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This article presents a new nonlinear convex network flow
programming model and algorithm for solving the on-line
economic power dispatch with N and N¹ 1 security. Based
on the load flow equations, a new nonlinear convex network
flow model for secure economic power dispatch is set up and
then transformed into a quadratic programming model, in
which the search direction in the space of the flow variables
is to be solved. The concept of maximum basis in a network
flow graph was introduced so that the constrained quadratic
programming model was changed into an unconstrained
quadratic programming model which was then solved by the
reduced gradient method. The proposed model and its
algorithm were examined numerically with an IEEE
30-bus test system on an ALPHA 400 Model 610 machine.
Satisfactory results were obtained.q 1998 Elsevier Science
Ltd. All rights reserved
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I. Introduction

The aim of real power economic dispatch is to minimize the
total production cost of supplying all the loads on the power
system. Security dispatch implies the continuity of supply
service, even in the event of failure of equipment, and must
handle several physical constraints. Among these post-
outage constraints, the line loading constraints should be
met if possible, but may be violated temporarily. Therefore,
the security problem is an additional and important aspect of
power system operation, and has a profound influence on the
overall economic dispatch problem.

It is well known that in real time secure economic power
dispatch, the crux of the matter is to provide speed and
precision in the calculation. A number of methods have been
proposed to solve this problem [1–4]. The usual methods
(linear or nonlinear model) require a large number of AC or
DC load flow calculations to be carried out, and seem to be
inefficient for large scale power systems. Network flow
programming (NFP) models of security economic power

dispatch were presented in recent years [1,5,6]. NFP is a
specialized form of linear programming. It is characterized
by simple calculation and rapid convergence. In particular,
the concept of an ‘‘N¹ 1 constrained zone’’ was proposed in
reference [1] so that the economic power dispatch withNand
N ¹ 1 security can be solved by NFP. However, because of
the adoption of a linear NFP model in [1], the calculation
precision is still not fully satisfactory.

In order to solve the combined problem of speed and
precision in the calculation of secure economic power
dispatch, this article presents a new nonlinear convex net-
work flow programming model of on-line economic power
dispatch withN andN¹ 1 security, which is solved by using
a combination of quadratic programming (QP) and NFP.
Based on the load flow equations, a new nonlinear convex
network flow model for secure economic power dispatch is
set up and then transformed into a QP model, in which the
search direction in the space of the flow variables is found.
The concept of a maximum basis in the network flow graph is
introduced, allowing the constrained QP model to be
changed into an unconstrained QP model, which is then
solved using the reduced gradient method.

In the article, the fastN¹ 1 security analysis method [7,8]
is also used to seek out all the binding constraint cases for all
possible single line outages, and then an ‘‘N ¹ 1 constrained
zone’’ is formed which is coordinated with the convex
network flow programming model. As a result, the proposed
secure economic dispatch and associated solution method
have both high calculation precision and high calculation
speed.

The proposed model and algorithm are examined numeri-
cally with an IEEE 30-bus test system on an ALPHA 400
Model 610 machine. Satisfactory results are demonstrated
and also compared with the results obtained through the
conventional methods.

II. Convex NFP model of secure economic
power dispatch

II.1 Calculation of N ¹ 1 security constraints
Economic power dispatch withN¹ 1 security means that the
line flows will not exceed the settings of the protective
devices for the intact lines when any branch has an outage
[1–3]. The usual methods of calculatingN ¹ 1 security

533

Electrical Power & Energy Systems, Vol. 20, No. 8, pp. 533–538, 1998
q 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0142-0615/98/$ - see front matterPII: S0142-0615(98)00019-2

* Corresponding author



constraints need a large number of AC or DC load flow
calculations to be carried out, and seem to be inefficient for
on-line application.

A fast and efficient calculation approach forN ¹ 1
security constraints, which was proposed in references
[1,7,8], is adopted in this article. Based on the fastN ¹ 1
security analysis, all the cases with binding constraints for all
possible single outages can be found. Thus, the maximum
value of the violation in lineij can be determined by the
following equations:

DPijmax¼ max
1[NL

Pij (l) ¹ PijM

� 	
ij [ NT1 (1)

DPijmin ¼ min
1[NL

Pij (l) ¹ Pijm

� 	
ij [ NT2 (2)

Pijm ¼ ¹ PijM (3)

whereNT1 andNT2 represent the number of lines which
violate their upper and lower bounds, respectively, for linel
outage.NL is the set of single line outages.PijM is the active
power flow constraint on transmission lineij .

