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Abstract. We consider the following system of equations{
At = Axx + A − A3 − AB, x ∈ R, t > 0,
Bt = σBxx + µ(A2)xx, x ∈ R, t > 0,

where µ > σ > 0. It plays an important role as a Ginzburg-Landau equation with a mean field in several
fields of the applied sciences.

We study the existence and stability of periodic patterns with an arbitrary minimal period L. Our
approach is by combining methods of nonlinear functional analysis such as nonlocal eigenvalue problems
and the variational characterization of eigenvalues with Jacobi elliptic integrals. This enables us to
give a complete characterization of existence and stability for all solutions with A > 0, spatial average
< B >= 0 and an arbitrary minimal period.

1. Introduction

In this paper, we study the existence and stability of periodic solutions for the following amplitude

equations ⎧⎨
⎩

At = Axx + A − |A|2A − AB, x ∈ R, t > 0,

Bt = σBxx + µ(|A|2)xx, x ∈ R, t > 0,
(1.1)

where

σ > 0, µ ∈ R, x ∈ R,

A(x), B(x) have an arbitrary given minimal period L > 0, A(x) > 0 and

< B >=
1

L

∫ L/2

−L/2
B(x) dx = 0.

Amplitude equations of the form (1.1) play a role in various areas of the applied sciences. In [3], the

equation (1.1) was derived in the study of secondary stability of a one-dimensional cellular pattern. For

a survey on hydrodynamics appliations see [5]. In [4] the system (1.1) was derived from various models

arising in thermosolutal convection, rotating convection, or magnetoconvection.

It is important to understand (1.1) for finite L since this makes a comparison possible between the

amplitude equations and the full partial differential equation where they originate from. Although the

amplitude equations are derived for the limit L → ∞ they are expected to represent the behaviour of

the full system also for finite L and numerical simulations show that this is actually the case for many

parameter regimes.

1991 Mathematics Subject Classification. Primary 35B35, 76E30; Secondary 35B40, 76E06.
Key words and phrases. Pattern Formation, Mean field, Stability, Steady-states.

1



2 JOHN NORBURY, JUNCHENG WEI, AND MATTHIAS WINTER

We now reduce system (1.1) to its final form. By taking τ = 1
σ
, µ

′
= µ

σ
, the system (1.1) can be

rewritten in the form

{
At = Axx + A − |A|2A − AB, x ∈ R, t > 0,
τBt = Bxx + µ

′
(|A|2)xx, x ∈ R, t > 0,

(1.2)

where

τ > 0, µ
′ ∈ R.

In the equations (1.2), A may be complex. In this case one can decompose A = R exp(iθ) with

functions R and θ representing the amplitude and the phase of A, respectively. An explicit analytical

treatment of the general case is very complicated. In this paper we therefore restrict our attention to

the invariant subspace in which A is real.

We study periodic solutions of (1.2) with A > 0. Assuming that the minimal period is some positive

number L > 0, we have

A(x + L) = A(x), B(x + L) = B(x) for all x ∈ R (1.3)

and we have chosen the smallest such L > 0.

Using Rolle’s theorem, one sees that there exists an x0 ∈
(
−L

2
, L

2

)
such that A

′
(x0) = 0 and by

periodicity we also have A
′
(x0 +L) = 0 and A(x0 +L) = A(x0). Further, by the structure of (1.2), after

translation any solution with A > 0 having minimal period L can be represented by an even function

on
(
−L

2
, L

2

)
with Neumann boundary conditions.

On the other hand, if we have a solution on an interval of length L
2

with Neumann boundary conditions,

by even continuation we also get a periodic solution on the real line with period L.

We will use this representation of a periodic function with minimal period L by a function on an

interval of length L
2

with Neumann boundary conditions throughout the paper. Thus from now on

we focus on getting even solutions on
(
−L

2
, L

2

)
with Neumann boundary conditions, or equivalently,

solutions on
(
0, L

2

)
with Neumann boundary conditions without imposing any symmetry.

Hence to get an understanding of all periodic solutions with arbitrary period L it suffices to all study

solutions on an interval of arbitrary length with Neumann boundary conditions.

In order to have nontrivial stable solutions we make the following assumption throughout the paper:

µ
′
=

µ

σ
> 1. (1.4)

We study these solutions by combining methods of nonlinear functional analysis such as nonlocal

eigenvalue problems and the variational characterization of eigenvalues with Jacobi elliptic integrals.

Following this rigorous approach, we give a complete characterization of existence and stability

for all periodic solutions with A > 0.

We now state our main results on existence and stability of stationary patterns for system (1.2) with

arbitrary minimal period L > 0 as defined in (1.3).
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We first consider the existence of steady-state solutions with minimal period L. Namely, by the

remarks above, we consider the following steady-state system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Axx + A − A3 − AB = 0, 0 < x < L
2
,

Bxx + µ
′
(A2)xx = 0, 0 < x < L

2
,

Ax (0) = Ax

(
L
2

)
= 0,

Bx(0) = Bx

(
L
2

)
= 0, < B >= 0.

(1.5)

We have

Theorem 1. Let L > 0 be a fixed number and µ
′
> 1. Then there exist two numbers µ1(L) > µ2(L) > 1

(to be given explicitly in (3.26) of Section 3) such that the following holds.

(1) If µ
′
> µ1(L), all solutions of (1.5) with A > 0 must be constant.

(2) If µ
′
= µ1(L), there exists exactly one solution of (1.5) with A > 0 which has minimal period L.

(3) If µ2(L) < µ
′
< µ1(L), there exist exactly two solutions of (1.5) with A > 0 which have minimal

period L.

(4) If 1 < µ
′ ≤ µ2(L), there exists exactly one solution of (1.5) with A > 0 which has minimal period

L.

We now study stability. Our notion of stability is linearized stability among solutions with period L.

