point between the flat surface and the camera central

axis is the centre point. In this method the virtual lens array (or the virtual camera) that is

utilized to capture the micro-images is rotated so that the camera target is displaced, whereas

the centre point is fixed. The global coordinates of the centre point are (0, 0, and 0). The

rotation angle of the camera central axis is equal to the rotation angle of the image plane and

the lens array. The initial position of the lens array and image plane is the position when the

camera target has zeroed x, and y coordinates, the camera central axis has zeroed vertical and

95

horizontal rotation angles, and the image formed on the image plane in this position is

replaced with the Final Integral Image (FII). If the microlens array is used, the lens array and

the camera central axis are rotated vertically and horizontally, and the camera target is

displaced to occupy different positions within the x-y plane, whereas, the rotation angles are

only horizontal when using lenticular lens array, and the camera target in this case is moving

along the x-axis. The scene is projected orthographically on the image plane, and the

resulting image is the orthogonal projection of the scene objects points on the image plane;

the incident rays starting from the objects points and hitting the pixels on the image plane are

parallel to the camera central axis and perpendicular to the image plane. Each time the micro

lens array is rotated, the coordinates of the camera target are changed and the camera central

axis rotation angles are revaluated, and a new orthographic image is rendered. The technique

used in this method is a process to compose a perspective integral image that is called FII

from the different orthographic images. Specific pixels of every orthographic image are

selected and mapped by value to the FII. The process of mapping specific pixels from the

orthographic projections to the FII simulates the perspective projection of the scene with the

same lens array. The projections of the scene objects points on the FII that result from the

mapping process are equivalent to the perspective projections of the scene objects points on

the initial image plane with the same microlens array.

Figure 4.2 shows an upper view of a horizontal cross section of the image plane and the

imaged volume containing the objects. The camera’s coordinates are permanently fixed while

the direction of the camera is changeable. If OpenGL is the application programming

interface used to display the images, the camera is always located at the eye space coordinate

(0, 0, 0) which is supposed to be the centre of the display screen, or more precisely, on the

centre of the image. Therefore, in order to view the rotation of the camera in the opposite

direction, we need to rotate the scene while the camera stays in the same place, also, in order

to view the translation as if the camera is translated in the opposite direction, the scene must

be translated instead, while the camera is fixed. However, it is possible to consider the

camera to be rotating or moving while the virtual scene is fixed, whereas, the scene is

actually rotating and moving, while the camera location is in stationary. That is acceptable

because moving /rotating the scene and moving/rotating the camera are identical in the

viewer point of view.

Plane xi-yi of the image coordinate system contains the plane of the display screen. The

96

horizontal axis is xi, the vertical axis is yi, and zi is the axis that is perpendicular to the image

plane crossing it in the centre (0, 0, 0). The camera is located in that centre, the zi axis is

directed to the opposite direction headed away from the viewer, therefore, z values of the

points inside the screen are positive and the ones outside the screen are negative. In general,

the following four coordinate systems are considered: 3-D world coordinate system (x, y, x),

3-D camera coordinate system (xc, yc, zc), 2-D image coordinate system, and 2-D pixel

coordinate system. In this method, only the orthographic projection is considered. The image

plane is supposed to be located in the xi-yi plane, and contained in the display screen or

forming a part of it.

Figure 4.2: A horizontal cross section showing a camera with different image planes.

UV plane of the 2-D pixel coordinate system is contained in the screen plane. The origin of

this system is the upper left corner of the image, U axis is directed from left to right, and V

axis is directed from up to down. The measurement unit in this system is pixel, therefore,

each point in the image has u and v coordinates measured by pixels and always positive.

Figure 4.2 shows an object that simulates a real life object, but in this method, the objects are

97

virtual and created in a graphic application such as 3-D Max, Maya, or Blender, and exported

to VC++ as geometry and texture files. The vertices of the objects in the scene are supposed

to have coordinates in the world coordinate system (x, y, and z), while the texture files

contain u-v mapping of the image.

The scene and all the objects inside the viewing volume are orthographically projected on the

image plane. The object coordinates are multiplied by the Model-View matrix to transform

the vectors of the object from the object space where the world coordinate system or the

object coordinates is used to the eye space or the camera space where the camera coordinate

system is used. In addition, other elements in the scene such as lighting are transformed from

the object space to the camera space. The Model-View matrix is the model matrix multiplied

by the view matrix; the model matrix is to convert from object space to world space, while

the view matrix is to convert from world space to camera space. Three elements are able to

form the Model-View matrix; these are the position of the camera or the viewing eye, the

look-at point to which the camera is pointing, and the UP direction vector. These elements

can be used to construct the model-view matrix without using OpenGL transform functions.

The vector t-c from the camera point c to the target point t in each position of the image plane

in Figure 4.2 is the look-at vector that defines the target point in proportion to the camera or

the direction of the camera, to get the forward vector f with a unit length, the vector t–c is

normalised. The vector (f) with its X, Y, and Z coordinates respectively (f0, f1, and f2) is

always perpendicular to the image plane or the plane x-y of the camera coordinate system.

UP vector with its X, Y, and Z coordinates respectively (up0, up1, and up2) is given to define

the upper direction of the scene. It is not necessary for UP vector to be perpendicular to the

forward vector (f), however, the default coordinates of this vector in the world coordinates are

(0, 1, and 0). In order to get the actual up vector, a cross product is applied to vector (f) and

the upper vector (up). The resulting vector is the side vector (s) with its X, Y, and Z

coordinates respectively (s0, s1, and s2) which is perpendicular to (f) and (up) vectors, and

then a cross product is applied to side vector (s) and (f). The actual up vector is perpendicular

to f and side vectors at the same time; therefore, the actual up vector is contained in the image

plane. The three vectors: (f), side, and the actual up vector form the camera coordinate system

in which the camera is located in the centre of this system.

98

The image plane is always orthogonal to the forward vector. The target point can be any point

in the object space and therefore the image plane can be any plane that contains the camera

location c. The camera in this method is orthographical one, which means the scene is

projected orthogonally on the image plane.

Each point in the world space is multiplied by the Model-View matrix, in other words, each

point is brought to the camera space. If the homogenous coordinate w equals to 1 and the

most right column which is specified for the translation transformation is zeroed. The Model-

View matrix [57] can be applied on written as follows:

Figure 4.3 represents these vectors, the camera space and the positions of the image plane.

Figure 4.3: The camera space and 3 virtual positions of the image plane.

99

After multiplying the object vertices by the model-view matrix, the resulting coordinates are

multiplied by the projection matrix to get the clip coordinates. In this step, object vertices are

clipped out from the viewing volume or the frustum. For orthographic projection or the

parallel projection, the clipping volume is a parallelepiped. The clipping volume has 6

clipping planes: front, back, left, right, near and far. In this method, the camera is positioned

on the origin that is the centre of the near clipping plane or the front-clipping plane, the front

plane is contained in the image plane.

Referring to Figure 4.3, the camera is located in the image plane and the front clipping plane,

if the target point of the camera or the look-at point rotates with an angle (– θ) keeping the

camera in the same location, the forward vector (f) stays perpendicular to the image plane or

the front clipping plane. In fact, to move or rotate the camera, the camera stays in the location

with the coordinates (0, 0, and 0) while the scene moves, or rotates in the opposite direction.

Because the movement or the rotation of the scene will be equivalent to the movement or

rotation of the camera with an opposite direction, in order to make the discussion easier, from

now on, virtual camera movement and rotation will be considered instead of moving and

rotating the scene. Therefore, if OpenGL is used, moving or rotating the camera and image

plane is equivalent to moving or rotating the scene respectively with the same amount but in

the opposite direction.

In Figure 4.3, if the normal to the image plane numbered with 0 is supposed to be the

reference normal, the angle between this normal and the forward vector f is equal to 0 when

the virtual image plane is on the position 0, and the target point is t0. If the camera stays in

the origin and the target point moves to the point t1 on the same horizontal plane formed with

the vectors f and s. The angle between the reference normal and the forward vector f is –θ.

The virtual image plane will be rotated around up vector by the angle –θ to the position 1,

this direction is considered as the negative direction. If the target point moves to the position

t2 on the same horizontal plane, the angle between the reference normal and the vector f is θ,

the virtual image plane is rotated around up vector to the position 2, this direction is

considered as the positive direction. The image plane always is formed with the vectors up

and s, while vector f is always perpendicular to up and s vectors. The orthogonal projection is

formed by projecting the vertices of the objects that are contained in the view volume on the

image plane. Projection rays are parallel to the normal and perpendicular to the image plane.

100

4.3 The new target point calculation in relation to the rotation angles of the

camera

If the camera is rotated by the angle α around up vector, and the angle β around s vector, so

that the rotation is horizontal, the new target point will be located in the plane that contains

the vectors f and s. In this case, the new target point will be belonging to the plane that is

perpendicular to the forward vector f and containing the original target point t0. In general, all

the target points will be belonging to the crossing line between these two perpendicular

planes. In the case of vertical rotation, the rotation will be performed around the vector s and

the new target will be located on the plane that is perpendicular to the side vector s or

perpendicular to the plane that contains the vectors f and s. This plane will be containing the

original target point t0, the camera location and the forward vector f. All the target points in

this case will be belonging to the crossing line between this plane and the plane that is

perpendicular to f vector and containing the original target point t0.

In this method, for a given original target point t0, camera location, and rotation angle, the

coordinates t_newx, t_newy, and t_newz of the new target point in the two cases of horizontal

and vertical rotations of the image plane (or the camera) around the camera location will be

calculated.

When the rotation is horizontal only, vertical only, and mixture of the horizontal and vertical,

the new target point vector t_new(t_newx, t_newy, t_newz) will be extracted from the

following Equations respectively:

t_new = c + R×f + R×tan 𝛼×s (4.17)

t_new = c + R×f + R×tan 𝛽×up (4.18)

t_new = c + R×f + R× (tan 𝛼×s + tan 𝛽×up) (4.19)

where, the vector c (cx, cy, cz) is the camera location in the world coordinate system.

The angle by which the camera (or the image plane) is rotated around the vector up or the

horizontal rotation angle is α.

101

The angle by which the camera (or the image plane) is rotated around the vector s or the

vertical rotation angle is β.

The forward unity vector f (fx, fy, fz) is the normalised vector of a vector starting from the

camera and ending in the original target point t0.

The vector s (sx, sy, sz) is the side unity vector that starts from the camera location.

The vector up (upx, upy, upz) is the unity vector that starts from the camera location.

The distance between the camera c and the original target point t0 (t0x, t0y, t0z) is R. The

value of R will stay the same as it was at the beginning when the target point was at the given

original position. The value of R can be calculated with the following Equation:

R = √(𝑡0𝑥 − 𝑐𝑥)2+(𝑡0𝑦 − 𝑐𝑦)2+(𝑡0𝑧 − 𝑐𝑧)2 (4.20)

The vector ct0 between c and t0 is expressed with the following x, y, and z Equation:

ct0 = (𝑡0𝑥 − 𝑐𝑥) × 𝑥 + (𝑡0𝑦 − 𝑐𝑦) × 𝑦 + (𝑡0𝑧 − 𝑐𝑧) × 𝑧 (4.21)

The forward unity vector f in the world coordinate system (x, y, and z) is result of normalising

the vector ct0, from Equation (4.21):

f =
(𝑡0𝑥−𝑐𝑥)

𝑅
×x +

(𝑡0𝑦−𝑐𝑦)

𝑅
×y +

(𝑡0𝑧−𝑐𝑧)

𝑅
×z (4.22)

The vector UP is given to define the upper direction of the scene; the default coordinates of

this vector in the world coordinates are (0, 1, and 0). The side vector s is the cross product of

UP vector and f. The coordinates of the side vector s can be calculated by multiplying UP

vector with f.

s = f×UP = (fy×UPz-fz×UPy)×x+(fz×UPx-fx×UPz)×y+(fx×UPy-fy×UPx)×z (4.23)

UPx = 0, UPy = 1, UPz = 0, then the side vector is:

s=(- fz×UPy)×x+(fx×UPy)×z=(- fz)×x+(fx)×z=[-
(𝑡0𝑧−𝑐𝑧)

𝑅
]×x+[

(𝑡0𝑥−𝑐𝑥)

𝑅
]×z (4.24)

The vector up is the cross product of f and s.

102

up = s×f = (sy× fz - sz× fy)×x + (sz× fx - sx× fz)×y + (sx× fy - sy× fx)×z (4.25)

From Equations (4.24) and (4.22):

up = (- sz× fy)×x + (sz× fx - sx× fz)×y + (sx× fy)×z (4.26)

up = (-fx× fy)×x + [(𝑓𝑥)2 + (𝑓𝑧)2]×y + (- fz× fy)×z (4.27)

up = {-[
(𝑡0𝑥−𝑐𝑥)

𝑅
] × [

(𝑡0𝑦−𝑐𝑦)

𝑅
]}×x + {[

(𝑡0𝑥−𝑐𝑥)

𝑅
]

2

+ [
(𝑡0𝑧−𝑐𝑧)

𝑅
]

2

}×y +

{-[
(𝑡0𝑧−𝑐𝑧)

𝑅
] × [

(𝑡0𝑦−𝑐𝑦)

𝑅
]}×z (4.28)

up = [- (𝑡0𝑥 − 𝑐𝑥)(𝑡0𝑦 − 𝑐𝑦) 𝑅2⁄]×x +{ [(𝑡0𝑥 − 𝑐𝑥)2 + (𝑡0𝑧 − 𝑐𝑧)2] 𝑅2⁄ }×y +

[- (𝑡0𝑧 − 𝑐𝑧)(𝑡0𝑦 − 𝑐𝑦) 𝑅2⁄]×z (4.29)

The scalar components on the axis x, y, and z of the vector ct0 that starts from the camera

position and ends in the original target point are (𝑡0𝑥 − 𝑐𝑥), (𝑡0𝑦 − 𝑐𝑦), and(𝑡0𝑧 − 𝑐𝑧).

These components will be replaced by the following variables respectively 𝑅𝑥, 𝑅𝑦, 𝑎𝑛𝑑 𝑅𝑧

where:

(𝑡0𝑥 − 𝑐𝑥) = 𝑅𝑥, (𝑡0𝑦 − 𝑐𝑦) = 𝑅𝑦 and (𝑡0𝑧 − 𝑐𝑧) = 𝑅𝑧 (4.30)

Equations (4.20), (4.22), (4.24), and (4.29) can be rewritten as the following Equations

(4.30), (4.32), (4.33), and (4.34) respectively:

R = √(𝑅𝑥)2+(𝑅𝑦)
2

+(𝑅𝑧)2 (4.31)

f =
𝑅𝑥

𝑅
×x +

𝑅𝑦

𝑅
×y +

𝑅𝑧

𝑅
×z (4.32)

s = -
𝑅𝑧

𝑅
×x +0×y +

𝑅𝑥

𝑅
×z (4.33)

103

up = [- 𝑅𝑥 × 𝑅𝑦 𝑅2⁄]×x +[(𝑅𝑥
2 + 𝑅𝑧

2) 𝑅2⁄]×y + [- 𝑅𝑧 × 𝑅𝑦 𝑅2⁄]×z (4.34)

The coordinates in the world coordinate system of the new target point for given camera

location, original target point, horizontal rotation angle, and vertical rotation angle can be

derived from Equations (4.19), (4.30), (4.32), (4.33), and (4.34):

t_new = cx×x + cy×y + cz×z + R×(
𝑅𝑥

𝑅
×x +

𝑅𝑦

𝑅
×y +

𝑅𝑧

𝑅
×z) + R×{ tan 𝛼×(-

𝑅𝑧

𝑅
×x +0×y +

𝑅𝑥

𝑅
×z) + tan 𝛽× {[- 𝑅𝑥 × 𝑅𝑦 𝑅2⁄]×x + [(𝑅𝑥

2 + 𝑅𝑧
2) 𝑅2⁄]×y + [- 𝑅𝑧 × 𝑅𝑦 𝑅2⁄]×z}} (4.35)

t_new = cx×x + cy×y + cz×z + 𝑅𝑥×x + 𝑅𝑦 ×y + 𝑅𝑧 ×z - 𝑅𝑧 × tan 𝛼×x +𝑅𝑥 × tan 𝛼 ×z -

(𝑅𝑥 × 𝑅𝑦 × tan 𝛽 𝑅)⁄ ×x + ((𝑅𝑥
2 + 𝑅𝑧

2) × tan 𝛽 𝑅)⁄ ×y – (𝑅𝑧 × 𝑅𝑦 × tan 𝛽 𝑅⁄)×z (4.36)

t_newx×x+t_newy×y+t_newz×z=[cx+𝑅𝑥-𝑅𝑧 × tan 𝛼 - (𝑅𝑥 × 𝑅𝑦 × tan 𝛽 𝑅)]⁄ ×x+[cy+𝑅𝑦 +

((𝑅𝑥
2 + 𝑅𝑧

2) × tan 𝛽 𝑅)⁄]×y + [cz + 𝑅𝑧 + 𝑅𝑥 × tan 𝛼 –(𝑅𝑧 × 𝑅𝑦 × tan 𝛽 𝑅⁄)]×z (4.37)

Then the new target coordinates can be extracted From Equations (4.30) and (4.37) as

follows:

t_newx = 𝑡0𝑥 - 𝑅𝑧 × tan 𝛼 - (𝑅𝑥 × 𝑅𝑦 × tan 𝛽 𝑅)⁄ (4.38)

t_newy = 𝑡0𝑦 + ((𝑅𝑥
2 + 𝑅𝑧

2) × tan 𝛽 𝑅)⁄ (4.39)

t_newz = 𝑡0𝑧 + 𝑅𝑥 × tan 𝛼 – (𝑅𝑧 × 𝑅𝑦 × tan 𝛽 𝑅⁄) (4.40)

The previous calculations are shown in C++ and OpenGL code as follows:

alpha_angle = atanf((2*(image_index+1)-n_pixels-1)/(2*focal_length_norm));

beta_angle = 0.0;// When using a cylindrical lens array

beta_angle = atanf((-2*(image_index_y+1)-n_pixels-1) /

(2*focal_length_norm));// When //using a spherical lens array

r_x = t_zerox - centre_x;

r_y = t_zeroy - centre_y;

r_z = t_zeroz - centre_z;

104

r_xyz = sqrt (r_x*r_x + r_y*r_y + r_z*r_z);

t_newx = t_zerox - r_z*tan(alpha_angle) - ((r_x*r_y*tan(beta_angle))/r_xyz);

t_newy = t_zeroy + (((r_x*r_x + r_z*r_z)*tan(beta_angle))/r_xyz);

t_newz = t_zeroz + r_x*tan(alpha_angle) - ((r_z*r_y*tan(beta_angle))/r_xyz);

core::matrix4 matr;

matr.buildProjectionMatrixOrthoLH(200, 150, -200, 5000);

vector3df(t_newx,t_newy,t_newz));

For example, if the camera location was at (-50,82,-13), and the original target point at

(0,20,300), vertical rotation angle 𝛽 = 0º, and the horizontal rotation angle equals to -18º. The

cordinates of the new target point will be:

t_newx = - 𝑅𝑧 × tan 𝛼 = -101.69, t_newy = 20, and t_newz =300 + 𝑅𝑥 × tan 𝛼 = 283.75

4.4 The image plane rotation angles calculation

Figure 4.4 shows a cross section of the system when either a micro lens array or cylindrical

lens array is used. In the case of perspective projection, the incident rays hitting the pixels in

the image plane are shown as well as the rotated micro lens array in 5 different positions. The

incident ray that intersects the image plane provides a value to the pixel it hits. If the incident

ray is traced back to the scene, and the ray intersects an object at a point, it is possible to

consider the value of the pixel it hits is the perspective projection of the object point on the

image plane. Therefore, if the same ray intersects any other image plane, the pixel it hits will

record the same value of the pixel it hits in the perspective projection. Based on this principle,

if each ray is received by another image plane and the value of the pixel it hits is mapped to

the FII. The image that results from this process is equivalent to the perspective projection of

the scene. The reason is that the pixel values of the final image are the same as the pixel

values of image rendered with a perspective projection of the scene through a pinhole array

or a micro lens array taking into account the characteristics of the micro lens array that affect

the incident rays. Each group of parallel rays in the perspective projections is supposed to be

received by the image plane of the camera when the camera is rotated with a specific rotation

angle. The rotation angles of the camera and the locations of the camera target are selected so

that the image plane is perpendicular to each group of the parallel rays apart, and then the

105

orthographic projection is applied to the scene. Specific pixel values are selected from each

orthographic image and mapped to the corresponding pixels in the FII.

The objects illustrated in Figure 4.4 simulate the real life objects. The scene is created in a

graphic application such as 3-D Max, Maya, Blender, etc… and exported to the Visual C++

application software that implements the method of creating integral images. The locations of

the camera target, and the rotation angles, as well as the selected and mapped pixel locations

are calculated in the light of the characteristics of the used devices including the micro lens

array or the pinhole array. In the following discussion, a simplified system is considered in

which a pinhole array is used. The rules applied when a cylindrical lens array is used are the

same as the rules applied in the case of micro lens array, however, the camera is rotated

vertically and horizontally in the latter case, whereas, the camera is rotated horizontally in the

former case.

Referring to Figure 4.4, if the following conditions and parameters are considered:

A cylindrical lens array is used. In order to simplify the calculations, a virtual cylindrical

pinhole array is considered to replace the practical cylindrical lens array (lenticular array).

The vertical pinhole array behaves, as a cylindrical lens array with a focal length equals to the

distance between the pinholes and the image plane. Rays’ refraction and the effect of the

lenses on the rays’ direction are neglected to simplify the calculations.

Width of pixel p is measured with a length unit.

Pitch of lens Pt_l is measured with a length unit.

The normalised value of Pt_l is: Pt =𝑃𝑡_𝑙 𝑝⁄ , where p is the width of pixel, Pt is an absolute

value with no dimension or unit.

Normalising these values or dividing them by the width of pixel is an approach to use the

width of the pixel as a unit of length in the calculations to make them easier and independent

of the width of pixel in the various types of screens, and independent of the types of lens

arrays that have various focal lengths. The same approach will be applied for other variables

measured with the length unit.

The focal length of the lens is Fl measured with a length unit but the normalised value of the

focal length F is the actual value divided by the width of pixel, then 𝐹𝑙 = F×p.

106

Width and height of the image plane or the screen are wl and hl respectively. The normalised

values of the width and height are w = wl/p and h = hl/p respectively. In this case, w is the

number of the horizontal pixels, whereas, h is the number of vertical pixels in the display

screen.

Figure 4.4: Orthographic projections at different rotation angles in the pickup stage,

and the objects reconstruction in the replay stage.

The number of horizontal pixels under a lens with the width of Pt is n, then Pt = n×p.

N is the total number of effective lenses covering the image plane in the capture stage or the

screen in the replay stage, in this simple example n = 5, N = 8.

107

The pixels under a single lens starting from right to left are p1, p2, p3, p4, and p5, whereas,

the primary positions of these pixels when the image plane is rotated with specific angles are

p1', p2', p3', p4', and p5' respectively.

An index m is used to indicate the positions of the image plane, from Figure 4.4, the image

plane numbered with 1 is indicated with m = 1, image plane number 2 is indicated with m =

2, and so on.

The number of horizontal pixels under a lens with the width of Pt is n× Pt = n×p.

N is the total number of effective lenses covering the image plane in the capture stage or the

screen in the replay stage, in this simple example n = 5, N = 8.

The pixels under a single lens starting from right to left are p1, p2, p3, p4, and p5. While the

primary positions of these pixels when the image plane is rotated with specific angles are:

p1', p2', p3', p4', and p5' respectively.

An index m is used to indicate the positions of the image plane, from Figure 4.4, the image

plane numbered with 1 is indicated with m = 1, image plane number 2 is indicated with m =

2, and so on.

Point c is the centre point of the image planes that are rotated to make different angles with

the original image plane that has the angle 0 to which all the pixels are mapped.

The variable 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 is devoted to indicate the different projections starting with 0 for

m = 1.

For the first pixel p1 with the green colour, the angle α is the angle between the original

image plane and the rotated image plane, the approximate value is:

𝑡𝑎𝑛 𝛼 = 𝑝1𝑝1′ 𝑐 𝑝1′ ⁄ = (𝑃𝑡 2⁄) 𝐹𝑙⁄ = 𝑃𝑡 2𝐹𝑙⁄ (4.41)

A pixel centre is the point on the rotated image plane where the relevant object point in the

scene is projected. The incident ray that intersects the rotated image plane in pixel A is the ray

that starts from the orthogonally projected object point, and then virtually passes through the

microlens lens array or the cylindrical lens array and intersects the original image plane in

pixel B. Therefore, the value of pixel A is the same as the value of pixel B. For more

accuracy, the pixel centre point is considered as the point of the screen where the

corresponding point in the scene is projected on the image plane.

108

If the normal of the image plane makes a negative angle with the original normal, the image

plane positions will be represented with the image planes numbered 1 and 2. If the normal

makes an angle of 0, the image plane position will be represented with the image plane

numbered 3 which is the same as the original position, whereas, if the angles are positive, the

positions will be represented with the image planes numbered 4 and 5. Pixels from the

resulting image on the image plane with the position 1 will be mapped to the pixels of the

vertical columns located under the cylindrical lenses starting from the right hand side of the

lenses. The first column from the right side is p1; the second is p2 and so on. If the centres of

the pixels are considered, for each image plane position with the index m and the rotation

angle α, we can write:

𝑡𝑎𝑛 𝛼 =

𝑝

2
×(2𝑚−𝑛−1)

𝐹𝑙
 = 𝑝 × (2𝑚 − 𝑛 − 1) 2𝐹𝑙⁄ (4.41)

α = tan−1 [(2𝑚 − 𝑛 − 1) 2𝐹]⁄ (4.42)

If the images taken (i.e. the projections of the scene) are indexed with the index called

image_index. For example, the first projection is given the number m = 1, and image_index =

0, then m = image_index +1, and the last Equation will be:

α = tan−1 {[2((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1) − 𝑛 − 1] 2𝐹}⁄ (4.43)

In the example shown in Figure 4.4, n = 5 and F = 3. When 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 takes the values 0,

1, 2, 3, and 4, the set of angles are respectively: -33.69, -18.43, 0, 18.43, and 33.69.

The index m can be assigned with the number of the projection in OpenGL. Each projection

is taken when the image plane is rotated with a specific angle α, from each resulting image

we need to extract some of the columns that are corresponding to the set of columns on the

final image. These columns of pixels are selected based on the equivalence between the

values of these pixels and the values of the pixels in the final image that would have the same

values in the case when a set of vertical pinholes or a vertical lens array is used to capture the

image.

109

For example, in Figure 4.4, if a lens array or a set of vertical pinholes are used, the column of

pixels that has the point p1' in the rotated image plane will have the same pixels values of the

column in the final image plane to which the point p1 is belonging. Point p1 is the location

where a point from the scene is projected on the image plane that has a rotation angle of 0. If

the image plane is rotated with the angle α, the projection of the same point will be located at

p1' from this image plane.

Calculating the distance from the centre of the image plane that is rotated with a zeroed angle

to the location where the columns of pixels are mapped is required. If the cylindrical lens

array is used, the locations of the columns are the locations on the original image plane where

the equivalent columns from the rotated image planes are copied. We need to calculate these

locations and write the pixels on them, the values of these pixels are extracted from the

images that result from the orthogonal projections on the rotated image planes. The

corresponding locations in the rotated planes are calculated by multiplying the distances

between the central columns in the image planes to the pixels locations by the cosine of the

rotation angle. The mapped pixels form a final image. The final image is equivalent to the

perspective projections of the scene on the image plane so that each micro image represents a

perspective projection of the scene. In this case, perspective projections of the scene are

formed from orthographic projections.

A new variable called lens_index is considered so that lens_index indicates the indexes of the

elemental images that are supposed to be mounted by the lenses in both the capture and the

replay stages. lens_index starts with 0 to indicate the elemental image at the left end of the

screen or the image plane. The maximum value of 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 is
𝑤

𝑛
 -1. The distances will be

measured with the unit of pixel and considered as the distances between the centres of the

pixels. For the final image, the distance between the centre of the image plane and the

columns that are copied from the same projection can be found with the following formula:

𝑐𝑝𝑚 = {
𝑤

2
− [((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1)×n – m]} - 0.5 (4.44)

𝑐𝑝𝑚 = {
𝑤

2
− [((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1)×n – ((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1)]} - 0.5 (4.45)

110

For the example shown in Figure 4.4, when 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 is 0, and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 varies from 0

to 4.23, the distances from c to the mapped locations (for example p1) will be: 15.5, 10.5, 5.5,

0.5, -4.5, -9.5, -14.5, and -19.5 respectively. These are the pixels with the green colour.

If the cylindrical lens array is used, the pixels in the screen will be dealt with as columns

numbered from 0 on the far left of the screen and increasing rightward. Then it is possible to

consider 𝑐𝑝𝑚 as the horizontal location of the column combined with specific image index

and lens index. The number of such pixels column is:

𝑐𝑜𝑙𝑢𝑚𝑛𝑚 = ((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1) ×n – ((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1) (4.46)

Formula (4.45) is used to calculate the locations on the final image or screen for specific

𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 to determine where the pixels should be mapped. Now it is

needed to extract the mapped pixels for specific 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 from the

image that is resulting from the projection on a rotated image planes. Locations of points such

as p1' from the image plane that is rotated with an angle α can be found for each

𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 as follows:

cp1' = cp1×𝑐𝑜𝑠 𝛼 (4.47)

For each (𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) and (𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥), the distance from the centre of the screen to the

point 𝑐𝑝′
𝑚

 where the columns of pixels should be extracted and mapped to the correct

location in the final image is calculated From Equations (4.45), and (4.47):

𝑐𝑝′
𝑚

 = 𝑐𝑝𝑚 × cos 𝛼 (4.48)

𝑐𝑝′
𝑚

 = {{
𝑤

2
− [((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1) ×n – ((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1)]} - 0.5}×cos 𝛼 (4.49)

If the cylindrical lens array is used, the columns of pixels are numbered starting from 0 on the

far left of the screen and increasing rightwards. It is possible to consider 𝑐𝑝′𝑚 as a horizontal

location of the column combined with specific (𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) and (𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥). The

number of such column of pixels is the integer part of 𝑐𝑜𝑙𝑢𝑚𝑛′𝑚

111

𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 =
𝑤

2
− 𝑐𝑝′

𝑚
 (4.50)

From Equations (4.49), and (4.50):

𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 =
𝑤

2
− {{

𝑤

2
− [((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1)×n – ((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1)]}

- 0.5}×cos 𝛼 (4.51)

𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 =
𝑤

2
− {

𝑤

2
× cos 𝛼 − [((𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥) + 1)×n – ((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1)]× cos 𝛼 -

0.5cos 𝛼} (4.52)

𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 =
𝑤

2
−

𝑤

2
× cos 𝛼 + (𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥)×n× cos 𝛼 +n× cos 𝛼 −(𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) ×

 cos 𝛼 − cos 𝛼 + 0.5cos 𝛼 (4.53)

𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 =
𝑤

2
− [

𝑤

2
− 𝑛 × (𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 + 1) + 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 + 0.5] × cos 𝛼 (4.54)

Formula (4.54) is used to calculate the locations of columns on the image plane or screen for

specific 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥. These columns of pixels should be extracted and

mapped to the final image. The exact column numbers starting from the left hand side of the

screen are the integer part of 𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 which varies in relation to 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥

and 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥. In fact, the values calculated with Equation (4.54) represent the vertical

projection of the corresponding pixels of the final image on their original image plane.

Therefore, the locations of these projections determine the locations of the corresponding

pixels we need to extract.

In the case of using cylindrical lens array to capture and display, Y coordinates of the pixels

on the screen are the same for the extracted pixels and the pixels to which the extracted pixels

are mapped to the final image. For this reason, it is possible to map the pixels without change

to Y coordinates; in other words, the pixels are shifted horizontally from one position to

another. If a microlens array is used to produce a full parallax image, the pixels will be

shifted horizontally as well as vertically because X coordinates and Y coordinates of the

extracted pixels are different to their coordinates in the final image after mapping. Under

each lenslet, there are n columns of pixels of the final integral image in which the columns

112

are grouped in groups of n columns each. Using Equation (4.49) the columns of pixels are

selected and extracted from the orthographic images of the view volumes taken at different

rotation angles, whereas the rest of the columns are discarded.

On the final integral image, the first column from the left hand side is indexed with 0 for the

cylindrical lens array. For the spherical lens array, the upper left pixel of the screen has the

coordinates (x, y) = (0, 0) which is the origin of the screen coordinates, and the index 0. The

pixel indexes increase gradually when the pixels are scanned horizontally, therefore, the first

left pixel from the second upper horizontal line equals to the number of horizontal pixels in a

line and so on. The index of each column x_pixel can be calculated for column_index and

image index image_index with the Equation: x_pixel = n×column_index + image_index,

where column_index is the index of the group of columns to which the extracted columns

should be mapped. With the application software, the Red, Green, and Blue (RGB) values of

the pixels are saved in an array of 3×w×h elements, where w, and h are the width and height

of the screen respectively. The indexes of a pixel with x coordinate x_pixel, and y coordinate

y_pixel within the single dimension array of elements are pixel_ind , pixel_ind + 1, and

pixel_ind + 2 for R, G, and B respectively where pixel_ind = x_pixel×3 + w×y_pixel×3. For

example, in the example shown in Figure 4.4, the angle calculated for the first projection

which is -33.69, 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 = 0, the values of 𝑐𝑜𝑙𝑢𝑚𝑛′𝑚 for all the lenses from

𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 = 0, to 𝑙𝑒𝑛𝑠_𝑖𝑛𝑑𝑒𝑥 = 7 can be calculated. From Equation (4.54), these are 7.135,

11.285, 15.435, 19.585, 23.735, 27.885, 32.035, and 36.185, these distances starting from the

left hand side of the screen will hit the columns of pixels that are marked with the numbers 7,

11, 15, 19, 23, 27, 32, and 36 respectively. After carrying out the orthogonal projections on

different image planes with different rotation angles, the selected pixels from the resulting

images are mapped to the final image that is the required integral image or the integral image

before extra processing. This image is able to replay the scene using a spherical or cylindrical

lens array providing the replay device is similar to the virtual device that has been used for

the simulation process of capturing the scene.

