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This paper is concerned with the random attractors for a class of second-order stochastic lattice dynamical systems. We first prove
the uniqueness and existence of the solutions of second-order stochastic lattice dynamical systems in the space 𝐹 = 𝑙2

𝜆
× 𝑙

2. Then, by
proving the asymptotic compactness of the random dynamical systems, we establish the existence of the global random attractor.
The system under consideration is quite general, and many existing results can be regarded as the special case of our results.

1. Introduction

We consider the following second-order stochastic lattice
dynamical system:

𝑢̈ + 𝜉𝐴𝑢̇ + ℎ (𝑢̇) + 𝐴𝑢 + 𝜂𝑢 + 𝑓 (𝑢) = 𝑔 + 𝑊̇ (𝑡) ,

𝑡 > 0,

𝑢 (0) = (𝑢
𝑖,0
)
𝑖∈Z𝑛

= 𝑢
0
, 𝑢̇ (0) = (𝑢

1𝑖,0
)
𝑖∈Z𝑛

= 𝑢
10
,

(1)

where 𝑢 = (𝑢
𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2, 𝑢̇ = (𝑢̇
𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2 are real-value
functions on R+; 𝜉 = (𝜉

𝑖
)
𝑖∈Z𝑛 and 𝜂 = (𝜂

𝑖
)
𝑖∈Z𝑛 are given

vectors satisfying bounded conditions; 𝑔 = (𝑔
𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2;
𝑓(𝑢) = (𝑓

𝑖
(𝑢

𝑖
))

𝑖∈Z𝑛 and ℎ(𝑢̇) = (ℎ
𝑖
(𝑢̇

𝑖
))

𝑖∈Z𝑛 are nonlinear
terms satisfying some growth assumptions to be given later;
𝐴 is the linear operator on 𝑙

2. In (1), 𝑊(𝑡) = 𝑊(𝑡, 𝜔) =

∑
𝑖∈Z𝑛 𝑎𝑖𝑤𝑖

(𝑡, 𝜔)𝑒
𝑖
, where 𝑎 = (𝑎

𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2 and 𝑒
𝑖
∈ 𝑙

2

denotes the element having 1 at position 𝑖 and all the other
components 0 and {𝑤

𝑖
, 𝑖 ∈ Z𝑛

} are independent two-side
Brownian motions.

Lattice dynamical systems (LDSs) are infinite systems of
ordinary differential equations, modeled on an underlying
spatial lattice with some regular structure, for example, the
integer lattice in the plane. Such systems arise as models in
many applications, including image processing and pattern

recognition, electrical engineering laser systems, biology, and
material science; see [1–8] and the references therein. LDSs
in one sense lie between ordinary and partial differential
equations, but very often they exhibit new phenomena not
found in either of these fields. LDSs raise a host of challenges
to the researcher and are of broad interest to scientists and
mathematicians.

So far, various properties of solutions about LDSs have
been studied bymany authors, such as the traveling solutions,
the chaotic properties of solutions, and the phenomena of
synchronization (see, e.g., [4, 5, 9]). One of the most impor-
tant problems in mathematical physics is understanding
of the asymptotic behavior of dynamical systems. Global
attractor theory is an important tool to study the asymptotic
behavior of infinite dimensional systems. For dissipative
infinite dimensional dynamical systems given by partial
differential equations, global attractor theory has been well
developed; see [10, 11] and references therein. Recently, the
long-termbehavior of LDShas gained the extensive attention.
For the LDSs without noise, the first result on existence of
global attractors was established by Bates et al. in [12]. Since
then, much work has been done for either first-order or
second-order deterministic LDS (see, e.g., [12, 13]).

On the other hand, when modeling real world systems,
stochastic disturbance is probably one of the main resources
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of the performance degradations of the dynamical systems,
since the actual dynamic behavior is very often a noisy
process brought on by randomfluctuations fromprobabilistic
causes. Stochastic systems have found successful applications
in more and more branches of science and engineering.
Random attraction as an interesting dynamic behavior has
received increasing research attention. For stochastic partial
differential equations, Ruelle has initiated the study of global
random attractors in [14]. And the fundamental theory of
global attractors for stochastic partial differential equations
has been established and developed by Crauel, Debussche,
Flandoli, Schmalfuss, and others; see, for example, [15–18]
and the references therein. Very recently, much attention has
been focused on lattice dynamical system with stochastic
noises. Bates et al. [19] first studied the existence of global
random attractor for a class of first-order dynamical systems
driven by white noises on lattice Z. Then, Lv and Sun [20]
have extended the result in [19] to generalized first-order
stochastic systems on the lattice Z𝑘. For some latest results
on first-order random attractors, we refer readers to, for
example, [21] and the references therein.

For the second-order SLDS with stochastic noises on the
lattice Z or Z𝑘, the existence of the random attractor is
receiving the attention from research community [22, 23].
For example, [22] investigated the asymptotic behavior for
a class of second-order stochastic lattice dynamical systems
and proved the existence of the random attractor for the
concerned second-order SLDS. Paper [23] addressed the
asymptotic behavior of solutions to second-order SLDS with
random coupled coefficients and multiplicative white noises
in weighted spaces of infinite sequences and discussed the
existence of a tempered random bounded absorbing set and
a random attractor for the SLDS. However, the asymptotic
behavior of second-order SLDS has not yet been fully investi-
gated because of the technical complexity and remains open
and challenging. In this paper, based on the idea of [13, 19],
we aim to prove the existence of a global random attractor
for a class of second-order SLDS (1). It is worth pointing out
that the second-order SLDS considered in this paper is quite
general, andmany existing results can be viewed as the special
cases of our results.

This paper is organized as follows. In Section 2, we intro-
duce some basic concepts related to stochastic dynamical
systems and the global random attractor. Meanwhile, we
present some notations and give a simple description of
our system. In Section 3, Some bounded conditions and
assumptions of nonlinear terms are given, and the existence
and uniqueness of solutions of system (1) are established.
In Section 4, we prove the existence of an absorbing set. In
Section 5, we establish the existence conditions for a global
random attractor of system (1), and some concluding remarks
are given in Section 6.

2. Preliminaries and Equivalent Norm

2.1. Preliminaries. In this subsection, we recall some basic
concepts about randomdynamical systems and the definition
of random global attractor (see [17, 19, 24] for details).

Let (𝐻, ‖ ⋅ ‖
𝐻
) be a Hilbert space and (Λ,F,P) a

probability space. DenoteD as a collection of random subsets
of 𝐻. A continuous random dynamical system (𝑠(𝑡, 𝜔)) over
(Λ,F, P, (𝜃

𝑡
)
𝑡∈R) is defined as follows.

Definition 1. A stochastic process (𝑠(𝑡))
𝑡≥0

is a continuous
random dynamical system over (Λ, F, P, (𝜃

𝑡
)
𝑡∈R) if 𝑠(𝑡) is

(B[0,∞)×F×B(𝐻),B(𝐻))-measurable and, for all𝜔 ∈ Λ,

(S1) the mapping 𝑠(⋅, 𝜔)(⋅) : [0,∞] × 𝐻 → 𝐻 is
continuous;

(S2) 𝑠(0, 𝜔)(⋅) is the identity operator on𝐻;
(S3) 𝑠(𝑝 + 𝑡, 𝜔)(⋅) = 𝑠(𝑡, 𝜃

𝑝
𝜔) ∘ 𝑠(𝑝, 𝜔)(⋅) for all 𝑝, 𝑡 ≥ 0

(cocycle property).