The next theorem classifies the instability of large classes of steady-state solutions.

Theorem 2. All solutions of (1.5)

(1) which do not have minimal period L or

(2) for which A changes sign or

(3) for which Ax changes sign

are linearly unstable.

Thus we need to study only the stability of those steady-state solutions with A > 0 which have the

minimal period L. They are all given by Theorem 1.

We have

Theorem 3. Among the steady-state solutions of (1.2) with A > 0 which have the minimal period L

(classified by Theorem 1), we have

(1) If µ
′
= µ1(L), there exists exactly one solution with A > 0 having minimal period L. This solution

is neutrally stable.

(2) If µ2(L) < µ
′
< µ1(L), there exist exactly two solutions with A > 0 having minimal period L. The

one with small amplitude A(0) is linearly stable and the one with large amplitude A(0) is linearly

unstable.

(3) If 1 < µ
′ ≤ µ2(L), there exists exactly one solution with A > 0 having minimal period L and this

solution is linearly unstable.

The explicit values of µ1(L), µ2(L) are given in Section 3. In particular,

µ2(L) = 1 +
2π2

L2
(1.6)
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and µ1(L) is given in terms of elliptic integrals. Both µ1(L) and µ2(L) are functions of L – the domain

size – only. Thus we have rigorously established the following bifurcation picture (see also Figure 3 of

[7]).

Figure 1. Bifurcation Curve

Theorem 1 completely classifies the existence of steady-state solutions with A > 0 having minimal

period L. Moreover, the stability or instability of all steady-state solutions is given in Theorem 2 and

Theorem 3.

Recall that we do not have any condition on the minimal period L. Our results show that nontrival

stable patterns exist for a Ginzburg-Landau equation coupled to an equation for a mean field, even

when the coefficients of the equations are real and when the minimal period is finite.

Previous numerical and analytical studies of these amplitude equation include [7] (numerical simu-

lation, asymptotic expansion and bifurcation theory, in particular the use of Jacobi elliptic integrals to

describe the shape of solutions and a numerical study of stability) and [8] (rigorous study of the limit

when the minimal period is large enough). In [8] the resulting steady-states are pulses or spikes and

nonlocal eigenvalue problems are used, but no Jacobi elliptic integrals. In particular, we showed in [8]

that there are two large single pulse solutions, where one is stable and the other one is unstable.

Another type of Ginzburg-Landau equation, where the term (|A|2)xx in the B-equation is replaced

by ∂x(|A|2) has been considered by several authors, see [9] and the references therein. In that case the

basic patterns are travelling pulses which arise in the convection of binary fluids.

The organization of this paper is as follows:

In Section 2, we perform a scaling argument and reduce the existence problem to an algebraic equation

for consistency.

In Section 3, we use elliptic integrals to rigorously solve the algebraic equation for consistency and

prove Theorem 1.
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In Section 4, the spectrum of a linearized operator is analyzed and a key identity is derived.

In Section 5, we study a crucial nonlocal eigenvalue problem.

Section 6 contains the proof of Theorem 3, the main result on stability.

In Section 7, we prove Theorem 2 by showing the instability of all other solutions, invoking the

variational characterization of eigenvalues.

In the Appendix, the linear operator is first derived and then reduced to a self-adjoint nonlocal

eigenvalue problem which is given in the reduction lemma, Lemma 13.

Acknowledgments. The research of JW is supported by an Earmarked Grant from RGC of Hong

Kong. JN and MW thank the Department of Mathematics at The Chinese University of Hong Kong

for their kind hospitality.

2. Scaling and consistency algebraic equation

In this section, we rescale the steady-state equation (1.5) and reduce it to a single ordinary differential

equation coupled with an algebraic equation for consistency.

Consider the steady states of the equations (1.2). From (1.5) we derive

B(x) = −µ
′
A2(x) + µ

′
< A2 >, < A2 >=

1

L

∫
I
A2(x)dx, (2.1)

where I =
(
−L

2
, L

2

)
. Substituting (2.1) into the first equation of (1.5), we obtain{

Axx − aA + bA3 = 0, −L
2

< x < L
2
,

A(x) has minimal period L,
(2.2)

where

a = µ
′
< A2 > −1, b = µ

′ − 1. (2.3)

We consider a as a real parameter. Since (2.2) is an autonomous equation, as was explained in

the introduction, we may assume that A satisfies the following boundary, symmetry, and positivity

conditions:

A
′
(
−L

2

)
= A

′
(

L

2

)
= 0, A(x) = A(−x),

A
′
(x) < 0 for 0 < x <

L

2
. (2.4)

We now solve (2.2) with consistency condition (2.3). Note that a positive solution of (2.2) exists if

and only if a > 0 (since b > 0). In that case, we let β =
√

a and

A(x) =
β√

µ′ − 1
wl(y), (2.5)

where

y = βx,
βL

2
= l, (2.6)

and wl solves the following boundary value problem:

w
′′
l − wl + w3

l = 0, w
′
l(0) = w

′
l(l) = 0,
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w
′
l(y) < 0 for 0 < y < l, (2.7)

wl(y) > 0 for 0 < y < l.

In Lemma 5 we will show that (2.7) has a unique solution if l > π/
√

2 and no solution if l ≤ π/
√

2.

Substituting (2.5) into (2.3), it is easy to see that β will have to satisfy the following consistency

equation:

β2 − 2µ
′

L(µ′ − 1)
β
∫ βL

2

0
w2

l dy + 1 = 0. (2.8)

We write (2.8) in terms of the new length l = βL
2

:

l2 − tl
∫ l

0
w2

l dy +
L2

4
= 0, where t =

µ
′

µ′ − 1
. (2.9)

In (2.9), t is a fixed parameter, L is a given parameter (which corresponds to the domain size), and l

is the unknown. Note that the unknown l appears in the equation (2.9) in three ways: explicitly, as the

upper boundary of the integral and as the index of the function wl. The last two dependencies are new

compared to the singular limit case L >> 1 and they make this study more difficult than the singular

limit case.