In the following example, a scene made by Irrlicht will be displayed with OpenGL and

replayed using cylindrical lens array with a focal length Fl = 3 mm, the number of pixels

under each lens is n = 9, Pt = 2.12 mm, p = 2.12/9 = 0.236 mm, F = 3/p = 12.74, and

113

𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 = 0, 1, 2, 3, 4, 5, 6, 7, or 8. Table 4.1 represents the different values of α and

t_new when 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 varies from 0 to 8:

𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 α t_newx t_newy t_newz

 0 -17.43 98.27 0 -15.7

 1 -13.25 73.7 0 -11.77

 2 -8.92 49.13 0 -7.85

 3 -4.49 24.58 0 -3.93

 4 0 0 0 0

 5 4.49 -24.58 0 3.93

 6 8.92 -49.13 0 7.85

 7 13.25 -73.7 0 11.77

 8 17.43 -98.27 0 15.7

Table 4.1: Values of α and t_new in relation to 𝒊𝒎𝒂𝒈𝒆_𝒊𝒏𝒅𝒆𝒙.

If the employed lens array is cylindrical lens array, the columns of pixels are mapped in

different ways. One of these is the one shown in Figure 4.4. In this way, the columns of

pixels can be mapped so that the objects appear in front of the screen as real pseudoscopic

integrated images when they are reconstructed and replayed. In this type of mapping, the

columns of pixels are selected from the images of the view volumes taken at different

rotation angles, the columns are selected in dependence to Equation (4.54).

Referring to the previous example, starting from the initial position of the image plane with

the rotation angle of α = -17.43, and image_index = 0, a set of pixel columns will be

extracted from the image of the view volume that results from an orthographical projection

on the image plane, whereas, the rest of the columns will be discarded. The number of

columns of pixels under each lens in that example is n = 9, therefore, if the columns in the

image were grouped in groups of 9 columns each, the selected columns will be the set formed

with the first column from each group. Similarly, the columns of the final image are grouped

to the same number of groups with the same number of columns in each group, and then each

extracted column of pixels from the previous image in accordance to Equation (4.54) is

mapped to the same locations in the final image. For example, the first extracted column is

placed in the column numbered with 0 of the final image, which is the first column on left;

the column numbered with 9 is placed on the 9th column of the final image and so on. The

numbers of these columns x_pixel can be calculated for each column index and image index

with the following Equation:

114

x_pixel = n×column_index + image_index (4.55)

where column_index is the index of the group of columns to which the extracted columns

should be mapped. For the first image in this example:

x_pixel = 9×column_index, or, x_pixel = 0, 9, 18, 27, etc.

The same way is applied for the images with image indexes image_index.

image_index = 1, 2, 3, 4, 5, 6, 7, and 8.

The upper left pixel of the screen has the coordinates (x, y) = (0, 0) which is the origin of the

screen coordinates. x, and y coordinates increase when moving to the right and down

respectively.

The RGB values of the pixels are saved in an array of 3×W×L elements, where W, and L are

the width and height of the screen respectively measured with pixels. The indexes of the pixel

with x coordinate x_pixel, and y coordinate y_pixel within the single dimension array of

elements are pixel_ind , pixel_ind + 1, and pixel_ind + 2 for R, G, and B respectively

where:

pixel_ind = x_pixel×3 + W×y_pixel×3 (4.56)

For groups of 9 columns, if we want to rotate the pixels around the centre of the cylindrical

lenses, pixel_ind becomes:

pixel_ind = 3×x_pixel + 24 - 6×image_index + W×y_pixel×3 (4.57)

In general, the z coordinates of the target point must be normalized or divided by a distance

value equals to the depth of image so that the target coordinates are independent of the

dimensions of the scene. For this reason, a variable must be introduced to divide the z

coordinate of the target point, and the software used should be able to tune this variable so

that the resulting image quality is optimized.

115

With the technique of DCTarget implemented by the application software, the physical

equipment needed in the capture stage is avoided, also, the main disadvantage of integral

imaging technique is overcame that is the need for two stages to render the image. Two

stages are required to render an integral image because the first stage produces a

pseudoscopic image and the second stage is needed to correct the image and convert it to an

orthogonal image. Each virtual micro lens images the scene from a different location, points

from the scene are projected and recorded in different elemental images, and then these

micro-images are replayed and the ray bundles in the replay space are intersected forming

images so that these images are changeable in respect to the viewer location. If the viewer

location is changed, a new integrated image is automatically formed by a different group of

ray bundles. The previous calculations of pixels are shown in C++ and OpenGL code:

_cosine_alpha = cos (alpha_angle);

x_pixel = n_pixels*column_index + image_index ;

__x_pixel__ = (floor_)*n_pixels/2 + image_index - n_pixels*(column_index+1);

real_x_pixel = ((floor_)*(n_pixels/2))-(__x_pixel__*_cosine_alpha);

real_x_ = (int)(real_x_pixel);

myobjectscolor = image->getPixel(real_x_, y_pixel);

pixel_ind = x_pixel*3 + Screen_w_pxl*y_pixel*3;// screen_w_pxl=1024

pixels_index[pixel_ind] = myobjectscolor.getRed();

pixels_index[pixel_ind+1] = myobjectscolor.getGreen();

pixels_index[pixel_ind+2] = myobjectscolor.getBlue();

pixel_ind = column_ind*3 + Screen_w_pxl*row_ind*3;

image->setPixel(column_ind, row_ind,

video::SColor(255,pixels_index[pixel_ind],pixels_index[pixel_ind+1],

pixels_index[pixel_ind+2]), false);

4.5 The reconstruction stage

After carrying out the orthogonal projections of the scene with different rotation angles of the

image plane and different camera targets, the selected pixels from the resulting images are

mapped to the final image plane to be used to replay the scene using a spherical or cylindrical

lens array with appropriate characteristics. The pixels of the integral image are mapped as

116

described in the pickup stage; the 2-D elemental images are displayed on a screen such as

liquid-crystal display (LCD) screen.

Figure 4.5: The orthoscopic virtual reconstruction stage.

The lens array can be placed on the screen so that the lenslets are precisely covering the

elemental images; each lenslet covers one elemental image. If the pixels were mapped in the

same order of the sequence of projections on the image plane, and the lenslet array used in

the reconstruction stage has the same pitch and focal length of the pickup stage, the

reconstructed image will be pseudoscopic real image, or depth reversed image. The viewer

sees a different portion of the scene through each cylindrical lenslet or microlens. The

integral image is composed of elemental images or portions of the scene. Each portion is

composed of pixels selected from different orthographic projections of the scene. Each

composed portion is equivalent to the elemental image that is formed under each lenslet or

117

microlens when DIVGL method. The elemental images f the scene formed with DIVGL

method are the perspective images taken by each lens of the lens array. When the integral

image is replayed with the lens array, the rays emitted from the pixels are intersected and the

portions of the scene are spatially integrated and reforming the scene.

The viewer sees with each eye the integrated scene from a different angle. Each eye receives

rays emitted from pixels belonging to the same rotated image plane (i.e. the same

orthographic projection on a plane with a rotated camera target). In other words, the viewer

sees the integrated scene with each eye from a different angle. Therefore, the viewer is able to

see the image with the required 3-D effect, or the required 3-D integrated image.

Figure 4.5 shows the reconstruction process using a lens array with the same focal length F

and the same pitch P of the virtual lens array that was employed in the pickup stage. The gap

between the surface of the LCD and the focal points of the microlenses or cylindrical lenslets

is adjusted to be equal to the virtual focal length.

Light is emitted from the pixels of the LCD screen. The rays proceeding from the pixels that

are forming the image displayed on the LCD screen and traversing the microlens array are

intersected in points in front of the lens array. The intersection points of the rays in the space

in front of the display screen are located on spacial points with proportional distances to the

screen equal to the proportional distances between the same object points in the model and

the virtual image plane. Figure 4.5 illustrates few replayed objects and their intersected rays.

For example, object ob2 is reconstructed by the rays proceeding from the LCD and

intersected with each other. The intersection points of object ob2 (ob2') are closer to the

screen than the intersection points of object ob3 because object ob2 is closer to the image

plane than ob3, therefore, the reconstructed points of object ob3 will be closer to the viewer’s

eyes than the reconstructed points of object ob2. The image ob2' of ob2 will look convex,

whereas, in reality, ob2 is concave and it should be displayed so that it looks as it is in reality.

The image is formed with converging rays of light.

In order to reconstruct the objects as an orthogonal virtual image we can reverse the columns

of pixels in each elemental image around the central vertical column of the cylindrical lenslet.

When the microlens array is used, the pixels under each microlens should be rotated 180º

118

around the centre of the microlens. Figure 4.5 shows the pixels that were represented in

Figure 4.4 after rotating these pixels around the centre of the cylindrical lenslet of 5 columns.

Objects in the scene such as ob2 are reconstructed to orthographic virtual images ob2'. The

reconstruction process happens because of the intersection between the virtual extensions of

the rays proceeding from the pixels on the display screen and passing through the lenslets

used for reconstructing the images. When the viewer is looking on the screen via the lenslet

array or the microlens array, the objects are seen by the viewer as virtual images located

behind the screen.

The proportional distances of the reconstructed objects to the display screen are equal to the

proportional distances of the same objects in the imaged scene to the image plane that was

used to capture the images. For example, Figure 4.5 represents the point p0 from the object

ob2 in the scene; p0 was captured by the lenses or the pinholes that are forming the elemental

images 2, 3, 4, 5, and 6. If the lens array used in the capture stage was cylindrical lens array,

the rays w, b, y, r, and g shown with the colours brown, blue, yellow, red, and green

respectively would represent the rays ended at the viewer’s eyes passing through the focal

points of the lenses, the pixel columns of the mapped pixels where the rays start. If the rays

are extended, these would be intersected in virtual points and form virtual image of the scene.

As a cylindrical lens array is used in this example, the point p0 represents a vertical portion of

the scene. The virtual extensions of these rays are respectively W, B, Y, R, and G. If the

lenslet array was a microlens array, the point p0 would represent a point which is projected

into the image plane and displayed with a pixel in each related elemental image. The virtual

extensions intersect with each other at the point p0'. The point p0' looks as if it is locating

behind the screen. The proportional depth of points such as p0' is comparable to the

proportional depth of their original points such as p0 in the scene. In the same way, all the

object points in the scene are reconstructed.

It is possible to consider the distance between the constructed virtual point and the surface of

the display screen as the depth of that point. Yl is the numerical value of the depth of the

reconstructed point ob2'. Yl can be linked to the location of the pixels that hold information

about the projections of this point such as the pixel coloured with green in the elemental

image number 6 shown in Figure 4.5. For example, the green pixel in the 6th elemental image

119

holds the colour value of the projection of ob2 on the image plane that was rotated with the

angle α, where:

α = tan−1 {[2((𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥) + 1) − 𝑛 − 1] 2𝐹}⁄ (4.58)

From Figure 4.5, θ = π/2 – α, the normal on the image plane when its rotation angle is α

makes the angle θ with the surface of the display screen. If a point was projected on the

image plane that is rotated with different rotation angles, its projection will be included in a

number of the elemental images. These elemental images are comprised between two

elemental images, the first is the elemental image that includes the projection of that point on

the image plane with the maximum angle, and the second one is the elemental image that

includes the projection of the point on the image plane when it is rotated with the minimum

angle. In other words, the lenslets that are entitled to capture the point are comprised between

the two lenslets that capture the point in the cases of rotating the image plane with the

maximum angle and the minimum angle. The pinholes or the lenslets that are outside these

two lenslets are unable to receive the orthogonal projection of this point.

If the number of these lenslets is µ, their width will be µ×Pt_l, where Pt_l is the width of the

elemental image or the pitch of the lenslet. It is not necessary that each of these lenslets to

include information about the point in question as only specific pixels of each projection of

the scene are picked up while the remainders are discarded. The numerical value of the depth

Yl can be expressed as:

Yl = c×(µ×Pt_l/2)×tan 𝜃0 (4.59)

where c is a constant value used to express the relation between the distances on the surface

of the image plane and the virtual depth of each point in the scene (i.e. the distances between

the virtual reconstructed points and the surface of the screen). 𝜃0 is the maximum value of the

angle θ. The same value of Yl can be obtained by considering any other case of the angle θ

and the corresponding length on the surface of the screen instead of µ×Pt_l. For a specific

value of the angle θ (i.e. 𝜃0), tan 𝜃0 will be constant and the pitch of the lenslet Pt_l is

constant, therefore, the numerical value of Yl can be written as:

120

Yl = C×µ (4.60)

where C = c×(Pt_l/2)×tan 𝜃0, and µ is the maximum number of lenslets that can capture the

point through the orthographical projections of the scene on image planes with the different

rotation angles. In the previous calculations, the effect of the lenses on the rays such as

reflection and refraction were neglected, these effects can be significant. Therefore, the effect

of the lenses should be taken into consideration to achieve calculations that are more

accurate.

4.6 Displaying the image behind and in front of the display screen

Supposing that a cylindrical lens array is used, the columns of pixels can be mapped in

different ways. Figure 4.6 shows two manners of mapping the pixels. In the first manner, the

columns of pixels are mapped in a way so that the images of the scene objects are

reconstructed to appear replayed in front of the screen as real pseudoscopic integrated

images. In this type of mapping, the columns of the image with the index 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 are

mapped to the column number n - 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥. For example, the first set of columns that

are extracted from the image with the image index 𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 = 0 and the rotation angle α

is accommodated in the column number n of each group of the final integral image which is

the last column on the right. The second set is extracted from the image with the image index

𝑖𝑚𝑎𝑔𝑒_𝑖𝑛𝑑𝑒𝑥 = 1 and placed on the column n-1 of the final integral image and so on.

Figure 4.6: Two ways of the objects reconstruction in the replay stage, producing an

orthogonal virtual image, and a pseudoscopic real image.

121

In this way the pixels are mapped in an opposite order of the sequence of projections on the

rotated image plane, and the lens array used in the reconstruction stage has the same pitch

and focal length of the pickup stage, therefore, the reconstructed image will be pseudoscopic

real image, or depth reversed image. Figure 4.6 shows the reconstruction process using a lens

array with the same focal length F and the same pitch P of the pickup stage pinhole array, the

gap between the surface of the LCD and the lens array focal points is adjusted to be equal to

the virtual focal length. In order to apply the first way, the columns of the first orthogonal

image are mapped to the columns 5 and so on. The incident rays proceeding from the pixels

on the final integral image that is recorded on the LCD are intersected in points located at

proportional distances to the screen. The distances of these points are equal to the

proportional distances between the same object points in the scene and the virtual image

plane. For example, the illustrated object in Figure 4.6 is reconstructed by the intersection

between the rays proceeding from the LCD. The pixel hit by the ray that makes an angle β

with the final integral image is replayed in the replay stage as a ray making the angle -β with

the final integral image. Thus, the object and its replayed image using this way are symmetric

about the final integral image plane, i.e. the display screen. Using the mentioned manner, the

object points in the scene such as p2 are reconstructed to points such as p2'', the image

formed with these converging rays of light is a pseudoscopic real image.

Another manner of mapping the pixels leads to reconstruct the integral image as an

orthogonal virtual image; this manner is implemented by reversing the locations of the

columns in each elemental image around the central vertical column of the elemental image.

When a spherical microlens array is used, each pixel under a microlens should be rotated

180º around the centre of the elemental image. In Figure 4.6, the pixel hit by the ray that

makes an angle θ with the final integral image is shifted about the centre of the elemental

image to a symmetric position and replayed in the replay stage as a ray making the angle 180º

- θ with the final integral image. The incident ray and the replayed ray are parallel, therefore

the replayed rays are diverged. Using this manner, the image formed with the diverging rays

of light is an orthogonal virtual image. The object points in the scene such as p2 are

reconstructed to points such as p2', the image formed with these diverging rays of light is a

pseudoscopic real image. The reconstruction process happens because of the intersection

between the virtual extensions of the rays proceeding from the pixels on the display screen

122

and passing through the lenses, then, the image is seen by a viewer as an orthogonal virtual

image appearing behind the screen.

An orthogonal real image with the possibility to display a part of the image as an orthogonal

real image in front of the display screen and the other part as an orthogonal virtual image

behind the screen is the favourite form of displaying an integral image. To implement such an

image the part in front of the screen of the pseudoscopic real image must be converted to an

orthogonal real image, and then displayed on the same final integral image together with the

part located behind the screen as an orthogonal virtual image, the final integral image now

would be called the new final integral image. The part behind the screen is already projected

and its pixels are extracted and mapped to the final integral image with the second manner of

mapping. Therefore, the pixel values that represent this part of the scene are mapped to the

new final integral image and their values and locations are kept the same as they were on the

final integral image. Afterword, the part in front of the screen can be projected and the pixel

values of the resulting orthogonal real image of this part are mapped to the new final integral

image. The pixels representing the object points of the part behind the screen that are

obscured by the object points of the part in front the screen would be overwritten by the pixel

values that represent the object points of the part in front the screen.

To convert the part in front of the screen from a pseudoscopic real image, to an orthogonal

real image, the camera target is rotated 180˚ around the vertical axis located in the virtual

screen and intersecting the centre of that screen. The part in front is now projected on the

rotated screen with the same method of the first capture stage. If the lens array used is

cylindrical lens array, the pixels of the resulting image are flipped symmetrically around the

central vertical axis that is intersecting the centre of the virtual screen. If the lens array is

spherical, the pixels are flipped symmetrically around the centre of the screen. The pixel

values are written to the new final integral image and some pixels from the second stage

overwrite the pixels in the first stage because the part of the scene that is imaged in the

second stage obscures the part imaged in the first stage. The final resulting image would be

displayed as an orthogonal real image in front of the screen and an orthogonal virtual image

behind the screen, which is the favourite scenario of displaying an integral image.

In the replay stage, the part behind the virtual screen is replayed as an orthogonal virtual

image, therefore, the pixel representing this part of the scene are flipped around the centre of

123

the elemental images, mapped to the new pixel locations, and their values are kept as they are

to form a part of the new final integral image. The part of the scene located behind the virtual

screen that is replayed as a pseudoscopic real image in the replay stage is imaged in the same

method of the first stage and the pixels are mapped to the new final integral image to form the

other part of the targeted integral image. Rendering the part in front the screen can be

implemented with the application software by dividing the scene into two parts and moving

the image plane z-coordinate to the location where the virtual screen is supposed to be

located. The first part is the one behind the virtual screen or the object points of the scene

with z-coordinate higher than the z-coordinate of the virtual screen taking into consideration

that z-axis is vertical on the screen and directed to the same direction of the viewer i.e. away

from the screen. The part behind the screen is projected and the pixels are flipped and

mapped as it is mentioned above and the virtual orthogonal image of this part is produced.

In order to produce the real orthogonal image of the part located in front of the screen in

which z-coordinate value of the object points are lower than z-coordinate of the virtual

screen, the camera target is rotated 180˚ around the vertical axis located in the virtual screen

and intersecting the centre of that screen. The camera target is vertical on the screen and

directed towards the positive z-coordinates. The part in front is now projected on the rotated

screen with the same method of the first stage and the pixels are selected from the

orthographic projections and mapped to the image plane so that the replayed scene is a real

pseudoscopic image. If the lens array used is cylindrical, the pixel of the resulting image are

flipped symmetrically around the central vertical axis that is intersecting the centre of the

virtual screen, if the lens array is spherical, the pixels are flipped symmetrically around the

centre of the screen.

The pixel values representing the part in front are mapped to the same image of the part

behind. Some pixels from the second stage overwrite the pixels in the first stage because the

part of the scene that is imaged in the second stage obscures the part imaged in the first stage.

The resulting image that is composed form the pixels representing the parts in front as well as

the part behind are replayed and both of the parts are replayed so that the part behind the

screen is replayed as an orthogonal virtual image and the part in front is replayed as an

orthogonal real image.

124

4.7 Animated integral images

3-D video systems have been pursued for decades as the video format of the future. Various

approaches for providing a perceived depth have been invented [11]. Animated films can be

made of a series of static integral images using the application software. The images can be

viewed using either a spherical lens array or a cylindrical lens array. Animated films can be

saved and displayed using special applications.

Animated scenes composed of integral images can be produced with DCTarget method. 2-D

animation is supposed to be designed as a stream of static images displayed in sequence. A

minimum number of static images per time unit should be produced so that flickering is

avoided. A rate of 25 frames per second (fps) can be enough to prevent flickering [53]. Using

the application software, animated scenes can be imported and converted to animated scenes

with a 3-D effect. The animated scenes based on sequences of integral images can be named

Animated Integral Images (AII). DCTarget algorithm or DIVGL is applied to each frame or

image apart to be converted to an integral image. A sequence of these integral images can

form an AII scene. If a powerful computer is employed so that the conversion form a 2-D

animated scene to a 3-D AII scene is fast enough, the conversion can be suitable for real time

applications such as video games. Real time conversion can instantly produce 3-D AII scenes

from normal 2-D video images. Employing computers with inadequate processing efficiency

leads to slow processing, in this case, the application software is suitable for applications

where the AII scenes can be rendered slowly ahead of time, such as films and animated

advertisement. The application software produces the AII video content and saves the video

in a file. The file can be opened with a suitable program such as Windows Live Movie Maker

to display the video on a normal PC display screen or a special display screen. The display

screen should be mounted with a lenticular or spherical lens array to be able to display the

AII video with the required 3-D effect. The application software can be developed to allow

the user to display the animated scenes instantly as real time movies. As an example, A short

film of about 800 integral images or frames (duration of about 32 seconds) representing

several objects was produced with DCTarget method to be displayed on a screen supplied

with cylindrical lens array. Another similar movie is made to be displayed on a screen using a

micro lens array. The film is saved and displayed with Windows Live Movie Maker software.

125

 START

CREAT DEVICE,

DRIVER, AND

SCENE MANAGER

LOAD SCENE,

ANIMATION,

ADD TEXTURES

 CALCULATE ROTATION

ANGLES AND TARGETS

BUILD ORTHOGONAL

MATRIX AND

CREATE CAMERA

DRAW ONE FRAME

 OF THE SCENE

WITH TEXTURES

COPY IMAGE FROM

 BUFFER OR SCREEN

COLUMN INDEX

OF LENSES + 1

ROW INDEX

OF LENSES + 1

CALCULATE THE

PIXEL LOCATION

PICK UP A PIXEL

FORM THE IMAGE

MAP SELECTED PIXEL

 TO IMAGE ARRAY

 NO

 END OF ROWS?

 YES

 NO

 LAST COLUMN?

 YES

 NO

 X-IMAGES END?

 YES

X-IMAGE = 0

Y-IMAGE + 1

 NO

Y-IMAGES END?

 YES

 DRAW IMAGE ARRAY

AND SAVE IMAGE

 NO

LAST FRAME?

 YES

END

Figure 4.7: The generation process of integral images based on DCTarget algorithm.

126

equal to the number of the rows of pixels under each microlens in the microlens array, the

index of the current frame from the animated scene that is projected while the camera target

is moving, the current horizontal angle with which the camera is rotated, and the current

vertical angle with which the camera is rotated. pixels_index array is defined to hold the pixel

values of the whole image displayed on the screen. The size of pixels_index array is equal to

the number of the pixels in the screen multiplied by 3. Each pixel in the screen has 3 adjacent

RGB colours; the 3 RGB colour values are expressed with 3 members of the array so that

each member holds the pixel colour value of one of the 3 colours. The size of the array is the

width of the screen times the length of the screen times 3.

Irrlicht device is created and defined to determine the dimensions in pixels of the rendered

image and the application programing interface OpenGL. The function createDevice returns a

pointer device to an object from the class IrrlichtDevice. In addition, a video driver and a

scene manager are defined. The function getVideoDriver() which is a member function of the

object pointed to by device from the class IrrlichtDevice is called to define a video driver.

getVideoDriver() returns a pointer driver to an object from the class IVideoDriver from the

namspace video of Irrlicht library. The function getSceneManager() which is a member

function of the object pointed to by device from the class IrrlichtDevice is called to define a

scene manager. getSceneManager() returns a pointer smgr to an object from the class

ISceneManager from the namspace scene of Irrlicht library.

The selected scene including the mesh or the geometric structure of the scene, the frames that

are forming the animation of the scene, and the texture files. The geometric data about the

scene or the nodes forming the scene are saved in files with different formats. The engine is

supplied with functions devoted to load the geometric data files and extract the required data

to be used in rendering the scene with OpenGL. Variety of formats is supported by Irrlicht

engine including 3D Max files and files with the extension .pk3, .DM2, .x and others. The

function getMesh which is a member function of the object pointed to by smgr from the class

ISceneManager is called to load the geometric data of the scene. The argument of the

function getMesh is the name of the file that contains the geometric data of the scene. The file

is named with its path to provide the function with its location in the computer. The function

getMesh() gets the mesh from the scene manager. addAnimatedMeshSceneNode() adds a

scene node to display the mesh. Based on the scene, getMesh() returns a pointer to an object

from the class IMeshSceneNode, IAnimatedMeshSceneNode, or IAnimatedMesh from the

127

Irrlicht namespace scene. In order to get the textures and map them to the mesh in the scene,

the function getTexture which is a member function from the class IVideoDriver is used. The

argument of getTexture is the name and the location of the file that contains the required

texture. Textures are saved in image files with different formats such as bitmap images with

the extension .bmp, and JPEG images with the extension .jpg.

To handle the animated scenes, the class IAnimatedMeshSceneNode includes functions such

as the function setMD2Animation to set an MD2 scene as an animated scene, and the function

setAnimationSpeed to set the speed of the animation or the number of rendered frames per

second. The animated scene node or object is pointed to by a pointer returned by a function

such as addAnimatedMeshSceneNode from the class ISceneManager, with this function the

animated scene node is loaded from the computer and added to the scene.

The location, the size, and the angular position, of the different objects that are forming a

scene are adjusted using Irrlich functions to set the position of the mesh in the scene and the

rotation angles. Translation, rotation, and scaling can be applied to the objects to form the

required scene. The function setPosition that is a member function of the class

IMeshSceneNode from the namespace scene takes the position of the object as an argument.

setPosition is a function called from a pointer to an object from the class IMeshSceneNode

which is returned by a function from the class ISceneManager such as addOctreeSceneNode.

A pointer to a scene node object from the class IAnimatedMeshSceneNode is returned by the

function setScale that is applied to the object and takes the vector of x, y, and x scale factors

as an argument. setScale makes the object seem scaled by the factors x, y, and z, in other

words, x, y, and z coordinates of the vertices forming the object in the scene are multiplied by

these factors respectively. The function addLightSceneNode from the class ISceneManager

returns a pointer to an object from the class ILightSceneNode, this function creates a light

scene node and adds it to the scene, the arguments of the function provides the parameters of

the light including the location, and the colour.

The integer variable n_pixels_x indicates the number of the horizontal pixels under each

spherical microlens or cylindrical lenslet when the display screen is covered by a spherical

lens array or a cylindrical lens array respectively. n_pixels_y indicates the number of the

vertical pixels under each spherical microlens when the display screen is covered by a

spherical lens array. focal_length_norm is the focal length of the lenses that are supposed to

128

display the integral images. alpha_angle is the horizontal rotation angle of the camera, and

beta_angle is the vertical rotation angle of the camera. These angles are calculated with the

following two Equations: alpha_angle = atanf((2×(image_index_x+1)- n_pixels_x -

1)/(2×focal_length_norm)); and beta_angle = atanf((-2×(image_index_y+1)- n_pixels_y -

1)/(2×focal_length_norm));. image_index_x is a variable indicating the current projection of

the scene when the camera is horizontally rotated. For each vertical rotation angle,

projections are carried out at each horizontal rotation angle when the camera is horizontally

rotated. These images are numbered from 0 for the first image on the left hand side to

n_pixels_x – 1 for the last image on the right hand side. image_index_y is a variable

indicating the current projection of the scene when the camera is vertically rotated. These

images are numbered from 0 for the images on the lowest angle to n_pixels_y – 1 for the

image on the highest angle.

t_zerox, t_zeroy, and t_zeroz are real variables to hold the x, y, and z coordinates of the initial

position of the camera target. These variables are used to calculate the coordinates of the new

target points of the camera. The coordinates of the target’s initial position are initialised to

select a convenient camera target allowing the viewer to view the scene as required. The user

can change these values until they find the required view of the scene. centre_x, centre_y,

and centre_z are real variables to hold the x, y, and z coordinates of the camera centre. These

variables are used to calculate the coordinates of the camera new target coordinates. The

coordinates of the camera centre position are initialised to select a convenient point of view

from which the viewer views the scene. These variables are changeable to allow the user to

select the required view of the scene. r_x, r_y, and r_z are the projections of the distance

between the initial camera target and the camera centre on x, y, and z axis respectively. The

length of this distance r_xyz is calculated and used to calculate the coordinates of the camera

target point for each new position of the camera (i.e. new horizontal and vertical rotation

angles alpha_angle and beta_angle) as follows:

r_xyz = sqrt (r_x×r_x + r_y×r_y + r_z×r_z);

t_newx=t_zerox-r_z×tan(alpha_angle)-((r_x×r_y×tan(beta_angle))/r_xyz);

t_newy=t_zeroy + (((r_x×r_x + r_z×r_z)×tan(beta_angle))/r_xyz);

t_newz=t_zeroz+r_x×tan(alpha_angle)-((r_z×r_y×tan(beta_angle))/r_xyz);

In order to build the orthogonal projection matrix, an object matr from the class matrix4

belonging to the namespace core of Irrlicht engine is defined. The member function from the

129

class matrix4 buildProjectionMatrixOrthoLH (f32 widthOfViewVolume, f32 height, f32

zNear, f32 zFar) builds the matrix for the orthogonal projection. The first argument is the

width of the view volume from the space that is intended to be projected; the unit used is

belonging to a special type of real variables defined in Irrlicht called f32 where 32 is the

length of the variable value. The third argument is the z-coordinate of the near clipping plane

that clips the view volume from the near side to the camera. The fourth argument is the z-

coordinates of the far clipping plane that limits the view volume at the far side from the

camera. All the four arguments are measured with the same length unit and their values are

expressed with real values from f32.

The member function setProjectionMatrix(matr, true) from ICameraSceneNode sets the

projection matrix based on calculated factor of the camera such as the coordinates of the

centre and target. The pointer camera pointing to an object form the class

ICameraSceneNode belonging to the namespace scene of Irrlicht engine is created to define a

camera scene node. The member function addCameraSceneNode from ISceneManager

returns a pointer assigned to camera. The arguments of this function include the coordinates

of the camera centre and the current target point. The device is run with the function run()

form IrrlichtDevice, whereas, the member function drawAll() from ISceneManager

implements projecting and rendering the scene.

aframe_index indicates the current rendered frame from the animated scene. The member

function createScreenShot() from the class IrrlichtDevice copies the data of the rendered

image from the buffer and returns a pointer assigned to the pointer image that is pointing to

an object from the class IImage belonging to the Irrlicht namespace called video. The data

includes the RGB colour data of the rendered image that is saved in the front buffer of the

rendering device.

The following piece of C++ code implements the process of reading the different projection

and picking up the required pixels from the rendered images:

while(device->run())

{

int bframe_index = frame_index % max_anim_frames;

node->setFrameLoop(aframe_index, aframe_index);

130

driver->beginScene(true, true, 0);

smgr->drawAll();

driver->endScene();

irr::video::SColor myobjectscolor;

video::IImage* image = device->getVideoDriver()->createScreenShot();

if (image && (image_index_x >= 0))

 {

for (u32 column_index = 0 ; column_index < floor((screen_w_pxl/ lenslet_w_pxl));

column_index++)

 {

 for (u32 row_index = 0 ; row_index < floor((screen_l_pxl/ lenslet_l_pxl)); row_index++)

 {float _cosine_alpha = cos (alpha_angle);

 int x_pixel = lenslet_w_pxl *column_index + image_index_x ;

//int x_pixel = lenslet_w_pxl *column_index - image_index + lenslet_w_pxl;

int __x_pixel__ = floor((screen_w_pxl/2))- image_index_x - lenslet_w_pxl

*column_index;

 float real_x_pixel = (screen_w_pxl/2)-(__x_pixel__*_cosine_alpha);

 int real_x_ = (int)(real_x_pixel);

 //u32 _x_pixel_ = (int)real_x_pixel;

 float _cosine_beta = cos (beta_angle);

 int y_pixel = lenslet_l_pxl *row_index + image_index_y ;

//int x_pixel = lenslet_l_pxl *column_index - image_index + lenslet_l_pxl;

 int __y_pixel__ = floor((screen_l_pxl/2))- image_index_y - lenslet_l_pxl *row_index;

 float real_y_pixel = (screen_l_pxl/2)-(__y_pixel__*_cosine_beta);

 int real_y_ = (int)(real_y_pixel);

 myobjectscolor = image->getPixel(real_x_, real_y_);

 int pixel_ind = x_pixel*3 + screen_w_pxl *y_pixel*3;

//int pixel_ind = 3*x_pixel +3* lenslet_w_pxl - 6*image_index + screen_w_pxl

//*y_pixel*3;

//int pixel_ind = 3*x_pixel + 3* lenslet_w_pxl - 6*image_index_x + screen_w_pxl

//*y_pixel*3;

pixels_index[pixel_ind] = myobjectscolor.getRed();

 pixels_index[pixel_ind+1] = myobjectscolor.getGreen();

 pixels_index[pixel_ind+2] = myobjectscolor.getBlue();

131

 }

 }

 }

if (image_index_x< lenslet_w_pxl) {goto loop1;}

 else {image_index_x = 0;

image_index_y = image_index_y + 1;

 if (image_index_y< lenslet_l_pxl){goto loop1;}

 else {goto loop2;}

 }

}

max_anim_frames is the number of frames in an animation scene. The frames are rendered in

sequence and can be repeated periodically. setFrameLoop(aframe_index, aframe_index) sets

the current frame as the frame indexed with aframe_index. myobjectscolor is an object from

SColor of video namespace used to access the member functions getRed(), getGreen(), and

getBlue() of the class SColor. These functions are used to extract the red, green and blue pixel

values respectively from a specific RGB pixel.