Definition 2. A random bounded set 𝐵(𝜔) ⊂ 𝐻 is called
tempered with respect to (𝜃

𝑡
)
𝑡∈R, if, for all 𝜔 ∈ Λ,

lim
𝑡→∞

𝑒
−𝛽𝑡
𝑑 (𝐵 (𝜃

𝑡
𝜔)) = 0, ∀𝛽 > 0, (2)

where 𝑑(𝐵) = sup
𝑥∈𝐵

‖𝑥‖
𝐻
.

Definition 3. A random set 𝐾 is called an absorbing set inD
if, for all 𝐵 ∈ D and a.e. 𝜔 ∈ Λ, there exists 𝑡

𝐵
(𝜔) > 0 such

that

𝑠 (𝑡, 𝜃
−𝑡
𝜔) (𝐵 (𝜃

−𝑡
𝜔)) ⊂ 𝐾 (𝜔) , ∀𝑡 ≥ 𝑡

𝐵
(𝜔) . (3)

Definition 4. A random set A is called a global random (D)

attractor for 𝑠(𝑡) if the following hold:

(A1) A is a random compact set; that is, 𝜔 󳨃→ 𝑑(𝑥,A(𝜔))

is measurable for every 𝑥 ∈ 𝐻, and A(𝜔) is compact
for a.e. 𝜔 ∈ Λ;

(A2) A is a strictly invariant set;
(A3) A attracts all sets inD; that is, for all 𝐵 ∈ D and a.e.

𝜔 ∈ Λ one has

lim
𝑡→∞

𝑑 (𝑠 (𝑡, 𝜃
−𝑡
𝜔) (𝐵 (𝜃

−𝑡
𝜔)) ,A (𝜔)) = 0, (4)

where 𝑑(𝐴, 𝐵) = sup
𝑥∈𝐴

inf
𝑦∈𝐵

‖𝑥 − 𝑦‖
𝐻

is Hausdorff
semimetric (for any 𝐴 ⊆ 𝐻, 𝐵 ⊆ 𝐻). Also, the collectionD is
called the domain of attraction ofA.

The following theorem is needed to prove the existence of
global random attractor of system (1).

Theorem 5. Let𝐾 ∈ D be an absorbing set for the continuous
random dynamical system (𝑠(𝑡))

𝑡≥0
. Suppose the set𝐾 is closed

and, for a.e. 𝜔 ∈ Λ, 𝐾 satisfies the following asymptotic com-
pactness condition: each sequence 𝜙

𝑛
∈ 𝑠(𝑡

𝑛
, 𝜃

−𝑡
𝑛

)(𝐾(𝜃
−𝑡
𝑛

𝜔))

(when 𝑡 → ∞) has a convergent subsequence in 𝐻. Then,
𝑠(𝑡, 𝜔) has a unique global random attractor

A (𝜔) = ⋂

𝜏≥𝑡
𝐾
(𝜔)

⋃

𝑡≥𝜏

𝑠 (𝑡, 𝜃
−𝑡
𝜔) (𝐾 (𝜃

−𝑡
𝜔)). (5)

Proof. The proof of this theorem is similar to [12], so it is
omitted here.
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2.2. Equivalent Norm. Let

𝑙
2
= {𝑢 = (𝑢

𝑖
)
𝑖∈Z𝑛

| ∑

𝑖∈Z𝑛

𝑢
2

𝑖
< +∞,

𝑢
𝑖
∈ 𝑅, 𝑖 = (𝑖

1
, 𝑖

2
, . . . , 𝑖

𝑛
) ∈ Z

𝑛
} .

(6)

For all 𝑢, V ∈ 𝑙
2, we define the inner product (⋅, ⋅) and norm

‖ ⋅ ‖ as follows:

(𝑢, V) = ∑

𝑖∈Z𝑛

𝑢
𝑖
V
𝑖
, ‖𝑢‖

2
= (𝑢, 𝑢) = ∑

𝑖∈Z𝑛

𝑢
2

𝑖
. (7)

In this paper, we assume that the linear operator 𝐴 in (1)
can be decomposed as

𝐴 = 𝐴
1
+ 𝐴

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
, 𝐴

𝑗
= 𝐷

𝑗
𝐷

∗

𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

(8)

where 𝐷
𝑗
and 𝐷∗

𝑗
: 𝑙

2
→ 𝑙

2 are bounded linear operators
defined by

(𝐷
𝑗
𝑢)

𝑖
= 𝑢

(𝑖
1
,...,𝑖
𝑗
+1,...,𝑖

𝑛
)
− 𝑢

(𝑖
1
,...,𝑖
𝑗
,...,𝑖
𝑛
)
,

(𝐷
∗

𝑗
𝑢)

𝑖
= 𝑢

(𝑖
1
,...,𝑖
𝑗
−1,...,𝑖

𝑛
)
− 𝑢

(𝑖
1
,...,𝑖
𝑗
,...,𝑖
𝑛
)
.

(9)

It follows readily that

(𝐴
𝑗
𝑢)

𝑖
= 2𝑢

(𝑖
1
,...,𝑖
𝑗
,...,𝑖
𝑛
)
− 𝑢

(𝑖
1
,...,𝑖
𝑗
−1,...,𝑖

𝑛
)
− 𝑢

(𝑖
1
,...,𝑖
𝑗
+1,...,𝑖

𝑛
)
. (10)

For all 𝑢 = (𝑢
𝑖
)
𝑖∈Z𝑛 , V = (V

𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2, define the bilinear
forms by

(𝑢, V)
𝜆
= 𝛾

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
V) + 𝜆 (𝑢, V) ,

‖𝑢‖
2

𝜆
= 𝛾

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆 ‖𝑢‖
2
,

(11)

where 𝛾 = 1 − 𝜀𝜉 (𝜀 and 𝜉 are given constants).
Now, we prove that the spaces 𝑙2 = (𝑙2, (⋅, ⋅), ‖ ⋅ ‖) and 𝑙2

𝜆
=

(𝑙
2

𝜆
, (⋅, ⋅)

𝜆
, ‖ ⋅ ‖

𝜆
) are equivalent spaces.

Lemma 6. The two bilinear forms (⋅, ⋅), (⋅, ⋅)
𝜆
in (7) and (11)

are both the inner products, and the resulting norms ‖ ⋅ ‖ in (7)
and ‖ ⋅ ‖

𝜆
in (11) are equivalent.