Therefore, an ‘‘N¹ 1 constrained zone’’, which is formed
by the intersection of the secure zones for single
contingencies, can be determined from the following
equations.

DPij ¼ ¹ DPijmax ij [ NT1 (4)

DPij ¼ ¹ DPijmin ij [ NT2 (5)

¹ PijM # Pij # PijM ij [ NT¹ NT1¹ NT2 (6)

whereNT is the total number of transmission lines in the
power network.

It can be observed from the ‘‘N ¹ 1 constrained zone’’,
equations (4)–(6) that the number ofN ¹ 1 constraints is

NT1þ NT2þ (NT¹ NT1¹ NT2) ¼ NT

This means that the huge number ofN ¹ 1 security
constraints can be reduced to the same scale asN security
constraints due to the adoption of ‘‘N¹ 1 constrained zone’’.
Therefore, similar toN security, N ¹ 1 security can be
introduced into the network flow model.

II.2 Mathematical model
It is well known that the active power flow equations of a
transmission line can be written as follows.

Pij ¼ V2
i gij ¹ ViVjgij cosvij ¹ ViVjbij sinvij (7)

Pji ¼ V2
j gij þ ViVj( ¹ gij cosvij þ bij sinvij ) (8)

where

Pij is the sending end active power on transmission lineij ;
Pji is the receiving end active power on transmission line
ij ;
Vi is the node voltage magnitude of nodei;
v ij is the difference of node voltage angles between the
sending end and receiving end of the lineij ;
bij is the susceptance of transmission lineij ;
gij is the conductance of transmission lineij .

In a high voltage power network, the value ofv ij is very
small, and the following approximate equations are easily
obtained

V > 1:0 p:u: (9)

sinvij > vij (10)

cosvij > 1¹ v2
ij =2 (11)

Substituting equations (9)–(11) into equations (7) and (8),
the active power load flow equations of a line can be
simplified and deduced as follows.

Pij ¼ ¹ bij vij þ gij v
2
ij =2 (12)

Pji ¼ bij vij þ gij v
2
ij =2 (13)

Let

Pp
ij ¼ ¹ bij vbij (14)

We can obtain

vij ¼ ¹ Pp
ij =bij (15)

Substituting equations (14) and (15) into equations (12) and
(13), we obtain

Pij ¼ Pp
ij þ

1
2

¹
Pp

ij

bij

� �2

gij (16)

Pji ¼ ¹ Pp
ij þ

1
2

¹
Pp

ij

bij

� �2

gij (17)

The active power loss on transmission lineij can be obtained
according to equations (16) and (17), i.e.

PLij ¼ Pij þ Pji ¼ ¹
Pp

ij

bij

� �2

gij (18)

¼ Pp2
ij

R2
ij þ X2

ij

ÿ �
X2

ij

Rij

where

Rij is the resistance of transmission lineij ;
Xij is the reactance of transmission lineij .

Let

Zp
ij ¼

R2
ij þ X2

ij

ÿ �
X2

ij

Rij (19)

the active power loss on the transmission lineij can be
expressed as follows

PLij ¼ Pp2
ij Zp

ij (20)

Therefore, the following nonlinear convex network flow
programming model,M ¹ 1, for real power economic
dispatch can be set up.

minF ¼
∑

i[NG

aiP
2
Gi þ biPGi þ ci

ÿ �
þ h

∑
ij[NT

Pp2
ij Zp

ij (21)

such that

PGi ¼ PDi þ
∑
j→i

Pp
ij þ

Pp2
ij

2b2
ij

gij

" #
(22)

PGim # PGi # PGiM i [ NG (23)

¹ Pp
ijM # Pp

ij # Pp
ijM ij [ NT (24)

where

PGi is the active power of the generatori;
PDi is the active power load on the load busi;
Pij is the flow in the line connected to nodei, and would
have a negative value for a line in which the flow is
towards nodei;
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ai, bi, ci are the cost coefficients of theith generator;
NG is the number of generators in the power network;
NT is the number of transmission lines in the power
network;
PijM is the active power flow constraint on transmission
line ij ;
PLij is the active power loss on transmission lineij ;
Zij* is called an equivalent impedance of transmission line
ij , as shown in equation (19);
h is the weighting coefficient of the transmission losses;
j → i represents nodej connected to nodei through
transmission lineij ;
Subscripts m and M represent the lower and upper bounds
of the constraint.