If there exists a solution l to (2.9), then, by taking

A(x) =
2l

L
√

µ′ − 1
wl

(
2lx

L

)
, (2.10)

we obtain a solution of (2.2). Conversely, by taking (2.10), l must satisfy (2.9). Thus we have reduced

our problem to showing existence of (2.7) (see Lemma 5) and solving the algebraic equation (2.9) for

consistency.

3. Solving the consistency equation

In this section, we show that (2.7) has a unique solution (see Lemma 5) and solve the consistency

equation (2.9). Our idea is to represent the ordinary differential equation (2.7) by Jacobi elliptic

integrals. Then we use their properties to show that (2.7) has a unique solution and to solve the

algebraic equation (2.9).

Let wl(0) = M and wl(l) = m. Recall that 0 < m < M . From (2.7), we have

(w
′
l)

2 = w2
l −

1

2
w4

l − M2 +
1

2
M4 =

1

2
(w2

l − m2)(M2 − w2
l ), (3.1)

− m2 +
1

2
m4 = −M2 +

1

2
M4. (3.2)

From (3.2), we deduce that

M2 + m2 = 2. (3.3)

Note that

l =
∫ M

m

dwl√
1
2
(w2

l − m2)(M2 − w2
l )

(3.4)
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and ∫ l

0
w2

l dy =
∫ M

m

w2
l dwl√

1
2
(w2

l − m2)(M2 − w2
l )

. (3.5)

We now represent the values of the function wl by a phase function ϕ such that the relations (3.4),

(3.5) can be expressed by Jacobi elliptic integrals.

Let
M2 + m2

2
− w2

l = −M2 − m2

2
cos(2ϕ).

Then it is easy to see that (3.4) and (3.5) become

l =
√

2 − k2K(k),
∫ l

0
w2

l dy =
2√

2 − k2
E(k), (3.6)

where

1

M
=

√
1 − k2

2
(3.7)

and E(k) and K(k) are Jacobi elliptic integrals:

E(k) =
∫ π

2

0

√
1 − k2 sin2 ϕdϕ,

K(k) =
∫ π

2

0

1√
1 − k2 sin2 ϕ

dϕ.

For the properties of elliptic integrals, we refer the reader to [1] and [2]. We list the following for

later use:

E(0) =
π

2
, K(0) =

π

2
, lim

k→1
E(k) = 1, lim

k→1
K(k) = +∞, (3.8)

k
′
K(k) < E(k) <

(
1 − k2

2

)
K(k) < K(k), (3.9)

dK(k)

dk
=

E(k) − (k
′
)2K(k)

k(k′)2
,

dE(k)

dk
=

E(k) − K(k)

k
, (3.10)

where

0 < k < 1 and k
′
=

√
1 − k2.

By (3.6), our consistency equation (2.9) can be rewritten in terms of the new variable k ∈ (0, 1):(
1 − k2

2

)
K2(k) − tE(k)K(k) +

L2

8
= 0. (3.11)

Thus the existence problem is reduced to solving (3.11) for k.

We begin with

Lemma 4. For 0 < k < 1, we have

dk

dl
> 0, (3.12)

d

dk

[
(1 − k2

2
)K2(k)

]
> 0, (3.13)
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d2

dk2

[
(1 − k2

2
)K2(k)

]
> 0, (3.14)

d

dk
[E(k)K(k)] > 0, (3.15)

d2

dk2
[E(k)K(k)] < 0, (3.16)

d2

dk2

⎡
⎣(1 − k2

2
)K(k)

E(k)

⎤
⎦ > 0, (3.17)

d2

dk2

[
1

E(k)K(k)

]
> 0. (3.18)

Proof: The proof is mainly based on the inequality (3.9).

Using (3.10), we arrive at

d

dk

[
(1 − k2

2
)K2

]
=

K

k(k′)2

[
(1 + (k

′
)2)E − 2(k

′
)2K

]
> 0

by (3.9). Thus (3.13) is proved. Since l2 = (2 − k2)K2, (3.12) follows from (3.13).

Equation (3.14) is more difficult to prove. In fact, by lengthy computations, we have

d2

dk2

[
(1 − k2

2
)K2

]
(3.19)

=
1

k2(k′)4

[
(1 + (k

′
)2)E2 + EK(2 − 7(k

′
)2 − (k

′
)4) + (k

′
)2K2(5(k

′
)2 − 1)

]
.

It is easy to see that if 5(k
′
)2 − 1 ≤ 0, then

(1 + (k
′
)2)E2 + EK(2 − 7(k

′
)2 − (k

′
)4) + (k

′
)2K2(5(k

′
)2 − 1)

> E2 − (k
′
)2K2 > 0.

Now we assume that 5(k
′
)2 − 1 > 0. Then, using (3.9), we have

(1 + (k
′
)2)E2 + EK(2 − 7(k

′
)2 − (k

′
)4) + (k

′
)2K2(5(k

′
)2 − 1) (3.20)

= (1 + (k
′
)2)E(E − k

′
K) + (k

′
)2(5(k

′
)2 − 1)K

(
K − E

1 − k2

2

)

+EK

[
k

′
(1 + (k

′
)2) + 2 − 7(k

′
)2 − (k

′
)4 +

1

1 − k2

2

(k
′
)2(5(k

′
)2 − 1)

]
.

For the last term in (3.20), we have

k
′
(1 + (k

′
)2) + 2 − 7(k

′
)2 − (k

′
)4 +

1

1 − k2

2

(k
′
)2(5(k

′
)2 − 1)

> k2(2 − 5(k
′
)2) + (k

′ − (k
′
)2)(1 + (k

′
)2) +

k2

2
(k

′
)2(5(k

′
)2 − 1) >

5

2
k4 > 0.