Proof. It is easy to check that the two bilinear forms (⋅, ⋅) and
(⋅, ⋅)

𝜆
are both the inner products. We now only need to show

that the norms ‖ ⋅ ‖ and ‖ ⋅ ‖
𝜆
are equivalent. Noticing that

𝜆 ‖𝑢‖
2
≤ ‖𝑢‖

2

𝜆
= 𝛾

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆 ‖𝑢‖
2
,

‖𝑢‖
2

𝜆
= 𝛾

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑗
𝑢
󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆 ‖𝑢‖
2

≤ 𝛾

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑖
1
,...,𝑖
𝑗
+1,...,𝑖

𝑛
)
− 𝑢

(𝑖
1
,...,𝑖
𝑗
,...,𝑖
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 𝜆 ‖𝑢‖
2

≤ (4𝑛𝛾 + 𝜆) ‖𝑢‖
2
,

(12)

it follows that the norms ‖ ⋅ ‖ and ‖ ⋅ ‖
𝜆
are equivalent. The

proof is completed.

Let𝐹 = 𝑙2
𝜆
×𝑙

2, where 𝑙2
𝜆
:= (𝑙

2

𝜆
, (⋅, ⋅)

𝜆
, ‖⋅‖

𝜆
). FromLemma 6,

we know that 𝐹 = 𝑙2
𝜆
× 𝑙

2 is a Hilbert space.

3. Existence and Uniqueness of Solutions

In this section, we will deal with the existence and uniqueness
of solutions of system (1). For system (1), we make the
following assumption (bounded conditions).

(C1):

0 < 𝜉 ≤ 𝜉
𝑖
≤ 𝜉 < +∞, 0 < 𝜆 ≤ 𝜂

𝑖
≤ 𝜂 < +∞,

𝑖 = (𝑖
1
, 𝑖

2
, . . . , 𝑖

𝑛
) ∈ Z

𝑛
,

(13)

where 𝜆, 𝜂, 𝜉, and 𝜉 are known positive constants;
(C2): For all 𝑖 ∈ Z𝑛, 𝑓

𝑖
(𝑠) ∈ 𝐶

1
(R) and for each of

bounded sets 𝐵, sup
𝑠∈𝐵
|𝑓

󸀠

𝑖
(𝑠)| < +∞; moreover,

𝑓
𝑖
(𝑠) 𝑠 ≥ 𝑐

1
𝑉
𝑖
(𝑠) ≥ 𝑐

2 |𝑠|
2𝑝+2

≥ 0, ∀𝑠 ∈ R, 𝑖 ∈ Z
𝑛
, (14)

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑠)
󵄨󵄨󵄨󵄨 ≤ 𝑐2 (|𝑠|

2𝑝+1
+ |𝑠|) , ∀𝑠 ∈ R, 𝑖 ∈ Z

𝑛
, (15)

where 𝑐
1
, 𝑐

2
, and 𝑝 are positive constants and 𝑉

𝑖
(𝑠) =

∫
𝑠

0
𝑓
𝑖
(𝑡)𝑑𝑡;
(C3): Assume ℎ

𝑖
∈ 𝐶

1
((R, Λ),R). For all𝜔 ∈ Λ, ℎ

𝑖
(0, 𝜔) =

0. Furthermore, there exist constants 𝛼 and 𝛽 such that

0 < 𝛼 ≤ ℎ
󸀠

𝑖
(𝑥, 𝜔) ≤ 𝛽 < +∞, ∀𝑥 ∈ R, 𝜔 ∈ Λ, 𝑖 ∈ Z

𝑛
.

(16)

Also, ℎ
𝑖
satisfies cocycle property

ℎ
𝑖
(𝑡 + 𝜏, 𝜔) = ℎ

𝑖
(𝑡, 𝜃

𝜏
𝜔) + ℎ

𝑖
(𝜏, 𝜔) ,

∀𝜏, 𝑡 ≥ 0, 𝜔 ∈ Λ, 𝑖 ∈ Z
𝑛
;

(17)

(C4):

𝑔 = (𝑔
𝑖
)
𝑖∈Z𝑛

∈ 𝑙
2
. (18)
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(C5):𝑊(𝑡) is a Brownianmotion with values in 𝑙2 defined
on the probability space (Λ,F,P), where Λ = {𝜔 ∈

𝐶(R, 𝑙2) : 𝜔(0) = 0}, F is a complete 𝜎-algebra, and P

is the corresponding Wiener measure on F. To be specific,
𝑊(𝑡) = 𝑊(𝑡, 𝜔) = ∑

𝑖∈Z𝑛 𝑎𝑖𝑤𝑖
(𝑡, 𝜔)𝑒

𝑖
, where 𝑎 = (𝑎

𝑖
)
𝑖∈Z𝑛 ∈ 𝑙

2

and 𝑒
𝑖
∈ 𝑙

2 denotes the element being 1 at position 𝑖 and all the
other components being 0 and {𝑤

𝑖
, 𝑖 ∈ Z𝑛

} are independent
of the two-side Brownian motions.

Remark 7. As pointed out in [19], the function 𝑓(𝑠) = |𝑢|
2𝑝
𝑢

satisfies condition (C2).

Next, we show the existence and uniqueness of the
solution to system (1) under assumptions (C1)–(C5).

Let 𝜑 = (𝑢, V)𝑇 where V = 𝑢̇ + 𝜖𝑢 − 𝑊, 𝑢 ∈ 𝑙
2 and 𝜖 =

𝛼𝜆/(𝛽
2
+ 4𝜆), and (4𝑝+ 2)/(4𝑝+ 3) ≤ 𝜖 ≤ 1. Equation (1) can

be rewritten as the following equation with initial condition:

𝜑̇ = 𝐶 (𝜑) + 𝐸 (𝜑) + 𝐺 (𝜑) ,

𝜑 (0) = (𝑢
0
, 𝑢

10
+ 𝜖𝑢

0
)
𝑇

,

(19)

where

𝐶 (𝜑) = (
−𝜖 1

𝜖𝜉𝐴 − 𝐴 − 𝜂 − 𝜖
2
−𝜉𝐴 + 𝜖

)𝜑,

𝐺 (𝜑) = (
0

−𝑓 (𝑢) + 𝑔
) ,

𝐸 (𝜑) = (
𝑊

(−𝜉𝐴 + 𝜖)𝑊 − ℎ (V − 𝜖𝑢 +𝑊)
) .

(20)

Lemma 8. For all 𝜔 ∈ Λ, if conditions (C1)–(C5) hold, then
the operators 𝐸 and 𝐺 in (19) map 𝐹 = 𝑙

2

𝜆
× 𝑙

2 into themselves,
and they are locally Lipschitz on 𝐹.

Proof. From the above assumptions, it follows that
󵄩󵄩󵄩󵄩𝑓(𝑢)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑓 (𝑢) − 𝑓 (0)

󵄩󵄩󵄩󵄩

2

= ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑢𝑖) − 𝑓𝑖 (0)
󵄨󵄨󵄨󵄨

2

= ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑖
(𝜃

𝑖
𝑢
𝑖
)
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2

≤ ( sup
𝑟∈[−‖𝑢‖,‖𝑢‖]

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑟)
󵄨󵄨󵄨󵄨󵄨
)

2

‖𝑢‖
2
.