The second term of the objective function (equation (21))
is a penalty on transmission losses based on the system
marginal costh (in $ per MWh). Equation (24) is the line
security constraint. Equation (23) defines the generator
power upper and lower limits. Equation (22) is Kirchoff’s
first law (i.e. node current law, KCL).

The modelM ¹ 1 is similar to a NFP model in form. In
fact, it is a nonlinear convex network flow programming
(NLCNFP) model.

In the traditional network flow programming model of
economic power dispatch, the total transmission losses are
represented approximately as the sum of the products of the
line resistance and the square of the transmitted power on the
line (i.e.PL ¼ SPij

2Rij), and the power loss of an individual
line is assumed to be distributed equally to its ends. Thus, the
active loadPDi involved half the transmission losses on all
the lines connected to nodei, which had to be estimateda
priori from a power flow calculation [1,5,6]. Obviously, the
NLCNFP model of economic power dispatch developed
here, which is shown in equations (21)–(24), does not
require these assumptions, and has higher precision than
the traditional NFP model of economic power dispatch.

II.3 Consideration of KVL
It is well known that Kirchhoff’s second law (i.e. loop
voltage law, KVL) has not been considered in the study of
secure economic power dispatch using general NFP. This is
why there always exists some modeling error when secure
economic power dispatch is solved using traditional linear
NFP. KVL will be considered in this article.

The voltage drop on the transmission lineij can be
approximately expressed as

Vij ¼ Pp
ij Z

p
ij (25)

In this way, the voltage equation of thelth loop can be
obtained, i.e.∑

ij
Pp

ij Z
p
ij

ÿ �
mij , l ¼ 0 l ¼ 1,2,…,NM (26)

where

NM is the number of loops in the network;
m ij,l is the element in the related loop matrix, which takes
the value 0 or 1.

Introducing the KVL equation into modelM ¹ 1, we can
get the following model,M ¹ 2.

minF ¼
∑

i[NG

aiP
2
Gi þ biPGi þ ci

ÿ �
þ h

∑
ij[NT

Pp2
ij Zp

ij

such that

PGi ¼ PDi þ
∑
j→i

Pp
ij þ

Pp2
ij

2b2
ij

gij

" #
∑
ij

Pp
ij Z

p
ij

ÿ �
mij , l ¼ 0 l ¼ 1,2, …,NM

PGim # PGi # PGiM i [ NG

¹ Pp
ijM # Pp

ij # Pp
ijM ij [ NT

In order to obtain the same form as modelM ¹ 1, the
following transformation should be carried out.

The Lagrange function can be obtained from equations
(21) and (26).

FL ¼
∑

i[NG

aiP
2
Gi þ biPGi þ ci

ÿ �
þ h

∑
ij[NT

Pp2
ij Zp

ij ¹ ll

∑
ij

Pp
ij Z

p
ij

ÿ �
mij , l ð27Þ

Therefore, NLCNFP modelM ¹ 3 for secure economic
power dispatch, which considers KVL, can be written as
follows.

minFL ¼
∑

i[NG

aiP
2
Gi þ biPGi þ ci

ÿ �
þ h

∑
ij[NT

Pp2
ij Zp

ij ¹ ll

∑
ij

Pp
ij Z

p
ij

ÿ �
mij , l ð28Þ

Subject to equations (22)–(24), wherel l is the Lagrange
multiplier, which can be obtained through minimizing
equation (28) with respect to variablePij*, i.e.