Thus (3.14) is proved.
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By using (3.10), it is easy to see that

d

dk
[EK] =

E2 − (k
′
)2K2

k(k′)2
,

which is positive by (3.9). This proves (3.15).

We calculate
d2

dk2
(EK) =

1

k2(k′)2

[
2(E − K)2 − (E2 − (k

′
)2K2)

1 − 2
3
k2

(k′)2

]
.

Note that

(E2 − (k
′
)2K2)

(
1 − 2

3
k2

)
− 2(k

′
)2(E − K)2

> (k
′
)2(E2 − K2)(1 − 2

3
k2) − 2(k

′
)2(E − K)2

= (k
′
)2(E − K)

[
(E + K)(1 − 2

3
k2) − 2(E − K)

]

= (k
′
)2(E − K)

[
K(3 − 2

3
k2) − (1 +

2

3
k2)E

]
> 0

by (3.9), which proves (3.16).

Finally, (3.17) and (3.18) follow from (3.13) – (3.16) by simple calculus.

�

Lemma 5. If l > π/
√

2 the equation (2.7) has a unique solution. If l ≤ π/
√

2 the equation (2.7) has

no solution.

Proof: The inequality (3.12) implies that to every k with 0 < k < 1 there belongs exactly one l > 0.

By definition 0 < k < 1 parameterizes all solutions of (2.7) with 1 < M <
√

2. Now (3.6) and (3.8)

imply that the solutions are also parameterized by π/
√

2 < l < +∞. For any l ≤ π/
√

2 the function

wl = 1 satisfies all requirements of (2.7) except w′(y) < 0 for 0 < y < l and therefore it is not a solution.

�
Remarks:

1.) Note that in Lemma 5 the functions with w(0) = M, M >
√

2 do not solve (2.7) since they do

not satisfy w(y) > 0 for all 0 < y < l. By Theorem 2, this would lead to an unstable solution of (1.5).

Therefore we do not study this type of solution any further.

2.) The solution with w(0) =
√

2 corresponds to l = +∞ and it does not solve (2.7) either, since

there is no 0 < l < +∞ with w
′
(l) = 0. Therefore this leads to a homoclinic connection which is defined

on the whole line.

Now we rewrite (3.11) as follows:

t = f(k) ≡ L2

8E(k)K(k)
+

(1 − k2

2
)K(k)

E(k)
, (3.21)

where f(k) is defined on (0, 1). By Lemma 4 and (3.8), we have

d2

dk2
f(k) > 0 (3.22)
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and

f(0) =
L2

8E(0)K(0)
+

K(0)

E(0)
=

L2

2π2
+ 1, (3.23)

lim
k→1,k<1

f(k) = +∞. (3.24)

By (3.22), (3.23) and (3.24), the function f(k) is strictly convex and attains a unique minimum at a

point k0 ∈ (0, 1) such that

f
′
(k0) =

L2

8

d

dk

(
1

2E(k)K(k)

)∣∣∣∣∣
k=k0

+
d

dk

⎛
⎝(1 − k2

2
)K

E

⎞
⎠
∣∣∣∣∣∣
k=k0

= 0.

Furthermore, by strict convexity, for k < k0, f
′
(k) < 0 and for k > k0, f

′
(k) > 0.

Let us denote

t1(L) = min
k∈(0,1)

f(k), t2(L) = f(0) =
L2

2π2
+ 1. (3.25)

Correspondingly, we define

µ1(L) =
t1

t1 − 1
, µ2(L) =

t2
t2 − 1

= 1 +
2π2

L2
. (3.26)

Summarizing these results, we obtain

Lemma 6. Let L be fixed and t1 < t2 be given in (3.25). Then we have

(a) Problem (3.11) has a solution if and only if t ≥ t1.

(b) For t = t1, problem (3.11) has a unique solution k0 and we have f
′
(k0) = 0.

(c) For t1 < t < t2, problem (3.11) has two solutions k1 < k2. Moreover, we have

f
′
(k1) < 0, f

′
(k2) > 0. (3.27)

(d) For t ≥ t2, problem (3.11) has a unique solution k0 and we have f
′
(k0) > 0.

Going back to (2.9), we express the results of Lemma 6 in terms of L and µ
′
.

Lemma 7. Let L be fixed and µ1 > µ2 be given in (3.26). Then we have

(a) Problem (2.9) has a solution if and only if 1 < µ
′ ≤ µ1.

(b) For µ
′
= µ1, problem (2.9) has a unique solution l0 and we have df̃

dl
(l0) = 0.

(c) For µ2 < µ
′
< µ1, problem (2.9) has two solutions l1 < l2. Moreover, we have

df̃

dl
(l1) < 0,

df̃

dl
(l2) > 0, (3.28)

where

f̃(l) = l2 − tl
∫ l

0
w2

l dy +
L2

4
. (3.29)

(d) For 1 < µ
′ ≤ µ2, problem (2.9) has a unique solution l0 and we have df̃

dl
(l0) > 0.

Theorem 1 now follows from Lemma 7.

Thus we have rigorously derived a complete picture of the existence of periodic solutions with A > 0.
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4. Spectral analysis and a key identity

Let wl be the unique solution of (2.7). We define the linear operator:

L[φ] = φ
′′ − φ + 3w2

l φ, φ ∈ Xl,

where

Xl =

{
φ ∈ H1 (−l, l)

∣∣∣∣∣φ(−x) = φ(x), φ
′
(−l) = φ

′
(l) = 0

}
, (4.1)

or equivalently by a slight double use of notation

Xl =

{
φ ∈ H1 (0, l)

∣∣∣∣∣ φ
′
(0) = φ

′
(l) = 0}

In this section, we analyze the spectrum of L. The following lemma will be useful in the study of the

stability of solutions of (1.5).