The FOR loop starts from column_index = 0 to floor((screen_w_pxl/ lenslet_w_pxl)), where

screen_w_pxl is the number of horizontal pixels of the display screen, lenslet_w_pxl is the

number of horizontal pixels in each micro-image. The internal nested FOR loop starts from

row_index = 0 to floor((screen_l_pxl/ lenslet_l_pxl)), where screen_l_pxl is the number of

vertical pixels of the display screen, lenslet_l_pxl is the number of vertical pixels in each

micro-image. For each micro-image with specific column_index and row_index,

_cosine_alpha and _cosine_beta are calculated. x_pixel is the horizontal index of a pixel from

the screen. Each pixel in the screen has an x and y coordinates measured in pixels.

image_index_x indicates the current image number when rotating horizontally for a specific

vertical rotation angle. image_index_y indicates the current image number when rotating

vertically for a specific horizontal rotation angle. The screen is indexed starting from the

pixel on the upper left hand corner of the screen with x_pixel=0, and y_pixel=0. The screen

is scanned downward from left to right, the next pixel in the same row has x_pixel=1, and

y_pixel=0 and so on. The first pixel on the left hand side of the second row from the top of

the screen is indexed with x_pixel=0, and y_pixel=1 and so on. Mapping the pixels to the

final image affects the 3D effect of the replayed integral image. If the pixels were mapped to

the micro-images in reverse order or forward order, the integral image will look behind or in

132

front of the display screen respectively. To select the former or the latter case, the horizontal

pixel index will be respectively: int x_pixel = lenslet_w_pxl ×column_index - image_index +

lenslet_w_pxl, or x_pixel = lenslet_w_pxl ×column_index + image_index_x.

In order to pick up the required pixels from the rendered images, the distances from the

centre of the screen where the camera centre is located to the location where the pixels should

be mapped to the final image are calculated, these horizontal and vertical distances are

respectively: __x_pixel__ and __y_pixel__, the distances are measured in pixels. The pixel

indexes starting from the far left for horizontal pixels and from the top for vertical pixels are

calculated and called respectively real_x_ and real_y_.

After calculating the indexes of the pixels needed to be picked up from the rendered images,

the member function getPixel(real_x_, real_y_) from the class IImage is called. The function

getPixel() returns the object myobjectscolor from SColor. The member functions getRed(),

getGreen(), and getBlue() from the class SColor return the RGB pixel values of the selected

pixel that express respectively the red, green , and blue colour quantity in the pixel. The

values are assigned respectively to the red, green and blue colour values of the corresponding

pixel in the final image. The index of the target pixel in the final image called pixel_ind is

calculated. The final image pixel values are saved in a single dimension array. The pixel is

expressed with 3 adjacent members in the array, each member of these holds a colour value

of the pixel (i.e. red, green, and blue respectively). The pixels are indexed starting from the

upper left corner of the screen. The indexes increase when scanning towards the right hand

side and downward. Each pixel has 3 indexes for red, green and blue colours with the indexes

pixel_ind , pixel_ind +1, and pixel_ind +2 respectively, therefore pixel_ind = x_pixel×3 +

screen_w_pxl ×y_pixel×3.

Once the first projection is done and the pixels are extracted and mapped to the final image,

image_index_x is checked if reached lenslet_w_pxl that is the number of horizontal pixels in

a micro-image. If not all the required images during the horizontal rotation are implemented

for a specific vertical rotation angle, the angle is increased and the projection is repeated until

the end. When the last projection is done, image_index_y is increased, the projection started

again, the vertical angle is increased, the horizontal angle is zeroed, then the projections are

repeated for the new vertical angle until the end of the horizontal angles and so on for all the

vertical rotations.

133

At the end of each projection, the selected pixels are picked up and saved in the array that is

called pixels_index to be mapped later to the final image. The function createScreenShot()

returns a pointer to an object from IImage that is an image object. The image object is the

final image and the pixels of this image are the saved pixel values already saved in the array

pixels_index. To map these pixel values to the created image, the following loop allows the

pixel values to occupy their required location in the new image:

for (u32 column_ind = 0 ; column_ind< screen_w_pxl; column_ind++) {

for (u32 row_ind = 0 ; row_ind < screen_l_pxl; row_ind++){

u32 pixel_ind = column_ind*3 + screen_w_pxl *row_ind*3;

image->setPixel(column_ind, row_ind,

video::SColor(255,pixels_index[pixel_ind],pixels_index[pixel_ind+1],pixels_index[pi

xel_ind+2]), false); } }

Each pixel from the screen is belonging to specific row and column. For each pixel, the

function setPixel() is called to set the RGB pixel values saved in the array pixels_index to

their correct place in the image pixels array. When the image is formed, The member

function writeImageToFile(image, buf, 85) from IrrlichtDevice writes the image formed

from the pixels to the buffer, and the function snprintf() creates a .jpg image file with a

selected name and indexed with the number of the rendered frame to be saved in the folder

containing the project. The variable frame_index that indicates the current frame in the

animated scene is checked, if the scene is a static image, frame_index holds a constant value

of 1, therefore, one integral image is created and saved for the image, and the algorithm is

ended. Otherwise, frame_index is increased and the algorithm is repeated for the new frame

and a new integral image is created and saved in the project folder or a selected folder and so

on until the end of the frames forming the animated scene. The images are submitted to a

program to display these images in sequence on a display device supplied with a lens array

with identical characteristics and parameters to the ones employed in the mentioned

algorithm. If the image is static, the viewer is able to see an image with 3-D effect, while an

animated scene with 3-D effect can be viewed when displaying the different frames in

sequence.

134

4.8 Implementations and results

In the following example, a 2-D scene made with 3-D Max and saved as a COLLADA file

was used to produce the integral image illustrated in Figure 4.8. Irrlicht engine and OpenGL

graphic interface application were used in the environment of C++. The image shown in

Figure 4.8 was rendered to be viewed with a cylindrical lens array with a focal length Fl = 3

mm, the number of pixels under each lens is n = 9, Pt = 2.12 mm, p = 2.12/9 = 0.236 mm, F

= 3/p = 12.74, and 𝑖𝑚_𝑖𝑛 = 0, 1, 2, 3, 4, 5, 6, 7, and 8. Figure 4.9 shows the same scene

rendered as a 2-D image before conversion to 3-D integral image. Another example is shown

to prove the ability to represent the details of a scene in the resulting integral images. The

parameters considered the same as the previous example. Figure 4.10 shows the original 2-D

scene rendered using Irrlicht engine without applying DCTarget algorithm. The objects

shown in the scene are imported from files with different formats.

Figure 4.8: An integral image produced by software based on DCTarget method.

Figure 4.9: The 2-D COLLADA scene before conversion to a 3-D integral image.

135

The scene shown in Figure 4.10 as a 2-D image is converted to a 3-D integral image to be

displayed using a spherical microlens array. Micro-images are displayed on a normal PC

screen and each micro-image occupies a square of 3×3 pixels. For more accurate image, the

pixels representing the micro-images can be distributed on circles to be covered by the

spherical micro lenses. The square micro-images are easier to render, therefore, the image

approximates the required one. The number of pixels representing the micro-image is

proportionally small because of the limitation of the PC screen resolution. The higher

resolution the higher image quality is produced. The examples are meant to display on a PC

screen with a resolution of 75 dpi. Figure 4.11 is the integral image of the scene shown in

Figure 4.10.

Figure 4.10: 2-D image rendered with Irrlicht engine.

The integral image shown in Figure 4.11 was rendered with vertical rotation of the camera;

therefore, using spherical lens array to display the image provides vertical parallax as well as

horizontal parallax (i.e. full parallax), whereas, rendering integral images with horizontal

rotation only, and displaying these with cylindrical lens array provides only horizontal

parallax (e.g. Figure 4.13).

The scene shown in Figure 4.13 is a frame from an animated scene composed from 800

frames. The original 2-D scene is made by Irrlicht and saved in different files with different

file formats; each object in the scene was designed and saved in a separated file. The scene is

more complicated than the scene shown in Figure 4.9; therefore, this example represents the

136

level of complexity and quality of the integral images produced with DCTarget method. If

the scene contains objects located at different distance from the camera, and some of these

objects obstacle the viewer from viewing parts of the objects behind, parallax in the image

allows the viewer to view hidden parts of the objects obscured by other objects. When

viewing a full parallax image, moving the viewer vertically or horizontally does not cause

significant jumping in the image. However, in some cases, a little jumping can be witnessed

due to the low resolution of the display screen. That happens when the resolution does not

allow accommodating an adequate number of images in the scene, and therefore, the

smoothness of viewing the images is not perfect.

Figure 4.11: 3-D integral image (spherical) rendered with DCTarget and Irrlicht engine.

Figure 4.12 represents samples of 800-frame animation converted to an animation of integral

images produced based on DCTarget method. The integral animation can be viewed using a

cylindrical lens array with the same parameters selected in the rendering process. The original

2-D animation was designed by Irrlicht. The average time needed to produce integral

137

Figure 4.12: DCTarget -based animation of integral images rendered to be viewed with a

cylindrical lens array. The images are selected frames from an animation, the frame

numbers are respectively 1, 150, 281, 420, 601 and 796.

images with this method is dependent on the machine used to render the frames. In a normal

PC with a 65 Mbps video card and 3.4 GHz processor, the average time for rendering one

138

frame is about 4 seconds. The minimum number of frames needed for a continuous image is

24 frames per second. The time needed to produce one second of video stream with a normal

PC is about 100 seconds

Figure 4.13: DCTarget -based integral image to be viewed with a cylindrical lens array.

4.9 Improvements

In order to improve the quality of the integral images produced with DCTarget method, and

develop the implementation process of the algorithm, the following enhancements on the

algorithm or the software are suggested:

4.9.1 Using two different resolutions

If a specific resolution for the capturing stage is used, and a different resolution is used for

displaying the integral images, the quality of the integral images can be improved. The

resolution of a printed image can be much higher than that of the available display devices.

139

The limitation of the available display devices resolution reduces the quality and the accuracy

of the produced integral images, whereas, the resolution considered in the rendering process

is the resolution of the display devices. Therefore, it would be useful if the rendering process

were carried out using the resolution of the display devices, and at the same time, the static

image is displayed with the resolution of the printer or the display device that has a higher

resolution. For example, a cylindrical lens array is considered as a capture and display device.

The number of columns under each lenslet is eight columns (8×8 pixels under each micro-

image when a spherical microlens array is considered). The display device resolution is eight

times higher than the rendering device resolution (e.g. PC screen with 1024×768 pixels or a

resolution of 75 dpi and a printer with a resolution of 600 dpi). Each lenslet covers 64

columns on the printed image. The image plane should be rotated with a number of angles

equals to the number of columns under each lenslet (i.e. 64 angles).

The same algorithm is applied; the pixels are selected from the orthographic projections and

mapped to the final image so that the pixel values of the images are assigned to pixels in the

image plane with a higher intensity. In this case, the scene would be represented in more

details and better quality, and the integral image can be stored to be displayed as a printed

image. However, more complexity is added to the process. The quality of integral image is

improved because more pixels are picked up from the projections, the composed image

would contain much more information about the scene, and therefore, the images viewed are

more continuous. Viewing the 3-D effect of the integral image happens when each eye sees

columns (or pixels) extracted from different projections at the same time, thus each eye sees

the scene from a different view angle. When the viewer moves, each eye sees a different set

of columns or pixels extracted from different projections. The higher resolution or the higher

number of projections means that the sets of columns are exchanged smoothly as if it is a real

scene. Therefore, the approach of using different resolution improves the integral images

quality.

One embodiment of the technique of using different resolutions is shown in Figure 4.14. In

the capturing stage, some of the pixels of the orthogonal projections are selected, whereas,

the reminders are discarded. Now, groups of adjacent pixels are selected instead of separated

pixels or columns. An approximation is considered when selecting the pixels so that the area

around the required pixel (or the column) is picked up instead of the pixel alone (or the

column). In this case, no pixels are discarded and the entire orthogonal image is

140

accommodated in the final image. In the replay stage, if a virtual spherical lens array (or

lenticular) is used, each lens produces a band of parallel rays starting from its focal point, and

the replayed pixels are the area extracted from the orthogonal image instead of the selected

pixel (or column). The selected pixels are not necessarily accurate because the approach of

selecting the pixels is approximated. However, the resolution considered for the orthographic

projections is limited; therefore, if the image plane is rotated with angles corresponding to the

pixels of the final image plane which has a much higher resolution, the selected pixels would

be slightly different to the group of pixels that is selected with this approximated approach.

Figure 4.14, right, the area (A) in the orthographic image is accommodated in the area (a) in

the final image. In order to select the accurate pixels, the image plane should be rotated with

angles around the angle θ and pick up the required pixels (or columns) from each

orthographic image. With the previous approximation, area (A) is mapped to the area (a).

The resolution of the final image is MR, and the resolution of the sub-images is R. With a

good approximation, the central ray of each lens is considered as a central ray for the band of

rays collected and displayed by each lens. The whole number of pixels can be mapped to the

final image where the pixels representing the band are accommodated. In this case, the

number of pixels mapped under each lens in the final image is approximately equal to the

number of pixels in the area (A) in the rotated plane multiplied by the number of the rotated

planes.

Figure 4.14: Left, replayed pixels. Right, mapped groups of pixels in the capture stage.

141

For example, if the resolution of the sub-images is 70 dpi, and the final image resolution is

560 dpi, the number of rotations is eight. With good approximation, all the pixels of each

sub-image in the rotated image planes are mapped to the final image. The central ray of each

group is perpendicular to the rotated image planes. In the display stage, the lenses reproduce

the original rays of each rotated image and the produced rays are integrated to form the

objects of the scene with lower accuracy due to the approximation we used.

If a horizontal parallax is aimed, the number of selected horizontal pixels from the

orthographic projections to be accommodated under each lens and the location of the central

pixel in the group are dependent on the rotation angle of the image plane. The same is

applicable when considering the vertical rotation of the image plane (See Figure 4.14).

When the horizontal rotation angle is θ, the distance from the rotation axis of the central pixel

in the group A is the distance between the rotation axis and the central pixel of group a

multiplied by 𝑐𝑜𝑠 𝜃. The number of group A pixels is the integer part of A calculated from the

Equation: A=p×𝑐𝑜𝑠 𝜃×r, where p is the lens pitch, θ is the rotation angle, and r is the

horizontal resolution of the rotated image plane. The number of pixels in the vertical

direction will be B=p×𝑐𝑜𝑠 𝛼×ŕ, 𝛼 is the rotation angle in the vertical direction and ŕ is the

resolution in the vertical direction. The resulting micro-image will be a cluster of rectangles

of pixels with varied dimensions selected from different orthographic projections.

Another embodiment can be implemented by selecting the resolution of the sub-images in the

vertical and horizontal directions to be equal to the number of micro lenses in the vertical and

the horizontal directions respectively divided by 𝑐𝑜𝑠 𝜃 where 𝜃 is the maximum angle of

rotation required for rendering. In this case, the number of pixels under each lens in one

direction is equal to the number of orthographic projections required to compose the final

image. The pixel values picked from the selected locations in the orthographic projections are

mapped to the correct pixels in the final image. An algorithm can be used to calculate the

location of the pixels corresponding to the target pixels in the final image. Most of the pixels

picked from the rotated images would be distributed to the micro-images in the final image

but some of the pixels would be discarded.

142

 p4

 P3

 A

 Object

 p1 ob

 p2

 Cl F image plane 1

 col θ F

 c0

 p1ʹ p2ʹ

 obʹ

 a1 a4 θ colʹ a3 Aʹ

 colʹʹ Clʹ a2

 p3ʹ

 p4ʹ

 p4ʹʹ

 ob2ʹʹ p3ʹʹ

 image plane 2

 Aʹʹ

 ob1ʹʹ

 p1ʹʹ obʹʹ

 p2ʹʹ

Figure 4.15: Capture, midway, and replay stages of producing integral images.

143

4.9.2 Display the scene in front and behind the display screen

The image composed with DCTarget method is the first stage of the process shown in Figure

4.15. The object points such as p1, p2, p3, and p4 are projected on the image plane with

DCTarget method through a pinhole array. The points are replayed and reconstructed with a

micro lens array (or lenticular array) to form a real and pseudoscopic image to which p1ʹ, p2ʹ,

p3ʹ, and p4ʹ are belonging. The following stage is aimed to correct the pseudoscopic image to

be an orthogonal image. In addition, another approach can be combined with the correction

process aiming to reproduce the image of the scene divided by the display screen. In this

case, the viewer can view one part of the image located behind the display screen while the

other part is displayed in front of the display screen.

The location of the display screen in respect to the scene can be controlled by selecting the

location of Level (A) in the object space. Level (A) is an imaginary vertical plane located in

the object space and parallel to the final image plane. The object points of object (ob) in the

scene located in Level (A) are supposed to be the points located in the display screen when

the scene is displayed. The object points of the part located in front of Level (A) such as p1

and p2 are replayed in front of the display screen. The reconstructed object points of this part

such as P1ʹʹ and p2ʹʹ appear in front of the display screen as real and orthogonal reconstructed

points, whereas, the object points behind Level (A) such as p3 and p4 are displayed as if they

are located behind the display screen. The reconstructed object points such as p3ʹʹ and p4ʹʹ are

forming an orthogonal virtual part of the scene located behind the display screen. Once the

image formed on the image plane is reconstructed, Level (Aʹ) contains the object points

contained in Level (A) and the reconstructed points such as p1ʹ and p2ʹ are built behind Level

(Aʹ), while points such as p3ʹ and p4ʹ are reconstructed in front of Level (Aʹ). The

reconstructed image (obʹ) is pseudoscopic and real image divided by the imaginary plane (Aʹ).

The aim of this approach is producing a computer-generated integrated image so that the

replayed image is formed of two parts; one part is a real orthogonal image in front the screen

and the other is a virtual orthogonal image located behind the screen. In order to build the

computer-generated image that provides the correction of the pseudoscopic image and

provides the ability to display the scene in front and behind the display screen at the same

144

time, the real image (obʹ) is projected on an imaginary image plane located in the imaginary

Level (Aʹ).

The points of the reconstructed part that is going to be displayed as a real and orthogonal

image located in front of the screen such as p1ʹ and p2ʹ are projected on plane (Aʹ) to points

like a1 and a2 respectively. The projection of each point is implemented with extending the

rays that are forming the point, the points where these rays hit plane (Aʹ) are the projections

of the point on plane (Aʹ). The rays that are forming each point in the image obʹ start from the

pixels representing the point in question on the final image plane that is composed with

DCTarget method. These rays pass through the lenses of the microlenses array and meet in

the space where the point is reconstructed because of the intersection of these rays with each

other. The extensions of these rays are intersected with pixels in plane (Aʹ) where the values

of the original pixels that have produced the rays are assigned. The projection process is

applied to all the possible projections of the image points belonging to this part of the image.

The points of the reconstructed part of the scene that is supposed to be displayed as virtual,

orthogonal image behind the display screen such as p3ʹ and p4ʹ are projected on points on

plane (Aʹ) such as a3 and a4 respectively. The projections of a point on the image plane

located on plane (Aʹ) are the intersection points of the rays that are forming the point with

plane (Aʹ) before the image point is formed. The rays forming points like p1ʹ were projected

using the extensions of the rays with plane (Aʹ) after forming the point in question, whereas,

points like p3ʹ and p4ʹ are projected using the intersection of the rays forming the points with

plane (Aʹ) before forming these points. The rays forming a point such as p3ʹ hit plane (Aʹ)

before intersection, and the pixels were the intersection points are located are the pixels that

are supposed to hold the pixel values of the pixels representing that point. The projection

process is applied to all the possible projections of the image points belonging to the part of

the image that is supposed to be displayed behind the screen.

At this stage, the part of the scene that is displayed behind the screen must be projected on

plane (Aʹ) before the part displayed in front of the screen so that the pixels representing parts

of the scene in front the screen overwrite those pixels that are representing the part behind.

Leaving unassigned or empty pixels in the image plane located in plane (Aʹ) must be avoided,

for this reason, the part of the scene behind the screen should be fully projected, afterward,

145

the part in front is projected, and the pixel values of appearing points automatically overwrite

the pixel values of the points hidden by these points.

In Figure 4.15, image plane 1 is imaginary one while image plane 2 is the real one that is

used to display the integral image. The pixels of the image formed on the imaginary image

plane that is located in plane (Aʹ) are mapped to the real image plane 2 keeping the location

and the values of the pixels on image plane 2 the same as the pixel values and location on the

imaginary image plane. In this approach, objects such as object ob in the object space are

computer-generated objects, the replayed images such as obʹ are imaginary replayed images

and the locations of their points should be calculated with the application software. The

projections on the imaginary image plane (Aʹ) of the pseudoscopic image points calculated

with the same software. The calculated pixel values and locations are mapped to the actual

image plane 2 that is used with a micro lens array to display the integral image. On both sides

of image plane 2, the integral image is displayed as required.

Once image plane 2 is covered with the lens array, the objects are reconstructed with the rays

produced by the pixels and passed through the lenses. Part ob1ʹʹ of the reconstructed object is

the part that is supposed to be displayed in front of the screen, whereas, part ob2ʹʹ is supposed

to be displayed behind the screen. The image points of ob1ʹʹ are formed from the rays

produced by the pixels that are holding the pixel values of the projection points already

calculated. The rays produced by the pixels of part ob1ʹʹ converge and meet in front of the

display screen and form the real and orthogonal image of this part. In the same way, the

pixels representing the projection of the other part image points are forming part ob2ʹʹ of the

image. Part ob2ʹʹ of the reconstructed image is virtual, orthogonal and formed with the rays

produced by the pixels representing this part that was supposed to be displayed behind the

display screen. The rays of this part converge and meet in virtual points seem as if they are

located behind the screen. The viewer views the diverged extension of the rays forming the

virtual points; therefore, they seem as if they are intersected behind the screen and forming

part ob2ʹʹ of the image.

Figure 4.15 shows an approximated illustration of the reconstructed image ob2ʹʹ. The display

screen is supposed to display the integral image registered on image plane 2. Practically, the

thickness of the micro lens array that is employed (or lenticular array) is supposed to be very

small in comparison with the dimensions of the image so that the thickness is close to zero.

146

The actual location of the display screen plane in respect to the reconstructed image is

considered to be in the location of plane Aʹʹ. The drawing is not fully accurate because of the

exaggerated thickness of the lens array in the diagram. With this assumption, the rays

reconstructing the part ob1ʹʹ in front the screen can be shown in the drawing. The rays are

produced from the pixels on plane Aʹʹ and intersected to form part ob1ʹʹ. However, the rays

forming part ob2ʹʹ are not depicted correctly in the diagram because the thickness of the lens

array is relatively large in comparison with the reconstructed image.

Figure 4.15 shows that each one of the pixels representing the object on plane Aʹ can be

mapped from image plane 1 with simple calculations regardless the part of the object it

represents. In other words, every pixel from image plane 1 is mapped using the same formula.

The following discussion is an attempt to calculate the location of the pixels when mapping

them from image plane 1 to plane Aʹ.

The dimensions of the object space are normalized when rendering using OpenGL so that the

scene volume is bounded by the planes: x = +1.0, x = -1.0, y = +1.0, y = -1.0, z = 0.0 and z

= -1.0. Plane z = 0.0 is plane of the capturing screen. The replayed image of the first stage is

located between plane z = 0.0 of the capturing screen and z = +1.0. Therefore, the

coordinates of the object points are normalized and bounded by the mentioned values. From

now on, a length unit is considered to replace the normalized coordinates and the real length

unit. The considered unit is the width and height of one pixel. Each of the normalized width

of the screen and the normalized length is equal to two. The number of horizontal pixels of

the screen is equal to w, whereas, the number of vertical pixels is equal to h. Then the

coordinates of the object points can be measured with the number of pixels that is equivalent

to the normalized values of the coordinates. For example, the point that has x, y, and z

coordinates equal to +1, +1, and -1 respectively in the normalized system has x, y, and z

coordinates in the new measured system equal to w/2, h/2, and -1 respectively.

The whole scene is located between the planes z = 0.0 and z = -1.0, and the image rendered

in the first stage is located between z = 0.0 and z = +1. Z-coordinates were normalized in the

scene space by dividing the Z-coordinates by the total depth of the scene. In the same way, Z-

coordinates in the image space are normalized, then the screen width equals to 2, and the

maximum depth of the image equals to 1, therefore, from now on the depth of the image

space is supposed to be measured by pixels so that the maximum depth equals to w/2. Plane

Aʹ is located at a selected normalized location so that the distance from the display screen can

147

take any value from 0.0 to 1.0 (i.e. 0.0 at the display plane and 1.0 at the end of the image

space). If a cylindrical lens array is used, and the effect of the lenses is simplified so that the

horizontal ray that traverses the lens behaves as if the lens is a pinhole. In the same way, if

the lens array used is a spherical one, each lens is considered as a pinhole.

If a cylindrical lens array is used, Figure 4.15 shows the columns of pixels in image plane 1.

Starting from the left hand side of the screen, each column is mapped to plane Aʹ. Rays start

from a column hits plane Aʹ in the location where the column should be mapped. If the angle

of a ray with image plane 1 is θ, the angle with Aʹ is θ. To map the columns, we need to shift

them to specific locations. The new location of the column on plane Aʹ is calculated and

derived from the original location of the column on image plane 1. In this particular

discussion, a special coordinate system is considered in which the upper left corner of the

screen is the centre of the coordinate system, the pixel coordinates increase horizontally from

left to right, whereas, these increase vertically downward. The number of horizontal pixels

under a lens is n, the width of a pixel is p, and the coordinate of the centre of a pixel is the

coordinate of the pixel. The coordinate of a column is x, where x = 0.5p is the coordinate of

the first column from the left hand side of image plane 1, x = 1.5p is the coordinate of the

second column and so on. The point x0 has x coordinate = 0. For any column from image

plane 1, the coordinate x for the column of the order m is:

x0.x = 0.5×p×(2×m +1) (4.61)

tan 𝜃 = 𝐹 𝑥1⁄ (4.62)

x1 is the distance between the centre of the lens and the location of the column in question.

The order of the lens starting from 0 at left is:

l = int(m/n), the integer part of (m/n) (4.63)

The coordinate of the lens centre is Cl (e.g. l = 0 is the index of the first lens from left) to

which the column is belonging is calculated from the order of a column m as follows:

x0.Cl = (2×l +1)×(n×p/2) (4.64)

148

For (4.61), (4.63) and (4.64), the distance x1 for the column with the order m is:

x1 = x0.Cl - x0.x = (2×(int(m/n)) +1)(n×p/2) - 0.5×p×(2×m +1) (4.65)

From Equations (4.62) and (4.65):

tan 𝜃 = 𝐹 (2 × (𝑖𝑛𝑡 (
𝑚

𝑛
)) + 1) (𝑛 ×

𝑝

2
) − 0.5 × 𝑝 × (2 × 𝑚 + 1)⁄ (4.66)

In the image plane Aʹ the column of order m and coordinate col is mapped to colʹ where the

horizontal ray of the column hits plane Aʹ.Clʹ is the coordinate of the lens in image plane 1

that is covering the column of interest. x, and y coordinates of the pixels in plane Aʹ and

image plane 1 are equal, from. (4.64): x0.Clʹ = x0.Cl = (2×l +1)(n×p/2)

 x0.colʹ = x0.Clʹ + Clʹ.colʹ = (2×l +1)×(n×p/2) + Clʹ.colʹ (4.67)

Clʹ.colʹ is the distance between the lens centre and the mapped column:

tan 𝜃 = 𝑐0. 𝐶𝑙ʹ 𝐶𝑙ʹ. 𝑐𝑜𝑙ʹ⁄ = 𝑐𝑜𝑙. 𝑐𝑜𝑙ʹʹ 𝑐𝑜𝑙ʹʹ. 𝑐𝑜𝑙ʹ⁄ (4.68)

The distance col.colʹʹ is the normalized distance between image plane 1 and plane Aʹ. col.colʹʹ

is selected by the user to define the location of plane Aʹ. col.colʹʹ varies from 0 to 1 in the

normalized dimensions of image space. When rendering with OpenGL, in the orthogonal

projection, the dimensions of the objects located in the view volume are normalised.

Normalization can be simply implemented by dividing x, y and z coordinates of the objects by

the maximum x, y, and z coordinates in the scene respectively. In this case, the maximum x

coordinate value would be +1 at the far right edge of the screen and the minimum -1 at the

far left edge, whereas, x = 0 is the coordinate at the centre of the screen. The same is applied

to y-coordinate and z-coordinate, y = +1 is the coordinate at the maximum upper edge, y = -1

at the lower edge, and y = 0 at the centre of the screen.

In this approach, the coordinates are normalized so that the minimum and maximum

normalized x, y, and z coordinates in the object space are respectively -1 and +1. The image

plane in the capture stage has the same dimensions of the image plane in the replay stage,

149

then, the same normalization can be applied to the space of image obʹ. Therefore, the total

width of the screen (i.e. image plane 1) is 2, and the total length, whereas, the maximum

depth of the object ob space equals to 1, and the maximum depth of the image obʹ equals to 1,

then the width can be considered to be proportionally equal to double the maximum depth of

the image space. Za is the proportion of plane Aʹ selected location that varies between 0 and

1, the maximum value 1 occurs when the distance to image plane 1 is equal to half the width

of the image plane. If the total number of horizontal cylindrical lenses is N, and the number

of pixels under each lenslet is n, the total number of horizontal pixels in the image plane is

N×n. The total width is equivalent to a normalized length of 2, p is the width of a pixel, and

then col.colʹʹ as a measured length is equivalent to the length of (N×n/2)×Za pixels, or:

col.colʹʹ = (p×N×n/2)×Za (4.69)

colʹʹ.colʹ is the distance with which the column should be shifted on plane Aʹ; this distance is

measured with pixels. colʹ is the column new location and its coordinate can be calculated

and each column can be shifted to its new calculated location to form the final image on

image plane 2. The x coordinates of the new location of each column when a cylindrical lens

array is used and the new location of the pixels when using a spherical lens array can be

calculated as follows:

x0.colʹ = x0.colʹʹ + colʹʹ. colʹ (4.70)

From Equations (4.70) and (4.61): x0.colʹʹ = x0.x = 0.5×p×(2m +1), From Equations (4.68):

𝑐𝑜𝑙ʹʹ. 𝑐𝑜𝑙ʹ=𝑐𝑜𝑙. 𝑐𝑜𝑙ʹʹ tan 𝜃⁄ , and From Equation (4.69): col.colʹʹ = (p×N×n/2)×Za, then:

x0.colʹ = 0.5×p×(2m +1) + 𝑐𝑜𝑙. 𝑐𝑜𝑙ʹʹ tan 𝜃⁄ (4.71)

x0.colʹ = 0.5×p×(2m +1) +

((𝑝 × 𝑁 ×
𝑛

2
) × 𝑍𝑎) × ((2 × (𝑖𝑛𝑡 (

𝑚

𝑛
)) + 1) (𝑛 ×

𝑝

2
) − 0.5 × 𝑝 × (2 × 𝑚 + 1)) 𝐹⁄

 (4.72)

F is the focal length of the lens that is measured with the length units. cons1 is a constant:

150

𝑐𝑜𝑛𝑠1 = 𝑝 × (𝑁 ×
𝑛

2
) × 𝑍𝑎/𝐹 (4.73)

 Then, the new column (or pixel) location is:

x0.colʹ = p×[0.5×(2×m +1)

+(𝑐𝑜𝑛𝑠1) × ((2 × (𝑖𝑛𝑡 (
𝑚

𝑛
)) + 1) (

𝑛

2
) − 0.5 × (2 × 𝑚 + 1))] (4.74)

x0.colʹ = p×[(m +0.5) +(𝑐𝑜𝑛𝑠1) × (((𝑖𝑛𝑡 (
𝑚

𝑛
)) + 0.5) × 𝑛 − (𝑚 + 0.5))] (4.75)

 𝑀 = 𝑚 + 0.5, M is a temporary defined variable, and x_new is the new location of the

column (or mapped pixel).

x_new = x0.colʹ = M×p +(𝑐𝑜𝑛𝑠1) × (((𝑖𝑛𝑡 (
𝑚

𝑛
)) + 0.5) × 𝑛 × 𝑝 − 𝑀 × 𝑝) (4.76)

x_new = p× [(𝑚 + 0.5) × (1 − 𝑐𝑜𝑛𝑠1) + (𝑖𝑛𝑡 (
𝑚

𝑛
) + 0.5) × 𝑛 × 𝑐𝑜𝑛𝑠1] (4.77)

new_pixel_index = int(x_new) (4.78)

where m is the index of the column (or pixel) of interest. The new location of the column

indexed with m is calculated using formula (4.77). For example, if p = 0.25 mm, F = 3 mm, 𝑛

= 8, 𝑁 = 128, and 𝑍𝑎 = 0.7, 𝑐𝑜𝑛𝑠1 = 29.867. Table 4.2 represents a few samples:

Column Index m 0 1 2 3 4

x_new (mm) 26.258 19.0417 11.825 4.608 -3.73

Location (pixels) 105.032 76.1668 47.3 18.432 -14.92

New Pixel Index 105 76 47 18 -14

Table 4.2: The new locations of the columns indexed with m.

151

The negative values are rejected; it means they are located outside the image plane. The new

location measured with pixels indicates the order of new pixel where the pixel (or column) is

mapped. If the first pixel is indexed with 0, then, the index of the new pixel (or column) is the

integer part of the calculated location measured with pixels which is stated in (4.74). Using

the following simple piece of code, the new locations are calculated in and then the columns

can be mapped to plane Aʹ, the total number of columns is 1024:

for (u32 column_ind = 0 ;

column_ind< 1024; column_ind++) {

int len_index = floor((float)column_ind/n_pixels);

float column_ind_2=(column_ind + 0.5)*(1 - cons_1) + n_pixels*cons_1*(len_index + 0.5);

int column_ind_1 = floor((float)column_ind_2);

Figure 4.16: Integral images rendered for different focal length values: 5 mm (upper

left), 12.5 mm (upper right), 50 mm (lower left), and 62.5 mm (lower right).