2hPp
ij Z

p
ij ¹ll

∑
ij

Zp
ij mij , l ¼ 0 (29)

ll ¼ 2hPp
ij =

∑
ij

mij , l (30)

l ¼ 1,2,…,NM

If N ¹ 1 security constraints are considered, the NLCNFP
model for economic power dispatch withN ¹ 1 security can
be written as follows.

minFL ¼
∑

i[NG

aiP
2
Gi þ biPGi þ ci

ÿ �
þ h

∑
ij[NT

Pp2
ij Zp

ij ¹ ll

∑
ij

Pp
ij Z

p
ij

ÿ �
mij , l

Subject to equations (4)–(6), (22) and (23), where equations
(4)–(6) areN ¹ 1 security constraints, which include theN
security constraints (equation (24)).

III. Solution of NLCNFP

III.1 NLCNFP model
The modelM ¹ 3 of real power economic dispatch with
security constraints can be changed into a standard model of
NLCNFP, i.e. modelM ¹ 4

minC¼
∑
ij

c(fij ) (31)

Secure economic power dispatch: L. Z. Zhu et al 535



such that∑
j[n

fij ¹ fji
ÿ �

¼ ri i [ n (32)

Lij # fij # Uij ij [ m (33)

where

f ij is the flow on the arcij in the network;
Lij is the lower bound of the flow on the arcij in the
network;
Uij is the upper bound of flow on the arcij in the network;
n is the total number of the nodes in the network;
m is the total number of the arcs in the network.

In model M ¹ 4, the objective function equation (31)
corresponds to equation (28) in modelM ¹ 3. The equality
constraint equation (32) corresponds to equation (22) in
model M ¹ 3. The inequality constraint equation (33)
corresponds to equations (23) and (24) forN security
economic dispatch, or equations (4)–(6) and (23) forN
andN ¹ 1 security economic dispatch.

Equation (32) in the modelM ¹ 4 can be written as

Af ¼ r (34)

whereA is a matrix withn 3 (nþ m), in which every column
corresponds to an arc in the network, and every row
corresponds to a node in the network.

The matrixA can be divided into a basic sub-matrix and
non-basic sub-matrix, which is similar to the convex simplex
method, i.e.

A¼ [B, S,N] (35)

where the columns ofB form a basis, and bothS and N
correspond to the non-basic arcs.Scorresponds to the non-
basic arcs in which the flows are within the corresponding
constraints.N corresponds to the non-basic arcs in which the
flows reach the corresponding bounds.

A similar division can be made for the other variables, i.e.

f ¼ [fB, fS, fN]

g(f ) ¼ [gB,gS,gN]

G(f ) ¼ diag[GB,GS,GN]

D ¼ [DB,DS,DN]

where

g(f) is the first-order gradient of the objective function;
G(f) is the Hessian matrix of the objective function which
is a block diagonal matrix;
D is the search direction in the space of the flow variables.

III.2 Solution of model
In order to solve modelM ¹ 4, Newton’s method can first be
used to calculation the search direction in the space of the
flow variables. The idea behind Newton’s method is that the
function being minimized is approximated locally by a
quadratic function, and this approximate function is
minimized exactly.

Suppose thatf is a feasible solution and the search step
along the search direction in the space of flow variables
b ¼ 1. Then the new feasible solution can be obtained.

f 9 ¼ f þ D (36)

Substituting equation (36) into equation (31) in the model
M ¹ 4, we obtain

C¼ C(f 9) ¼ C(F þ D) (37)

Nearf we can approximateC by the truncated Taylor series.

C(D) >
1
2
DTG(f )D þ g(f )TD (38)

Substituting equation (36) into equation (32) in the model
M ¹ 4, we obtain

AD¼ 0 (39)

Obviously,Dij $ 0, whenf ij ¼ Lij andDij # 0, whenf ij ¼ Uij.
In this way, the NLCNFP modelM ¹ 4 can be changed into
the following QP modelM ¹ 5, in which the search direction
in the space of the flow variables is to be solved.

minC(D) ¼ 1
2D

TG(f )D þ g(f )TD (40)

such that

AD¼ 0 (41)

Dij $ 0, whenfij ¼ Lij (42)

Dij # 0, whenfij ¼ Uij (43)

Model M ¹ 5 is a special quadratic programming model
which has the form of network flow. In order to enhance the
calculation speed, we present a new approach, in place of the
general quadratic programming algorithm, to solve the
modelM ¹ 5. The main calculation steps are as follows.