(21)

By the definition of𝑊(𝑡), for all 𝜔 ∈ Λ, we have

‖ℎ (V − 𝜖𝑢 +𝑊)‖
2
= ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨ℎ𝑖 (V𝑖 − 𝜖𝑢𝑖 + 𝑎𝑖𝑤𝑖
(𝑡, 𝜔))

󵄨󵄨󵄨󵄨

2

= ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

𝑖
[𝜃

𝑖
(V

𝑖
− 𝜖𝑢

𝑖
+ 𝑎

𝑖
𝑤

𝑖
(𝑡, 𝜔))]

󵄨󵄨󵄨󵄨󵄨

2

×
󵄨󵄨󵄨󵄨V𝑖 − 𝜖𝑢𝑖 + 𝑎𝑖𝑤𝑖

(𝑡, 𝜔)
󵄨󵄨󵄨󵄨

2

≤ 𝛽
2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨V𝑖 − 𝜖𝑢𝑖 + 𝑎𝑖𝑤𝑖
(𝑡, 𝜔)

󵄨󵄨󵄨󵄨

2

≤ 3𝛽
2
(‖V‖2 + 𝜖2 ‖𝑢‖2 + ‖𝑊 (𝑡, 𝜔)‖

2
) ,

(22)

where 𝜃
𝑖
∈ (0, 1), 𝑖 = (𝑖

1
, 𝑖

2
, . . . , 𝑖

𝑛
) ∈ Z𝑛. Hence, we can infer

that 𝑓(𝑢), ℎ(V−𝜖𝑢+𝑊) ∈ 𝑙
2 for all 𝑢 = (𝑢

𝑖
)
𝑖∈Z𝑛 , V = (V𝑖)𝑖∈Z𝑛 ∈

𝑙
2
, 𝜔 ∈ Λ.
Let 𝐵 be a bounded set in 𝐹, 𝜑

𝑗
= (𝑢

𝑗
, V

𝑗
) =

((𝑢
(𝑗)

𝑖
), (V(𝑗)

𝑖
))

𝑖∈Z𝑛 ∈ 𝐵, 𝑗 = 1, 2. Similar to the derivation of
(21) and (22), there exists a constant 𝐿(𝐵) dependent on the
bounded set 𝐵 such that

󵄩󵄩󵄩󵄩𝐺 (𝜑1
) − 𝐺 (𝜑

2
)
󵄩󵄩󵄩󵄩

2

𝐹
=
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑢

(1)
) − 𝑓 (𝑢

(2)
)
󵄩󵄩󵄩󵄩󵄩

2

= ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑢

(1)

𝑖
) − 𝑓

𝑖
(𝑢

(2)

𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐿 (𝐵)
󵄩󵄩󵄩󵄩󵄩
𝑢
(1)
− 𝑢

(2)󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐿 (𝐵)
󵄩󵄩󵄩󵄩𝜑1

− 𝜑
2

󵄩󵄩󵄩󵄩

2

𝐹
,

󵄩󵄩󵄩󵄩𝐸 (𝜑1
) − 𝐸 (𝜑

2
)
󵄩󵄩󵄩󵄩

2

𝐹
=
󵄩󵄩󵄩󵄩󵄩
ℎ (V(1) − 𝜖𝑢(1) +𝑊)

−ℎ (V(2) − 𝜖𝑢(2) +𝑊)
󵄩󵄩󵄩󵄩󵄩

2

≤ 2𝛽
2
(
󵄩󵄩󵄩󵄩󵄩
V(1) − V(2)

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜖
2 󵄩󵄩󵄩󵄩󵄩
𝑢
(1)
− 𝑢

(2)󵄩󵄩󵄩󵄩󵄩

2

)

≤ 2𝛽
2
(1 +

𝜖
2

𝜆
)
󵄩󵄩󵄩󵄩𝜑1

− 𝜑
2

󵄩󵄩󵄩󵄩

2

𝐹
.

(23)

The above two inequalities imply that 𝐸 and 𝐺 are locally
Lipschitz on 𝐹, and the proof is then complete.

Theorem9. If (C1)–(C5) hold, then, for any initial data𝜑(0) =
(𝑢

0
, 𝑢

10
+ 𝜖𝑢

0
)
𝑇
∈ 𝐹, there exists a unique local solution 𝜑(𝑡) =

(𝑢(𝑡), V(𝑡))𝑇 of (19) such that 𝜑 ∈ L2
(Λ, 𝐶([0, 𝑇], 𝐹)), where 𝑇

is a positive constant. In addition, for all 𝜔 ∈ Λ, we have the
following estimate:

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝑀

2

󵄩󵄩󵄩󵄩𝜑 (0)
󵄩󵄩󵄩󵄩

2

𝐹

+𝑀
1
∫

𝑇

0

(‖𝑊 (𝑡, 𝜔)‖
2
+ ‖𝑊 (𝑡, 𝜔)‖

2𝑝+2

+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

) 𝑑𝑡,

(24)

where

𝑀
1
= max{ 1

2𝜎 + 𝛼
,

𝑐
2

𝑝 + 1
,
4𝑛𝛾𝜆 + 𝜆

2
+ 𝑐

2

2

𝜎𝜆
} ,

𝑀
2
= 1 +

2

𝑐
1
𝜆

max
𝑠∈[−‖𝑢(0)‖,‖𝑢(0)‖]

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
.

(25)

Moreover, the solution of (19) depends continuously on the
initial data 𝜑(0); that is, for each 𝜔 ∈ Λ, the mapping 𝜑(0) ∈
𝐹 󳨃→ 𝜑(⋅, 𝜔, 𝜑(0)) ∈ 𝐶([0, 𝑇], 𝐹) is continuous.

Proof. Taking the inner product (⋅, ⋅)
𝐹
of (19) with 𝜑(𝑡) =

(𝑢(𝑡), V(𝑡))𝑇 = (𝑢(𝑡), 𝑢̇(𝑡) + 𝜖𝑢 +𝑊)
𝑇
∈ 𝐹, we have

(𝜑̇, 𝜑)
𝐹
= (𝐶 (𝜑) , 𝜑)

𝐹
+ (𝐸 (𝜑) , 𝜑)

𝐹
+ (𝐺 (𝜑) , 𝜑)

𝐹
. (26)
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Denote 𝐶
∗
(𝜑) = 𝐶(𝜑) + (

0

−ℎ(V−𝜖𝑢+𝑊)
) and 𝐸

∗
(𝜑) =

(
𝑊

−(𝜉𝐴+𝜖)𝑊
).

It is easy to check that

(𝜑̇, 𝜑)
𝐹
= (𝐶 (𝜑) , 𝜑)

𝐹
+ (𝐸 (𝜑) , 𝜑)

𝐹
+ (𝐺 (𝜑) , 𝜑)

𝐹

= (𝐶
∗
(𝜑) , 𝜑)

𝐹
+ (𝐸

∗
(𝜑) , 𝜑)

𝐹
+ (𝐺 (𝜑) , 𝜑)

𝐹
.

(27)

Now, let us estimate the terms of (27). First, we get

(𝐶
∗
(𝜑) , 𝜑)

𝐹

= ((
V − 𝜖𝑢

𝜖𝜉𝐴𝑢 − 𝐴𝑢 − 𝜂𝑢 − 𝜉𝐴V + 𝜖V − 𝜖2𝑢) , (
𝑢

V))
𝐹

+ ((
0

−ℎ (V − 𝜖𝑢 +𝑊)
) , (

𝑢

V))
𝐹

= (V − 𝜖𝑢, 𝑢)
𝜆

+ (𝜖𝜉𝐴𝑢 − 𝐴𝑢 − 𝜂𝑢 − 𝜉𝐴V + 𝜖V, V)

− 𝜖
2
(𝑢, V) − (ℎ (V − 𝜖𝑢 +𝑊) , V) .