Lemma 8. Consider the following eigenvalue problem:{ Lφ = λφ, 0 < y < l,
φ

′
(0) = φ

′
(l) = 0.

(4.2)

Then λ can be arranged in such a way that

λ1 > 0, λj < 0, j = 2, ... . (4.3)

Moreover, the eigenfunction corresponding to λ1 (denoted by Φ1) can be made positive.

Proof: Let the eigenvalues of L be arranged by λ1 ≥ λ2 ≥ ... . It is well-known that λ1 > λ2 and that

the eigenfunction corresponding to λ1 can be made positive. Moreover,

− λ1 = min∫ l

0
φ2 dy=1

(∫ l

0
[|φ′ |2 + φ2 − 3w2

l φ
2] dy

)
(4.4)

≤
(∫ l

0
w2

l dy

)−1 (∫ l

0
[|w′

l|2 + w2
l − 3w2

l w
2
l ] dy

)
< 0.

Next we claim that λ2 ≤ 0. This follows from a classical argument (see Theorem 2.11 of [6]). For the

sake of completeness, we include a proof here. By the variational characterization of λ2, we have

− λ2 = (4.5)

= sup
v∈H1(I)

inf
φ∈H1(I),φ�≡0

⎡
⎣∫ l

0((φ
′
)2 + φ2 − 3w2

l φ
2) dy∫ l

0 φ2 dy

∣∣∣∣∣∣v �≡ 0,
∫ 1

0
φv dy = 0

⎤
⎦.

On the other hand, wl has least energy, that is

E[wl] = inf
u �≡0,u∈H1(I)

E[u],

where

E[u] =

∫ l
0((u

′
)2 + u2) dy

(
∫ l
0 u4 dy)

1
2

. (4.6)

Let

h(t) = E[wl + tφ], φ ∈ H1(0, l).
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Then h(t) attains its minimum at t = 0 and hence

h
′′
(0) = 2

⎡
⎣ ∫ l

0
(|φ′|2 + φ2) dy − 3

∫ l

0
w2

l φ
2 dy + 2

(
∫ l
0 w3

l φ dy)2∫ l
0 w4

l dy

⎤
⎦

× 1(∫ l
0 w4

l dy
)1/2

≥ 0.

By (4.5), we see that

−λ2 ≥ inf∫ l

0
φw3

l
=0,φ�≡0

⎡
⎣ ∫ l

0
(|φ′|2 + φ2) dy − 3

∫ l

0
w2

l φ
2 dy + 2

(
∫ l
0 w3

l φ dy)2∫ l
0 w4

l dy

⎤
⎦

× 1∫ l
0 φ2 dy

≥ 0.

Finally we claim that λ2 < 0. But this follows from the proof of uniqueness of wl, see Lemma 5.

�
By Lemma 8, L−1 exists and hence L−1wl is well-defined. Our next goal in this section is to compute

the integral
∫ l
0 wlL−1wl dy and thus to derive the following key identity.

Lemma 9. We have∫ l

0
wl(L−1wl) dy =

1

4

∫ l

0
w2

l dy +
1

4
l
d

dl

∫ l

0
w2

l dy =
1

4

d

dl

(
l
∫ l

0
w2

l dy

)
. (4.7)

Proof:

Let us denote φl = L−1wl. Then φl satisfies

φ
′′
l − φl + 3w2

l φl = wl, φ
′
l(0) = φ

′
l(l) = 0.

Set

φl =
1

2
wl +

1

2
yw

′
l(y) + Ψ. (4.8)

Then Ψ(y) satisfies

Ψ
′′ − Ψ + 3w2

l Ψ = 0,

Ψ
′
(0) = 0, Ψ

′
(l) = −1

2
lw

′′
l (l). (4.9)

On the other hand, let Ψ0 = ∂wl

∂M
. Then Ψ0 satisfies

Ψ
′′
0 − Ψ0 + 3w2

l Ψ0 = 0, (4.10)

Ψ0(0) = 1, Ψ
′
0(0) = 0.

Integrating (4.10), we have

Ψ
′
0(l) =

∫ l

0

∂wl

∂M
dy − 3

∫ l

0
w2

l

∂wl

∂M
dy

=
d

dM

(∫ l

0
(wl − w3

l ) dy

)
− (wl(l) − w3

l (l))
dl

dM
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Using the equation for wl, we have
∫ l
0(wl − w3

l ) dy = 0. Thus we obtain

Ψ
′
0(l) = −(wl(l) − w3

l (l))
dl

dM
. (4.11)

Comparing (4.9) and (4.11), we derive the following important relation:

Ψ(x) =
1

2

l
dl

dM

Ψ0(x). (4.12)

Hence, we have ∫ l

0
wlφl dy =

∫ l

0

(
1

2
wl +

1

2
yw

′
l + Ψ

)
wl dy

=
1

4

∫ l

0
w2

l dy +
1

4
lw2

l (l) +
l

2

(
dl

dM

)−1 ∫ l

0
wlΨ0 dy. (4.13)

On the other hand, ∫ l

0
wlΨ0 dy =

∫ l

0
wl

∂wl

∂M
dy

=
1

2

d

dM

∫ l

0
w2

l dy − 1

2
w2

l (l)
dl

dM

=
1

2

⎡
⎣ d

dl

∫ l

0
w2

l dy − 1

2
w2

l (l)

⎤
⎦ dl

dM
. (4.14)

Substituting (4.14) into (4.13), we obtain that∫ l

0
wlφl dy =

1

4

∫ l

0
w2

l dy +
1

4
l
d

dl

∫ l

0
w2

l dy (4.15)

=
1

4

d

dl

(
l
∫ l

0
w2

l dy

)
.