152

if(column_ind_1 >= 0)

{for (u32 row_ind = 0 ; row_ind < 768; row_ind++)

{u32 pixel_ind = column_ind*3 + 1024*row_ind*3;

image->setPixel(column_ind_1, row_ind,

video::SColor(255,pixels_index[pixel_ind],pixels_index[pixel_ind+1],pixels_index[pixel_ind

+2]), false);}}}

Figure 4.16 shows the resulting integral images for different focal length values when

cylindrical lens array is used and the location of plane Aʹ is equal to 0.7. The angle of view is

inversely proportional to the focal length. On the other hand, when the viewing angle of the

lenses is higher, each micro image is supposed to represent a larger portion of the image

volume, therefore, a higher resolution of the display screen is required to display the images

with a good quality.

The images are displayed with PC without natural light source. Increasing the focal length

improve the quality of the image and sharpen the details of the image. However, increasing

the focal length causes the view angle to be smaller and that decreases the quality. To

optimize the quality, a trade-off between the view angle and the focal length should be

carried out.

Integral images can be displayed with spherical micro lenses or cylindrical microlenses

dependent on the way of rendering. If the image captured with virtual spherical microlens

array, the image should be displayed with microlens array, the same for cylindrical lens array.

The quality of spherical lens images is higher than the cylindrical lens images because the

former one provides horizontal and vertical parallax, whereas, the cylindrical provides only

horizontal parallax.

The quality of the resulting integral image is related to the screen resolution and the lenses

focal length, pitch, and field of view. The higher number of pixels can be accommodated

under each lens the better quality of image can be achieved. For a specific field of view or

angle of view, pitch, and focal length, the higher resolution of the screen, the higher number

for columns (when cylindrical lenses are used), or pixels (when spherical lenses are used). If

more columns can be accommodated under a lenslet, a larger part of the scene can be

153

represented with one lenslet, the micro image is sharper, and the viewer can move within the

angle of view while viewing the resulting integral image with more gradual changing. If a

larger part of the scene is represented with each lenslet, the lenslet produces more rays and

the integration between the rays from different lenslets is more intensive, therefore, the

displayed image is sharper.

In order to keep the intensity of rays produced by each lenslet when the screen resolution

increases, the field of view should increases and vice versa. The screen resolution is fixed for

the display image, and then the field of view or angle of view will reflect the quality of the

rendered integral image. If the resolution of the display screen is limited to a specific value,

we need to adjust the field of view to be small enough to allow enough pixels to be

accommodated in the space on the screen that is specified for an elemental image. To solve

this issue in our examples, we need to either reduce the angle or field of view, or increase the

resolution. The resolution is limited so we need to reduce the field of view or the angle of

view for each lenslet. The angle for each lenslet is dependent on the pitch p and thickness (i.e.

the focal length) of a lenslet. For a specific resolution, a number of columns n can be held in

a micro image, and the angle of view AOV is linked to the focal length f with the Equation:

AOV = 2×𝑡𝑎𝑛−1(𝑝 (2 × 𝑓)⁄), or, tan(𝐴𝑂𝑉/2) = 𝑝 (2 × 𝑓)⁄ (4.79)

From the previous discussion and the experimental results, the image quality Q is

proportional to the number of columns accommodated in a lenslet and the focal length of the

lenslets, and inversely proportional to the width of the lenslet for the same number of

columns. Thus, the quality can be defined with following formula:

Q = c×n×(2 × 𝑓 𝑝)⁄ (4.80)

c is a constant dependent on other factors affecting the quality of the image, however, these

factors are supposed to be fixed when measuring the quality in relation to the viewing angle.

From Equations (4.79) and (4.80), the relation between the image quality and angle of view

can be found:

Q =(𝑐 × 𝑛)/(tan(𝐴𝑂𝑉/2)) (4.81)

154

AOV/2 is the maximum angle with which we need to rotate the image plane in the capture

stage. From Equation (4.81), it is clear that the smaller the maximum rotation angle the image

plane is rotated, the higher image quality is achieved and vice versa. In addition, the higher

number of columns is accommodated under each lenslet, the better image quality can be

accomplished.

The resolution considered in these examples is the resolution of the normal PC screen that is

about 75 dpi. As a result, the quality of the produced images with lower viewing angles when

displayed on the normal PC screen would be higher. The focal length values selected in the

examples below are 20×p = 5 mm, 50×p = 12.5 mm, 200×p = 50 mm, and 250×p = 62.5

mm, p is the width of a pixel.

4.10 Camera model

The camera model that has been introduced in the previous chapters can be

depicted in Figure 4.17. The parts called virtual image stage and image

processing stage are implemented using software applications, whereas, the

stage called real image stage is the actual presentation of the produced images.

Figure 4.17: The suggested camera model

155

4.11 Summary

An integral image can be produced using orthographic projections of the scene on a rotating

image plane that rotates with specific angles around the position of the camera while the

target point is moving to specific location to provide the required rotational conditions of the

image plane. The needed pixels are extracted from the resulting images and mapped to the

image plane forming the integral image, whereas, the remainders of the pixels are discarded.

The 3-D integral images can produce the depth effect by placing an optical device on the

screen with which these images are displayed. When viewing the integral image through a

cylindrical lens array or microlens array, the depth effect for each object point in the scene is

linearly linked to the number of the elemental images that contain information about the

projections of these points. In other words, the higher the number of elemental images that

hold information about a point in the scene, the deeper that point is seen by the viewer.

Therefore, in this approach, an integral image with depth effect for each point in the scene is

created, or the depth information is encoded within the pixel values of the integral image and

decoded by reconstructing the scene using an optical tool such as a microlens array. A virtual

orthogonal scene is reconstructed and the proportional depth effect of each object point is

created. The application software based on this method can be developed to render images

with higher width and length and print them out to be used for applications such as

advertisements.

Regarding the fact that the quality of the resulting images is dependent on the resolution of

the display screen, and the resolution of the PC screens with which these images are meant to

display, the quality of the resulting image is limited. However, printers provide much higher

resolution, and therefore, printing the images on transparent films and displaying the images

with a normal light source provides 3-D images displayed with proportionally high quality.

156

Chapter 5

The autostereoscopic integral images generating tools

5.1 Introduction

The application software provided with a user-friendly interface that is capable to produce

autostereoscopic integral images is the main target of this chapter. In this chapter, the stages

needed for producing the integral images from the start to the end are explained. The software

tool utilised to implement DCTarget method is the plug-in tool or the application software

that is intended to produce the 3-D integral images. The hardware devices are the physical

tools that are employed to generate the required integral images and display the resulting

images such as the PC and the lens array. The application software that is intended to design

and implement should be provided with a Graphical User Interface (GUI) to allow the user to

build the scene from the computer-generated models and select the measurements, the

parameters, and the features of the scene. In addition, the GUI should allow the user to select

the features and the parameters of the virtual camera and display devices, and then instruct

the application to generate the integral images based on the DCTarget method with the

required features and parameters.

5.2 The integral images production system structure

Figure 5.1 depicts the stages of a simple integral images production system as interacted

blocks and the interactions between them. In order to produce the integral images of a scene,

the scene components including the models and textures should be generated and saved in

memory beforehand. The scene components should be imported to the application

environment regardless the format of the files that are holding the scene geometric data or the

format of the texture image files. However, specific file formats and texture file formats are

supported by the implemented plug-in tool. The application environment is a Visual C++

supported by specialist libraries including Irrlicht library. In the same environment, a user-

friendly GUI is used to control the scene and rendering of the integral images. Through the

157

GUI, the model and texture files are selected to build the static or animated scenes that are

going to be converted to integral images.

The output of the rendering process would be a saved image file for a static scene, or a

collection of image files for an animated scene so that each saved image file is the integral

image of a single frame of the animated scene. The resulting image files can be displayed on

a normal PC screen or a special display screen and viewed through a suitable lens array. The

produced integral images would be viewed as a scene provided with a 3-D autostereoscopic

effect. In addition, a horizontal parallax would appear when using the cylindrical lens array as

a rendering mode, whereas, a horizontal and vertical parallax would appear in the case of

rendering the integral images in the spherical lens array mode. The stages are going to be

explained in more details.

Figure 5.1: The integral images production stages.

158

5.3 The application components and integral images production stages

5.3.1 Three-Dimension images generation

The integral images that are produced by the application are simulated integral images of the

images produced by a virtual 3-D camera based on the DCTarget algorithm. Therefore, the

images that can be converted to 3-D autostereoscopic integral images using the application

software are computer-generated images. The whole scene can be generated or its

components beforehand. User should be able to build the scene and add new features to the

view through the GUI. The scene components can be generated using applications such as 3D

Max, Blender and Maya. The whole scene can be saved in a single file, or each model can be

saved apart in a separated file with one of the supported file formats. The scene can be a

single static image or a film with a number of frames making an animated scene. The

application should be able to import any file if its format is supported, however, importing

files can imply on some difficulties because of reasons related to the program that has

generated the file or even the version of the program.

Image files that hold the information needed for texture mapping should be available for

rendering the models and the scene components. In addition, the texture files that are needed

to build the scene through the GUI should be saved in memory and available for the program

to load to the application environment. Specific image file formats are supported, however,

other file format can be added and the loading functions should be developed to be able to

load the newly added formats.

5.3.2 Import 3-D images

When the model file or the model frames that are forming a scene are stored in files with

certain file formats, and the texture files are saved in files with certain image file formats,

these files should be loaded to the environment of VC++. Selecting the file through the GUI

leads to call the function employed to load the file in question. Dependent on the selected file,

the correct loading function is called. Irrlicht library provides such functions that are called to

load files with the supported file formats including the texture image files. In order to load

model files regardless their formats, it can be useful to adopt a function that converts the files

159

with different formats to a specific file format that can be loaded easily, and then load them to

the environment.

5.3.3 Integral images production algorithm

Once the scene files including the geometric files and the texture files are loaded, the integral

images production algorithm is applied to the scene to produce and display the required

autostereoscopic images. The algorithm called DCTarget that is based on the algorithm

DIVGL that are explained in Chapter 3 and Chapter 4 respectively are used to generate the

integral images. DIVGL algorithm is implemented apart to produce pseudoscopic virtual

integral images, whereas, DCTarget is used to produce orthoscopic real and virtual integral

images.

5.3.4 Integral images display devices

When the integral images are rendered and saved in files, these images can be displayed on a

PC screen mounted by the correct lens array to view the scene with the required 3-D effect

and parallax. The higher screen resolution we use the better image quality we get. The higher

resolution leads to accommodate more pixels in the same surface of the screen and therefore,

the number of integrated points is higher. As a result, the image is more accurate and the

continuity of the image parts is better. The thickness of normal PC screens can create an error

and then affect the quality of the image because the location and value of the image pixels are

calculated and rendered based on the assumption that the thickness of the screen is null. In

order to get rid of this error, we need to consider the thickness of the display screen and add it

to the calculations. Otherwise, the thickness of the screen should be zeroed, or reduced to the

point that its effect is neglected (e.g. print the image on paper mounted by the lens array). The

display screen is then mounted by the lens array. The lens array can be cylindrical if the

selected rendering mode is cylindrical and spherical when the rendering mode is spherical.

Several factors can affect the quality of the displayed integral image including the lens angle

of view, and pureness of the lens array material.

A special display screen can be introduced; the screen should be supplied with the required

cylindrical or spherical lens array as well as the LCD. On such a screen, the images can be

160

displayed and adjusted so that the micro images of the integral images match the micro lenses

of the screen lens array.

5.3.5. Graphical Unser Interface

The Graphical User Interface (GUI) is based on Irrlicht engine; therefore, Irrlicht engine is

referenced by including the file irrlicht.h. In addition to Irrlich and windows files, Visual C++

files needed for the GUI and the algorithms implementation are included. Name spaces such

as irr, gui, core, scene, video, and io are used to include the different classes we need from

Irrlich engine, windows, and VC++.

The initial setting of the program is configured by an XML configuration file. The

configuration file can include the essential initial settings of the application such as the

default model and texture, the welcome message etc… For example, the following simple

XML file includes the name of the initial model file, and a welcome message:

<?xml version="1.0"?>

<config>

<!--This is a config file for Integral Imaging producer.-->

<startUpModel file="ninja.b3d" />

<messageText caption="HMI for Integral Imaging producer "Brunel

University"">

Welcome to the HMI of the "Integral Imging Producer"

This program is based on Irrlicht Engine.

</messageText>

</config>

At the beginning, when the application starts running, a welcome message appears, and the

default model is rendered with the default texture background. After closing the welcome

message, the parameters toolset will be ready to set the parameters required to render the

integral images. Figure 5.2 shows the screen with the toolset and the default 2-D model. The

menu bar and tool bar appear on the top, and the university logo is stamped on the start-up

screen but does not appear in the resulting integral images.

The GUI is supposed to allow users to build the scene from a number of model files, textures,

and light sources. From the menu, the required scene file and texture can be picked up to be

loaded to the scene. In order to build the scene, several models with textures can be added

one by one. The parameters, texture and light sources for each model can be set with an

161

independent GUI. The explained GUI is a simplified GUI in which the parameters of only

one model can be set with the toolset. However, several models and textures can be loaded in

the scene but only the parameters of only one model can be set by the user in the simplified

GUI. In addition, several light sources with different coordinates, diameters and colours can

be added to the scene one by one and the resulting scene can be showed instantly on the

screen. GUI can be developed to allow users to load several models and set their parameters

each one apart.

Figure 5.2: A simple GUI to set the parameters to render Integral Images.

The GUI allows users to build the scene as well as adjusting the light, the texture, the

background, the initial centre of the camera, the initial camera target, and set the parameters

of the display screen, the parameters of the lenses, the position, the rotation angles, the scale

of each loaded model, and the display mode. Other features and more facilities can be added

to provide a more controllable rendering and produce higher quality integral images. Each

feature in the simplified GUI is going to be explained representing its aim, the code behind it,

and the possible improvements that can be added.

162

5.3.5.1. Loading the models and textures

After starting up, the screen will look as shown in Figure 5.2. In order to build the scene, the

models and textures should be loaded from memory. From the menu bar, a browsing window

pops up at clicking File, and then the memory can be browsed. The file that contains the

geometric data of the required model can be selected from its location in the memory and

loaded to the scene. In addition, the texture files needed I the scene can be loaded form their

locations in the memory. In this simplified GUI, only one model can be loaded and its

position, rotation angles, and scale can be adjusted. The events are applied to the GUI by the

user, and then the GUI Elements send the events to the application. The application should

contain an event receiver to receive these events. The event is the action taken by the user and

applied to the GUI. The GUI elements are identified by enumeration values defined at the top

of the C++ file. For example, the enumerator constant GUI_ID_OPEN_MODEL is the ID of

the menu item that leads to open model files and textures. At clicking the button (File) in the

menu bar, the list of items appears. If the item labelled with the title (open model file &

texture) is selected as it is shown in Figure 5.2, the dialog box shown in Figure 5.3 appears.

Figure 5.3: An Open Model File & Texture dialog box.

Table 5.1 links each enumerator defined in the source code and its associated GUI Element:

ENUMERATOR GUI ELEMENT

GUI_ID_X_SCALE The value of X-coordinate of the model scale

GUI_ID_Y_SCALE The value of Y-coordinate of the model scale

163

GUI_ID_Z_SCALE The value of Z-coordinate of the model scale

GUI_ID_W_VIEWVOLUME The width of the view volume

GUI_ID_H_VIEWVOLUME The height of the view volume

GUI_ID_N_VIEWVOLUME The view volume near plane z- coordinate

GUI_ID_F_VIEWVOLUME The view volume far plane z- coordinate

GUI_ID_X_POSITION The X-coordinate value of the model position

GUI_ID_Y_POSITION The Y-coordinate value of the model position

GUI_ID_Z_POSITION The Z-coordinate value of the model position

GUI_ID_X_ROTATION The X-coordinate value of the model rotation

GUI_ID_Y_ROTATION The Y-coordinate value of the model rotation

GUI_ID_Z_ROTATION The Z-coordinate value of the model rotation

GUI_ID_START_FRAME The number of the first frame of animation

GUI_ID_END_FRAME The number of the last frame of animation

GUI_ID_HORIZONTAL_PITCH The width of the lens pitch per pixels

GUI_ID_VERTICAL_PITCH The length of the lens pitch per pixels

GUI_ID_SCREEN_WIDTH The width of the display screen per pixels

GUI_ID_SCREEN_LENGTH The length of the display screen per pixels

GUI_ID_X_LIGHTPOS The X-coordinate of the light position

GUI_ID_Y_LIGHTPOS The Y-coordinate of the light position

GUI_ID_Z_LIGHTPOS The Z-coordinate of the light position

GUI_ID_R_LIGHTCOL The light red colour scroll bar

GUI_ID_G_LIGHTCOL The light green colour scroll bar

GUI_ID_B_LIGHTCOL The light blue colour scroll bar

GUI_ID_A_LIGHTCOL The light alpha scroll bar

GUI_ID_LIGHTRADIUS The light radius value

GUI_ID_OPEN_MODEL Open Model Files & Textures menu item

GUI_ID_SET_MODEL_ARCHIVE Open Model archive menu item

GUI_ID_LOAD_AS_OCTREE Open Octree Model menu item

GUI_ID_R_LIGHTCOL_VALUE The light red colour value (from 0 to 1)

GUI_ID_G_LIGHTCOL_VALUE The light green colour value (from 0 to 1)

GUI_ID_B_LIGHTCOL_VALUE The light blue colour value (from 0 to 1)

GUI_ID_A_LIGHTCOL_VALUE The light alpha value (from 0 to 1)

164

GUI_ID_CAMERA_MAYA Fixed target and changeable centre camera

GUI_ID_CAMERA_FIRST_PERSON Fixed centre and changeable target camera

GUI_ID_ABOUT About option under Help menu item

GUI_ID_QUIT Quit option under File menu item

GUI_ID_FOCAL_LENGTH The lenses focal length scroll bar

GUI_ID_FOCAL_LENGTH_INFO The lenses focal length measured per pixels

GUI_ID_BUTTON_SET_SCALE Set the model scale button

GUI_ID_BUTTON_SET_POSITION Set the model position button

GUI_ID_BUTTON_SET_ROTATION Set the model rotation button

GUI_ID_BUTTON_SET_VIEWVOLUME Set the view volume parameters button

GUI_ID_BUTTON_SET_LIGHTPARAM Set the added light parameters button

GUI_ID_BUTTON_ADD_LIGHT Add a new light button

GUI_ID_BUTTON_SET_ALL Set the rest of the entered values button

GUI_ID_BUTTON_CYLINDRICAL Select the cylindrical lens array mode button

GUI_ID_BUTTON_SPHERICAL Select the spherical lens array mode button

GUI_ID_BUTTON_OPEN_MODEL Open Model Files dialog box button

GUI_ID_BUTTON_SHOW_ABOUT Open Help dialog box button on the icons bar

GUI_ID_BUTTON_SELECT_ARCHIVE Open Archive dialog button on the icons bar

GUI_ID_Z_LEVEL Z level scroll bar

GUI_ID_Z_LEVEL_INFO Z level value (from 0 to 1)

GUI_ID_BUTTON_RENDER_INI Render integral image button

Table 5.1: The enumerators and the GUI elements.

When an event occurs, GUI checks the ID of the caller and the event type, and then the

related action starts. The window shown in Figure 5.3 appears as an action after the menu

item that opens a dialog is selected and the GUI element GUI_ID_OPEN_MODEL sends the

event.

The function that generates the open file dialog is:

env->addFileOpenDialog(L"Please select a model file to open");

addFileOpenDialog is a function form the class IGUIEnvironment that is accessed by the

object belonging to this class and pointed to with the pointer env. This function returns a

pointer to the open file dialog box labelled with argument text. This action is taken when the

165

ID of the item command is identical to GUI_ID_OPEN_MODEL. The ID is string value

from the Irrlicht type s32 returned by the function as follows:

s32 id = menu->getItemCommandId(menu->getSelectedItem());

The event happens when a menu item is clicked. The menu is defined as an object from the

class irr::gui::IGUIContextMenu pointed to with the pointer menu. If any item of this menu

is selected, the function OnMenuItemSelected that takes the menu as an argument is called:

void OnMenuItemSelected(IGUIContextMenu* menu).

Calling this function leads to getting the ID of the event, calling the function

getGUIEnvironment() from the class irr::IrlichtDevice that returns the point env pointing to

an object from the class IGUIEnvironment that is the GUI environment, this function

provides access to the 2-D user interface environment. The ID is used in the switch statement

to decide which action to be taken, for example, if the ID is identical to the constant

enumerator GUI_ID_OPEN_MODEL, addFileOpenDialog function is called to generate the

open file dialog and add it to the GUI environment.

To describe how the event receiver works, the previous example of the event is going to be

explained. The event receiver is implemented with the class MyEventReceiver that is

inherited from the class irr::IEventReceiver, in this class the function OnEvent is defined.

OnEvent takes the event as an argument and returns true when any event occurs on the GUI.

At an event, a switch statement is implemented based on the type of the event. The event

types are identified with enumerators defined by Irrlicht. The following table maps some of

the enumerators to the corresponding event types used in the GUI:

ENOMERATOR EVENT TYPE

EET_KEY_INPUT_EVENT Mouse or key input applied

EET_GUI_EVENT Event occurs

EGET_MENU_ITEM_SELECTED A menu item was clicked

EGET_FILE_SELECTED Open model file is selected from the dialog box

EGET_SCROLL_BAR_CHANGED Scroll bar changed and adjusted

EGET_BUTTON_CLICKED A button on the GUI is clicked

KEY_ESCAPE Escape key event

Table 5.2: The enumerators and the event types.

166

In the main function, the object receiver from the class MyEventReceiver is defined and used

as an argument in the function createDevice, the driver of the device created is OpenGL:

MyEventReceiver receiver;

Device = createDevice(video::EDT_OPENGL, core::dimension2d<u32>(ScreenWidth,

ScreenLength),16, false, false, false, &receiver);

The GUI events are checked periodically to spot any event occurrence by calling the function

MyEventReceiver. With this function, the mouse input is checked, if the mouse left button is

pressed down, the camera is subject to move and no event can be received, in this case, the

function returns false, otherwise, it returns true and the GUI is able to send events. The

camera centre can be changed and the scene changes instantly by pressing the mouse left

button and moving the mouse, when the camera centre is adjusted as required, the button is

released, and then the event occurrence is checked periodically. When an event is sent by the

GUI, the ID of the element and the event type are obtained. From the open file dialog, the

required model is selected and the event is sent. Based on the type of this event, the case

statement leads the function to load the file selected from the list in the dialog box by calling

the function loadModel after assigning the name of the selected file to dialog object, getting

the file name, and converting the file name to the string format:

IGUIFileOpenDialog* dialog = (IGUIFileOpenDialog*)event.GUIEvent.Caller;

loadModel(core::stringc(dialog->getFileName()).c_str());

loadModel takes the pointer to the file name fn as an argument. The object io::path

filename(fn) is the path of the file pointed to with fn. The extension of the file is extracted and

used to determine which type of files is the selected one. If the file that was selected from the

Open File Dialog box is a texture file, the extension would be one of the following set of

extensions: .jpg, .pcx, .png, .ppm, .pgm, .pbm, .psd, .tga, .bmp, .wal, .rgb, .rgba. The function

getTexture returns a pointer to the texture and the function setMaterialTexture set the texture

as a material to be added to the model and rendered: video::ITexture * texture = Device-

>getVideoDriver()->getTexture(filename);

Model->setMaterialTexture(0, texture);

In the case when the file is a texture file, the path of the texture file is assigned to the path

variable download_file_name_2. Each one of the following global path variables is meant to

hold the path string of the loaded file:

io::path download_file_name_1; holds the model file path string.

167

io::path download_file_name_2; holds the texture file path string.

io::path download_file_name_3; holds the path string of a file saved in Irrlicht archive.

io::path download_file_name_4; holds the file path string of the Irrlicht Octree scene.

The simplified GUI allows loading a set of files, one file from each of the previous types. In

order to provide the ability to load unlimited number of files from the different listed types, a

global dynamic array of strings can be defined. For each one of the types mentioned above an

array is defined to store the paths so that the user can select multiple files from the Open File

Dialog to load, and then the application assigns the paths of the different files to the array

elements of the related array. The paths are stored in the array, and later the application loops

through the array elements to load the stored files during the process of rendering the Integral

Images.

If the extension of the loaded file is one of the following extensions: .pk3, .zip, .pak and .npk,

the loaded file is an archive file, and the file path string is assigned to

download_file_name_3. If the loaded file is Octree, the file path string is assigned to

download_file_name_4. Otherwise, the loaded file is a model file holding the geometric data

of the model in addition to information about the texture, the animation, and other materials

of the scene. The scene can be static or animated. The function getMesh gets the mesh of the

model and returns a pointer to an object of IAnimatedMesh, whereas, the function

addAnimatedMeshSceneNode returns a pointer to an object of the class

IAnimatedMeshSceneNode that holds the data of the scene:

scene::IAnimatedMesh* m = Device->getSceneManager()->getMesh(filename.c_str());

scene::IAnimatedMeshSceneNode* animModel = Device->getSceneManager()-

>addAnimatedMeshSceneNode(m);

5.3.5.2. Combo boxes

GUI should allow the user to set the parameters of each loaded model apart. These

parameters include scale, position, and rotation angles of the model. As shown in Figure 5.2,

for each model, user can enter the values of x, y and z scale parameters and press the button

labelled with (Set Scale) to assign the values to the scale matrix. The model vertex local

coordinates are multiplied by the scale matrix so that x coordinate is multiplied by the first

entered value in the combo box labelled with sX in the GUI. y coordinate is multiplied by sY,

and x by sZ. When the values are entered and the Set Scale button is pressed, the values are

168

stored in the global variables X_ModelScale, Y_ModelScale, and Z_ModelScale respectively.

The position parameters can be entered via the GUI in the combo boxes devoted for these

values. The position parameters are the coordinates x, y, and z of the model in the global

coordinate system. The combo boxes to enter these values are respectively pX, pY, and pZ.

After entering the values, the button labelled with (Set Position) must be pressed to assign

these parameters to the global variables of he loaded model that are supposed to hold these

values; these are respectively X_ModelPosition,Y_ModelPosition, and Z_ModelPosition,

whereas, these values are assigned to the graphics to update the displayed model. The rotation

angles are the angles the model is rotated with around the axis x, y, and z in the global

coordinate system. The combo boxes to enter these values are respectively rX, rY, and rZ.

After entering the values, the button labelled with (Set Rotation) must be pressed to assign

these parameters to the global variables of he loaded model that are supposed to hold these

values; these are respectively X_ModelRotation,Y_ModelRotation, and Z_ModelRotation.

The displayed model is updated with the new entered values of the rotation angles. The scale

values are assigned when the button Set Scale is pressed, in other words, in the case that the

element ID is GUI_ID_BUTTON_SET_SCALE. The following code represents the process

that is carried out when the button Set Scale is pressed:

case GUI_ID_BUTTON_SET_SCALE: {gui::IGUIElement* root =

env->getRootGUIElement(); core::vector3df scale; core::stringc s;

s = root->getElementFromId(GUI_ID_X_SCALE, true)->getText();

scale.X = (f32)atof(s.c_str()); X_ModelScale = scale.X;

s = root->getElementFromId(GUI_ID_Y_SCALE, true)->getText();

scale.Y = (f32)atof(s.c_str()); Y_ModelScale = scale.Y;

s = root->getElementFromId(GUI_ID_Z_SCALE, true)->getText();

scale.Z = (f32)atof(s.c_str()); Z_ModelScale = scale.Z;

if (Model) Model->setScale(scale);

updateSPRInfo(Model); }break;

In order to get the value entered in the combo box of the scale vector’s X component. The

function getRootGUIElement() from the class IGUIEnvironment returns the pointer root to an

object from the same class that holds the root of the GUI elements. The root is the total size

of the GUI screen with all the elements contained in this screen through which GUI receives

the interactions from user. Within the root, all the GUI elements are stored and each element

is identified by its ID. The three-dimensional vector scale and the string s from the Irrlicht

type core::stringc are defined. The function getElementFromId that is a member function

from the class IGUIElement is called. getElementFromId returns a pointer the element whose

169

ID is the argument of the function, and the function getText returns the text combined with

the element which is the text written in the combo box of the element, and then the text is

assigned to the variable s. s is converted to a string using the function .c_str(). (f32)atof

extracts the float value of the resulting string that is assigned afterward to the x component of

the model scale vector scale.X. When the value is acquired from the GUI, the function

setScale(scale) from the class ISceneNode assigns the acquired value to the model scale to be

rendered with the new scale values. The same process is repeated for y and z components.

For assigning the position coordinates and the rotation angles values, the functions used to

assign these values are setPosition(position) and setRotation(rotation) respectively, where

position and rotation are 3-dimensional vectors. In order to update the display of the model

scale, position and rotation angles, the function updateSPRInfo(Model) is called. In a

continuous loop during the time the user is setting the parameters, GUI reads the entered

characters from the window, updates the model with the new entered values, and checks if

the window received new characters from the keyboard.

The function updateSPRInfo(Model) updates the text displayed on screen. The text is the

value of the parameter in its own combo box. In the case the model is not loaded, the combo

box is filled with a dash (-). If the model is loaded, the combo boxes are filled at the

beginning with the initial values that are already assigned to the variables, for example, the

combo box of the component x of the model scale is filled with X_ModelScale. During the

process of setting the parameters, the scale, position, and rotation of the model as well as the

other similar parameters are continuously extracted and written to the related combo box. The

function getElementFromId is called to get the element dialog window that is the window of

interaction with GUI:

IGUIElement* toolboxWnd = Device->getGUIEnvironment()->getRootGUIElement()-

>getElementFromId(GUI_ID_DIALOG_ROOT_WINDOW, true).

A pointer to that element is retuned. getElementFromId returns a pointer to an element from

the dialog window based on its ID, for example, the element x coordinate of the model scale.

The function setText(L"-") assigns the character (-) to the element and the dash appears in

the combo box specified for the element within the window element defined above:

toolboxWnd->getElementFromId(GUI_ID_X_SCALE, true)->setText(L"-").

In the case the model is loaded, the function getScale acquires the scale of the model as a 3-

dimensional vector and then the scale vector is assigned to the vector scale. The x component

scale.X is converted to an Irrlicht string with the function core::stringw and the converted to

170

a string of character to be able to display in the combo box specified for the x component of

the scale with the function setText as follows:

core::vector3df scale = model->getScale();

toolboxWnd-> getElementFromId(GUI_ID_X_SCALE,true)->

setText(core::stringw(scale.X).c_str());

The same method is applied to the other components of the scale as well as the position and

the rotation parameters of the model.

The function createToolBox creates a toolbox window for each of the parameters we need to

edit in the configuration stage. If there is another toolbox already created in the environment,

the old toolbox is removed. The element with the ID GUI_ID_DIALOG_ROOT_WINDOW

in the GUI root of the GUI environment is extracted from the root and removed. For each

parameter, an edit box is created in addition the toolbox window.

The following code creates an empty configuration window with the upper left corner x and y

coordinates 400 and 45 respectively, and the lower right corner point with the x and y

coordinates 770 and 800 respectively. The window is titled with the text (Parameters Toolset

for lens, screen, and scene):

IGUIEnvironment* env = Device->getGUIEnvironment();

IGUIWindow* wnd = env->addWindow(core::rect<s32>(400,45,770,800),

false, L"Parameters Toolset for lens, screen, and scene", 0,

GUI_ID_DIALOG_ROOT_WINDOW);

The function addWindow from the class IGUIEnvironment creates an empty window

element; the first parameter core::rect<s32>(x1, y1, x2, y2) specifies the borders of the

window. The function core::rect is a member of the namespace core, its parameters are from

the type s32, and the parameters x1 and y1 are the coordinates of the upper left corner of the

configuration window. x2 and y2 are the coordinates of the lower right corner of the

configuration window. The coordinates of the points inside the window element are measured

in pixels. The centre of the coordinate system is the upper left corner of the screen, the x-axis

contains the upper border of the configuration window and it is directed to the right hand

side, the y-axis contains the left border of the window and it is directed to the lower side of

the window. The second parameters defines if the dialog created in a model, if it is true that

means that all other gui elements which were created before the window cannot be used until

171

it is removed. The third parameter is the text displayed as a title of the window. The fourth is

the parent gui element ID of the window. The fifth parameter is the gui element with which

the element can be identified. The function returns a pointer to the created window and

returns zero of an error has occurred.

A tab control is created, added to the environment and labelled with the text (Config):

IGUITabControl* tab=env->addTabControl(core::rect<s32>(2,20,800,800),wnd,true, true);

IGUITab* t1 = tab->addTab(L"Config");

The function addTabControl that creates the tab takes the same first and second arguments of

the function addWindow. The parent argument (i.e. the window to which the tab is belonging)

can be set to 0 to place the tab control directly in the environment. The third argument

specifies if the background of the tab control should be drawn. The fourth argument specifies

if a flat 3d border should be drawn, this is usually not necessary unless the control is placed

directly into the environment without a window as parent. The last parameter is the ID of the

tab control. The function returns a pointer to the created tab control element and returns 0 if

an error occurred. This pointer should not be dropped.

Edit boxes are added to the tab. The following code creates an edit box for the x-coordinate

of the model scale. A static text is added to label the edit box, in this example the text is sX:

env->addStaticText(L"sX:", core::rect<s32>(22,48,40,66), false, false, t1);

env->addEditBox(L"1.0", core::rect<s32>(40,46,130,66), true, t1, GUI_ID_X_SCALE);

The first argument is the text that is displayed to label the edit box. The second argument of

the function addStaticText that creates the static text is the same first argument of the

function addWindow with which the borders of the static text are specified. The third

parameter is set to true if the static text should have a 3-d border. The fourth parameter is true

if the text should wrap into multiple lines. The pointer t1 is pointing to the tab control. t1

includes the parent ID of the element which is the window, the ID of the element, and the

bolean variable that is true if the background shall be filled. The function returns a pointer to

the created static text and returns 0 if an error has occurred.

addEditBox adds an edit box, the first argument is the text to be displayed; the text is the

initial value of the variable (i.g. the x coordinate of the model scale). The second parameter is

the rectangle specifying the borders of the edit box. The third parameter set to true if the edit

box should have a 3d border. t1 includes the parent ID of the element (i.e. the window) that

172

can be set to 0 to place the edit box directly in the environment, and the ID of the element.