(28)

By condition (C3), we have

𝜖
2
(𝑢, V) + (ℎ (V − 𝜖𝑢 +𝑊) , V)

≥ 𝛼 ‖V‖2 − 𝜖 (𝛽 − 𝜖) ‖𝑢‖ ‖V‖ + 𝛼 (𝑊, V) .
(29)

Noticing that 𝛾 = 1 − 𝜖𝜉, it follows from (29) that

(𝐶
∗
(𝜑) , 𝜑)

𝐹
≤ −𝜎

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐹
−
𝛼

2
‖V‖2 − 𝛼 (𝑊, V) + (𝜎 − 𝜖) ‖𝑢‖2

𝜆

+ (𝜎 − 𝜖 −
𝛼

2
) ‖V‖2 +

𝛽𝜖

√𝜆

‖𝑢‖𝜆 ‖V‖ .

(30)

Letting 𝜎 = 𝛼𝜆/(√𝛽2 + 4𝜆(𝛽 + √𝛽2 + 4𝜆)), we can see
that 4(𝜖 − 𝜎)(𝛼/2 − 𝜖 − 𝜎) = (𝛽2

𝜖
2
)/𝜆, and then

(𝐶
∗
(𝜑) , 𝜑)

𝐹
≤ −𝜎

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐹
−
𝛼

2
‖V‖2 − 𝛼 (𝑊, V) . (31)

From Young’s inequality, it follows that

(𝐸
∗
(𝜑) , 𝜑)

𝐹
= ((

𝑊

(−𝜉𝐴 + 𝜖)𝑊
) , (

𝑢

V))
𝐹

= (𝑊, 𝑢)
𝜆
+ ((−𝜉𝐴 + 𝜖)𝑊, V)

≤
1

2𝜎
‖𝑊‖

2

𝜆
+
𝜎

2
‖𝑢‖

2

𝜆
+ (−𝜉𝐴𝑊, V) + 𝜖 (𝑊, V) ,

(32)

(𝐺 (𝜑) , 𝜑)
𝐹
= ((

0

𝑓 (𝑢) + 𝑔
) , (

𝑢

V))
𝐹

= (−𝑓 (𝑢) , V) + (𝑔, V) .
(33)

By using Young’s inequality again, we have

(𝑔, V) ≤
1

2 (2𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
2𝜎 + 𝛼

2
‖V‖2 . (34)

Based on assumption (C2) and the definition of 𝜖, it
follows that

− (𝑓 (𝑢) , V)

= − (𝑓 (𝑢) , 𝑢̇ + 𝜖𝑢 −𝑊)

= − (𝑓 (𝑢) , 𝑢̇) − 𝜖 (𝑓 (𝑢) , 𝑢) + (𝑓 (𝑢) ,𝑊)

= −∑

𝑖∈Z𝑛

𝑓
𝑖
(𝑢

𝑖
) 𝑢̇

𝑖
− 𝜖∑

𝑖∈Z𝑛

𝑓
𝑖
(𝑢

𝑖
) 𝑢

𝑖
+ (𝑓 (𝑢) ,𝑊)

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) − 𝑐

1
𝜖∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

+ 𝑐
2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+1 󵄨󵄨󵄨󵄨𝑎𝑖𝑤𝑖
(𝑡)
󵄨󵄨󵄨󵄨 + 𝑐2 ∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑖𝑤𝑖
(𝑡)
󵄨󵄨󵄨󵄨

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) − 𝜖𝑐

2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

+ 𝑐
2

2𝑝 + 1

2𝑝 + 2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

+ 𝑐
2

1

2𝑝 + 2
‖𝑊‖

2𝑝+2

+ 𝑐
2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑖𝑤𝑖
(𝑡)
󵄨󵄨󵄨󵄨 (Hölder’s inequality)

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) + 𝑐

2

1

2𝑝 + 2
‖𝑊‖

2𝑝+2

+
𝜎𝜆

2
‖𝑢‖

2
+

𝑐
2

2

2𝜎𝜆
‖𝑊‖

2
(Young’s inequality) .

(35)

Combining (31)–(35) with (27), we can calculate that

𝑑
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡
+ 2

𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

≤ 𝑀
1
(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖𝑊 (𝑡)‖
2
+ ‖𝑊 (𝑡)‖

2𝑝+2
)

+ (−𝜉𝐴𝑊, V) + 𝜖 (𝑊, V) − 𝛼 (𝑊, V) .

(36)

Since 𝜖 = 𝛼𝜆/(𝛽 + 4𝜆), it is easy to check that 𝜖 < 𝛼. Also
by condition (C1), one has

(−𝜉𝐴𝑊, V) + 𝜖 (𝑊, V) − 𝛼 (𝑊, V) < 0. (37)

Substituting (37) into (36) yields

𝑑
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡
+ 2

𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

≤ 𝑀
1
(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖𝑊 (𝑡)‖
2
+ ‖𝑊 (𝑡)‖

2𝑝+2
) .

(38)

From (14) it follows that

∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖0
) ≤

1

𝑐
1

∑

𝑖∈Z𝑛

𝑓
𝑖
(𝑢

𝑖0
) 𝑢

𝑖0

≤
1

𝑐
1

max
𝑠∈[−‖𝑢(0)‖,‖𝑢(0)‖]

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

1
(𝑠)
󵄨󵄨󵄨󵄨󵄨
‖𝑢 (0)‖

2
,

(39)
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and then a combination of the above inequality and (38) leads
to
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝐹
≤
󵄩󵄩󵄩󵄩𝜑 (0)

󵄩󵄩󵄩󵄩

2

𝐹
+
2

𝑐
1

max
𝑠∈[−‖𝑢(0)‖,‖𝑢(0)‖]

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
‖𝑢 (0)‖

2

+𝑀
1
∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖𝑊 (𝜏)‖
2
+ ‖𝑊 (𝜏)‖

2𝑝+2
) 𝑑𝜏.