This finishes the proof of the lemma.

�

5. A nonlocal eigenvalue problem

Let (A,B) be the solution of (1.2) with minimal period L. By Lemma 13 given in the appendix, to

study the stability or instability of (A,B), we just need to consider the following nonlocal eigenvalue

problem {
φxx − aφ + 3bA2φ − 2µ

′
< Aφ > A = λφ, −L

2
< x < L

2
,

φ ∈ XL,
(5.1)

where

XL =

{
φ ∈ H1

(
−L

2
,
L

2

) ∣∣∣∣∣φ(−x) = φ(x), φ
′
(
−L

2

)
= φ

′
(

L

2

)
= 0

}
.

Since φ(−x) = φ(x), we may assume that φ
′
(0) = 0 and solve (5.1) for 0 < x < L

2
.

Recall the following relation,

A(x) =
l

L(
√

µ′ − 1)
wl

(
2lx

L

)
.
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By scaling

y =
2l

L
x, Φ(y) = φ(x) (5.2)

it is easy to see that (5.1) is equivalent to the following{
Φyy − Φ + 3w2

l Φ − γ(
∫ l
0 wlΦ dy)wl = λΦ, 0 < y < l,

Φy(0) = Φy(l) = 0,
(5.3)

where

γ =
2µ

′

l(µ′ − 1)
=

2t

l
> 0 (5.4)

and wl is the unique solution of (2.7). (Note that (5.3) is self-adjoint.)

In this section, we give a complete study of (5.3).

We first have

Lemma 10. λ = 0 is an eigenvalue of (5.3) if and only if

γ
∫ l

0
wlL−1wl dy = 1. (5.5)

Proof: Suppose λ = 0. Then we have

0 = L[Φ] − γ

(∫ l

0
wlΦ dy

)
wl

which implies that

Φ = γ

(∫ l

0
wlΦ dy

)
L−1wl. (5.6)

Multiplying (5.6) by wl and integrating, we obtain (5.5) since
∫ l
0 wlΦ dy �= 0 (as otherwise LΦ = 0 and

hence Φ = 0).

�
The following is the main result of this section:

Lemma 11. All eigenvalues of (5.3) are real and

(a) if γ
∫ l
0 wlL−1wl dy > 1, then for all eigenvalues of (5.3) we have λ < 0;

(b) if γ
∫ l
0 wlL−1wl dy = 1, then for all eigenvalues of (5.3) we have λ ≤ 0 and zero is an eigenvalue

of (5.3) with eigenfunction L−1wl;

(c) if γ
∫ l
0 wlL−1wl dy < 1, then there exists an eigenvalue λ0 > 0 of (5.3).

From Lemma 11, we see that γ
∫ l
0 wlL−1wl dy = 1 is the borderline case between stability and insta-

bility of (5.3).

Proof: The nonlocal eigenvalue problem (5.3) is self-adjoint and hence all eigenvalues are real. Let

λ ≥ 0 be an eigenvalue of (5.3). We first claim that λ �= λ1, where λ1 is the first eigenvalue of L given

by Lemma 8. In fact, if λ = λ1, then we have

γ
∫ l

0
wlΦ1 dy = 0,
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where Φ1 is the eigenfunction to the eigenvalue λ1 for the operator L. This implies∫ l

0
wlΦ1 dy = 0,

which is impossible since Φ1 > 0.

So λ �= λ1. By Lemma 8, (L − λ)−1 exists and hence λ > 0 is an eigenvalue of (5.3) if and only if it

satisfies the following algebraic equation:

1 − γ
∫ l

0
[((L − λ)−1wl)wl] dy = 0. (5.7)

Let

ρ(t) = 1 − γ
∫ l

0
[((L − λ)−1wl)wl] dy, t ≥ 0, t �= λ1.

Then ρ(0) = 1 − γ
∫ l
0(wlL−1wl) dy and

ρ
′
(t) = −γ

∫ L

0
[((L − t)−2wl)wl] dy < 0.

On the other hand,

ρ(t) → −∞ as t → λ1, t < λ1

ρ(t) → +∞ as t → λ1, t > λ1

ρ(t) → 1 as t → +∞.

Thus ρ(t) > 0 for t > λ1 and ρ(t) has a (unique) zero in (0, λ1) if and only if ρ(0) > 0 which is

equivalent to 1 − γ
∫ l
0(wlL−1wl) dy > 0.

This proves the lemma.

�

6. The proof of Theorem 3

Now we can finish the proof of Theorem 3.

By Lemma 11, we have stability of (5.3) if

γ
∫ l

0
(wlL−1wl) dy > 1 (6.1)

and instability if

γ
∫ l

0
(wlL−1wl) dy < 1.

By Lemma 9, we have

γ
∫ l

0
(wlL−1wl) dy =

t d
dl

(l
∫ l
0 w2

l dy)

2l
. (6.2)

Thus (6.1) is equivalent to

2l − t
d

dl

(
l
∫ l

0
w2

l dy

)
< 0 (6.3)

which, by definition (3.29), is equivalent to

df̃

dl
< 0. (6.4)
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Thus, for µ2 < µ
′
< µ1, by Lemma 7(c), the solution with small period l1 is stable while the solution

with large period l2 is unstable. For µ
′ ≤ µ2, the only solution is unstable. When µ

′
= µ1, we have

f̃
′
(l) = 0 which implies that the only solution is neutrally stable.

When µ2 < µ
′
< µ1, let us compute the amplitude of A:

A(x) =
2l

L
√

µ′ − 1
wl

(
2lx

L

)
.

So the maximum of A(x) is given by

A(0) = max
x∈I

A(x) =
2l

L
√

µ′ − 1
wl(0)

=
2l

L
√

µ′ − 1
M

=
2

L
√

µ′ − 1

√
2 − k2K(k)

1√
1 − k2

2

=
2
√

2

L
√

µ′ − 1
K(k).