The function returns a pointer to the created edit box and returns 0 if an error has occurred.

GUI reads the values typed and entered by the user in the combo boxes specified for the

values in question and then these values are assigned to the specified variables in the

application. The variables entered with the same way include the following:

x, y and z components of the model scale vector.

x, y and z components of the model position vector.

x, y and z components of the model rotation vector.

The number of the start frame and the end frame of the animated scene.

The horizontal and the vertical dimensions of a lens measured in pixels.

The width and the height of the intended display screen measured in pixels.

The width, the length, z coordinate of the near plane, and z coordinate of the far plane of the

view volume that contains the scene for the orthographic projection.

x, y and z components of the light position vector, and the radius of the light.

The sequenced steps of checking the GUI for new events, writing the new values in the

specified combo boxes in the GUI window element, reading the entered values, and updating

the parameters with the new values are implemented continuously during the configuration

process of the application. The function updateConfigInfo is called to update the

configuration information of the mentioned parameters except the x, y, and z of the model

parameters (i.e. scale, the position, and the rotation angles). updateConfigInfo is similar to

the function updateSPRInfo, the only different is the later function is called instantly when

the parameters is changed from the GUI, whereas, the former function is called one time to

update all the other parameters at once. The model parameters must be instantly updated so

that the model is displayed after each modification to allow the user to judge the model and

adjust it to meet the required display in the targeted integral image.

5.3.5.3. Buttons

The buttons are created in the window to receive an event from GUI and set the variables

needed for rendering. As an example of the added buttons, the buttons that are used to select

the type of the lenses used is considered. The button labelled with (CYL) is pressed to select

the cylindrical lenses and the one labelled with (SPH) is used for spherical lenses. The

enumerators GUI_ID_BUTTON_CYLINDRICAL and GUI_ID_BUTTON_SPHERICAL are

173

the ID of the button (CYL) and (SPH) respectively. To create the two button elements, the

following code is used:

IGUIEnvironment* env = Device->getGUIEnvironment();

env->addButton(core::rect<s32>(40,20,84,40), t1, GUI_ID_BUTTON_CYLINDRICAL,

L"CYL");env->addButton(core::rect<s32>(86,20,130,40), t1,

GUI_ID_BUTTON_SPHERICAL, L"SPH");

The function addButton adds a button element to the environment or the configuration

window. The parameter core::rect<s32>(40,20,84,40) specifies the borders of the button

with the coordinates of the upper left corner of the button and the lower right corner. t1 is the

parent of the gui element of the button. The third parameter is the ID of the element with

which the gui element can be identified. The fourth argument is the text displayed on the

button. The function returns a pointer to the created button, and returns zero when an error

has occurred. When the GUI receives the event of pressing the created button, the variable

LensType is given the value 1 that is used later when rendering the scene (i.e. if the button

was pressed the lenses type is considered as cylindrical). The same method of adding a button

in the GUI window is applied for the buttons described in the following table, the first

column is the text that labels the button, and the second column describes its function:

THE LABEL THE BUTTON FUNCTION

SPH used to select the spherical type of lenses

Set Scale assigns the entered model scale values to their variables

Set Position assigns the entered model position values to their variables

Set Rotation assigns the entered model rotation values to their variables

Set All assigns the entered values of start and end frame numbers, screen width

and length, and lens horizontal and vertical pitch to their variables

Set View Volume assigns the entered parameters of the view volume to their variables

Set Params assigns the entered parameters of the added light to their variables

Add Light When pressed, the entered parameters are assigned to the actual light, the

light combo boxes and sliders are cleared, and a new light is created

Render Calls the suitable function for rendering the targeted integral image

Table 5.3: The GUI buttons and their functions.

174

5.3.5.4. Sliders

Few sliders are added to the environment to improve the performance of the GUI. As an

example, the slider of Z level variable is explained. Z level variable is the variable that is

used in the rendering algorithm to determine the Z-coordinate of the reference plane that

divides the displayed scene into two parts; one part looks displayed behind the screen and the

other one looks displayed in front of the screen. The z level value should be between 0 and 1.

The enumerator EGET_SCROLL_BAR_CHANGED from the namespace gui takes the

Boolean value (true) if the event on the GUI caused any one of the sliders displayed on the

interface window to change its position. When the slider moves, the ID of the slider is

identified. In the case when the slider is used to select z level value, the ID is

GUI_ID_Z_LEVEL. The function getPos is called and the variable Za is assigned:

const s32 pos = ((IGUIScrollBar*)event.GUIEvent.Caller)->getPos();

Za = (float)((int)pos/255.0);

The function getPos gets the current position of the scrollbar when the event of changing the

scrollbar occurs. The function returns a variable form the Irrlicht type s32 and assigned to the

constant pos that is converted to integer, divided by the maximum value of 255, and

converted to a float variable to be assigned to Za that is the required z value.

Scrollbars are added to the environment to be adjusted and used to assign values to the

variables required for rendering. The scrollbar of Za is created with the following code:

IGUITab* t1 = tab->addTab(L"Config");

IGUIEnvironment* env = Device->getGUIEnvironment();

env->addStaticText(L"Z Level:", core::rect<s32>(10,485,150,510), true, false, t1);

env->addStaticText(L"", core::rect<s32>(90,485,250,510), false, false, t1,

GUI_ID_Z_LEVEL_INFO);

IGUIScrollBar* scrollbar2 = env->addScrollBar(true,

core::rect<s32>(10,510,150,525), t1, GUI_ID_Z_LEVEL);

scrollbar2->setMax(255);

scrollbar2->setPos(255);

A pointer env to the environment where the scrollbar should be added is obtained from the

device with the function getGUIEnvironment from the class IrrlichtDevice. The function

175

addStaticText from the class IGUIEnvironment is called to create a text bar above the

scrollbar to display the resulting value of Za based on the position of the scrollbar or the

initial value of Za. The first argument of addStaticText specifies the text that is going to be

displayed in the rectangle, the argument core::rect<s32>(10,485,150,510) specifies the

borders of the static text. The third argument is a Boolean variable to be set to true if the

static text should have a 3-D border. The fourth argument is a Boolean variable that can be

set to true if the text should wrap into multiple lines. t1 includes the parent item of the

element that is the window, the ID of the element, and a Boolean variable that can be set to

true if the background shall be filled, otherwise is false, it is given the default value of false.

The last argument is the pointer that points to the tab control with the name Config. The

function returns a pointer to the created static text and returns 0 if an error occurred. The text

(Z Level :) is created by calling the function addStaticText, and now the same function is

called to display the value of Z level. The first argument is a space, and the rectangle borders

that should hold the value are specified with the second argument. The element ID is

specified as an argument in the function, the ID GUI_ID_Z_LEVEL_INFO is the enumerator

that determines which information is going to be displayed on the rectangle. The function

addScrollBar from the class IGUIEnvironment is called to create a scrollbar for z level. Each

scrollbar in the environment window is given a different pointer name. The pointer name to

the z-level scrollbar is scrollbar2 that is returned by the function addScrollBar, and pointing

to a member of the class IGUIScrollBar:

IGUIScrollBar* scrollbar2 = env->addScrollBar(true, core::rect<s32>(10,510,150,525), t1,

GUI_ID_Z_LEVEL);

The first argument of addScrollBar specifies if the scroll bar is drawn horizontal, if it is

drawn vertical the value is false. The second argument specifies the borders of the scrollbar

by assigning the coordinates of the upper left corner and the lower right corner of the

scrollbar (x1, x2, y1, y2). t1 the parent GUI element of the scrollbar (the control tab). The

fourth is the ID to identify the GUI element. The function returns a pointer to the created

scrollbar, or returns 0 if an error has occurred [100] [101] [102].

The function setMax from the class IGUIScrollBar sets the maximum value of the scrollbar,

the maximum position of the scrollbar is corresponding to the maximum value. The function

setPos from the class IGUIScrollBar sets the current position of the scrollbar.

Once the event type is identified as a scrollbar event with the element ID

EGET_SCROLL_BAR_CHANGED, the scrollbar that is changed is identified with its ID,

176

the scrollbar ID of z level is GUI_ID_Z_LEVEL. In the case statement, if the ID matches the

enumerator, the following case is implemented:

case EGET_SCROLL_BAR_CHANGED:

if (id == GUI_ID_Z_LEVEL) {

const s32 pos = ((IGUIScrollBar*)event.GUIEvent.Caller)->getPos();

Za = (float)((int)pos/255.0); }

else if (…) {…} break;

The function getPos form the class IGUIScrollBar gets the current position of the scrollbar

and returns the current position pos as a constant string value form the Irrlicht string type s32.

The value needed from the scrollbar is supposed to be between 0 and 1, therefore, The string

value pos is converted to an integer value to be normalized or dividing by the maximum and

then converted to a float value and assigned to its variable Za. While the scrollbar is

changing, the value Za should be displayed above the scrollbar and updated instantly. The

function updateToolBox is called to update the information obtained through the scrollbars.

In this function, a pointer to the environment env is returned. From the targeted environment,

the GUI root element root is returned, and then a pointer to the dialog window dlg is

identified by its ID and extracted from the returned root root. From the dialog window

pointed to with dlg, a pointer to the element of z-level information text is identified with its

ID (i.e. GUI_ID_Z_LEVEL_INFO), extracted, and assigned to ZlevelInfo as follows:

IGUIEnvironment* env = Device->getGUIEnvironment();

IGUIElement* root = env->getRootGUIElement();

IGUIElement* dlg = root->getElementFromId(GUI_ID_DIALOG_ROOT_WINDOW, true);

IGUIStaticText * ZlevelInfo = (IGUIStaticText *)(

dlg->getElementFromId(GUI_ID_Z_LEVEL_INFO, true));

If the object pointed to with ZlevelInfo is not empty, the model exists, and the model type is

from the type of animated mesh, the value Za that is acquired from the position of the

scrollbar is converted to the type stringw, and then converted to a string. The text that

displays the z-level value in the element ZlevelInfo is set to the string that was converted from

Za. If the object of ZlevelInfo is empty, the text is set to an empty space as this code shows:

if (ZlevelInfo) {if (Model && scene::ESNT_ANIMATED_MESH == Model->getType()) {

core::stringw str(Za);

ZlevelInfo->setText(str.c_str());}

else ZlevelInfo->setText(L"");}

177

The same method of adding a scrollbar in the GUI window is applied for the scrollbars

described in the following table, the first column is the text that labels the displayed value of

the scrollbar, and the second column describes its function:

SCROLLBAR VALUE THE SCROLLBAR FUNCTION

Z Level Adjust the relative location of Z Level, value between 0 and 1

Focal Length Adjust the focal length of the lenses, varies from 0 to 255

Red Light Adjust the Red component of the light, it varies from 0 to 1

Green Light Adjust the Green component of the light , it varies from 0 to 1

Blue Light Adjust the Blue component of the light, it varies from 0 to 1

Alpha Value Adjust the Alpha component of the light, it varies from 0 to 1

Table 5.4: The GUI scrollbars and their functions.

5.3.5.5. Cameras

The GUI allows user to select the camera target and the camera centre. The scene is imaged

with the camera having the selected characteristics (i.e. the camera centre and the camera

target) and rendered to produce the targeted integral images. The camera parameters are used

later in the rendering process as parameters in the following function to create camera node:

scene::ICameraSceneNode* camera = smgr->addCameraSceneNode(0,

vector3df(X_CameraCentre,Y_CameraCentre,Z_CameraCentre),

vector3df(t_newx,t_newy,t_newz)); camera->setProjectionMatrix(matr, true);

X_CameraCentre,Y_CameraCentre, and Z_CameraCentre are the camera centre coordinates.

t_newx,t_newy,and t_newz are the new target coordinates calculated on the basis of the

selected camera target coordinates. Figure 5.2 shows the menu bar; the camera item is created

and two submenus are added. The following code implements that;

menu->addItem(L"Camera", -1, true, true);

submenu = menu->getSubMenu(2);

submenu->addItem(L"Set Camera Centre", GUI_ID_CAMERA_MAYA);

submenu->addItem(L"Set Camera Target", GUI_ID_CAMERA_FIRST_PERSON);

When the first submenu is selected from the menu, the camera centre can be changed using

the mouse. Clicking the left buttons and moving the mouse force the camera centre to be

changed. The scene is instantly changing as the camera centre values are updated and the

178

scene imaged with the new camera parameters is rendered and displayed instantly. The

camera can be selected from the menu; the first camera is Maya camera and the second

camera is a First Person one. Maya cameras reposition themselves relative to their target, so

the location is targeted. If First Person camera is selected, the camera centre coordinates are

fixed while the camera target coordinates are changeable when moving the mouse and the

scene is updated for the new camera target and adjusted instantly. Pointers to the cameras are

defined as an array of pointers, the first member of the array points to Maya camera, and the

second member points to First Person camera. The function addCameraSceneNodeMaya

adds a Maya camera scene node, whereas, addCameraSceneNodeFPS adds a First Person

camera scene node. Both the functions from the class ICameraSceneNode, smgr is a pointer

to the scene manager. The camera centre coordinates and camera target coordinates are

respectively:

(X_CameraCentre,Y_CameraCentre,Z_CameraCentre) or (X_CC, Y_CC,Z_CC) and

(X_CameraTarget,Y_CameraTarget,Z_CameraTarget) or (X_CT, Y_CT,Z_CT)

The camera centre coordinates that are selected by moving the mouse in Maya mode are

assigned to the active camera, whereas, the camera target coordinates that are selected by

moving the mouse in the First Person mode are assigned to the active camera as follows:

scene::ICameraSceneNode* Camera[2] = {0, 0};

Camera[0] = smgr->addCameraSceneNodeMaya();

Camera[0]->setTarget(core::vector3df(X_CT, Y_CT,Z_CT));

Camera[0]->setPosition(core::vector3df(X_CC, Y_CC,Z_CC));

Camera[1] = smgr->addCameraSceneNodeFPS();

Camera[1]->setPosition(core::vector3df(X_CC, Y_CC,Z_CC));

Camera[1]->setTarget(core::vector3df(X_CT, Y_CT,Z_CT));

When the camera is selected form, the active camera is nominated by calling the function

setActiveCamera(Camera[i]) that sets Camera[i] as an active camera:

case GUI_ID_CAMERA_MAYA:setActiveCamera(Camera[0]);

updateCameraParameters();break;

case GUI_ID_CAMERA_FIRST_PERSON:setActiveCamera(Camera[1]);

updateCameraParameters();break;

The function setActiveCamera(Camera[i]) sets Camera[i] as an active camera by getting the

actual active camera, disabling the actual active camera, enabling Camera[i] as an active

camera, and set Camera[i] to be the active camera imaging the scene:

scene::ICameraSceneNode * active = Device->getSceneManager()->getActiveCamera();

179

active->setInputReceiverEnabled(false);newActive->setInputReceiverEnabled(true);

Device->getSceneManager()->setActiveCamera(newActive);

At selecting the active camera, the camera parameters are updated with the new parameters

entered through the GUI when the other camera was active. This can be done using the

function updateCameraParameters and ICameraSceneNode from the namespace scene:

ICameraSceneNode* cam = Device->getSceneManager()->getActiveCamera();

cam->setPosition(core::vector3df(_CC, Y_CC,Z_CC));

cam->setTarget(core::vector3df(X_CT, Y_CT,Z_CT));

Device->getSceneManager()->setActiveCamera(cam);

The new position and target of the camera are updated with the functions setPosition and

setTarget respectively, and then assigned to the active camera with setActiveCamera. The

default camera is Maya camera. First Person camera is selected form the menu, but to switch

back to Maya camera, the button ESCAPE should be used. In order to enable or disable the

active to get key or mouse inputs, the function setInputReceiverEnabled from the class

ICameraSceneNode is called, if this is set to true, the camera will respond to key, whereas,

isInputReceiverEnabled checks if the input receiver of the camera is currently enabled:

camera->setInputReceiverEnabled(!camera->isInputReceiverEnabled());

Once the parameters of the active camera are selected, they are assigned to their variables

such as the selected x position of the camera that is assigned to X_CameraCentre:

scene::ICameraSceneNode* cam = Device->getSceneManager()->getActiveCamera();

X_CameraCentre = (f32)(cam->getPosition().X);

The camera position and target coordinates are displayed instantly on the screen. The position

is labelled with (Pos:) and the target with (Tgt:), the code employed is such the following:

core::stringw str = L"Pos: ";str.append(core::stringw(cam->getPosition().X));

str += L" ";str.append(core::stringw(cam->getPosition().Y)); str += L" ";

str.append(core::stringw(cam->getPosition().Z));str += L" Tgt: ";

str.append(core::stringw(cam->getTarget().X));str += L" ";

str.append(core::stringw(cam->getTarget().Y));str += L" ";

str.append(core::stringw(cam->getTarget().Z));postext->setText(str.c_str());

5.3.5.6. Lights

In order to add lights to the scene, a class LightsClass is used to hold the parameters of a light

(i.e. position, colour, and radius). An array SceneLights of objects form the class LightsClass

180

with the length n is defined. Multiple lights can be added to the scene, the parameters of each

light are saved in an object of the array. The number of the lights is equal to the length of the

array n. From GUI the parameters of each light can be entered. x, y, and z coordinates of the

light position and the radius of the light are entered through the specified combo boxes in the

GUI window, whereas, the colour of the light red, green, blue, and the alpha value are entered

through the scrollbars specified for these variables in the GUI window. When all the

parameters of a light are entered, the button labelled with (Set Params) should be pressed to

assign the parameters to the object. In order to add more lights, the button labelled with (Add

Light) is pressed to increment the objects index and the temporary variables are zeroed so

that they can be populated with the new parameters and assign these to the new object and so

on. When the objects are assigned with the entered parameters, each light (i) is created using

its own object SceneLights[i] by calling the function addLightSceneNode:

scene::ILightSceneNode * Light(i) = smgr->addLightSceneNode(0,

core::vector3df(SceneLights[i].Xpos,SceneLights[i].Ypos,SceneLights[i].Zpos),

video::SColorf(SceneLights[i].Rcol,SceneLights[i].Gcol,SceneLights[i].Bcol,SceneLights[i].

Alpha), SceneLights[i].Radius);

5.4. Flow-chart and sequential process

Figure 5.4 shows a diagram of the steps implemented by the plug-in tool to create the main

control tools of the interface. When running the program, an event receiver is created,

OpenGL driver is called, and a device is created. Several initialised variables are employed.

Using function defined in the created device class, XML reader, scene manager, and video

driver are created, also, models saved in archive files can be added to the scene. With the

video driver class, textures can be added to the scene. XML Reader class includes the

functions needed to read the XML configuration file in which the initial model is specified.

The initial model is loaded, and the starting welcome message is displayed. Scene Manager

Class includes the functions that are called to create cameras, adding ambient, initial skybox

texture, and lights to the scene. In addition, Scene Manger includes the function drawAll that

is called to draw the scene with all the added elements. From the created device, an

environment is defined. With the functions provided in the environment class, a root element

from which a dialog windows can be created as well as toolboxes with their labels. The

environment includes what the user can view of the control tools. The user interacts with the

181

GUI using these tools. The functions provided with the environment class are called to create

a menu and its submenus, tab controls, tabs, the combo boxes called Edit Boxes, toolbars,

buttons, static texts, scrollbars, messages boxes and static images such as Brunel logo.

Figure 5.4: A diagram of the steps implemented to create interface control tools.

Figure 5.5, depicts a flowchart of the process implemented by the plug-in tool to produce

static and animated integral images based on the DCA algorithm. Event receiver is created to

receive the user actions and convert them to convenient values for using them in the program.

XML configuration file can be read and the model and textures files included in the XML

files are loaded initially and displayed on the screen. The environment and input control are

created to provide the interface needed to enter the scene and devices parameters manually.

One of the information entered manually by the user using the GUI is the lenses mode used to

capture and display the scene. If the cylindrical rendering button is pressed, the cylindrical

rendering algorithm explained in Chapter 4 is implemented, whereas, the spherical rendering

algorithm is selected so that it is implemented when the rendering button in the GUI is

pressed. At any case, each frame of the scene is rendered and converted to an integral image.

The integral image for each frame is saved in a specific location in the PC memory, and then

the scene is checked if it includes more frames to be rendered in sequence. The animated

scenes include more than one frame. These frames are looped over to render them one by one

182

and each frame is converted to an integral image and saved in the specified folder. When all

the frames are rendered, the process is ended, and a collection of integral images is saved.

Each integral image is named with the number of the frame in the animated scene. The

sequenced numbered are helpful when the animated scene is replayed by displaying the

integral images in sequence.

Another manual input is using the menu items for actions such as the selection of the models

and textures needed to be added to the scene. When starting up, the default models and

textures specified by the XML configuration file are loaded; however, the default scene can

be converted to integral images or a new scene is loaded and rendered later. To build the

scene, models and textures saved in files are loaded, and other scene elements are added.

From the menu bar, file button, the required models and textures can be selected and then

loaded. The models and textures are saved I memory and imported to the scene environment.

The loaded scene is displayed instantly on the screen. After some development, multiple

models should be able to be added to the scene at the same time. Once the new scene is

displayed on the screen, it is ready to be modified by the user through the GUI with the

manual input.

In order to add new items to the scene, modify each model of the loaded models and set the

required parameters, GUI is provided with control tools to be used. For each model, the

model parameters (i.e. scale, position coordinates, and rotation angle) can be modified

manually as shown in Figure 5.5, and the model with the new parameters is instantly

displayed, then the user can tune these parameters to fit their requirement. In addition, the

camera position and target are tuned until the required scene is displayed; the final scene

acquired is the required scene to be converted to an integral image. Camera position is tuned

with the mouse when Maya camera is selected from the menu. To adjust the camera target,

the FP camera is selected and the target is selected with the mouse, these actions are called in

the diagram as (SET MODEL PARAMS) and represented in the block named as (ENTER

PARAMS). The model parameters include the first and the final frame numbers in the case of

an animated scene.

183

Figure 5.5: A flowchart of the integral images generation process.

184

The new model parameters affect the displayed scene instantly and their values are used later

in rendering the integral image. The lights that are added to the scene are represented with the

action called (LIGHTS). The light parameters are entered, more lights can be added

manually, and the light matrix is formed and used later in rendering. The action named

(DEVICE PARAMS) is taken to enter the devices parameters manually such as the lenses,

and the screen parameters. These parameters are saved and used later in rendering. Brunel

University logo does not appear in the integral images.

5.5. Examples and results

Figure 5.6 shows an example when the interface window and the 2-D image that is going to

be rendered as a 3-D integral image. The model and the devices parameters are selected to

render an integral image of the displayed 2-D image. The lenses mode is selected to be

cylindrical. The model parameters are selected to provide the required scene, and the mouse

is used to set the camera parameters, while the scene is instantly displayed in a 2-D mode to

allow the user to test and tune the parameters if that is needed to provide the required scene.

Figure 5.7 shows the resulting integral image of the required scene when a cylindrical lens

array is used. Figure 5.8 shows another example when the interface window and the 2-D

image that is going to be rendered as a 3-D integral image using a virtual spherical lens array

for capturing the scene. Figure 5.9 represents the resulting integral image for the scene that

was already built with the selected parameters when the spherical lens array is employed.

5.6. Set up and installation

The plug-in tool designed to implement the algorithm devoted to produce the integral images

is based on the open-source Irrlicht 1-7-2 engine. The application can be run on a PC using

Windows operating system. Visual C++ is the programming language used in the engine and

the plug-in tool within the environment of Microsoft Visual Studio version 2008 Express

Edition. OpenGL version 1.5 Application Programming Interface is used, therefore, the PC

graphics card should support OpenGL version 1.5 or higher. The memory size needed to

install Irrlicht engine is 170 MB. The speed of rendering is dependent on the processor speed,

for

185

Figure 5.6: The 2-D scene for rendering with a cylindrical lens array.

Figure 5.7: The resulting integral image based on DCTarget when using a cylindrical

lens array and displayed on normal PC screen.

186

Figure 5.8: The 2-D scene for rendering with a spherical lens array.

Figure 5.9: The resulting integral image based on DCTarget when using a spherical lens

array and displayed on a normal PC screen.

187

Figure 5.10: An example of an integral image of a single model.

Figure 5.11: The integral image of a single model viewed with a cylindrical lens array.

188

Figure 5.12: An example of a model and texture background.

Figure 5.13: The model and texture integrated image viewed through a lens array.

189

example, using a PC with a processor speed of 2.1 GHz can render each frame of an animated

scene needs about 1 second to be converted to an integral image, in other words, some 60

frames can be rendered per minute. After installing Irrlicht 1-7-2 engine, the file that

contains. However, separated files can contain the functions declared or defined in the code.

Other functions or classes can be contained in separated header files. Files holding the

geometric or texture data of the models and the scene components should be valid and saved

in memory locations so that the engine can reach them and load them to the application.

In addition, other external files such as XML file should be available to the application. After

rendering the static image or the animated scene, the integral images resulting from the

rendering process are saved in a specific location in the memory. The integral images can be

collected and displayed on a PC screen with a suitable program such as Windows Live Movie

Maker. Figure 5.10 shows an example of an integral image of a single model. The integral

image was displayed on a PC screen. A primitive cylindrical lens array was used to view the

image with its 3-D effect. The resulting 3-D image is shown by Figure 5.11. The same model

with texture background is rendered, showed in Figure 5.12, displayed, viewed with a

cylindrical lens array, and depicted by Figure 5.13. The quality of the integrated images is

low because of the lack of accuracy, the low resolution of the display screen, and the low

quality of the lens array.

5.7. Summary

The basic goals of the application were reached. The plug-in tool was successfully built and

the algorithm of generating integral images was implemented. A simple and effective user-

friendly graphical interface GUI was designed and tested. The GUI allows users to enter

basic parameters of rendering easily and tune these parameters to build the required simple

scenes and tailor the rendering criteria. The main problems encountered in building the plug-

in tool and the application were solved such as the problem of importing models and texture

files with various formats to the application. Simple scenes were built using the application

and integral images were successfully rendered with a good quality. Statics images as well as

animated scenes can be rendered and integral images can be produced using the plug-in tool.

The resulting integral images were displayed using lens arrays and a 3D effect was produced.

The application needs to be developed so that it is able to build complicated scenes, and

190

produce higher quality images. In addition, in order to produce higher quality integral images

and build complicated scenes, the GUI should allow the user to have more control over the

rendering process and help the user to select from a wider range of file formats. The resulting

images should be more accurate and have a better quality. In addition, the display devices

should have higher resolution and better quality to be able to display such integral images

correctly.

191

Chapter 6

Evaluation of the 3-D autostereoscopic integral images

In this chapter, objective quality assessment and complexity and speed assessment would be

explained. The aim of the quality assessment is to test the quality of the images produced by

the introduced two methods DIVGL method and DCTarget method, compare the two

methods with each other, and compare these methods with other methods from other similar

or close work. The results and analysis of the results are included in this chapter. Up to the

author knowledge, the closest similar work was considered and images from that method

were examined and compared against the mentioned two new methods. The closet work was

achieved in De Montfort University by Graham Milnthorpe [8]. The subjective assessment

was conducted in cooperation with members form CEME Company London. Complexity and

speed assessment are objectively conducted by analysing the actual computational processes

of the assessed methods.

6.1. SUBJECTIVE QUALITY ASSESSMENT

6.1.1. Quality of Experience

The aim of this assessment is to evaluate the two introduced methods of creating the integral

images (i.e. DIVGL and DCTarget) against the closest method described in [8] and will be

called Interpolative Shading Technique Method (ISTM). Each one of the main factors that

affect the quality of a 3-D autostereoscopic integral image is evaluated apart. Factors related

to the conditions, the environment, and the subjects are not considered to be contributing in

the quality of the integral images generated by these two methods. Only the main factors that

are relevant to the method of generating the images are considered. These factors are as

follows:

1) Comfort (a)

2) Crosstalk, or Smooth switching from one position to another (b)

3) Parallax (c)

4) Depth of scene on both sides and view volume (d).

5) Field of view of integral imaging systems FOV, or view angle (e).

192

A set of 3-D images produced with the three methods are exposed to the viewers who will be

asked to evaluate each image of the group in terms of the previous stated factors. Scores

should be collected from each viewer, and 15 scores will be calculated, five scores for each

method, each score will be rating one of the previous five factors for each method. Mean

Opinion Score (MOS) will be calculated for each factor of the five factors for each method,

and then the total evaluation score for each method will be calculated. MOS_x_i for x test and

i method is defined as follows:

MOS_x_i =
∑ 𝑅𝑣_𝑥_𝑖𝑁

𝑣=1

𝑁
 (6.1)

where, 𝑅𝑣_𝑥_𝑖 is the rate that is given to the image(s) of the test x for the method i by the

viewer number v, 𝑅𝑣_𝑥_𝑖 can take any value from 0 to 100. N is the total number of viewers.

For method 1 (e.g. DIVGL), the MOS for a, b, c, d, and e factors are respectively: MOS_a_1,

MOS_b_1, MOS_c_1, MOS_d_1, and MOS_e_1. For method 2 (e.g. DCTarget), the MOS for

a, b, c, d, and e factors are respectively: MOS_a_2, MOS_b_2, MOS_c_2, MOS_d_2, and

MOS_e_2. And so on. Providing MOS values are normalized by 100 (e.g.). These criteria can

be looked at as dimensions and therefore, the Root Mean Square of these dimensions is

proportional to the quality of the image. Based on this concept, the following formulas are

introduced to calculate the Quality of Experience QoE_1 and QoE_2 as a percentage for

method 1 and method 2 respectively:

A1 = (𝑀𝑂𝑆_𝑎_1)2 + (𝑀𝑂𝑆_𝑏_1)2 +(𝑀𝑂𝑆_𝑐_1)2 +(𝑀𝑂𝑆_𝑑_1)2 +(𝑀𝑂𝑆_𝑒_1)2 (6.2)

A2 = (𝑀𝑂𝑆_𝑎_2)2 + (𝑀𝑂𝑆_𝑏_2)2 +(𝑀𝑂𝑆_𝑐_2)2 +(𝑀𝑂𝑆_𝑑_2)2 +(𝑀𝑂𝑆_𝑒_2)2 (6.3)

QoE_1 = [√𝐴1/√5] ×100 = [√𝐴1] × (44.72) (6.4)

QoE_2 = [√𝐴2/√5] ×100 = [√𝐴2] × (44.72) (6.5)

The numerical value of the QoE expresses the quality of the image and therefore, the QoE of

different methods allow comparing the quality of the images generated with the different

images and as a result the quality of images the method can provide.

193

6.1.2. Subjective Test Conditions

Training session: after this session, the viewers will be familiarized with the produced 3-D

autostereoscopic integral images and fully understanding the aim of the test and the concept of every

part of the assessment. The five criteria they should focus on should be explained clearly so that the

evaluation the viewer gives out is built on concrete understanding of the criteria they evaluate. The

session will include the training phase and the actual test. The training phase length is dependent on

the viewers who are participating in the test, if they have previous experience and knowledge about

this type of images and the concepts behind the test, the training session will be shorter. The training

phase time is estimated to be between 10 and 30 minutes. The estimated maximum time of the actual

test phase is 83 minutes including filling in the demographic questionnaire, reading the instructions,

watching the videos and the static images, scoring the images, and finally filling in the Feedback

questionnaire. However, the test time can be much shorter if the viewer marked images faster.

Stimuli: 4 groups of the images and videos are selected to assess the five criteria of 3-D images that

are generated with the introduced methods: Training Images, Group 1, Group 2 and Group 3. Training

images that are shown in Figure 6.1 and called Training Globes are generated with a software based

on the method explained in Chapter 2 (i.e. Forward Projection Pinhole Rendering Model).

 Training Images are used in the training session to explain the criteria the assessment is

targeting and to declare how the Opinion Score should be made for each criteria. The two

images are generated in a way that the left image in Figure 6.1 appears behind the display

screen while the right one appears in front of the display screen. Viewer should score each

image for the five criteria and these images are used in the training session to point out how

the score works and on which basis.

Figure 6.1: Training Globes, 3-D integral images generated with a third method.

194

 Group 1 is a group of the images that are generated with the method DIVGL and include a

short video called (Rotating cube), 3 static images called (Axe man 1), (Cutlery) and

(globe), and shown in Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5 respectively.

Figure 6.2: Rotating cube, a 3-D integral images video generated with DIVGL method.

195

Figure 6.3: Axe man 1, a 3-D integral image generated with DIVGL method.

Figure 6.4: Cutlery, a 3-D integral image generated with DIVGL method.

Figure 6.5: Globe, a 3-D autostereoscopic integral image generated with DIVGL method.

196

Group 2 is a group of the images that are generated with the method DCTarget and include a short

video called (Angel in the castle), 3 static images called (Boy), (Angel and warriors) and (Axe

man 2), and shown in Figure 6.6, Figure 6.7, Figure 6.8, and Figure 6.9 respectively.

Figure 6.6: Angel in the castle, a 3-D autostereoscopic integral image video generated

with DCTarget method.

197

Figure 6.7: Boy, a 3-D integral image generated with DCTarget method.

Figure 6.8: Angel and warriors, a 3-D integral image generated with DCTarget method.

Figure 6.9: Axe man 2, a 3-D integral image generated with DCTarget method.

198

 Group 3 is a group of 3-D autostereoscopic integral images generated in the

Interpolative Shading Technique Method (ISTM) [8]. Up to my knowledge, this

method is the closest model, algorithm and approach to DIVGL method (images

Group 1) and DCTarget method (images Group 2). Samples of an animated images

(Actor), 5 static images called (Ghost), (Pots), (Network), (Ballerina) and (3-Tee) and

shown in Figure 6.10, Figure 6.11, Figure 6.12, Figure 6.13, Figure 6.14, and Figure 6.15

respectively.

Figure 6.10: video Actor, 3-D integral images generated with ISTM method [8/page 131].

Figure 6.11: Ghost, a 3-D integral image generated with ISTM method [8/page 47].

199

Figure 6.12: Pots, 3-D integral images generated with ISTM method [8/pages 58-64-67].