(40)

Hence, one has
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝑀

2

󵄩󵄩󵄩󵄩𝜑 (0)
󵄩󵄩󵄩󵄩

2

𝐹

+𝑀
1
∫

𝑡

0

(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖𝑊 (𝜏)‖
2
+ ‖𝑊 (𝜏)‖

2𝑝+2
) 𝑑𝜏,

(41)

which implies that, for all 𝜔 ∈ Λ, ‖𝜑(𝑡)‖
𝐹
is bounded. So, for

any 𝑇 ∈ R+, (19) has a global solution on any interval [0, 𝑇],
and therefore for all 𝜔 ∈ Λ, 𝑇 > 0, we have

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩

2

𝐹

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜑 (0)
󵄩󵄩󵄩󵄩

2

𝐹

+𝑀
1
∫

𝑇

0

(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖𝑊 (𝜏)‖
2
+ ‖𝑊 (𝜏)‖

2𝑝+2
) 𝑑𝜏,

(42)

which indicates that (22) has a global solution 𝜑 ∈

L2
(Λ, 𝐶[0, 𝑇], 𝐹).
Next, we show that the solutions of (19) are dependent

continuously on initial conditions. Let 𝜑
𝑖
(0) = (𝑢

(𝑖)

0
, 𝑢

(𝑖)

10
+

𝜖𝑢
(𝑖)

0
) ∈ 𝐹 and ‖𝜑

𝑖
(0)‖

𝐹
< 𝑟

0
and assume 𝜑

𝑖
(𝑡) =

(𝜑(𝑡, 𝜑
𝑖
(0))) = (𝑢

(𝑖)
, 𝑢̇

(𝑖)
+ 𝜖𝑢

(𝑖)
− 𝑊(𝑡)) (𝑖 = 1, 2) are the

solutions of (19), where 𝑟
0
is a constant.

Set 𝑅
0
= 𝑀

2
𝑟
2

0
+𝑀

1
∫
𝑇

0
(‖𝑔‖

2
+ ‖𝑊(𝜏)‖

2
+ ‖𝑊(𝜏)‖

2𝑝+2
)𝑑𝜏.

Since 𝜑
1
(𝑡) and 𝜑

2
(𝑡) are the solutions of (19), we have

𝑑 (𝜑
2
(𝑡) − 𝜑

1
(𝑡))

𝑑𝑡
= (𝐶 (𝜑

2
) − 𝐶 (𝜑

1
)) + (𝐸 (𝜑

2
) − 𝐸 (𝜑

1
))

+ (𝐺 (𝜑
2
) − 𝐺 (𝜑

1
)) .

(43)

Taking the inner product of (43) with (𝜑
2
− 𝜑

1
) in 𝐹, we

get

1

2

𝑑
󵄩󵄩󵄩󵄩𝜑2

− 𝜑
1

󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡
= (𝐶 (𝜑

2
) − 𝐶 (𝜑

1
) , 𝜑

2
− 𝜑

1
)
𝐹

+ (𝐸 (𝜑
2
) − 𝐸 (𝜑

1
) , 𝜑

2
− 𝜑

1
)
𝐹

+ (𝐺 (𝜑
2
) − 𝐺 (𝜑

1
) , 𝜑

2
− 𝜑

1
)
𝐹
.

(44)

By Lemma 8, we have

1

2

𝑑
󵄩󵄩󵄩󵄩𝜑2

− 𝜑
1

󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡
≤ (𝐶 (𝜑

2
) − 𝐶 (𝜑

1
) , 𝜑

2
− 𝜑

1
)
𝐹

+ 𝛽√2(1 +
𝜖
2

𝜆
)
󵄩󵄩󵄩󵄩𝜑2

− 𝜑
1

󵄩󵄩󵄩󵄩

2

𝐹

+ √𝐿 (𝑅
0
)
󵄩󵄩󵄩󵄩𝜑2

− 𝜑
1

󵄩󵄩󵄩󵄩

2

𝐹
.

(45)

It is easy to see the operator 𝐶(⋅) in (19) is a linear operator,
and then it follows from assumption (C1) that there exists a
positive constant 𝐶

0
such that ‖𝐶‖

𝐹
≤ 𝐶

0
, where 𝐶

0
depends

only on the constants 𝜖, 𝜉, ‖𝐴‖
𝐹
, and 𝜂. Hence, (45) implies

that

𝑑
󵄩󵄩󵄩󵄩𝜑2

− 𝜑
1

󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡

≤ 2(𝐶
0
+ 𝛽√2(1 +

𝜖
2

𝜆
) + √𝐿 (𝑅

0
))

󵄩󵄩󵄩󵄩𝜑2
− 𝜑

1

󵄩󵄩󵄩󵄩

2

𝐹
.

(46)

Furthermore, by Grownwall inequality, it is clear that

󵄩󵄩󵄩󵄩𝜑2
− 𝜑

1

󵄩󵄩󵄩󵄩

2

𝐹

≤
󵄩󵄩󵄩󵄩𝜑2

(0) − 𝜑
1
(0)
󵄩󵄩󵄩󵄩

2

𝐹

× exp{2(𝐶
0
+ 𝛽√2(1 +

𝜖
2

𝜆
) + √𝐿 (𝑅

0
)) 𝑡} ,

for 𝑡 ∈ [0, 𝑇] .

(47)

Hence, we have

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝜑2
− 𝜑

1

󵄩󵄩󵄩󵄩

2

𝐹

≤
󵄩󵄩󵄩󵄩𝜑2

(0) − 𝜑
1
(0)
󵄩󵄩󵄩󵄩

2

𝐹

× exp{2(𝐶
0
+ 𝛽√2(1 +

𝜖
2

𝜆
) + √𝐿 (𝑅

0
))𝑇} ,

(48)

which implies that the solutions of system (19) depend con-
tinuously on the initial data. The proof is now complete.

From assumption (C5) and noticing 𝜃
𝜏
𝜔(𝑡) = 𝜔(𝜏 + 𝑡) −

𝜔(𝜏) (𝜏, 𝑡 ∈ R), it is easy to see that (Λ,F,P, (𝜃
𝑡
)
𝑡∈R) is a

metric dynamical system. Also, from the definition of (𝜃
𝑡
)
𝑡∈R,

we have

𝑊(𝑡 + 𝜏, 𝜔) = 𝑊(𝑡, 𝜃
𝜏
𝜔) +𝑊 (𝜏, 𝜔) , ∀𝜏, 𝑡 ∈ R. (49)

Now, for any 𝑡 ≥ 0, 𝜔 ∈ Λ, we introduce the map from 𝐹

into 𝐹 as follows:

𝑠 (𝑡, 𝜔) 𝜑 (0) = 𝜑 (𝑡, 𝜔, 𝜑
0
) , (50)

where 𝜑(𝑡, 𝜔, 𝜑
0
) is the solution of (19) with initial data 𝜑

0

and 𝑠(⋅, 𝜔) is continuous for 𝜔 from [0,∞] × 𝐹 to 𝐹 since the
solution of (19) is dependent on initial data continuously.

By (49), (C3), and Theorem 9, it is easy to check
that (50) defines a continuous random dynamical system
{𝑠(𝑡, 𝜔)}

𝑡≥0,𝜔∈Λ
over (Λ,F,P, (𝜃

𝑡
)
𝑡∈R).
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4. Existence of the Absorbing Set

In this section, we are concerned with the existence of an
absorbing set 𝐾(𝜔) for random dynamical system 𝑠(𝑡, 𝜔)

generated by the stochastic system (19). We first introduce
an Ornstein-Uhlenbeck process in 𝑙2 on the metric dynamic
system (Λ,F,P, (𝜃

𝑡
)
𝑡∈R) (see [19, 24] for details).