III.2.1 Neglect temporarily equations (42) and (43)
This means thatLij , f ij , Uij in this case. ThusDN ¼ 0
according to the definition of the corresponding non-basic
arc.

From equation (41), we know that

AD¼ [B, S,N]

DB

DS

0

2664
3775¼ 0 (44)

From equation (44), we can obtain

DB ¼ ¹ B¹ 1SDS (45)

Then, the search direction in the space of flow variablesD
can be written as follows.

D ¼

¹ B¹ 1S

I

0

2664
3775DS¼ ZDS (46)

Substituting equation (46) into equation (40), we get

minC(D) ¼ 1
2(ZDS)TG(f )(ZDS) þ g(f )T(ZDS) (47)

Through minimizing equation (47) to variableDS, the model
M ¹ 5 can be changed into an unconstrained problem, the
optimization solution of which can be solved from the
following equations.

DN ¼ 0 (48)

BDB ¼ ¹ SDS (49)

(ZTGZ)DS¼ ¹ ZTg (50)
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III.2.2 Introduction of equations (42) and (43)
According to equations (48)–(50),DS can be solved from
equation (50), and thenDB can be solved from equation (49).
If DB violates the constraint equations (42) and (43), a new
basis must be sought to calculate the new search direction in
the space of flow variables. This step will not be terminated
until DB satisfies the constraint equations (42) and (43).

III.2.3 Introduction of maximum basis in network
Obviously, the general repeated calculation ofDB andDS,
which is similar to that of pivoting in linear programming, is
not only time-consuming, but also does not improve the
value of the objective function. In order to speed up the
calculation, we adopt a new method to form a basis in
advance, so thatDB and DS can satisfy the constraints
equations (42) and (43). Therefore, the maximum basis in
a network, which consists of as many free basic arcs as
possible, is introduced in the paper.

The maximum basis in a network can be obtained by
solving the following modelM ¹ 6.

max
B

∑
ij

dij Aij (51)

where

Suppose basisB is the maximum basis from equation (51), in
order to satisfy equation (39), if the flow on a free non-basic
arc needs to be adjusted only the flows on the free arcs in
basisB need to be adjusted [9].

The introduction of the maximum basis indicates the
direction of flow adjustment, i.e. the change of flow is carried
out according to the maximum basis. Through selecting the
maximum basis, equations (42) and (43) in modelM ¹ 5 can
always be satisfied in the calculation of the search direction
in the space of the flow variables. Therefore, the QP modelM
¹ 5 is equivalent to the unconstrained problem equations
(48)–(50).

In order to enhance the calculation speed further,
equations (48)–(50) can be solved by the reduced gradient
method [10].

IV. Test examples

The proposed economic power dispatch withN andN ¹ 1
security, including the model and its algorithm, are examined
with the IEEE 30-bus test system on an ALPHA 400 Model
610 computer. The system consists of six generators, 21 loads
and 41 transmission/transformation branches. The basic
numerical data and parameters are taken from reference [3].
The security constraints of transmission lines and real power
constraints of generators used in the paper are listed in
Tables 1 and 2, respectively. The test results are given in
Tables 3 and 4, where the proposed NLCNFP economic
dispatch method withN andN ¹ 1 security is identified as
NLCNFP, and the other methods are identified by their
reference. All values of power in Tables 1–4 are in p.u.,
and the base value is 100 MVA. Table 5 is the results
showing the effect of KVL on solution accuracy and speed.

From Tables 3 and 4, the results by the proposed NLCNFP
method are coincident with those obtained from the conven-
tional methods. It can be observed from Tables 3–5 that the
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dij ¼

1, when arcij is a free one,
i:e: the flow in arcij is within its bounds

0,
when arcij is not a free one,
i:e: the flow in arcij reaches its upper or
lower bounds