So if l1 < l2, then by (3.12) k1 < k2 and the maximum of A for l1 is smaller than the maximum of A

for l2.

Thus, for µ2 < µ
′
< µ1, the solution with small amplitude is stable and the one with large amplitude

is unstable.

This finishes the proof of Theorem 3.

7. Instability of other Solutions: The proof of theorem 2

In this section we will show that all other solutions with minimal period 2l must be unstable. In fact,

let w be any solution of the following ordinary equation:

w
′′ − w + w3 = 0, w

′
(0) = w

′
(l) = 0 (7.1)

and consider its associated eigenvalue problem{ Lφ = φ
′′ − φ + 3w2φ = λφ, 0 < y < l,

φ
′
(0) = φ

′
(l) = 0.

(7.2)

The Morse index of the a solution w of (7.1) is the number of positive eigenvalues of (7.2).

Since wl is the unique positive solution of (7.1) it has least energy under all solutions of (7.1) and

hence its Morse index is 1.

We claim that

Lemma 12. All other solutions of (7.1) have Morse index at least 2.

Proof: Let w �= wl be a solution of (7.1). Let λ1 > 0 be the principal eigenvalue of w. The associated

eigenfunction Φ1 can be made positive. By definition,

− λ2 = inf
φ∈H1(0,l),φ�≡0,

∫ l

0
Φ1φ dy=0

∫ l
0[(φ

′
)2 + φ2 − 3w2φ2] dy∫ l

0 φ2 dy
. (7.3)
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We now show that λ2 > 0. There are two cases to be considered.

Case 1. w is a changing-sign solution. In this case, we suppose that w(x) > 0, x ∈ (0, x1) and

w(x) < 0, x ∈ (x1, x2) where x2 ≤ l. We may assume that w(x1) = 0 and w(x2) = 0 if x2 < l and

w
′
(x2) = 0 if x2 = l. Now let φ(x) = c1w(x), x ∈ (0, x1) and φ(x) = c2w(x), x ∈ (x1, x2). We can choose

the two constants c1, c2 such that ∫ l

0
Φ1φ dy = 0.

Then, by simple computations, we have∫ l

0

[
(φ

′
)2 + φ2 − 3w2φ2

]
dy < 0

which implies that −λ2 < 0 and hence λ2 > 0.

Case 2. w is a positive solution. Since w �= wl, w
′
must change sign. We may assume that w

′
< 0, x ∈

(0, x1) and w
′
> 0, x ∈ (x1, x2). Furthermore, we may also assume that w

′
(x1) = 0 and w

′
(x2) = 0.

Then similar to Case 1, we take φ = c1w
′
(x), x ∈ (0, x1) and φ(x) = c2w

′
(x), x ∈ (x1, x2), where the

constants c1, c2 are chosen such that
∫ l
0 Φ1φ dy = 0. Then, by simple computations, we have∫ l

0
((φ

′
)2 + φ2 − 3w2φ2) dy ≤ 0

and hence −λ2 ≤ 0 and λ2 ≥ 0. If λ2 = 0, then φ(x) becomes an eigenfunction which satisfies (7.2) and

hence is smooth. This is impossible since φ is not smooth at x1 (as otherwise w
′
(x1) = w

′′
(x1) = 0 and

hence w ≡ 1).

�
From Lemma 12 it follows that the Morse index of all other solutions is at least 2. In other words,

problem (7.2) has at least two positive eigenvalues. Let λ1 be the principal eigenvalue and 0 < λ2 ≤ λ1

be the second eigenvalue. Let the corresponding eigenfunctions be Φ1, Φ2. Since λ1 is the principal

eigenvalue, we may assume that Φ1 > 0.

If
∫ l
0 wΦ2 dy = 0, we choose φ = Φ2. If

∫ l
0 wΦ2 dy �= 0, then we choose c such that∫ l

0
wΦ1 dy + c

∫ l

0
wΦ2 dy = 0

and

φ = Φ1 + cΦ2.

In any case, we obtain that
∫ l
0 wφdy = 0.

Then we have ∫ l

0

[
(φ

′
)2 + φ2 − 3w2φ2

]
dy − γ

(∫ l

0
wlφ dy

)2

(7.4)

=
∫ l

0

(
(φ

′
)2 + φ2 − 3w2

l φ
2
)

dy < 0,

which implies that for any constant γ there exists a positive eigenvalue to (5.3) and, by the scaling

argument in Section 5, also to (5.1). Now, by the reduction lemma (Lemma 13), all periodic solutions

of (1.5) which do not have minimal period L must be unstable.

This finishes the proof of Theorem 2.

�
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Appendix: The Linearized Operator – A Reduction Lemma

In this appendix, we derive the linearized operator to system (1.5) and study some of its properties.

In particular, we show that its eigenvalues must all be real and that the system of eigenvalue equations

reduces to a self-adjoint nonlocal eigenvalue problem. This is similar to our previous paper [8]. For the

sake of completeness, we include all this material in this Appendix.

To study the linear stability of (1.5), we perturb (A(x), B(x)) as follows:

Aε(x, t) = A(x) + εφ(x)eλLt, Bε(x, t) = B(x) + εψ(x)eλLt, (7.5)

where λL ∈ C – the set of complex numbers – and

φ, ψ ∈ XL,

where XL was defined at the beginning of Section 5.

Substituting (7.5) into (1.2) and considering the linear part, we obtain the following eigenvalue

problem: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φxx + (1 − B)φ − 3A2φ − Aψ = λLφ, −L
2

< x < L
2
,

ψxx + 2µ
′
(Aφ)xx = τλLψ, −L

2
< x < L

2
,

λL ∈ C, φ, ψ ∈ XL.