Figure 6.13: Network, a 3-D integral image generated with ISTM method [8/page 126].

200

Figure 6.14: Ballerina, a 3-D integral image generated with ISTM method [8/page 131].

Figure 6.15: 3-Tee, a 3-D integral image generated with ISTM method [8/page 143].

201

Display device: a normal Laptop with an LCD screen with 13.5 X 7.5 inches and resolution of 1024

X 768 dpi mounted by a cylindrical lens array with a lens pitch of 2 mm, a focal length of 3 mm, and

dimensions of 11.3 X 7 inches.

Viewing distance: The quality of integral images should be independent to the viewing distance.

Therefore, the viewers have the freedom to move backward or forward in front of the display screen

while viewing the integral images. The quality of experience should not have any degradation or

improvement as a result of changing the viewing distance. However, in the case of viewing a normal

TV, it is advised that the distance to the display screen should be related to the size of screen so that

the viewing angle is about 30 degrees. This distance optimizes the comfort the viewer experience

when viewing the images. In the test of comfort during this subjective assessment, the viewers should

maintain a distance to the display screen so that the viewing angle is approximately 30 degrees. In

other tests the distance is up to the viewer who should try to change the distance freely with any effect

to the quality of experience.

Test location: the display and test should be taken in a comfortable room by one or more of the

viewer at the same time providing no interaction or effect between each other that can distract the test

or affect the results. The room should be dark enough to allow the viewer to view the image with the

internal light of the display device (i.e. computer).

The questionnaire, test instructions, and user feedback: at the beginning, viewers will be

given written hand-outs including a short questionnaire to collect demographic information about the

viewers, Appendix 1, the test instructions, and the questionnaire on which the score of the rated

images will be recorded. Appendix 2 includes two parts, the first part is the test instructions that have

to be given to viewers to guide them through the test process, and the second part is the test. A

questionnaire called Feedback Appendix 3 to be given to participants after the actual test to have an

idea about their opinions in the 3-D technology in general, 3-D autostereoscopic images, integral

images, the application software that is introduced to generate integral images, the introduced

methods of generating integral images, and the assessment in which they are going to participate.

Viewers: the tests took place in an industrial research institution in London and the test was extended

to include participants from other institutes. Viewers are asked to participate in the test individually or

in small groups such as 2 or 3 viewers at the same time providing the number of viewers does not

affect the results or the conditions of the test. The total number of participants is 23. Table 6.1 shows

the demographic data the participants stated about their selves.

202

Categories Number Percentage

Gender Male 15 65.2%

Female 8 34.7%

Age Under 20 0 00.0%

From 20 to 30 6 26.0%

From 30 to 40 10 43.5%

From 40 to 50 5 21.7%

50+ 2 08.7%

Education PhD (or PhD student) 13 65.5%

Master (or Master student) 5 21.7%

Degree (or Degree student) 3 13.0%

College 2 08.7%

School 0 00.0%

Occupation Manager 5 21.7%

Researcher 8 34.7%

Employee / Engineer 9 39.1%

Full time student 1 04.3%

Unemployed 0 00,0%

Using

experience
(How often do you watch

3-D content)

Once + a week 3 13,0%

Once a month 6 26.0%

Several times a year 9 39.1%

Once a year 4 17.4%

Less often 1 04.3%

Never 0 00.0%

Vision
(Do you wear glasses or

contact lenses to see at

far or at near)

No 9 39.1%

Yes At far 8 34.7%

At near 6 26.0%

Professional

experience
(Experience of the

viewer in 3-D imaging or

image processing)

Good experience 6 26.0%

Moderate experience 12 52.2%

Some experience 4 17.4%

No experience 1 04.3%

Table 6.1: the demographic data the participants have shared.

6.1.3. The Test description

At the beginning of the test, a training session will take place. The training session is aimed to declare

the mentioned five criteria the assessment is questioning about. The images shown in Figure 6.1 will

be displayed and exposed to the viewers and the following concepts will be explained:

203

 Comfort: the viewer should focus on the static images or videos for few minutes, if

the viewer feels of any fatigue or tiredness in the vision, then the image is causing one

of the worst disadvantages in the 3-D images. The worse the vision fatigue is the

lower rate or score in this criteria should be given to the image in question when the

real test is carried out.

 Crosstalk: when the viewer moves to the left or right in proportion to the 3-D image,

the viewing angle changes and therefore, the image will be seen from another

perspective and the sub-image seen by the viewer’s eye will be switched from one

sub-image to another. The smooth switching from one sub-image to the other is one

of the advantages of the 3-D integral images. The viewers should move right and left

so that they judge the smoothness of the switching. The switching smoothness should

be judged by the viewer in the actual test so that a higher score is given to the image

crosstalk of the evaluated image.

 Parallax: the 3-D autostereoscopic integral images generated with the introduced methods

can provide either horizontal parallax or full parallax. Full parallax that includes horizontal

and vertical parallax can be viewed when using a spherical microlens array. Horizontal

parallax can occur when cylindrical lens array is used which is the case of our test. Only

horizontal parallax will be evaluated in this test. In the test session, viewers will be asked to

move right and left while watching the integral videos and images and show them how some

parts of the image is hidden when looking on the image from one perspective while that part

can appear when moving to a different position and vice versa. In the actual test, the score of

parallax criterion will be higher when the horizontal parallax is more noticeable and clearer to

the viewer. For example, in the test image, parts of the globe on the extreme left or right will

be hidden and these parts will appear when the viewer moves to the left or right respectively.

 Depth: 3-D images are distinguished from the 2-D image by several features, the

depth perception in one of the most important features of 3-D images. In the best

scenario, viewer will feel of the depth on both sides of the display screen. The quality

of the image will be highly dependent on the depth of the image. Objects in the scene

can be viewed as if they are located in the deep depth of the screen or flying away of

the display screen towards the viewers. Viewer will judge the depth based on the

amount of depth or the virtual distance that can be felt in the image. When the image

provides the feeling of a higher depth, the score of depth for the evaluated image will

204

be higher. In the training session, the left globe is meant to be fully displayed behind

the display screen, while the right globe is rendered so that it looks fully in front of

the display screen or the laptop screen in our case. Viewer will be used on the depth

concept when displaying images on both the two sides of the screen is demonstrated

and the depth is defined as the virtual distance the viewer can see from the closest

point to the viewer’s eye to the further point from the viewer’s eye.

 Field of view: Field of view (FOV) or view angle of the integral imaging system is

the highest angle the viewer can see the scene when moving to the right, left, up and

down in proportion to the 3-D integral image. In the training session, the viewer will

be asked to move around to the left and right so that they discover the highest angle

through which the scene can be seen. The score of quality in terms of FOV is

proportionally dependent on to the angle of view because the higher FOV provides

more freedom in moving and wider space the viewer can view the image and more

viewers can see the same display at the same time. In the actual test, the viewer will

be asked to discover this feature in the evaluated images and videos and score this

criterion for each image and record the score on the results table.

Viewers will evaluate the five criteria for each image of the three groups of images. The score should

reflect the general opinion of the viewer about each criterion for each image in the group. The score is

expressed as a percentage, then the viewer should rate the criteria with an integer number between 0

and 10, so that 0 against a specific criteria for a specific image means absolutely unsatisfied and the

quality of the image in terms of that criteria is null, Whereas, 10 means absolutely satisfied with the

quality of that image in terms of that criterion. The viewer are given the following instruction list in

which the method of scoring the image is explained:

In this test, you will have to judge the quality of both the static and the animated 3-D

autostereoscopic integral images.

 The images and videos will be displayed on this laptop mounted by a cylindrical lens

array in front of you and the voting will be performed on the following pages.

 Three groups will be displayed and rated: groups 1 and group 2 each one includes 3

static images and one video, and group 3 includes 6 images.

 Group 1 will be displayed first followed by group 2 and then group 3.

205

 The video in each group will be displayed continuously for maximum of 5 minutes,

whereas, each static image will be displayed once for 2 minutes maximum.

 Please stay focused during the test and feel free to move slightly left and right,

backward and forward to judge the five criteria we explained in the training session.

 Two minutes are given after each display to fill in the form stating your opinion

scores you worked out during the display. Write them next to the criterion you are

scoring in the field specified for that image/video. However, the scores can be added

during the display time.

 5 minutes break will be given between the groups to finalize groups 1 and 2 scores.

 5 minutes will be given to read these test instructions.

 10 minutes at the end will be given to finalize the scores, fill in the demographic data

form, and fill in the feedback form.

 The sequence of the test activities will be as follows: 5 minutes to read these

instructions, 5 minutes video 1/group 1 display, 2 minutes break, 2 minutes static

image 1/group 1 display, 2 minutes break, 2 minutes static image 2/group 1 display, 2

minutes break, 2 minutes static image 3/group 1 display, 5 minutes break, 5 minutes

video 2/group 2 display, 2 minutes break, 2 minutes static image 1/group 2 display, 2

minutes break, 2 minutes static image 2/group 2 display, 2 minutes break, 2 minutes

static image 3/group 2 display, the same is repeated for group 3, 10 minutes break

making the total of 83 minutes. However, the time can be much shorter if the

decisions were taken faster.

 The three groups have 3 result tables.

 Each image/video of the three groups has a special column in the result tables. Group

1 and group 2 have the same result table, whereas, group 3 has a separated result

table.

 Each criteria for the image/video has a special cell in the related image/video field.

 The criteria are the five criteria mentioned above: Comfort, Crosstalk, Parallax,

Depth, and View Angle.

 Each cell will contain the Opinion Score of the quality of the corresponding image in

terms of the related criteria.

The score can be any integer number between 0 and 10, where 0 indicates (bad), and 10

indicates (excellent).

206

Figure 6.16 shows an example of the images displayed in the assessment and the devices

used. The words (Brunel University West London) can be read clearly in the image after using

the display device.

Figure 6.16: An example of the images displayed in the assessment.

6.1.4. Analysis and results

The total number of participants is 23, the viewer’s opinions of the 5 criteria of each image

and the calculations derived from the results are stated in Appendix 4. Figure 6.17 shows the

Root Mean Square (RMS) of the average opinions of the criteria given by each viewer for

each one of the three methods. Each viewer stated his/her opinion about the quality of

experience in terms of each criteria of the five mentioned criteria of each image of the images

grouped in three groups. In order to calculate the numerical evaluation of each method based

on the opinion of the viewers, the average of each criteria was taken for all the images

belonging to the same group. For example, the comfort criteria of group 1 images were

averaged (i.e. added and divided by four the number of images).

The averaging result can be considered as the evaluation of the comfort criteria for the four

images of group 1, in other words, the comfort evaluation of DIVGL method with which

group 1 images were generated. The same averaging process was applied to all the criteria of

207

each group. QoE for each group was considered as the Root Mean Square RMS of the five

calculated criteria referred to in the graph of Figure 6.17 as OPINIONS RMS.

Figure 6.17: the opinions average RMS of 23 viewers for the three methods.

Opinion RMS was calculated for each viewer about each method of the studied methods

based on Equation 6.4. The number of images chosen for methods DIVGL and DCTarget are

4, while, ISTM method images number is 6. The results of ISTM method were optimised by

selecting the best results of four images and considered to calculate the QoE of the method

whereas, the results of the other two images were discarded. In Figure 6.17, the optimized

RMS opinions of ISTM method is referred to as OPT ISTM method.

Each score of the scores given by the participants are normalized by 10, therefore, the RMS

were portions of 1. The QoE calculated based on the viewer’s opinions for DIVGL method

was higher than that of ISTM method and the optimized ISTM method and therefore, the

quality of DIVGL method is higher than the quality of ISTM method, whereas, the quality of

DCTarget method is even higher than both of the two methods DIVGL method and ISTM

method.

If the opinions RMS that is calculated for each method is considered as the viewer opinion of

that method, then MOS of the method can be calculated by averaging the method opinion

RMS of all the viewers, in other words, adding the RMS for each method that was calculated

for each viewer and divide the result by 23 which is the total number of viewers. MOS of the

208

three methods calculated by averaging the opinion RMS of the viewers is shown in Table 6.2.

To compare QoE for the 3 methods, QoE is considered as a percentage to the highest MOS:

 DIVGL Method DCTarget Method Opt ISTM Method ISTM Method

MOS 0.628549 0.750213 0.530293 0.454755

QoE 84% 100% 71% 61%

Table 6.2: a comparison between the three methods and the optimized ISTM.

If the opinions RMS for each image was considered as the viewer opinion of that image, then

MOS of the image can be calculated by averaging the opinion RMS of all the viewers, in other

words, adding the RMS for each image calculated for each viewer and divide the result by the

total number of viewers (i.e. 23). Figure 6.18 shows a comparison between the MOS results

of the images used in the assessment. MOS is calculated by averaging the RMS of the images.

The comparison shows DCTarget QoE as the highest QoE amongst the three groups of

images. DIVGL QoE ranked second exceeding ISTM.

Figure 6.19 represents the MOS of each criteria quality for each image of the images used in

the assessment based on the viewer’s opinions. The graph shows that the images belonging to

DCTarget method have the highest MOS for each image and for almost every criteria in

comparison with the other two methods, while, DIVGL method has higher MOS than ISTM.

Figure 6.18: MOS of each image of the 3 groups.

209

Figure 6.19: MOS of each criteria for each image of the 3 groups.

On the other hand, if MOS of every criteria for each image was calculated (i.e. the average of

all the opinion scores for each criteria apart), the QoE can be considered as the RMS of all the

resulting MOS for each image.

Figure 6.17 shows the calculated RMS of the average scores of the images for each criteria. In

theory, the average of the RMS for the images belonging to the same method should be equal

to the RMS of the average scores for the criteria of these images. In other words, previously,

the scores of each criteria were averaged, then the RMS of the averaged scores was calculated

for the images of each method, Figure 6.17 represents the results for each viewer. Now, the

RMS of the criteria of each image is calculated and then the resulting RMS are averaged for

each method to be compared with the results shown in Figure 6.17. Figure 6.20 shows the

calculated average of the RMS values for the images of each group in addition to the

optimised group that contains the best scored 4 images of ISTM method images. In

210

comparison with Figure 6.17, the graphs are almost identical to the graphs plotted and shown

in Figure 6.17. The two sets of data are plotted and represented in the chart so that the

difference between the two sets of data is shown to represent the error of calculation that can

be considered as the error in considering the assumption that the QoE is proportional to the

RMS of the particular opinions of the criteria.

Figure 6.20: the average RMS of the opinions of 23 viewers about the three methods.

Figure 6.21: the average RMS of the opinions and the RMS of the opinions combined.

211

Figure 6.22: MOS of the criteria scored by viewers for each method.

Figure 6.21 shows the combined two ways of calculations, the first is the one when the

average of the criteria opinions are calculated and the RMS of the average was calculated and

the second is the one when the RMS of the criteria of each image from each group were

averaged. The two ways are aimed to calculate a numerical value to reflect the QoE of each

method of the examined 3 methods considering the best 4 images from group 3. The graphs

show that the results of the two ways are almost identical with a very small error caused

mainly by the approximations conducted in the calculation process.

Figure 6.23: MOS and RMS of the criteria for each method.

212

Figure 6.22 shows a comparison between the compared methods about the criteria by

comparing the MOS taken as the average of the opinions provided by the viewers about each

criteria. It is clear that DCTarget method scored the highest MOS for all the criteria.

Figure 6.23 represents the methods with the MOS of the scored criteria and the RMS of these

criteria for each method showing DCTarget method with the highest scores in comparison

with DIVGL and DIVGL’s are higher than those of ISTM, whereas, the optimized ISTM with

the best images considered scored lower than DIVGL and higher than ISTM method with all

the tested images taken into consideration.

6.1.5. Viewers Feedback

The numerical average (Na), and the weight percentage (Wp) are calculated with the

equations:

Na = (∑ 𝑉𝑁𝑖 ∗𝑀
𝑖=1 Wi)/N (6.6)

Wp = Na/MaxW (6.7)

where, i is the index of the selected choice, M is the maximum number of choices, VNi is the

number of viewers who selected the choice i, Wi is the weight of the choice, N the total

number of viewers, MaxW is the maximum weight of the choices. The maximum weight for

all the questions was 4 and the total number of viewers is 23, the number of choices was 5 for

all the answers in this feedback from. For example, the first question average is [(12×4) +

(8×3) + (3×2) + (1×0) + (0×0)]/23 = 3.39, and the percentage = 3.39/4 = 84.7% which

means that the importance of 3-D technology is rated by the viewers as 84.7%. Table 6.3

presents the feedback provided by the viewers and the associated calculations.

Question Viewers

Number

Numerical

Average

Percentage

What is your

opinion in 3-D

technology and 3-

Very important (4) 12 3.39 84.7%

Important (3) 8

Reasonable (2) 3

213

D imaging Less important (1) 0

Unimportant (0) 0

What is your

opinion in 3-D

autostereoscopic

imaging

Very important (4) 9 3.22 80.4%

Important (3) 10

Reasonable (2) 4

Less important (1) 0

Unimportant (0) 0

What is your

opinion in 3-D

integral imaging

and its

characteristics

Very important (4) 5 2.91 72.8%

Important (3) 11

Reasonable (2) 7

Less important (1) 0

Unimportant (0) 0

What is your

opinion in the

software used to

produce group 1

and 2 of images

Very good (4) 19 3.83 95.6%

good (3) 4

acceptable (2) 0

Less acceptable (1) 0

Unacceptable (0) 0

What is your

opinion in the

methods of

generating group

1 and 2 of images

Very good (4) 11 3.35 83.7%

good (3) 9

acceptable (2) 3

Less acceptable (1) 0

Unacceptable (0) 0

What is your

opinion in our

assessment in

which you have

participated

Very simple (4) 0 0.78 19.5%

Simple (3) 0

Average (2) 5

Difficult (1) 8

Very difficult (0) 10

Table 6.3: Feedback provided by the assessment participants.

From Table 6.3, the feedback provided by the participant in the subjective assessment show

that the test procedure was difficult as the percentage of 19.5% means the test was viewed by

the participants to be tending to difficulty. The main reason for that can be referred to the

difficult concepts of the quality criteria that the QoE was examined based on them.

214

6.2 COMPLEXITY AND SPEED OF RENDERING EVALUATION

Complexity and speed of rendering are key factors in the computer graphic functions. In the

real-time applications such as video games, complexity and speed of rendering are critical

factors and the application performance is highly dependent on the speed of processing. 3-D

autostereoscopic integral images are supposed to be used in the real-time applications such as

video games in which the user reacts instantly with the machine; therefore, it is necessary to

render and display the animated images in the speed that is needed to meet the requirements

of the application. In addition to the hardware requirements such as the video card with an

adequate speed and the machine on which the application is executed with an acceptable

speed capacity, the software plays an important role in enhancing the application

performance and improving the speed of the execution. Converting the 2-D animated images

to 3-D autostereoscopic integral images should be as fast as possible to meet the speed

requirements. To optimise the time that is spent on rendering the animated images, the

complexity and the time that is spent on rendering a single 3-D autostereoscopic integral

image should be optimized. Therefore, the complexity and the rendering speed in the

different algorithms used for producing 3-D autostereoscopic integral images can be

evaluated based on the complexity needed and the speed of rendering a single static image

because the animated scenes are composed from a number of frames and each frame can be

looked at as a single static image. An attempt to evaluate the DIVGL and DCTarget

algorithms in terms of complexity and rendering speed would be introduced and explained. In

addition, a comparison between the complexity and rendering speed of these algorithms and

those of some other algorithms will be carried out. Up to my knowledge, an objective or

subjective assessment of the complexity and rendering speed of the 3-D autostereoscopic

integral images is not available and thus, more developed objective assessments are required

to evaluate these images, or even, a new and different objective or subjective assessment

method is required to assess the complexity and the speed rendering of the 3-D

autostereoscopic integral images. The idea behind this objective assessment method is the

approximate estimation of the number of arithmetic processes that are needed to render a 3-D

integral image in each method of the compared algorithms. The number of arithmetic

processes is supposed to be proportional to the time needed to render and display a single 3-D

autostereoscopic integral image when the method is question is used and implemented with

the same machine (i.e. computer). As a result, the methods are evaluated and compare against

215

each other. The time of rendering in each method should be taken into account when

selecting the suitable algorithm to use for designing and implementing a computer graphic

application. In this section, a comparison on the basis of complexity and speed of rendering

between DCTarget method and other methods including DIVGL method is carried out. The

complexity and speed of rendering are supposed to be proportional to the number of

operations and arithmetic processes that are carried out to calculate the 2D images, therefore

it is proportional to the computational expenses. Up to my knowledge, the closest models,

algorithms and approaches to DCTarget method and DIVGL method are the Forward

Projection Pinhole Mesh Model (FPPM) [8], Forward Projection Finite-Sized Aperture Mesh

Model (FSAM) [8], and Computer-Generated Integral Photography CGIP [48]. The

procedures implemented in these methods are objectively assessed and evaluated. Figure 6.24

represents the flowchart of the integral pinhole mesh model FPPM. Figure 6.25 represents

the flowchart of the Finite-sized aperture model FSAM. Figure 6.26 shows the flowchart of

CGIP method. Figure 3.25 shows the computer generation of integral images flowchart based

on DIVGL algorithm. Figure 4.7 shows the generation process flowchart of integral images

based on DCTarget algorithm.

Figure 6.24: The flowchart of the integral pinhole mesh model [8].

216

Figure 6.25: The flowchart of the Finite-sized aperture model [8].

Figure 6.26: The flowchart of CGIP method [48].

217

 One of the major steps in FPPM and FSAM methods is aimed to create pseudoscopic

object as it is shown in Figure 6.24. The resulting image from this method is supposed

to be a simulation of the imaging process using a number of pinholes. The image

formed in this case is pseudoscopic, therefore, the imaged objects should be

pseudoscopic at first place so that the final image is orthogonal, whereas, this stage is

not required in both DIVGL and DCTarget because the process of converting the

pseudoscopic image that is resulting from the projection process to an orthogonal

image is included in the algorithm. In both DIVGL and DCTarget the whole 2-D

scene is imported as it is designed and generated with the computer applications such

as 3D Max and the imported and converted to a 3-D orthogonal scene using these

algorithms. The pixel values and locations are calculated and mapped so that the

image is corrected. In order to overcome the pseudoscopic problem in CGIP, the

object points are assumed to be a combination of planes with different depths which

are arranged by the depth direction. This step adds more complexity to the methods

FPPM and FSAM methods and therefore reduces the speed of rendering with these

methods in comparison to DIVGL and DCTarget methods.

 A complicated algorithm is needed in FPPM and FSAM methods to draw lines

between the object points in the scene so that the correct spatial information are

captured. The triangle corners that are projected through the pinhole do not provide

enough information to create the integral image. Points on the lines are then selected

to be projected, the distances between these points are not equal, these should be

calculated for each line apart based on its distance to the image plane and the pitch of

the lens. These are huge and complicated tasks that are needed because the projection

through the lenses is applied immediately on the geometric mesh, whereas, In DIVGL

and DCTarget algorithms, a normal projection is applied on the geometric mesh by

multiplying the object point coordinates by the projection matrix so that the object

mesh triangles are projected and textured, and then the resulting image pixels are

remapped so that the new values and locations of the pixels reflect the effect of the

virtual lens array. As a result, the algorithms that are implemented in FPPM and

FSAM methods is much more complicated than the algorithms that are implemented

in both DIVGL and DCTarget methods, and therefore, the speed of rendering is lower

in comparison to DIVGL and DCTarget methods.

218

 In FPPM and FSAM methods, the pinholes that are seen by each point of the scene

object points must be calculated to determine the micro images each object point

should be projected and mapped to. In DIVGL method, the part of the scene volume is

calculated for each lenslet or microlens, the calculated part that is seen by the

microlens or the pinhole is projected through the specified pinhole to form the micro

image, then, the efforts that are paid in DIVGL method are almost equal to these in

FPPM and FSAM methods to fulfil the same targets, and therefore, at this stage of

processing, FPPM, FSAM and DIVGL methods are at the same level of complexity

and speed of rendering. On contrary, in DCTarget method, this stage of processing is

not required because the micro images that are formed by the virtual pinholes that are

seen by that object points include the projections of the relevant object points. This

procedure is implicitly implemented when the pixel values extracted from the

projections and mapped to the correct locations in the micro images on the image

plane. In CGIP, each object point is considered as the centre of a number of points

forming the elemental image, in this case, each point should be projected through

every lens in the lens array and that makes the process is even more complicated than

in FPPM and FSAM because the calculation of the relevant pinholes or lenses reduces

the speed of the process and increases the complexity and, so CGIP is marked with

() against this step.

 The location of each pixel is calculated in FPPM, FSAM and DCTarget methods,

whereas, it is not required in DIVGL method. In DCTarget method, the pixels are

extracted and mapped to the new image, for this reason, the original location of the

pixels are calculated, and then the new location in the image plane are calculated. This

burden is not needed in DIVGL method in which the micro images are mapped as they

are to their specified locations and as a result, the pixels are implicitly mapped to their

correct locations without the need for calculating these locations. The pixel locations

are calculated in FPPM and FSAM methods when calculating the locations where the

rays hit the image plane. In CGIP, for each an object point, a set of elemental image

points are plotted and therefore, the location of the pixels carrying the elemental

image point intensity values should be calculated.

 FPPM and FSAM methods use the integral ray tracing technique to carry out the

projections, whereas, DIVGL and DCTarget methods uses the method of multiplying

the object point coordinates by the projection matrix. The later method requires less

calculations and processing than the former one, and the complexity is proportional to

219

the amount of processes the computer needs to implement. Therefore, DIVGL and

DCTarget are less complicated than that of FPPM and FSAM methods and the speed

of rendering is higher.

 If the number of object points in a scene is specified, and each object point is

projected a number of times during the image rendering process, we would calculate

the number of projections that are needed to create the 3-D image of the same scene in

each of the mentioned methods. The complexity is proportional to the number of

projections. In FPPM and FSAM methods, the number of projections is the number of

the original and calculated object points multiplied by the number of pinhole each

object point sees. The total number of points is much higher than the original number

of points, and average number of pinholes that are seen by the points is multiplied by

the total number of points. In DIVGL method, only the original points are projected,

however, each point is projected a number of times equals to the number of pinholes

(or lenses) that are seen by this object point because the scene is divided to a number

of small frustums equals to the number of lenses or pinholes. Then the number of

projections in DIVGL is much lower than that of FPPM and FSAM methods and

lower than that of DCTarget method because the number of projections in DCTarget

is the number of original object points multiplied by the number of projections. The

number of projections equals to the number of pixels under each microlens. In

general, based on logical estimation and experience, the average number of lenses or

pinholes that are seen by the points in a scene is less than the number of pixels under

each microlens. In CGIP, each object point produces a proportional number of

elemental points to the depth. The number of points implies on an equal number of

processes to produce such points. Taking into consideration that each object point is

projected through each possible lens, and the higher depth requires more points, it is

obvious that the number of processes is higher in CGIP than these in the other

considered methods, complexity is higher and speed of rendering is lower, therefore,

CGIP is marked as () against this step.

 In FSAM method, the surface of the lenses are split into equally spaced lens points to

take into account the refraction the rays suffer when passing through the lenses. This

is not required in FPPM as the refraction doesn’t occur in the pinhole model. When

rendering the image, the refraction of the rays are neglected in DIVGL and DCTarget

algorithms, however, these can be taken into account by mapping the pixels so that

the refraction effect is considered. Omitting this step reduces the complexity of image

220

generation on the expenses of the quality of the rendered 2-D content and as a result

the quality of the 3-D image. This step is irrelevant in CGIP.

 In DIVGL and DCTarget algorithms, remapping the pixels is essential to produce

images with the required characteristics by implementing necessary processes

including the correction of the pseudoscopic image and split the 3-D image into two

parts behind and in front of the display screen. In FPPM and FSAM methods, these

steps are implemented as the pixel locations are calculated and the object points are

projected to the calculated pixel location and these pixels are not remapped again,

however, the quality of images is affected and other complexities should be added to

the rendering process to produce images with characteristics similar to these of the

images produced in DIVGL and DCTarget algorithms. In CGIP, the calculated

elemental images are made orthoscopic and therefore, the pixels are remapped.

 The shading function is less complicated in DCTarget (OpenGL) than it is in FPPM

and FSAM methods that use interpolative shading. The interpolation of intensity

values of the 3 corners of the transferred triangles at the image plane needs to check

the orientation of the corners. In FSAM method, the whole triangle side is projected

on the image plane through the lens array so the line is discontinuous. A further

technique to find the orientation of each pixel used in making up a line is therefore

necessary [8]. In FPPM the corners are projected through a lens array and need to

interpolate their intensities after projection and calculate each pixel intensity value

within the triangle taking into account the effect of the lenses, the effects of the lights,

the effect of the ambient light, the depth values etc. These requirements need extra

algorithms and higher number of calculations in comparison with these that are

needed in DIVGL or DCTarget algorithms in which OpenGL is used to implement the

shading only one time in the original scene then the scene is projected through the

lens array in DIVGL and projected orthogonally in DCTarget without the need for

calculating the pixel intensities again as these calculations are already done and the

pixel intensity values are calculated smoothly and normally in advance taking into

account all the effects. Therefore, there is no need for applying extra algorithms to

implement the required shading on the image plane and calculate the pixel intensity

values. In order to reduce the processing time in FPPM and FSAM methods, drawing

a bounding box around each triangle was introduced to save searching time, however,

searching the edges of the bounding boxes needs extra processing time and therefore,

221

higher complexity is needed. Information about the shading in CGIP are not available,

so the complexity added in relation to this step is not counted.

Table 6.4 shows a comparison between few algorithms devoted to create 3-D

autostereoscopic integral images on the basis of complexity and speed of rendering. In

comparison to the method with higher complexity and lower speed of rendering, the method

with a faster rendering and lower complexity for implementing the related procedure is

marked with the symbol (), and the method with a lower speed of rendering and higher

complexity in applying a procedure is marked with the symbol (). From Table 6.3, the

comparison between the discussed 5 methods shows that DIVGL or DCTarget algorithms are

simpler and faster than the other methods in terms of the implementation steps.

 CGIP FPPM FSAM DIVGL DCTarget

Correct

pseudoscopic

image

    

Draw lines

between object

points

    

Calculate

pinholes for

object points

    

Calculate the

location of pixels
    

Ray tracing
    

Number of object

point projections
    

Split the surface

of the lenses
    

Remapping the

pixels     

Shading after

projection
    

Table 6.4: A comparison between different methods on the basis of complexity.

222

Chapter 7

Conclusions and Further Work

7.1 Conclusions

With the development of this research from the initial theoretical ideas to the final

implementation of the static and animated integral images, new techniques and tools were

introduced to convert computer-generated images to 3-D autostereoscopic integral images

that can be viewed without special glasses using the Application Interface OpenGL. In this

chapter, some specific and general conclusions of the work are stated.

Integral imaging is the technique that provides 3-D autostereoscopic images viewable without

the need for special glasses. Research and literature about integral imaging is limited and

ongoing. An integral image quality is highly dependent on the parameters and characteristics

of the devices employed in the imaging system. Attempts to produce such a system (i.e. 3-D

cameras) are taking place. It would be useful to simulate the system and tune the parameters

of the devices to optimise the performance of the system, and as a result, the quality of the

produced integral images. In this thesis, a software tool based on new algorithms has been

designed and implemented to simulate an integral imaging system in which the parameters

can be adjusted to optimise the image quality, the computational and time costs, and the

materials consumption. The algorithms used in the tool were introduced to provide fast and

effective rendering of integral images. In comparison with other methods aimed to generate

integral images, the introduced methods and tools in this study were more convenient for

faster-to-produce, better quality and easier-to-tailor integral images with lower

computational, time and material costs.

Most of the objectives of this study were met. Computer generated 3-D autostereoscopic

static and animated integral images using original algorithms and application software were

produced. The quality of the resultant images was higher than those images produced with

other methods. These images were provided with 3-D effect and viewable with naked eyes

(i.e. without using special glasses as it is the case for stereoscopic 3-D images). The size of

the collected and processed data needed to produce 3-D integral images was reduced. A

223

software tool that allows user to tune the system features and characteristics and covert

computer-generated 2-D scenes to 3-D integral images has been designed and implemented.

The software tool employs the API OpenGL and libraries based on the portable OpenGL;

therefore, the software is portable between different operating systems and able to deal with

various image formats. The software is special application software to simulate the 3-D

integral imaging systems and help the designer to select the parameters of the system devices

and generate the required 3-D images based on the selected parameters. Good quality 3-D

integral images with fast and effective computations were achieved.

7.1.1 Findings

 Using the introduced algorithm Dividing Image Volume using OpenGL (DIVGL),

good quality integral images were produced and subjectively evaluated as good

quality integral images. Higher quality than images produced with an external method

was proved by the subjective assessment.

 Displacing the Camera Target (DCTarget) algorithm was a developed method based

on DIVGL and better quality computer-generated 3-D autostereoscopic integral

images with a faster and less complicated process were produced with this method.

The results of the subjective evaluation proved that the quality of these images

exceeded the quality of those produced by DIVGL.

 The software designed and used to implement the above mentioned algorithms and

produce the required integral images was well appreciated and accepted by users.

 The method introduced to evaluate the quality of the integral images based on the

subjective evaluation of each one of the factors that are affecting the image quality of

an integral image was used and significant results were acquired from that quality

evaluation.

In Chapter 3, in order to compare the results of the approaches introduced in this study with

the results of the closest technique, a previously suggested technique based on projecting the

scene in the capture stage using projection points has been developed and implemented. The

technique was implemented with OpenGL in the environment of C++. In one approach, the

resulting images were successful and comparable to the images produced with the new

techniques; however, other approaches were not satisfactory. The other part of Chapter 3 was

224

devoted to explain the method of dividing the view volume to capture, project a scene

introduce, describe and implement the algorithm DIVGL that is based on the view volume

dividing method using OpenGL. In order to simulate the real life imaging with lens array,

each microlens or cylindrical lens array is supposed to image the whole scene and produce a

micro image of the whole scene to be recorded on the image plane, and then the micro images

are displayed on a display screen. However, due to the limitation in the resolution of the

display devices, a micro image of the whole scene is unable to be accommodated in the

specified area on the display screen. The View Volume Dividing method allows each lenslet

to capture an approximated viewing frustum of the complete viewing frustum that is

supposed to be imaged by each lenslet in the ideal case. The left, right, upper and lower

clipping planes of the frustum determine the viewing volume for each lenslet or microlens

and therefore the micro-image under each microlens of that particular viewing frustum.