Letting 𝑦(𝜃
𝑡
𝜔) = −𝜖 ∫

0

−∞
𝑒
𝜖𝜏
𝜃
𝑡
𝜔(𝜏)𝑑𝜏 (𝑡 ∈ R) where 𝜖 =

𝛼𝜆/(𝛽
2
+ 4𝜆), then 𝑦 solves the Itô equation

𝑑𝑦 + 𝜖𝑦𝑑𝑡 = 𝑑𝑊 (𝑡) , for 𝑡 ≥ 0. (51)

From the properties of the Ornstein-Uhlenbeck process,
we know that there exists a 𝜃

𝑡
-invariant set Λ

0
⊂ Λ of full P

measure, and the following properties hold:

(Y1) the mapping 𝑠 → 𝑦(𝜃
𝑠
𝜔) is continuous for each 𝜔 ∈

Λ
0
;

(Y2) the random variable ‖𝑦(𝜔)‖ is tempered;
(Y3) there exists a tempered function 𝑏(𝜔) > 0 such that

󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)
󵄩󵄩󵄩󵄩

2𝑝+2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)

󵄩󵄩󵄩󵄩

2

≤ 𝑏 (𝜃
𝑡
𝜔) ≤ 𝑏 (𝜔) 𝑒

(𝜖/2)|𝑡|
. (52)

Theorem 10. There exist a 𝜃
𝑡
-invariant set Λ

0
⊂ Λ of full P

measure and an absorbing set𝐾(𝜔), 𝜔 ∈ Λ
0
for 𝑠(𝑡, 𝜔)𝜓

0
. That

is, for all 𝐵 ∈ D and all 𝜔 ∈ Λ
0
, there exists 𝑇

𝐵
(𝜔) > 0 such

that

𝑠 (𝑡, 𝜃
−𝑡
𝜔) 𝐵 (𝜃

−𝑡
𝜔) ⊂ 𝐾 (𝜔) , ∀𝑡 > 𝑇

𝐵
(𝜔) . (53)

Moreover, 𝐾 ∈ D; that is, for all 𝜔 ∈ Λ
0
, there exists 𝑇

𝐾
(𝜔)

such that

𝑠 (𝑡, 𝜃
−𝑡
𝜔)𝐾 (𝜃

−𝑡
𝜔) ⊂ 𝐾 (𝜔) , ∀𝑡 > 𝑇

𝐾
(𝜔) . (54)

Proof. Letting 𝜓(𝑡) = 𝜓(𝑡) = (𝑢(𝑡), V∗(𝑡))𝑇 = (𝑢(𝑡), 𝑢̇(𝑡) +

𝜖𝑢(𝑡) − 𝑦(𝜃
𝑡
𝜔))

𝑇
= 𝜑(𝑡) + (0,𝑊(𝑡, 𝜔) − 𝑦(𝜃

𝑡
𝜔))

𝑇, where 𝜑(𝑡)
is a solution of (19), then, for any 𝜔 ∈ Λ, 𝑦(𝜔) has properties
(Y1), (Y2), and (Y3). By the Itô equation (51), it can be inferred
that 𝜓(𝑡) satisfies

𝑑𝜓 (𝑡)

𝑑𝑡
= 𝐶 (𝜓) + 𝐺 (𝜓)

+(
𝑦 (𝜃

𝑡
𝜔)

−ℎ (V∗ − 𝜖𝑢 + 𝑦) + (−𝜉𝐴 + 2𝜖) 𝑦 (𝜃
𝑡
𝜔)
) .

(55)

Taking the inner product of (55) with 𝜓 in 𝐹, we obtain

1

2

𝑑
󵄩󵄩󵄩󵄩𝜓 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐹

𝑑𝑡

= (𝐶 (𝜓) , 𝜓)
𝐹
+ (𝐺 (𝜓) , 𝜓)

𝐹

+ ((
𝑦 (𝜃

𝑡
𝜔)

−ℎ (V∗ − 𝜖𝑢 + 𝑦) + (−𝜉𝐴 + 2𝜖) 𝑦 (𝜃
𝑡
𝜔)
) , (

𝑢

V∗))
𝐹

= (𝐶
∗
(𝜑) , 𝜑)

𝐹
+ (𝐸

∗
(𝜑) , 𝜑)

𝐹
+ (𝐺

∗
(𝜑) , 𝜑)

𝐹
.

(56)

Similar to the derivation of (31) and (32), we have

(𝐶
∗
(𝜓) , 𝜓)

𝐹
= (𝐶 (𝜓) , 𝜓)

𝐹

+ ((
0

−ℎ (V∗ − 𝜖𝑢 + 𝑦)) , (
𝑢

V∗))
𝐹

≤ −𝜎
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
−
𝛼

2

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩

2

− 𝛼 (𝑦 (𝜃
𝑡
𝜔) , V∗) ;

(57)

(𝐸
∗
(𝜓) , 𝜓)

𝐹
≤
1

𝜎

󵄩󵄩󵄩󵄩𝑦(𝜃𝑡𝜔)
󵄩󵄩󵄩󵄩

2

𝜆
+
𝜎

4
‖𝑢‖

2

𝜆

+ (−𝜉𝐴𝑦 (𝜃
𝑡
𝜔) , V∗) + 𝜖 (𝑦 (𝜃

𝑡
𝜔) , V∗) ,

(58)

where 𝜎, 𝐸∗
(⋅), and 𝐶

∗
(⋅) are defined in (29) and (26),

respectively.
Notice that

(𝐺 (𝜓) , 𝜓)
𝐹
= ((

0

𝑓 (𝑢) + 𝑔
) , (

𝑢

V∗))
𝐹

= (−𝑓 (𝑢) , V∗) + (𝑔, V∗)

= (−𝑓 (𝑢) , 𝑢̇ + 𝜖𝑢 − 𝑦 (𝜃
𝑡
𝜔)) + (𝑔, V∗) .

(59)

Similar to the derivation of (35), by condition (C2), (17),
and (4𝑝 + 2)/(4𝑝 + 3) ≤ 𝜖 ≤ 1, one has

(−𝑓 (𝑢) , 𝑢̇ + 𝜖𝑢 − 𝑦 (𝜃
𝑡
𝜔))

= (−𝑓 (𝑢) , 𝑢̇) − 𝜖 (𝑓 (𝑢) , 𝑢) + (𝑓 (𝑢) , 𝑦 (𝜃
𝑡
𝜔))

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) − 𝑐

1
𝜖∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

+ 𝑐
2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+1 󵄨󵄨󵄨󵄨𝑎𝑖𝑦𝑖 (𝜃𝑡𝜔)
󵄨󵄨󵄨󵄨

+ 𝑐
2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑖𝑦𝑖 (𝜃𝑡𝜔)
󵄨󵄨󵄨󵄨

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) −

𝑐
1
𝜖

4𝑝 + 4
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

−
𝑐
2
𝜖 (4𝑝 + 3)

4𝑝 + 4
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

+
𝑐
2
(2𝑝 + 1)

2𝑝 + 2
∑

𝑖∈Z𝑛

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

+
𝑐
2

2𝑝 + 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2𝑝+2

+
𝜎𝜆

4
‖𝑢‖

2
+
𝑐
2

2

𝜎𝜆

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

≤ −
𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) −

𝑐
1
𝜖

4𝑝 + 4
∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
)

+
𝑐
2

2𝑝 + 2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2𝑝+2

+
𝜎𝜆

4
‖𝑢‖

2
+
𝑐
2

2

𝜎𝜆

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

,

(60)

and, by Young’s inequality, we also have

(𝑔, V∗) ≤
1

2 (𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
𝜎 + 𝛼

2

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩

2

. (61)
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Substituting (57)–(61) into (56), we obtain

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
+ 2∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
))

≤ −𝜎
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
− 2𝑐

1
𝜖∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) +

1

𝜎 + 𝛼

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

)

+ (−𝜉𝐴𝑦 (𝜃
𝑡
𝜔) , V∗) + 2𝜖 (𝑦 (𝜃

𝑡
𝜔) , V∗) − 𝛼 (𝑦 (𝜃

𝑡
𝜔) , V∗) .