(7.6)

Let

ψ = −2µ
′
Aφ + 2µ

′
< Aφ > +τλLψ̂, (7.7)

where

< ψ̂ >= 0.

Equation (7.7) together with (7.6) implies

ψ̂xx − τλLψ̂ = −2µ
′
Aφ + 2µ

′
< Aφ > . (7.8)

Substituting (2.1) and (7.7) into the first equation of (7.6), we obtain that

φxx − aφ + 3bA2φ − 2µ
′
< Aφ > A − τλLAψ̂ = λLφ, −L

2
< x <

L

2
, (7.9)

where a and b are given by (2.3).

If τ = 0, then (7.9) becomes{
φxx − aφ + 3bA2φ − 2µ

′
< Aφ > A = λLφ, −L

2
< x < L

2
,

φ ∈ XL.
(7.10)

We now recall the following reduction lemma (Lemma 3 of [8]):

Lemma 13. (a) All eigenvalues of (7.6) are real.

(b) If all eigenvalues of (7.10) are negative, then all eigenvalues of (7.6) are negative.

(c) If problem (7.10) has a positive eigenvalue, then problem (7.6) also has a positive eigenvalue.

Lemma 13 implies that the stability and instability properties of (7.6) and (7.10) are the same. Thus

we have reduced our stability problem to the study of the self-adjoint nonlocal eigenvalue problem

(7.10).
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We first prove part (a). Multiplying (7.9) by φ – the conjugate function of φ – and integrating

over I, we obtain

λL

∫
I
|φ|2 dx = −

∫
I
[|φx|2 + a|φ|2 − 3bA2|φ|2] dx − 2µ

′

L

∣∣∣∣
∫

I
(Aφ) dx

∣∣∣∣2 (7.11)

−τλL

∫
I
Aψ̂φ dx.

Multiplying the conjugate of (7.8) by ψ̂ and integrating over R we get∫
I
Aφψ̂ dx =

1

2µ′

∫
I
|ψ̂x|2 dx +

τ λ̄L

2µ′

∫
I
|ψ̂|2 dx. (7.12)

Substituting (7.12) into (7.11) gives

λL

∫
I
|φ|2 dx +

∫
I
[|φx|2 + a|φ|2 − 3bA2|φ|2] dx +

2µ
′

L

∣∣∣∣
∫

I
(Aφ) dx

∣∣∣∣2

+
τλL

2µ′

∫
I
|ψ̂x|2 dx +

τ 2|λL|2
2µ′

∫
I
|ψ̂x|2 dx = 0. (7.13)

Taking the imaginary part of (7.13), we obtain

λi

(∫
I
|φ|2 dx +

τ

2µ′

∫
I
|ψ̂x|2 dx

)
= 0, (7.14)

where λL = λr +
√−1λi.

Equation (7.14) implies

λi = 0 (7.15)

and therefore λL is real. Since the spectrum of (7.9) coincides with that of (7.6) the proof of part (a)

is complete.

Next we prove parts (b) and (c) of Lemma 13. We use variational techniques. To this end, we

need to introduce two quadratic forms: Let

L[φ] =
∫

I
(|φx|2 + a|φ|2 − 3bA2|φ|2) dx +

2µ
′

L

∣∣∣∣
∫

I
Aφdx

∣∣∣∣2 , φ ∈ XL (7.16)

and

Lλ[φ] = L[φ] +
τλ

2µ′

∫
I
(|ψ̂x|2 + τλ|ψ̂|2) dx, (7.17)

where ψ̂ is the unique solution of the problem{
ψ̂

′′ − τλψ̂ = −2µ
′
Aφ + 2µ

′
< Aφ >,

ψ̂ ∈ XL, < ψ̂ >= 0.
(7.18)

Observe that for τ ≥ 0 and λ ≥ 0

L0[φ] = L[φ], L[φ] ≤ Lλ[φ]. (7.19)

To prove (b), we note that if all eigenvalues of (7.10) are neative, then the quadratic form L[φ] is

positive definite, which by (7.19) yields that Lλ is positive definite if λ ≥ 0. Let λ ≥ 0 be an eigenvalue

of (7.6), then, by (7.13), we obtain that

λ
∫

I
|φ|2 dx + Lλ[φ] = 0 (7.20)
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which is clearly impossible if λ ≥ 0. Thus we have shown that all eigenvalues of (7.6) must be negative.

To prove (c), suppose that (7.10) has a positive eigenvalue. Then the eigenvalue problem

− µL = min
φ∈XL,

∫
I

φ2 dx=1
L[φ] (7.21)

has a positive value µL > 0. We now claim that (7.6) admits a positive eigenvalue.

Fixing λ ∈ [0, +∞), let us consider another eigenvalue problem

− µ(λ) = min
φ∈XL,

∫
I

φ2 dx=1
Lλ[φ]. (7.22)

A minimizer φ of (7.22) satisfies the equation

φxx − aφ + 3bA2φ − 2µ
′
< Aφ > A − Aψ̂ = µ(λ)φ, φ ∈ XL, (7.23)

where ψ̂ is given by (7.18).

By (7.19), −µ(λ) ≥ −µL. Hence µ(λ) ≤ µL. Moreover, since ψ̂ is continuous with respect to λ in

[0, +∞), we see that µ(λ) is also continuous in [0, +∞).

Let us consider the following algebraic equation

h(λ) := µ(λ) − λ = 0, λ ∈ [0, +∞). (7.24)

By our assumption, h(0) = µ(0) = µL > 0. On the other hand, for λ > 2µL, h(λ) ≤ µL−λ < −µL < 0.

By the mean-value theorem, there exists a λL ∈ (0, µL) such that h(λL) = 0.

Substituting µ(λL) = λL into (7.23), we see that λL is an eigenvalue of problem (7.6).

Part (c) of Lemma 13 is thus proved.

�
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