In Chapter 4, the DCTarget algorithm was introduced, explained and implemented with

OpenGL. High quality static and animated integral images were rendered. The images were

produced to be viewed using either cylindrical lens array or spherical lens array. DCTarget

method is based on the principal of DIVGL method. DCTarget method aimed to extract the

perspective projections of a scene from its orthogonal projections. The idea is about finding

the pixel values of the perspective projection of a scene by implementing the orthogonal

projections of that scene and extract specific pixels from each projection to build the required

perspective projection. The number of orthogonal projection is equal to the number of pixels

in each direction under each lens, whereas, the number of perspective projections needed to

render the same cluster of micro images must be equal to the number of lenses in the lens

array. Usually, the number of lenses in the lens array is much higher than the number of

pixels under the micro lens in any direction. For example, a cylindrical lens array with 128

lenslets, each lenslet covers 8 pixels in the horizontal direction. As a result, the rendering

process is much easier, faster, time effective, and lower computation costs.

DCTarget method is achieved by picking up specific pixels from each image of a collection

of orthographically projected images with selected rotation angles of the camera targets and

mapping the selected pixels to the final image. It is possible to display objects so that they are

located in front or behind the screen by mapping the selected pixels in two different ways.

The pixels that are belonging to the part of the scene located in front of the screen are mapped

in a different way to these that are belonging to the part located behind the screen.

225

The orthographic projections simulate the perspective projection of the scene with the same

lenses array. The projection of the points on the image plane is equivalent to the perspective

projection with the same microlens array. The perspective characteristics are available in the

integral image. The number of micro images that represent an object point expresses its

distance to the screen. The number of lenses representing a specific object point encodes the

distance of the composed real object point on the display screen. If the number of perspective

projections is equal to the number of lenticular lenses or spherical lenses, and the number of

orthogonal projections is equal to the number of pixels under each microlens or the number

of columns of pixels under each lenticular lenslet, then the number of orthogonal projections

is lower than the number of perspective projections. In other words, implementing a number

of orthographic projections that is equal to the number of rotation angles is simpler than

implementing a number of perspective projections that is equal to the number of lenslets.

Therefore, a large amount of time and computations can be saved.

In Chapter 5, portable application software devoted to implement the mentioned algorithms

has been introduced, explained and implemented. Examples of the integral images produced

by the tool were shown.

With the various facilities provided by the application software, including the friendly user

human-machine interface, the user is able to select options related to the scene, the lens array,

and the required features of the resulting images. These options include the required

characteristics of the lens array, the type of replay, the location of the objects in respect to the

display screen, the 2-D static or animation scene to be converted to 3-D autostereoscopic

scene or animation.

The suggested algorithms and the combined application software that is employed to

implement these original algorithms provide a flexible, fast and effective technique to render

3-D autostereoscopic integral images and videos with high quality to be viewed by viewers

with naked eyes.

The quality, complexity, and speed evaluation process was explained, the results were

analysed, and the quality, speed and complexity of the rendered images were evaluated.

226

7.1.2 Limitations

Objective quality evaluation of the generated integral images with DIVGL and DCTarget

methods against other methods requires the actual images generated with other methods and

the data combined such as the depth map. The images should be belonging to the same

category of the images generated with DIVGL and DCTarget methods. The category and the

image type should be computer-generated 3-D autostereoscopic integral images. Despite that

the images and materials from different categories such as stereoscopic images are easily

available and accessible via databases; the materials needed for the comparison between

different methods generating the required type of images are not easily accessible. Therefore,

only subjective quality evaluation has been implemented in this thesis. Objective evaluation

was implemented on the basis of the results of the subjective quality evaluation. DIVGL and

DCTarget methods were proved to be better quality than that of a selected method that

produces images from the same category.

Speed and complexity were analytically evaluated and compared with other methods based

on the theoretical analysis of the rendering process. Practical and real rendering of other

methods was not available and therefore, the advantages of the introduced methods over other

methods were proved theoretically but not practically. DIVGL and DCTarget methods were

proved to be faster and less complex that selected methods that produces the same type of

images.

The 3-D integral images produced with the techniques introduced in this study are derived

from computer-generated scenes and images, thus, these are not suitable for imaging real

scenes. These techniques are suitable for producing animated integral images. The produced

animations can be saved and replayed later. However, the techniques can be suitable for real-

time integral imaging if the devices are fast enough to generate the integral image of the

frame and display it within an acceptable time (e.g. in the video games). The scenes can be

designed as normal 3-D scenes; the technique would be applied to the images and these

would be displayed on a special screen. Generating the images and displaying them in real-

time is not possible with the normal PCs due to the limitation in the image processing speed.

227

The size of the integral images implemented in this study is limited to the size of the PC

display screen, however, with simple modifications, the application software that is based on

the introduced algorithms allows user to render integral images with unlimited size as long as

the devices are suitable for rendering such images. In addition, the resolution of the display

screen was supposed to be the resolution of the PC screen that is proportionally low

resolution. Higher resolution can be considered and better quality integral images can be

implemented when suitable devices are available. On the other hand, the lack to a specialist

display device adds a drawback to the quality because the thickness of the screen is not

considered in the calculations.

Due to the approximations used in the calculations, the integral images that were rendered in

the examples were not displayed perfectly using the lens array, and as a result, the quality

was lower than it should be. Selecting the parameters correctly and accurately so that they are

identical to the available lens array parameters enhances the quality of the 3-D

autostereoscopic integral images. In Chapter 3, the capturing device was supposed to be a

pinhole array, with more accurate calculations, the application software can be developed to

calculate the integral images for a lens array capturing device.

7.2 Further Work

In order to reduce the computation processes in the capture stage of DCTarget method, the

pixel values that are extracted from the orthographic projections can be calculated by

projecting only the object points that are expected to form these pixel values. In this case, the

discarded pixel values are not necessary to be calculated, and therefore, unnecessary

calculations are avoided. These calculations can be avoided if the ray tracing technique is

applied to the required pixels rather than all the pixels.

One technique can be investigated which is calculating the intersection points between the

computer generated 3-D scene and planes (or lines) passing through the focal length of the

lenses and hitting the image plane. If this method is applicable, a very fast and effective

rendering can be achieved. More accuracy can be achieved if the pixels on the screen were

distributed so that the micro-image shape is circular instead of being squared.

228

The characteristics of virtual lenses that were simulated in Chapter 3 and Chapter 4 were

simplified. The light rays’ intersection location with the image plane was approximated and

some of the effect of the lenses on the ray were neglected. A higher accuracy can be achieved

when taking into consideration all the lens characteristics and effects on the direction of the

light. In this case, the pixel locations are accurately calculated and the quality of the resulting

integral image is enhanced.

The application software can be developed to render images with higher width and length and

print them out to be used for applications such as advertisements. Regarding the fact that the

quality of the resulting images is dependent on the resolution of the display screen, printers

provide higher resolution, and therefore, printing the images on transparent films and

displaying the images with a normal light source provide 3-D images with high quality,

which is a suitable way to use for different applications. In addition, another option can be

added to the application software to implement the Dividing View Volume algorithm and

apply DIVGL method on a selected scene in the same way DCTarget method is implemented.

The application software can be developed to be able to load several scenes and several

textures at the same time. For each scene, the user should be able to set the parameters and

the details of different objects in the scene.

Taking into consideration the advantages of OpenGL application interface, the software tool

can be used with various platforms and devices such as mobile devices supplied with suitable

display screens and 3-D autostereoscopic integral images can be instantly produced and

displayed on these devices.

229

Appendix 1:

Viewer’s vision and demographic data

Test Date/Time:

Observer Id:

Gender: □ male □ female

Age: □ under 20 □ 20-30 □ 30-40□ 40-50□ 50+

Educational level: □ PhD □ Master □ Degree □ College □ School

Occupation: □ Manager □ Researcher □ Employee □ Student □ Unemployed

How often do you watch 3D content?

□ once a week, □ once a month, □ several times a year, □ once a year, □ less often, □ never

watched 3D content

Concerning your vision:

□ I don’t wear glasses or contact lenses

□ I wear glasses or contact lenses to see clearly: □ at far □ at near

Experience of the viewer in 3-D imaging or image processing

□ I have good experience in 3-D imaging or image processing

□ I have moderate experience in 3-D imaging or image processing

□ I have some experience in 3-D imaging or image processing

□ I have no experience in 3-D imaging or image processing

Have a nice session!

230

Appendix 2:

Test Instructions

In this test, you will have to judge the quality of both the static and the animated 3-D

autostereoscopic integral images.

 The images and videos will be displayed on this laptop mounted by a cylindrical lens

array in front of you and the voting will be performed on the following pages.

 Three groups will be displayed and rated: groups 1 and group 2 each one includes 3

static images and one video, and group 3 includes 6 images.

 Group 1 will be displayed first followed by group 2 and then group 3.

 The video in each group will be displayed continuously for maximum of 5 minutes,

whereas, each static image will be displayed once for 2 minutes maximum.

 Please stay focused during the test and feel free to move slightly left and right,

backward and forward to judge the five criteria we explained in the training session.

 Two minutes are given after each display to fill in the form stating your opinion

scores you worked out during the display. Write them next to the criterion you are

scoring in the field specified for that image/video. However, the scores can be added

during the display time.

 5 minutes break will be given between the groups to finalize groups 1 and 2 scores.

 5 minutes will be given to read these test instructions.

 10 minutes at the end will be given to finalize the scores, fill in the demographic data

form, and fill in the feedback form.

 The sequence of the test activities will be as follows: 5 minutes to read these

instructions, 5 minutes video 1/group 1 display, 2 minutes break, 2 minutes static

image 1/group 1 display, 2 minutes break, 2 minutes static image 2/group 1 display, 2

minutes break, 2 minutes static image 3/group 1 display, 5 minutes break, 5 minutes

video 2/group 2 display, 2 minutes break, 2 minutes static image 1/group 2 display, 2

minutes break, 2 minutes static image 2/group 2 display, 2 minutes break, 2 minutes

static image 3/group 2 display, the same is repeated for group 3, 10 minutes break

231

making the total of 83 minutes. However, the time can be much shorter if the

decisions were taken faster.

 The three groups have 3 result tables.

 Each image/video of the three groups has a special column in the result tables. Group

1 and group 2 have the same result table, whereas, group 3 has a separated result

table.

 Each criteria for the image/video has a special cell in the related image/video field.

 The criteria are the five criteria mentioned above: Comfort, Crosstalk, Parallax,

Depth, and View Angle.

 Each cell will contain the Opinion Score of the quality of the corresponding image in

terms of the related criteria.

The score can be any integer number between 0 and 10, where 0 indicates (bad), and 10

indicates (excellent).

Table of evaluation results

Quality evaluation of 3-D autostereoscopic static and video

integral images for Group 1 and Group 2

Table of evaluation results

CRITEREA

GROUP 1 GROUP 2

Video Static Images Video Static Images

Rotating

cube

Axe

man

1

Cutlery Globe Angel

in the

castle

Boy Angel

and

warriors

Axe

man

2

Comfort

Crosstalk

Parallax

Depth

View Angle

232

Quality evaluation of 3-D autostereoscopic static and video

integral images for Group 3

Table of evaluation results

CRITEREA

GROUP 3

Video Static Images

Actor Ghost Pots Network Ballerina 3-Tee

Comfort

Crosstalk

Parallax

Depth

View Angle

233

Appendix 3:

Assessment Feedback

1) What is your opinion in 3-D technology and 3-D imaging?

□ Very important(4) □ Important(3) □ Reasonable(2) □ Less important(1) □ Unimportant(0)

2) What is your opinion in 3-D autostereoscopic imaging?

□ Very important(4) □ Important(3) □ Reasonable(2) □ Less important(1) □ Unimportant(0)

3) What is your opinion in 3-D integral imaging and its characteristics?

□ Very important(4) □ Important(3) □ Reasonable(2) □ Less important(1) □ Unimportant(0)

4) What is your opinion in the application software that is used to produce our images?

□ Very good (4) □ good (3) □ acceptable (2) □ Less acceptable (1) □ Unacceptable (0)

5) What is your opinion in the introduced methods of generating integral images?

□ Very good (4) □ good (3) □ acceptable (2) □ Less acceptable (1) □ Unacceptable (0)

6) What is your opinion in our assessment in which you have participated?

□ Very simple (4) □ Simple (3) □ Average (2) □ Difficult (1) □ Very difficult (0)

Thank you very much for taking part in this assessment!

234

Appendix 4:

The subjective assessment results and calculations

The viewer’s opinions of the images group 1:

Viewer number

1

8 7 9 9 0.825

8 6 7 6 0.675

7 6 5 7 0.625

7 8 7 8 0.75

8 7 6 6 0.675

0.761577 0.684105 0.69282 0.729383

0.7134

42

2

 8 9 8 9 0.85

6 7 7 7 0.675

8 7 7 8 0.75

8 7 8 7 0.75

8 7 8 6 0.725

0.764199 0.744312 0.761577 0.746994

0.7521

64

3

 9 7 8 8 0.8

7 6 7 8 0.7

6 7 6 7 0.65

6 6 7 7 7 6 0.65 0.65

7 4 3 6 5 7
0.62

5

0.53
333

3

235

7 6 5 8 0.65

8 7 7 6 0.7

0.746994 0.661816 0.667832 0.744312

0.7021

4

4

 7 5 5 7 0.6

5 6 5 4 0.5

6 5 4 6 0.525

6 5 6 6 0.575

5 6 4 5 0.5

0.584808 0.542218 0.485798 0.56921

0.5415

26

5

 8 7 6 5 0.65

6 5 5 6 0.55

6 5 6 7 0.6

6 7 6 7 0.65

5 6 5 5 0.525

0.627694 0.60663 0.562139 0.60663

0.5971

81

6

 10 9 8 9 0.9

7 7 7 7 0.7

8 7 6 7 0.7

9 8 7 7 0.775

8 7 8 9 0.8

0.846168 0.764199 0.723878 0.78613

0.7785

4

7

236

6 5 4 6 0.525

4 5 4 5 0.45

5 6 5 6 0.55

5 6 5 5 0.525

4 5 6 4 0.475

0.485798 0.542218 0.485798 0.525357

0.5063

35

8

 8 7 7 8 0.75

7 6 7 7 0.675

6 6 6 5 0.575

7 6 6 6 0.625

8 7 6 7 0.7

0.723878 0.641872 0.641872 0.667832

0.6677

39

9

 5 4 4 5 0.45

4 3 5 3 0.375

3 4 4 5 0.4

5 4 5 5 0.475

5 3 4 5 0.425

0.447214 0.363318 0.442719 0.466905

0.4264

68

10

 7 8 6 7 0.7

6 5 7 5 0.575

6 7 5 7 0.625

7 7 6 8 0.7

237

7 6 7 5 0.625

0.661816 0.667832 0.6245 0.651153

0.6468

19

11

 8 7 6 6 0.675

7 6 5 7 0.625

6 6 7 7 0.65

6 8 5 5 0.6

7 7 5 6 0.625

0.684105 0.684105 0.565685 0.6245

0.6355

12

12

 6 6 5 6 0.575

5 4 5 4 0.45

5 6 5 6 0.55

7 6 7 7 0.675

6 5 4 6 0.525

0.584808 0.545894 0.52915 0.588218

0.5597

99

13

 9 7 7 8 0.775

8 7 7 8 0.75

7 7 6 8 0.7

8 7 8 8 0.775

7 6 7 7 0.675

0.783582 0.681175 0.702851 0.781025

0.7361

22

14

 7 8 8 7 0.75

238

5 4 4 6 0.475

4 5 4 4 0.425

4 5 4 5 0.45

3 4 3 2 0.3

0.479583 0.54037 0.491935 0.509902

0.5022

45

15

 8 7 8 7 0.75

4 3 3 4 0.35

3 3 3 4 0.325

6 5 6 6 0.575

4 3 4 3 0.35

0.531037 0.449444 0.517687 0.501996

0.4987

48

16

 8 7 9 8 0.8

3 2 3 4 0.3

3 3 4 4 0.35

4 3 3 3 0.325

4 4 5 3 0.4

0.477493 0.417133 0.52915 0.477493

0.4728

9

17

 7 6 6 7 0.65

5 5 6 4 0.5

8 7 6 8 0.725

7 6 6 8 0.675

6 5 5 6 0.55

239

0.667832 0.584808 0.581378 0.676757 0.6255

18

 8 9 9 8 0.85

8 9 8 8 0.825

8 7 7 6 0.7

10 8 8 9 0.875

8 6 7 8 0.725

0.843801 0.78867 0.783582 0.78613

0.7980

44

19

 9 9 9 10 0.925

7 8 7 8 0.75

9 7 8 9 0.825

9 8 9 9 0.875

7 8 7 8 0.75

0.825833 0.802496 0.804984 0.883176

0.8278

74

20

 8 7 7 8 0.75

4 3 4 4 0.375

7 5 5 5 0.55

5 4 6 6 0.525

5 5 5 5 0.5

0.598331 0.497996 0.549545 0.576194

0.5533

99

21

 10 8 7 9 0.85

7 5 5 7 0.6

240

5 6 7 7 0.625

7 5 5 7 0.6

6 6 5 5 0.55

0.719722 0.609918 0.588218 0.711337

0.6535

48

22

 5 5 5 5 0.5

7 7 7 7 0.7

5 5 5 5 0.5

8 8 8 8 0.8

5 5 5 5 0.5

0.613188 0.613188 0.613188 0.613188

0.6131

88

23

 9 8 8 7 0.8

9 8 7 7 0.775

5 5 5 5 0.5

5 6 5 6 0.55

6 6 5 5 0.55

0.704273 0.67082 0.613188 0.60663

0.6473

99

0.659293 0.613241 0.606934 0.644802

0.6285

49

241

The viewer opinions of the images group

2:

9 10 9 8 0.9

9 8 8 9 0.85

7 8 8 7 0.75

8 9 7 8 0.8

8 8 8 7 0.775
0.8234

08
0.8637

13
0.8024

96
0.7835

82
0.8167

77

 9 9 9 8 0.875

10 7 7 8 0.8

9 9 8 7 0.825

9 10 8 9 0.9

9 8 7 9 0.825
0.9208

69
0.8660

25
0.7835

82
0.8234

08
0.8457

98

 10 8 9 9 0.9

9 7 8 9 0.825

9 8 7 8 0.8

10 9 8 7 0.85

8 9 7 9 0.825
0.9230

38
0.8234

08
0.7835

82
0.8438

01
0.8406

84

 7 6 7 8 0.7

7 7 8 6 0.7

7 6 5 7 0.625

8 8 7 7 0.75

7 6 6 6 0.625
0.7211

1
0.6648

31
0.6678

32
0.6841

05
0.6817

26

 9 6 7 6 0.7

8 7 8 7 0.75

7 8 7 8 0.75

8 6 7 8 0.725

7 7 6 8 0.7
0.7835

82
0.6841

05
0.7028

51
0.7443

12
0.7253

45

 10 10 9 10 0.975

242

8 9 7 8 0.8

9 10 9 8 0.9

10 9 8 9 0.9

9 10 8 9 0.9
0.9230

38
0.9612

49
0.8234

08
0.8831

76
0.8967

3

 8 5 6 7 0.65

8 6 7 7 0.7

8 6 6 5 0.625

7 6 8 7 0.7

6 5 5 6 0.55
0.7443

12
0.5621

39
0.6480

74
0.6449

81
0.6473

99

 9 8 10 9 0.9

8 7 8 7 0.75

7 8 7 7 0.725

8 7 7 8 0.75

9 8 7 8 0.8
0.8234

08
0.7615

77
0.7886

7
0.7835

82
0.7874

8

 7 7 6 8 0.7

6 5 4 4 0.475

7 6 5 6 0.6

6 7 5 7 0.625

7 5 6 6 0.6
0.6618

16
0.6066

3
0.5253

57
0.6340

35
0.6043

59

 9 8 8 8 0.825

8 7 7 6 0.7

7 8 7 8 0.75

9 8 6 8 0.775

8 7 6 8 0.725
0.8234

08
0.7615

77
0.6841

05
0.7641

99
0.7562

24

 8 7 8 6 0.725

7 6 7 7 0.675

7 7 8 7 0.725

8 7 6 7 0.7

6 8 7 7 0.7
0.7238

78
0.7028

51
0.7238

78
0.6811

75
0.7052

48

243

8 9 6 8 0.775

7 7 6 5 0.625

8 7 6 7 0.7

8 8 7 6 0.725

8 6 7 7 0.7
0.7810

25
0.7469

94
0.6418

72
0.6678

32
0.7066

65

 10 9 8 9 0.9

9 8 8 9 0.85

8 9 9 8 0.85

9 8 9 7 0.825

7 8 8 9 0.8
0.8660

25
0.8414

27
0.8414

27
0.8438

01
0.8456

51

 9 8 7 8 0.8

7 6 8 5 0.65

6 5 5 7 0.575

7 7 6 5 0.625

5 4 5 4 0.45
0.6928

2
0.6164

41
0.6308

72
0.5983

31
0.6302

78

 9 8 8 7 0.8

7 6 5 5 0.575

6 5 4 5 0.5

7 5 7 7 0.65

6 4 5 4 0.475
0.7085

2
0.5761

94
0.5983

31
0.5727

13
0.6113

51

 8 8 10 9 0.875

5 6 5 4 0.5

5 5 6 5 0.525

5 4 5 4 0.45

6 4 5 6 0.525
0.5916

08
0.5603

57
0.6496

15
0.5899

15
0.5948

74

 8 8 7 7 0.75

7 6 8 6 0.675

9 8 8 9 0.85

8 8 7 8 0.775

7 7 5 7 0.65
0.7835

82
0.7443

12
0.7085

2
0.7469

94
0.7434

72

244

 10 10 9 10 0.975

10 8 8 9 0.875

9 9 8 8 0.85

10 9 9 9 0.925

9 8 8 9 0.85
0.9612

49
0.8831

76
0.8414

27
0.9022

19
0.8963

12

 10 10 10 9 0.975

9 8 8 7 0.8

10 9 9 8 0.9

10 9 10 9 0.95

9 9 8 7 0.825
0.9612

49
0.9022

19
0.9044

34
0.8049

84
0.8926

09

 7 7 6 5 0.625

7 7 7 6 0.675

7 8 9 8 0.8

7 7 8 6 0.7

6 7 6 6 0.625
0.6811

75
0.7211

1
0.7293

83
0.6276

94
0.6880

23

 10 10 9 9 0.95

8 7 9 8 0.8

8 7 8 8 0.775

7 8 8 6 0.725

7 6 6 7 0.65
0.8074

65
0.7720

1
0.8074

65
0.7668

12
0.7862

89

 7 7 7 7 0.7

9 9 9 9 0.9

7 7 7 7 0.7

8 8 8 8 0.8

7 7 7 7 0.7
0.7641

99
0.7641

99
0.7641

99
0.7641

99
0.7641

99

 10 10 9 9 0.95

10 9 8 7 0.85

7 8 6 7 0.7

7 7 6 6 0.65

7 8 8 7 0.75

0.8330 0.8461 0.7496 0.7266 0.7874

245

67 68 67 36 01

 0.7958
2

0.7492
48

0.7304
8

0.7340
21

0.7502
13

Viewer’s opinion scores group 3:

6 6 7 7 7 6 0.65 0.65

7 5 4 8 7 7 0.725 0.633333

5 3 2 5 4 6 0.5 0.416667

6 4 4 6 4 5 0.525 0.483333

5 4 3 6 4 5 0.5 0.45

0.584808 0.451664 0.43359 0.648074 0.54037 0.584808 0.587154 0.535413

 6 6 7 8 7 9 0.75 0.716667

7 5 6 7 5 6 0.625 0.6

6 5 5 9 5 6 0.65 0.6

7 3 3 6 7 8 0.7 0.566667

7 4 3 6 5 7 0.625 0.533333

0.661816 0.471169 0.505964 0.729383 0.588218 0.729383 0.671751 0.606493

 8 4 5 7 7 8 0.75 0.65

7 3 4 8 6 8 0.725 0.6

6 4 3 8 5 7 0.65 0.55

7 3 3 5 5 7 0.6 0.5

7 4 5 6 7 6 0.65 0.583333

0.702851 0.363318 0.409878 0.689928 0.60663 0.723878 0.677219 0.57884

 4 2 1 4 5 6 0.475 0.366667

3 3 3 5 6 6 0.5 0.433333

5 2 1 4 3 4 0.4 0.316667

3 2 3 5 6 5 0.475 0.4

4 2 3 4 6 5 0.475 0.4

0.387298 0.223607 0.240832 0.442719 0.532917 0.525357 0.466235 0.385357

 4 4 3 5 5 6 0.5 0.45

5 4 3 4 5 7 0.525 0.466667

5 4 4 6 7 6 0.6 0.533333

5 5 4 5 6 6 0.55 0.516667

4 4 3 3 5 5 0.425 0.4

0.462601 0.4219 0.343511 0.471169 0.565685 0.603324 0.523211 0.475745

 7 6 6 7 6 8 0.7 0.666667

5 4 4 6 7 6 0.6 0.533333

246

6 3 2 5 6 5 0.55 0.45

7 3 2 5 5 5 0.55 0.45

6 4 3 6 5 7 0.6 0.516667

0.6245 0.414729 0.371484 0.584808 0.584808 0.630872 0.602495 0.529308

 3 3 2 5 4 5 0.425 0.366667

4 3 2 4 5 6 0.475 0.4

4 3 2 4 5 4 0.425 0.366667

4 3 2 4 5 6 0.475 0.4

3 2 1 5 4 5 0.425 0.333333

0.363318 0.282843 0.184391 0.442719 0.462601 0.525357 0.445674 0.374166

 5 4 3 7 6 6 0.6 0.516667

7 4 4 8 5 6 0.65 0.566667

5 4 3 5 6 5 0.525 0.466667

6 4 5 6 5 5 0.55 0.516667

7 4 4 5 6 7 0.625 0.55

0.60663 0.4 0.387298 0.630872 0.562139 0.584808 0.591819 0.524457

 4 1 1 4 4 5 0.425 0.316667

3 1 1 5 3 4 0.375 0.283333

4 1 1 4 3 4 0.375 0.283333

3 1 1 4 3 3 0.325 0.25

4 2 1 4 3 3 0.85 0.283333

0.363318 0.126491 0.1 0.4219 0.32249 0.387298 0.507937 0.284117

 5 1 3 6 7 6 0.6 0.466667

5 1 2 5 4 6 0.5 0.383333

4 1 2 6 4 6 0.5 0.383333

3 1 1 6 5 4 0.45 0.333333

4 2 1 6 5 5 0.5 0.383333

0.426615 0.126491 0.194936 0.581378 0.511859 0.545894 0.512348 0.392358

 4 1 2 5 6 5 0.5 0.383333

6 1 1 4 5 5 0.5 0.366667

5 3 2 5 6 5 0.525 0.433333

4 1 2 5 4 4 0.425 0.333333

3 2 1 5 4 4 0.4 0.316667

0.451664 0.178885 0.167332 0.481664 0.507937 0.462601 0.472493 0.368932

 4 2 3 5 5 6 0.5 0.416667

4 1 2 5 4 5 0.45 0.35

5 1 2 5 5 4 0.475 0.366667

4 1 1 5 4 4 0.425 0.316667

5 2 1 5 4 4 0.45 0.35

0.442719 0.148324 0.194936 0.5 0.442719 0.466905 0.460706 0.361478

247

 7 1 1 7 6 5 0.625 0.45

6 5 4 7 5 5 0.575 0.533333

5 1 1 7 6 6 0.6 0.433333

6 2 2 6 5 5 0.55 0.433333

6 4 5 7 5 5 0.575 0.533333

0.603324 0.306594 0.306594 0.681175 0.542218 0.521536 0.585555 0.478946

 7 5 5 7 8 7 0.725 0.65

4 1 2 4 4 3 0.375 0.3

3 1 1 4 3 3 0.325 0.25

3 1 1 3 2 2 0.25 0.2

2 1 1 3 2 2 0.225 0.183333

0.417133 0.240832 0.252982 0.444972 0.440454 0.387298 0.420714 0.36017

 6 2 3 6 5 5 0.55 0.45

4 1 2 4 3 3 0.35 0.283333

2 1 1 4 2 2 0.25 0.2

5 1 2 5 5 4 0.475 0.366667

3 1 1 3 2 3 0.275 0.216667

0.424264 0.126491 0.194936 0.451664 0.36606 0.354965 0.397178 0.317543

 9 7 8 6 6 5 0.65 0.683333

2 1 1 3 2 2 0.225 0.183333

3 1 1 2 1 1 0.175 0.15

2 1 1 3 2 2 0.225 0.183333

3 0 1 3 2 2 0.25 0.183333

0.462601 0.32249 0.368782 0.36606 0.31305 0.275681 0.351248 0.343592

 5 4 3 5 5 4 0.475 0.433333

5 3 2 4 5 5 0.475 0.4

4 1 2 6 4 6 0.5 0.383333

5 3 3 7 5 3 0.5 0.433333

5 1 2 5 4 4 0.45 0.35

0.481664 0.268328 0.244949 0.549545 0.462601 0.451664 0.480364 0.401248

 8 5 6 7 6 6 0.675 0.633333

7 4 4 7 6 5 0.625 0.55

7 6 6 8 7 7 0.725 0.683333

8 5 4 7 7 8 0.75 0.633333

8 6 5 8 7 7 0.75 0.683333

0.761577 0.525357 0.507937 0.74162 0.661816 0.667832 0.706665 0.638531

 8 5 6 9 8 10 0.875 0.766667

9 6 7 8 7 7 0.775 0.733333

7 6 5 8 7 8 0.75 0.683333

248

9 4 5 7 6 9 0.775 0.666667

7 3 4 7 6 8 0.7 0.583333

0.804984 0.493964 0.549545 0.783582 0.684105 0.846168 0.777094 0.689525

 4 3 4 6 7 5 0.55 0.483333

5 2 2 4 4 5 0.45 0.366667

5 3 4 5 4 5 0.475 0.433333

3 1 1 4 3 3 0.325 0.25

4 2 2 4 4 5 0.425 0.35

0.426615 0.232379 0.286356 0.466905 0.460435 0.466905 0.450971 0.384924

 8 7 7 8 8 7 0.775 0.75

5 3 4 5 4 5 0.475 0.433333

5 4 4 5 4 5 0.475 0.45

4 2 2 5 4 5 0.45 0.366667

5 3 2 5 4 4 0.45 0.383333

0.556776 0.417133 0.4219 0.572713 0.505964 0.52915 0.539792 0.496823

 3 3 3 3 3 3 0.3 0.3

5 5 5 5 5 5 0.5 0.5

2 2 2 2 2 2 0.2 0.2

5 5 5 5 5 5 0.5 0.5

4 4 4 4 4 4 0.4 0.4

0.397492 0.397492 0.397492 0.397492 0.397492 0.397492 0.397492 0.397492

 8 8 7 8 9 9 0.85 0.816667

6 5 6 7 6 5 0.6 0.583333

4 3 2 4 5 5 0.45 0.383333

4 3 2 4 4 3 0.375 0.333333

5 3 3 4 4 5 0.45 0.4

0.560357 0.481664 0.451664 0.56745 0.589915 0.574456 0.570636 0.533906

The three methods opinions RMS:

Data of Figure (6.17)

viewer DIVGL Method
DCTarget
Method OPT ISTM Method ISTM Method

1 0.713442359 0.816777203 0.587154154 0.535412613

2 0.752163546 0.845798439 0.671751442 0.606492649

3 0.702139587 0.840684245 0.677218576 0.578839836

4 0.541525623 0.681725751 0.466234919 0.385356977

5 0.597180877 0.725344746 0.523211238 0.47574503

249

6 0.778540301 0.896730171 0.602494813 0.529307724

7 0.506334869 0.647398641 0.445673647 0.374165739

8 0.667738721 0.787480158 0.591819229 0.524457392

9 0.426468053 0.604359165 0.507937004 0.284116564

10 0.64681914 0.756224173 0.512347538 0.392357547

11 0.635511605 0.705248183 0.472493386 0.368932394

12 0.559799071 0.706664701 0.46070598 0.361478446

13 0.736121593 0.845650637 0.585555292 0.478945601

14 0.50224496 0.630277717 0.420713679 0.360169713

15 0.498748434 0.611350963 0.397177542 0.317542648

16 0.472890051 0.594873936 0.351247776 0.343592135

17 0.6254998 0.743471587 0.480364445 0.401248053

18 0.798044485 0.896311888 0.706664701 0.638531301

19 0.827873783 0.892608537 0.777093945 0.689524796

20 0.553398591 0.688022529 0.450971174 0.384924235

21 0.653548009 0.786288751 0.539791626 0.496823242

22 0.613188389 0.764198927 0.397492138 0.397492138

23 0.647398641 0.787400787 0.570635611 0.533905943

RMS of MOS and MOS of RMS:

Data of Figure (6.21)