8>>>><>>>>:
Aij ¼

1, when arcij is in the basisB

0, when arcij is not in the basisB

(

Table 1. Security limits of transmission lines for IEEE 30-bus system

Line PijM Line PijM Line PijM

1 1.3000 15 0.6500 29 0.3200
2 1.3000 16 0.6500 30 0.1600
3 0.6500 17 0.3200 31 0.1600
4 1.3000 18 0.3200 32 0.1600
5 1.3000 19 0.3200 33 0.1600
6 0.6500 20 0.1600 34 0.1600
7 0.9000 21 0.1600 35 0.1600
8 0.7000 22 0.1600 36 0.6500
9 1.3000 23 0.1600 37 0.1600
10 0.3200 24 0.3200 38 0.1600
11 0.6500 25 0.3200 39 0.1600
12 0.3200 26 0.3200 40 0.3200
13 0.6500 27 0.3200 41 0.3200
14 0.6500 28 0.3200

Table 2. Generator data for IEEE 30-bus system

Gen. No ai bi ci PGim PGiM

PG1 37.50 200.00 0.00 0.50 2.00
PG2 175.00 175.00 0.00 0.20 0.80
PG5 625.00 100.00 0.00 0.15 0.50
PG8 83.40 325.00 0.00 0.10 0.35
PG11 250.00 300.00 0.00 0.10 0.30
PG13 250.00 300.00 0.00 0.12 0.40



proposed approach has very small solution error, 0.0226%
compared with the exact method. The solution error will be
raised to 0.1860% if KVL is neglected in the proposed
NLCNFP method. However, the calculation speed of the
proposed approach is far faster than that of the exact method.
It means that the proposed NLCNFP method has not only
high calculation precision, but also fast calculation speed
compared with the conventional methods. Therefore, the
problem obtaining the requisite speed and accuracy in the
calculation of secure economic power dispatch can be
eliminated by using the proposed NLCNFP model and the
corresponding algorithm.

V. Conclusions

A new NLCNFP model of on-line economic power dispatch
with N and N ¹ 1 security, which is solved by using a
combined method of QP and NFP, has been presented. Based
on the load flow equations, a new nonlinear convex network
flow model for secure economic power dispatch is set up, and
then transformed into a QP model, in which the search
direction in the space of the flow variables is to be solved.
The concept of maximum basis in a network flow graph was
introduced so that the constrained QP model was changed
into an unconstrained QP model, which is then solved by the
reduced gradient method. Resulting from the adoption of
‘‘ N ¹ 1 constrained zone’’ as well as consideration of KVL
in the new NLCNFP solution method, the problem of speed
and accuracy in the calculation ofN and N ¹ 1 security
economic dispatch is solved in the article. The test results

and comparison show that the proposed model and its
algorithm are feasible and effective.
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Table 3. Results and comparison of economic dispatch
without N ¹ 1 security

Gen. no. NLCNFP Ref. [3]

PG1 1.7595 1.7626
PG2 0.4884 0.4884
PG5 0.2152 0.2151
PG8 0.2229 0.2215
PG11 0.1227 0.1214
PG13 0.1200 0.1200
Total generation 2.9286 2.9290
Total active power losses 0.0946 0.0948
Total generation cost ($) 802.3986 802.4000

Table 4. Results and comparison of economic dispatch withN ¹ 1 security

Gen. no. NLCNFP Ref. [1] Ref. [2] Ref. [3]

PG1 1.41270 1.40625 1.41108 1.38540
PG2 0.50080 0.60638 0.58172 0.57560
PG5 0.24060 0.25513 0.26183 0.24560
PG8 0.35000 0.30771 0.30114 0.35000
PG11 0.20110 0.17340 0.14871 0.17930
PG13 0.19910 0.16154 0.20208 0.16910
Total generation 2.90434 2.91041 2.90656 2.9050
Total active power losses 0.07034 0.07641 0.07256 0.0711
Total generation cost ($) 813.2135 813.44 813.34 813.74
Computer type ALPHA 400/610 M-340 IBM 370/168 CDC 7600
CPU time (s) 0.140 0.308 0.45 14.30

Table 5. Effect of KVL on solution accuracy and speed

Method NLCNFP without
KVL

NLCNFP with
KVL

Solution error 0.1860% 0.0226%
Improved accuracy 0.0 0.1634%
Power loss (MW) 7.401 7.034
Reduced loss (MW) 0.0 0.367
Computer type ALPHA 400/610 ALPHA 400/610
CPU time (s) 0.125 0.140
Added time (s) 0.0 0.015