DIVGL_1 DCTarget_1 OPT ISTM_1 ISTM_1

1 0.713442359 0.816777203 0.587154154 0.535412613

2 0.752163546 0.845798439 0.671751442 0.606492649

3 0.702139587 0.840684245 0.677218576 0.578839836

4 0.541525623 0.681725751 0.466234919 0.385356977

5 0.597180877 0.725344746 0.523211238 0.47574503

6 0.778540301 0.896730171 0.602494813 0.529307724

7 0.506334869 0.647398641 0.445673647 0.374165739

8 0.667738721 0.787480158 0.591819229 0.524457392

9 0.426468053 0.604359165 0.507937004 0.284116564

10 0.64681914 0.756224173 0.512347538 0.392357547

11 0.635511605 0.705248183 0.472493386 0.368932394

12 0.559799071 0.706664701 0.46070598 0.361478446

13 0.736121593 0.845650637 0.585555292 0.478945601

14 0.50224496 0.630277717 0.420713679 0.360169713

15 0.498748434 0.611350963 0.397177542 0.317542648

16 0.472890051 0.594873936 0.351247776 0.343592135

17 0.6254998 0.743471587 0.480364445 0.401248053

18 0.798044485 0.896311888 0.706664701 0.638531301

19 0.827873783 0.892608537 0.777093945 0.689524796

20 0.553398591 0.688022529 0.450971174 0.384924235

21 0.653548009 0.786288751 0.539791626 0.496823242

250

22 0.613188389 0.764198927 0.397492138 0.397492138

23 0.647398641 0.787400787 0.570635611 0.533905943

ISTM_1 DIVGL_2 DCTarget_2 OPT ISTM_2 ISTM_2

0.535412613 0.716972 0.818299524 0.589514909 0.540552

0.606492649 0.75427 0.848470908 0.677199983 0.614322

0.578839836 0.705238 0.843457115 0.680821837 0.582747

0.385356977 0.545508 0.684469657 0.472072683 0.392122

0.47574503 0.600773 0.728712469 0.525694912 0.478032

0.529307724 0.780094 0.897717822 0.606246883 0.5352

0.374165739 0.509793 0.649876306 0.448498819 0.376871

0.524457392 0.668864 0.789309038 0.59611222 0.528625

0.284116564 0.430039 0.60695936 0.373751787 0.286916

0.392357547 0.651325 0.758322262 0.516436343 0.397862

0.368932394 0.639599 0.707945919 0.47596643 0.375014

0.361478446 0.562017 0.70943088 0.463085612 0.365934

0.478945601 0.737158 0.848170261 0.58706336 0.493574

0.360169713 0.505448 0.634616287 0.422464407 0.363945

0.317542648 0.500041 0.613939462 0.399238138 0.31973

0.343592135 0.475318 0.597873882 0.354347984 0.351444

0.401248053 0.627694 0.745851711 0.486368495 0.409792

0.638531301 0.800545 0.89701803 0.708211289 0.644357

0.689524796 0.829122 0.893221667 0.77970977 0.693725

0.384924235 0.555517 0.689840801 0.45521464 0.389932

0.496823242 0.657299 0.788438071 0.541150992 0.500606

0.397492138 0.613188 0.764198927 0.397492138 0.397492

0.533905943 0.648728 0.788884283 0.573044745 0.537584

Criteria MOS of each image:

Data of Figure (6.19)

Cube Rotate Axeman 1 Cutlery Globe Angel Boy Worriers Axeman 2

Comfort 0.773913043 0.7043478 0.691304 0.734783 0.873913 0.817391 0.8 0.8

Crosstalk 0.604347826 0.5521739 0.573913 0.591304 0.795652 0.708696 0.773913 0.6869565

Parallax 0.591304348 0.573913 0.547826 0.621739 0.756522 0.743478 0.704348 0.7173913

Depth 0.665217391 0.6217391 0.613043 0.669565 0.8 0.756522 0.726087 0.7217391

ViewAngle 0.608695652 0.5695652 0.556522 0.552174 0.730435 0.691304 0.656522 0.7086957

Actor Ghost Pots Network Ballerina 3-Tee

0.578261 0.391304 0.417391 0.617391 0.608696 0.617391

0.526087 0.773913 0.326087 0.552174 0.491304 0.530435

0.465217 0.273913 0.252174 0.526087 0.452174 0.486957

251

0.491304 0.256522 0.256522 0.513043 0.465217 0.482609

0.482609 0.278261 0.256522 0.495652 0.443478 0.486957

MOS of images:

Data of Figure (6.18)

Cube Rotate
(DIVGL)

Axeman 1
(DIVGL) Cutlery (DIVGL)

Globe
(DIVGL)

Angel
(DCTarget)

Boy
(DCTarget)

0.659292787 0.613240775 0.606933804 0.644802258 0.795819597 0.749248468

Worriers
(DCTarget)

Axeman 2
(DCTarget) Actor (ISTM) Ghost (ISTM) Pots (ISTM)

0.730480334 0.734021104 0.520648942 0.322701959 0.32683868

Network
(ISTM) Ballerina (ISTM)

3-Tee
(ISTM)

0.549903966 0.506629715 0.532332

Average of RMS of the 23 viewers:

Data of Figure (6.20)

DIVGL DCTarget OPT ISTM ISTM

1 0.716971547 0.818299524 0.589514909 0.540552149

2 0.754270494 0.848470908 0.677199983 0.614322186

3 0.705238434 0.843457115 0.680821837 0.582747237

4 0.545508405 0.684469657 0.472072683 0.39212157

5 0.600773259 0.728712469 0.525694912 0.478031899

6 0.780093741 0.897717822 0.606246883 0.535199979

7 0.509792829 0.649876306 0.448498819 0.37687148

8 0.66886382 0.789309038 0.59611222 0.528624536

9 0.430038803 0.60695936 0.373751787 0.286916376

10 0.651325156 0.758322262 0.516436343 0.397862061

11 0.639598934 0.707945919 0.47596643 0.37501386

12 0.562017333 0.70943088 0.463085612 0.365933717

13 0.73715832 0.848170261 0.58706336 0.493573638

14 0.505447576 0.634616287 0.422464407 0.363945289

15 0.500041001 0.613939462 0.399238138 0.319729924

16 0.475317561 0.597873882 0.354347984 0.351444004

17 0.627693655 0.745851711 0.486368495 0.409791852

252

18 0.800545493 0.89701803 0.708211289 0.644356531

19 0.829122394 0.893221667 0.77970977 0.693724651

20 0.555516669 0.689840801 0.45521464 0.38993233

21 0.657298653 0.788438071 0.541150992 0.50060625

22 0.613188389 0.764198927 0.397492138 0.397492138

23 0.648727873 0.788884283 0.573044745 0.537584392

MOS criteria of each method:

Data of Figure (6.23) and Data of Figure (6.22)

DIVGL Method DCTarget Optimized ISTM Method ISTM Method

Comfort 0.726086957 0.822826087 0.605434783 0.538405797

Crosstalk 0.580434783 0.730434783 0.525 0.455797101

Parallax 0.583695652 0.730434783 0.482608696 0.40942029

Depth 0.642391304 0.751086957 0.488043478 0.410144928

ViewAngle 0.57173913 0.69673913 0.498913043 0.407246377
Criteria
RMS 0.623595965 0.747487758 0.521955571 0.447062691

253

Publications

__

 Shafik Salih, Amar Aggoun, Maysam Abbod, “A 3-D Auto-stereoscopic Integral

Images Generating Tools”, Proc. IPCV'14 - The 2014 International Conference on

Image Processing, Computer Vision, and Pattern Recognition, ISBN: 1-60132-280-1,

July 21-24, 2014, Las Vegas, USA

 Shafik Salih, Amar Aggoun, Maysam Abbod, “Computer generation and rendering of

integral images by displacing the virtual camera target”, (In the process of publishing

in: IEEE Transactions on Image processing).

 Shafik Salih, Amar Aggoun, Maysam Abbod, “Computer generation and rendering of

integral images with the method of dividing image volume using OpenGL”, (In the

process of publishing in: IEEE Transactions on Image processing).

 Vasilis Michopoulos, Sarogini Grace Pease, Axel Bindely, Shafik Salihy, Paul

Conway, Andrew West, “Design and Implementation of High-accuracy Remote

Energy and Data Monitoring System for Industrial Applications Using the (Internet of

Things)”, (In the process of publishing in: IEEE Journal of Systems Engineering and

Electronics).

254

References
__

[1] A. Aggoun, “Pre-processing of integral images for 3-D displays,” Journal of Display

Technology, Vol. 2, No. 4, Dec 2006.

[2] N. A. Dodgson, “Autostereoscopic 3D displays,” IEEE Computer, Vol. 38, No. 8, pp. 31–

36, 2005.

[3] G. A. Thomas and R. F. Stevens, “Processing of images for 3D display, U.S. Patent 6 798

409 B2, Sep 28, 2004.

[4] M. Martínez-Corral, R. Martínez-Cuenca, G. Saavedra, “Integral imaging: auto-

stereoscopic images of 3D scenes”, Department of Optics, University of Valencia, Burjassot,

Spain, SPIE Newsroom. DOI, 10.1117/2.1200611.0425, 17 Nov 2006.

[5] D. Hearn, M. P. Baker, “Computer graphics with OpenGL”, 3rd ed., Published by Pearson

Prentice Hall, USA, Sep, 22, 2003.

[6] C. V. Berkel, J. A. Clarke, Philips Research Laboratories, UK, “Characterisation and

optimisation of 3D-LCD module design”, SPIE Digital Library Vol. 3012, 10 Jan 1997.

[7] H. Ujike, Shin-ichi Uehara, “Human factors of autostereoscopic displays for

standardization”, Japanese Ergonomics National Committee, VIMS 2009, 11th Jun 2009.

[8] G. E. Milnthorpe, “Computer generation of integral images using interpolative shading

techniques”, PhD thesis, School of Engineering and Manufacture, De Montfort University,

Leicester, Nov 2003.

[9] J. Kassebaum, N. Bulusu, W. Feng, “Smart camera network localization using a 3D

target” Portland State University, Sep 2009.

[10] N. Davies, M. McCormick, and Li Yang, “Three-dimensional imaging systems, a new

development,” Applied Optics, Vol. 27, Issue 21, pp. 4520-4528, 1988.

[11] R. Olsson, Y. Xu, “An interactive ray-tracing based simulation environment for

generating integral imaging video sequences,” Proc. SPIE 6016, Three-Dimensional TV,

Video, and Display IV, 60160F, Nov 15, 2005; doi:10.1117/12.630733.

[12] N. Davies, M. McCormick, and Li Yang, "Three-dimensional imaging systems: a new

development," Applied Optics, Vol. 27, Issue 21, pp. 4520-4528, 1988.

[13] E. B. Javidi and F. Okano, “Three-Dimentional Television, video, and Display

Technologies”, Springer, 2002.

255

[14] G. Milnthorpe, M. McCormick, N. Davies, “Computer modelling of lens arrays for

Integral Image rendering,” Imaging Technologies Group, SERCentre, De-Montfort

University, Leicester LE1 9BH UK, 2002.

[15] A. Sokolov, "Autostereoscopy and Integral Photography by Professor Lippmann's

Method," MGU, Moscow State Univ. Press, 1911.

[16] Y. Igarashi, H. Murata, M. Ueda "3D Display System Using a Computer Generated

Integral Photograph" Japan J. Appl. Phys. Vol. 17, No. 9, 1978.

[17] G. Milnthorpe, M. McCormick, A. Aggoun, N. Davies, M. Forman, “Computer

generated content for 3D TV displays,” De Montfort University, UK, 2003.

[18] G. Lippmann, “Epreuves reversibles donnant la sensation du relief”, j. phys., Vol. 7, pp

821-825, 1908.

[19] H. E. Ives, “Optical Properties of a Lippmann Lenticulated Sheet”, J. Opt. Soc. Amer.

Vol. A 21, pp. 171-176, 1931.

[20] N. A. Valyus, "Stereoscopy”, Focal Press, London, UK 1966.

[21] T. Okoshi, “Three-Dimensional Imaging Techniques”, Academic Press, London, UK

1976.

[22] J. R. Moor, A. R. L. Travis, S. R. Lang and O. M. Castle, “The Implementation of a

Multi-View Autostereoscopic Display”, IEE Colloq. Stereoscopic Television 1992/173, pp.

4/5-4/16, 1992.

[23] N. Davies and M. McCormick, M. Brewin, “Design and analysis of an image transfer

system using microlens arrays”, Opt. Eng. Vol. 33, No. 11, pp. 3624-3633, Nov 1994.

[24] R.F. Stevens, N. Davies, G. Milnthorpe, “Lens arrays and optical system for orthoscopic

three-dimensional imaging”, The Imaging Science Journal, Vol. 49 pp. 151-164, 2001.

[25] T. Naemura, T. Yoshida and H. Harashima,“3-D computer graphics based on integral

photography”, OPTICS EXPRESS 255, Vol. 8, No. 2, 12 Feb 2001.

[26] F. Okano, H. Hoshino, J. Arai and I. Yuyama, “Real-time pickup method for a three

dimensional image based on integral photography”, App. Opt. Vol. 36, pp. 1598-1603, 1997

[27] J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based

on real-time integral photography for three-dimensional images”, App. Opt. Vol. 37, pp.

2034-2045, 1998

[28] A. Alatan et al, “Scene representation technologies for 3DTV—a survey”, IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 11, Nov 2007.

[29] Y. Jeong, S. Jung, J. Park, and B. Lee, “Reflection-type integral imaging scheme for

displaying three-dimensional images”, Optics Letters / Vol. 27, No. 9, May 1, 2002.

256

[30] E.H. Adelson, and J. Wang, “Single lens stereo with a plenoptic camera”, IEEE

Transaction on Pattern Analysis and machine Intelligence, Vol. 14, No. 2, Feb 1992.

[31] A. Stern and B. Javidi, “3-D computational synthetic aperture integral imaging

(COMPSAII)”, Optics Express 2446/22, Vol. 11, No. 19, Sep 2003.

[32] G. Lippmann, “La photographic intergrale” C. R. Acad. Sci. Vol. 146, pp. 446-451

(1908)

[33] J. S. Jang and B. Javidi, “Three-dimensional synthetic aperture integral imaging” Opt.

Lett. Vol. 27, pp. 1144-1146, 2002.

[34] H. Hoshino, F. Okano, H. Isono and I. Yuyama,” Analysis of resolution limitation of

integral photography” J. Opt. Soc. Am. Vol. 15, pp. 2059-2065, 1998.

[35] H. Choi, S. W. Okano, J. Kim, and B. Lee, ” A thin 3D-2D convertible integral imaging

system using a pinhole array on a polarizer”, Optics Express, Vol. 14, No. 12, p. 5183, 12 Jun

2006.

[36] K. Choi, J. Kim, Y. Lim, and B. Lee, ” Full parallax viewing-angle enhanced computer

generated holographic 3D display system using integral lens array” Optics Express, Vol. 13,

No. 26, p. 10494, 26 Dec 2005.

[37] J.-H. Park, H.R. Kim, Y. Kim, J. Kim, J. Hong, S.D. Lee, and B. Lee, "Depth-enhanced

three dimensional- two-dimensional convertible display based on modified integral imaging,"

Opt. Lett. Vol. 29, pp. 2734-2736, 2004.

[38] T. Motoki, H. Isono, I. Yuyama, “Present Status of Three-Dimensional Television

Research”, Proceedings of the IEEE. Vol. 83, pp. 1009-1021, 1995

[39] G. Lippmann, “Epreuves reversibles”, Comptes rendus hebdomadaires des Seances de

l'Academie des Sciences, Vol.-146, pp. 446-451, Mar 1908.

[40] C. B. Burkhardt and E. T. Doherty, “Beaded plate recording of integral photographs”,

ppl. Opt. Vol. 8, No. 11, pp. 2329-2331, 1969.

[41] R. L. Demontebello, “Wide angle integral photography - the integram technique”, Proc.

SPIE, Vol. 120, pp. 73-91, 1970.

[42] Y. A. Dudnikov, B. K. Rozhkov and E. N. Antipova, “Obtaining a Portrait of a Person

by the Integral Photography Method”, Sov. J. Opt. Tech. Vol. 47, No. 9, pp. 562-563, 1980.

[43] M. Price, G.A. Thomas, “3D virtual production and delivery using MPEG-4”, Proc. of

the Int. Broadcasting Convention (IBC 2000), Amsterdam, 8-12 Sep 2000.

[44] M. Born and E. Wolf, "Principles of optics: electromagnetic theory of propagation

interference and diffraction of light" 4th ed. Pergamon Press, Bath, 1970.

257

[45] T. Ito and K. Okano, "Color electro-holography by three colored reference lights

simultaneously incident upon one hologram panel," Opt. Express, Vol. 12, pp. 4320-4325,

2004.

[46] K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for autostereoscopic image

displays using a modified IFTA," Opt. Express, Vol. 12, pp. 2454-2462, 2004.

[47] K. Choi, H. Kim, and B. Lee, "Full-color autostereoscopic 3D display system using

color-dispersion compensated synthetic phase holograms," Opt. Express, Vol. 12, pp. 5229-

5236, 2004.

[48] S. W. Min, S. Jung, J. H. Park, and B. Lee, "Three-dimensional display system based on

computer-generated integral photography," Stereoscopic Displays and Virtual Reality

Systems VIII, Proceedings of SPIE, Vol. 4297, 2001. © 2001 SPIE · 0277-786X/01

[49] S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, N.

G. Theofanous, "Physical modelling of a microlens array setup for use in computer generated

IP," Stereoscopic Displays and Virtual Reality Systems XII, edited by A. J. Woods, M. T.

Bolas, J. O. Merritt, I. E. McDowall, Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol.

5664, 2005. SPIE and IS&T · 0277-786X/05

[50] A. Aggoun,”3D Visual information engineering (3D VIE)”, School of Engineering and

Design, Brunel University, UK, 2011.

[51] Y. Igarashi, H. Murata, M. Ueda, "3-D Display system using a computer generated

integral photograph," Japan J. Appl. Phys., Vol. 17, No. 9, 1978.

[52] A. Souchon, F. Tack, K. Christensen and E. Rabinovich, “Cylindrical lenses offer many

focusing options”, technology tutorial, www.cvimellesgriot.com. Access date: Dec 2008.

[53] J. E. Farrell, Brian L. Benson, and Carl R. Haynie, "Prediction flicker thresholds for

video display terminals," Hewlett Packard Pa10 Alto, CA, Proceedings of the SID, Vol. 28/4,

1987

[54] D. David Wolff, “Overview of OpenGL 4.0 Shading Language Cookbook”, Published

by Packet Publishing, USA, ISBN-10: 1849514763, 26 Jul 2011.

[55] Anne Souchon, Francis Tack, Kevin Christensen and Emmanuel Rabinovich,

“Cylindrical Lenses Offer Many Focusing Options”, technology tutorial,

www.cvimellesgriot.com. Access date: Dec 2008.

[56] Donald Hearn, M. Pauline Baker, “Computer Graphics with OpenGL”, 3rd edition,

Published by Pearson Prentice Hall, USA 2010

[57] http://www.opengl.org/, the formal OpenGL website. Access date: 2012.

[58] Cees van Berkel, John A Clarke, Philips Research laboratories, UK, “Characterisation

and Optimisation of 3D-LCD Module design”, SPIE Digital Library, Vol. 3012, 1997.

http://www.cvimellesgriot.com/
http://www.opengl.org/

258

[59] Hiroyasu Ujike, Shin-ichi Uehara, “Human factors of autostereoscopic displays for

standardization”, Japanese Ergonomics National Committee, VIMS 2009, 11th Jun 2009.

[60] http://images.apple.com/uk/quicktime/pdf/QuickTime7_User_Guide.pdf, Access date:

2012.

[61] R. F. Stevens, T. G. Harvey, “Lens arrays for a three-dimensional Imaging system”,

Published 1 July 2002 Online at stacks.iop.org/JOptA/4/S17, Access date: 2012.

[62] T. Shirai, P. Johnson, “Three Dimensional (3-D) Displays in Japan”, Tokyo, 30 Apr

2006.

[63] H. Arimoto, B. Javidi, “Integral three-dimensional imaging with digital reconstruction”,

OPTICS LETTERS, Vol. 26, No. 3, Feb 1, 2001.

[64] M. Martı´nez-Corral, B. Javidi, R. Martı´nez-Cuenca, G. Saavedra, “Integral imaging

with improved depth of field by use of amplitude-modulated microlens arrays”, 2004 Optical

Society of America, OCIS codes: 110.6880, 110.4190, 350.5730, 2014.

[65] M. Martínez, B. Javidi, “Formation of real, orthoscopic integral images by smart pixel

mapping”, Optics Express, Vol. 13, No. 23, 14 Nov 2005.

[66] J. Jang, B. Javidi, “Three-dimensional projection integral imaging using micro-convex-

mirror arrays”, Optics Express, Vol. 12, No. 6, 22 Mar 2004.

[67] B. Javidi, “Integral three-dimensional imaging with digital reconstruction”, U.S. Patent,

Pub. No. 0114077 A1, 22 Aug 2002.

[68] Stanley H. Kremen, “Method of forming a three-dimensional orthoscopic image from its

pseudoscopic image”, U.S.Patent, Pub. No. 0122552 A1, 9 Jun 2005.

[69] A. Aggoun, “3D Holoscopic Imaging Technology for Real-Time Volume Processing

and Display”, School of Engineering and Design, Brunel University, Uxbridge, UB8 3PH,

(UK), 2010.

[70] Q. Wang, H. Deng, T. Jiao, D. Li, F. Wang, “Imitating micro-lens array for integral

imaging”, School of Electronics and Information Engineering, Sichuan University, Chinese

Optics Letters, Vol. 5, No. 5, May 10, 2010.

[71] Shree K. Nayar, “Computational cameras: Redefining the Image”, Columbia University,

Computer IEEE, 0018-9162/06, 2006.

[72] Y. Frauel, B. Javidib, “Digital three-dimensional object reconstruction and correlation

based on integral imaging”, IIMAS, University, D.F., Mexico, Electrical and Computer

Engineering Dept., University. CT, USA, 2003.

[73] C. Fehn, “3D TV Broadcasting”, Fraunhofer Institute for Telecommunications, Berlin,

Germany, 2001.

http://images.apple.com/uk/quicktime/pdf/QuickTime7_User_Guide.pdf

259

[74] J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye

principle”, Ben-Gurion University of the Negev Department of Electrical and Computer

Engineering, Israel, OPTICS EXPRESS 3605 / Vol. 11, No. 26 / 29 Dec 2003.

[75] M. Ollis, T. Williamson, “The future of 3D video” Zaxel Systems Inc., Jun 2001.

[76] S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, N.

G. Theofanous, “Photorealistic integral photography using a ray-traced model of capturing

optics”, Vol. 15, No. 4, Oct–Dec 2006.

[77] D. E. Roberts, “History of lenticular and related autostereoscopic methods”,

http://www.outeraspect.com/history_lenticular.php, Access date: 2012.

[78] A. BOGUSZ, “Holoscopy and holoscopic principles”, J. Optics (Paris), Vol. 20, 1989.

[79] P. Garbat, M. Kujawinsk, “Visuolization of 3D variable in time object based on data

gathered by active measurement system”, Opto-Electron. Vol. 16, No. 1, 2008.

[80] D. E. Roberts, T. Smith, “The History of Integral Print Methods”, An excerpt from: Lens

Array Print Techniques, 2003.

[81] S. M. Cirstea, S.Y. Kung, M. Mccormick, A. Aggoun, “3D-Object Space Reconstruction

from Planar Recorded Data of 3D-Integral Images”, Journal of VLSI Signal Processing 35,

5–18, 2003.

[82] Ch. H. Wu, A. Aggoun, S. Y. Kung, “Depth measurement from integral images through

viewpoint image extraction and a modified multibaseline disparity analysis algorithm”,

Journal of Electronic Imaging, Vol. 14, No, 2, 023018, Apr–Jun 2005.

[83] J. Ren, A. Aggoun, M. McCormick, “Maximum viewing width integral image”, Journal

of Electronic Imaging, Vol. 14, No. 2, 023019, Apr–Jun 2005.

[84] S. Manolache, A. Aggoun, M. McCormick, N. Davies, S. Y. Kung, “Analytical model of

a three-dimensional integral image recording system that uses circularand hexagonal-based

spherical surface microlenses”, J. Opt. Soc. Am. A, Vol. 18, No. 8, Aug 2001.

[85] B. Javidi, S. H. Hong, O. Matoba, “Multidimensional optical sensor and imaging

system”, Applied Optics, Vol. 45, No. 13, 1 May 2006.

[86] F. Okano, J. Arai, “Optical viewer based on integral method for three-dimensional

images”, Proc. of SPIE, Vol. 6392, 639201, 2006.

[87] B. Javidi, I. Moon, M. Daneshpanah, “3D imaging, visualization, and recognition of

biological microorganisms”, Proc. of SPIE, Vol. 6392, 639202, 2006.

[88] B. Javidi, R. Martínez-Cuenca, G. Saavedra, and M. Martínez-Corral, “Orthoscopic,

long-focal-depth integral imaging by hybrid method”, Proc. of SPIE, Vol. 6392, 639203,

2006.

260

[89] Y. Kim, H. Choi, J. Kim, Seong-Woo Cho, B. Lee, “Integral imaging with variable

image planes using polymer-dispersed liquid crystal layers”, Proc. of SPIE, Vol. 6392,

639204, 2006.

[90] R. Zaharia, A. Aggoun, M. McCormick, “Adaptive 3D-DCT compression algorithm for

continuous parallax 3D integral imaging”, Faculty of Computing Sciences and Engineering,

De Montfort University, Queens Building, The Gateway, Leicester, LE1 9BH, UK, Signal

Processing: Image Communication, Vol. 17, pp. 231–242, 2002.

[91] T. Georgeiv, K. C. Zheng, B. Curless, D. Salesin, Sh. Nayar3, Ch. Intwala, “Spatio-

Angular Resolution Tradeoff in Integral Photography”, Eurographics Symposium on

Rendering, 2006.

[92] A. Aggoun, M. Mazri, “Wavelet-based compression algorithm for still omnidirectional

3d integral images”, SIViP, DOI 10.1007/s11760-007-0044-1, Springer-Verlag London

Limited 2007.

[93] B. T. Schowengerdt, E. J. Seibel, “True 3-D scanned voxel displays using single or

multiple light sources”, Extended version of a paper presented at the 2005 SID International

Symposium held May 24–27, 2005, in Boston, Massachusetts, Journal of the SID, Vol. 14,

No. 2, 2006.

[94] L. Onural, “Television in 3-D: What Are the Prospects?” Proceedings of the IEEE, Vol.

95, No. 6, Jun 2007.

[95] C. Smith, “On Vertex-Vertex Systems and Their Use in Geometric and Biological

Modelling”, Department of Computer Science, Calgary University, Alberta, Apr 2006.

[96] Fumio Okano Jun Arai M a koto Okui, “Three-dimensional Television using Integral

Photography”, 1-10-11, Kinuta, Setagaya-ku, Tokyo 1.57-8510, Japan, IEEE, 2001.

[97] H. Deng, Q. H. Wang, D. H. Li, “The Realization of Computer Generated Integral

Imaging Based on Two Step Pickup Method”, School of Electronics and Information

Engineering, Sichuan University, Chengdu, China, IEEE, 2010.

[98] W. Li , Y. Li, Z. Hanjiang Yu, K. Wang, “Generic Calibration of an Integral Imaging

Camera and its Applications on 2D Integral Image Reconstruction and 3D Scene

Reconstruction”, Proceedings of the 8th World Congress on Intelligent Control and

Automation, Jinan, China, IEEE, Jul 6-9 2010.

[99] D. C. Hwang, K. J. Lee, S. C. Kim and E. S. Kim, “Extraction of location coordinates of

3-D objects from computationally reconstructed integral images basing on a blur metric”,

Optic Express, 3623, Vol. 16, No. 6, 17 Mar 2008.

[100] E. Niebler, “Boost.Accumulators”, Distributed under the Boost Software License,

Version 1.0, 2005-2006.

[101] N. Josuttis, “Boost.Array”, Distributed under the Boost Software License, Version 1.0.,

2001-2004.

261

[102] D. Gregor, “Boost.Function”, Use, modification and distribution is subject to the Boost

Software License, Version 1.0, 2001-2004.

[103] Y. Igarashi, H. Murata, M. Ueda, "3-D Display system using a computer generated

integral photograph," Japan J. Appl. Phys., Vol. 17, No. 9, 1978.

[104] Roger Olsson and Mårten Sjöström, “A DEPTH DEPENDENT QUALITY METRIC

FOR EVALUATION OF CODED INTEGRAL IMAGING BASED 3D-IMAGES”, This

work is supported by the Swedish Graduate School of Telecommunications and by the EU

Objective 1 - programme Södra Skogslän region.

[105] Roger Olsson and Mårten Sjöström, “A novel quality metric for evaluating depth

distribution of artifacts in coded 3D images”, In Proceedings of Stereoscopic Display and

Application XCIX, SPIE, Vol. 6803, San Jose (CA), USA, January, 2008.

[106] Anish Mittal, Anush K. Moorthy, Joydeep Ghosh and Alan C. Bovik,

“ALGORITHMIC ASSESSMENT OF 3D QUALITY OF EXPERIENCE FOR IMAGES

AND VIDEOS”, Dept. Of Electrical and Computer Engineering, The University of Texas at

Austin, Austin, Texas - 78712.

[107] Andreas Abildgaard · Alaa KasidWitwit · Jørn Skaarud Karlsen · Eva Astrid Jacobsen ·

Bjørn Tennøe · Geir Ringstad. Paulina Due-Tønnessen, “ An autostereoscopic 3D display can

improve visualization of 3D models from intracranial MR angiography”, Received: 25 March

2010 / Accepted: 15 June 2010 / Published online: 21 July 2010.

[108] Jie Shan, Chiung-Shiuan Fu, Bin Li, James Bethel, Jeffrey Kretsch, Edward Mikhail, “

AUTOSTEREOSCOPIC VISUALIZATION AND MEASUREMENT: PRINCIPLES AND

EVALUATION”, Geomatics Engineering, School of Civil Engineering, Purdue University

550 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA.

[109] Rafik Bensalma. Mohamed-Chaker Larabi, “Binocular Energy Estimation Based on

Properties of the Human Visual System”, Received: 19 February 2012 / Accepted: 20 August

2012 / Published online: 13 September 2012.

[110] Weiming Li , Youfu Li, Zhanjiang Yu, and Keyi Wang, “Generic Calibration of an

Integral Imaging Camera and its Applications on 2D Integral Image Reconstruction and 3D

Scene Reconstruction”, 978-1-4244-6712-9/10/$26.00 ©2010 IEEE.

[111] Dong-Hak Shin and Hoon Yoo, “Image quality enhancement in 3D computational

integral imaging by use of interpolation methods”, Dept. of Visual Contents, Dongseo

University, San69-1, Jurye2-Dong, Sasang-Gu, Busan 617-716, Korea / Vol. 15, No. 19 /

OPTICS EXPRESS 12039. 17 September 2007.

[112] Marcus Barkowsky, Romain Cousseau, Patrick Le Callet, « INFLUENCE OF DEPTH

RENDERING ON THE QUALITY OF EXPERIENCE FOR AN AUTOSTEREOSCOPIC

DISPLAY”, IRCCyN UMR 6597 CNRS, École Polytechnique de l’Université de Nantes,

rue Christian Pauc, La Chantrerie 44306 Nantes, France, 978-1-4244-4370-3/09/$25.00

©2009 IEEE.

262

[113] Frank Pfenning, “Shading in OpenGL”, Carnegie Mellon University, February 14,

2002.

[114] Yu-Hsun Lin, Student Member, IEEE, and Ja-Ling Wu, Fellow, IEEE, “ Quality

Assessment of Stereoscopic 3D Image Compression by Binocular Integration Behaviors”,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 4, APRIL 2014

[115] Yun Sheng, Abdul H. Sadka, Senior Member, IEEE, and Ahmet M. Kondoz, Member,

IEEE, “Automatic Single View-Based 3-D Face Synthesis for Unsupervised Multimedia

Applications”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, VOL. 18, NO. 7, JULY 2008.

[116] David Fleet and Aaron Hertzmann, “Shading”, CSC418 / CSCD18 / CSC2504, 2005.

[117] Kim Daniel Skildheim, “Subjective and Objective Crosstalk Assessment

Methodologies for Auto-stereoscopic Displays”, Norwegian University of Science and

Technology Department of Electronics and Telecommunications, June 2012.

[118] Roger Olsson, “synthesis, coding and evaluation of 3D images based on integral

imaging “, Department of information technology and media Mid Sweden University,

Sundsvall, Sweden, 2008.

[119] Harit P Trivedi, and Sheelagh A Lloyd, “The Role of Disparity Gradient in Stereo

Vision”, GECResearchLaboratories, Hirst Research Centre, Wembley, HA9 7PP, UK,

Reprinted, with permission of Pion Ltd, from Perception, 1985, 14, 685-690.

[120] Jan J. Koenderink,”The Structure of Images”, Department of Medical and

Physiological Physics, Physics Laboratory, State University Utrecht, The Netherlands Biol.

Cybern. 50,363 370 (1984).

[121] Touradj Ebrahimi, “COST Action IC1003 – QUALINET European Network on

Quality of Experience in Multimedia Systems and Services”, Multimedia Signal Processing

Group Swiss Federal Institute of Technology.

[122] QUALINET European Network on Quality of Experience in Multimedia Systems and

Services, “Qualinet White Paper on Definitions of Quality of Experience, Output version of

the Dagstuhl seminar 12181”, Version 1.1 Dagstuhl, June3, 2012.

[123] Lutz Goldmanna, Francesca De Simone and Touradj Ebrahimi, Ecole Polytechnique

Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland “A Comprehensive Database

and Subjective Evaluation Methodology for Quality of Experience in Stereoscopic Video”,

2010.

[124] Marcus Barkowsky, Patrick Le Callet, Quan Huynh-Thu and Margaret Pinson, “VQEG

3DTV Group 3D Video Format Evaluation TEST PLAN In collaboration with DVB”, Draft

Version 0.7, 31 October, 2014.

[125] Marcus Barkowsky, “VQEG 3DTV Group”, “Test Plan for Evaluation and

Specification of Viewing Conditions and Environmental Setupfor 3D Video Quality

Assessment”, 3DTV Viewing Con

263

itions Test Plan, Draft Version 1.0, 2012, 11/27/20141/19/2015.

[126] Taichi Kawano, “VQEG 3DTV Group”, “Test Plan for Evaluation of Video Quality

Models for Use with Stereoscopic Three-Dimensional Television Content”, 3 DTV test plan,

Draft Version 0.1 2012, 11/27/2014.

[127] Marcus Barkowsky, “VQEG 3DTV Group”, “Test Plan for establishing a Ground Truth

for Quality of Experience in 3D for assessment methodologies in 3D Video Quality

Assessment GroTruQoE3D1”, Draft Version 1.0, 2012, Ground Truth Quality of Experience

3D Test Plan, DRAFT version 1.0 27/01/2004. 11/27/2014.