(62)

By the definition of constant 𝜖, we find that 2𝜖 < 𝛼, and
then

(−𝜉𝐴𝑦 (𝜃
𝑡
𝜔) , V∗) + 2𝜖 (𝑦 (𝜃

𝑡
𝜔) , V∗) − 𝛼 (𝑦 (𝜃

𝑡
𝜔) , V∗) < 0.

(63)

Thus, we arrive at

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
+ 2∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
))

≤ −𝜎
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
− 2𝑐

1
𝜖∑

𝑖∈Z𝑛

𝑉
𝑖
(𝑢

𝑖
) +

1

𝜎 + 𝛼

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑡𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

) .

(64)

Furthermore, from Grownwall inequality, it follows that

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝑀

2

󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

𝑡

0

𝑒
𝑐
3
(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠𝜔)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

) 𝑑𝑠,

(65)

where

𝑀
3
= max{ 𝑐

2

𝑝 + 1
,
4𝑛𝛾𝜆 + 𝜆

2
+ 𝑐

2

2

𝜎𝜆
} ,

𝑐
3
= min{𝜎, 𝑐

1
𝜖

4𝑝 + 4
} .

(66)

Therefore, it follows from (65) and property (Y3) that

󵄩󵄩󵄩󵄩𝜓 (𝑡, 𝜃−𝑡𝜔, 𝜓0
(𝜃

−𝑡
𝜔))

󵄩󵄩󵄩󵄩

2

𝐹

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

𝑡

0

𝑒
𝑐
3
(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

) 𝑑𝑠

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

0

−𝑡

𝑒
𝑐
3
𝜏
(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝜏𝜔)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝜏𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

) 𝑑𝜏

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

0

−𝑡

𝑒
𝑐
3
𝜏
𝑏 (𝜔) 𝑒

(𝜖/2)|𝜏|
𝑑𝜏

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
2𝑀

3

2𝑐
3
+ 𝜖

𝑏 (𝜔)

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+ 𝐵 (𝜔) ,

(67)

where 𝐵(𝜔) = (1/𝑐
3
(𝜎 + 𝛼))‖𝑔‖

2
+ (2𝑀

3
/(2𝑐

3
+ 𝜖))𝑏(𝜔) and

𝐵(𝜔) is tempered thanks to the tempered function 𝑏(𝜔).Then,
𝐾̃(𝜔) = {𝜓 ∈ 𝐹, ‖𝜓‖

𝐹
≤ 𝐵(𝜔)} is an absorbing set for

𝜓(𝑡, 𝜔, 𝜓(0)); that is, for all 𝐵 ∈ D and all 𝜔 ∈ Λ
0
, there

exists 𝑇
𝐵
(𝜔) > 0 such that 𝜓(𝑡, 𝜃

−𝑡
, 𝐵(𝜃

−𝑡
𝜔)) ⊂ 𝐾̃(𝜔) for all

𝑡 ≥ 𝑇
𝐵
(𝜔).

Let 𝐾(𝜔) = {𝜑 ∈ 𝐹, ‖𝜑‖
𝐹
≤ 𝐵(𝜔) + ‖𝑦(𝜔)‖}; then 𝐾(𝜔)

is an absorbing set for 𝜑(𝑡, 𝜔, 𝜑
0
) = 𝜓(𝑡, 𝜔, 𝜑

0
− (0, 𝑦(𝜔))

𝑇
−

(0, 𝑦(𝜃
𝑡
𝜔) − 𝑊(𝑡, 𝜔))

𝑇
). Moreover, 𝐾 ∈ D. The proof is now

complete.

5. Existence of a Global Random Attractor

In this section, we will show the existence of global random
attractor related to the random lattice dynamical system
𝑠(𝑡, 𝜔) generated by system (19). In order to apply the result
of Theorem 5, we need to prove the following lemmas.

Lemma 11. Let (C1)–(C5) hold and 𝜑(0) = (𝑢
0
, 𝑢

10
+ 𝜖𝑢

0
) ∈

𝐾(𝜔). Then, for any 𝜇 > 0, there exist 𝑇(𝜇, 𝜔) > 0 and
𝑁(𝜇, 𝜔) > 0 such that the solution of (19) satisfies

∑

‖𝑖‖
𝑚
≥𝑁(𝜇,𝜔)

󵄩󵄩󵄩󵄩𝜑𝑖
(𝑡, 𝜃

−𝑡
𝜔, 𝜑

0
(𝜃

−𝑡
𝜔))

󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝜇, ∀𝑡 ≥ 𝑇 (𝜇, 𝜔) ,

(68)

where ‖𝑖‖
𝑚
= max

1≤𝑗≤𝑛
|𝑖
𝑗
|, for any 𝑖 = (𝑖

1
, 𝑖

2
, . . . , 𝑖

𝑛
) ∈ Z𝑛.

Proof. Assume 𝜗 ∈ 𝐶1
(𝑅

+
, 𝑅) is a smooth function satisfying

𝜗 (𝑡) = 0, 0 ≤ 𝑡 ≤ 1;

0 ≤ 𝜗 (𝑡) ≤ 1, 1 ≤ 𝑡 ≤ 2;

𝜗 (𝑡) = 1, 𝑡 ≥ 2,

(69)

and there exists a constant𝑀
0
such that |𝜗󸀠(𝑡)| ≤ 𝑀

0
for 𝑡 ∈

𝑅
+.
Let 𝜓(𝑡) = (𝑢(𝑡), V∗(𝑡))𝑇 = (𝑢

𝑖
(𝑡), V∗

𝑖
(𝑡))

𝑇

𝑖∈Z𝑛 be a solution
of (55), where V∗(𝑡) = 𝑢̇(𝑡) + 𝜖𝑢(𝑡) − 𝑦(𝜃

𝑡
𝜔), 𝜔 ∈ Λ

0
.

Suppose𝑀 is a suitable large constant to be defined later.
Set 𝜓̃ = (𝑤, 𝑧̃) = (𝑤

𝑖
, 𝑧̃

𝑖
)
𝑖∈Z𝑛 , where

𝑤
𝑖
= 𝜗(

‖𝑖‖𝑚

𝑀
)𝑢

𝑖
, 𝑧̃

𝑖
= 𝜗(

‖𝑖‖𝑚

𝑀
) V∗

𝑖
(70)

for all 𝑖 ∈ Z𝑛.
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Taking the inner product (⋅, ⋅)
𝐹
of (55) with 𝜓̃, we have

(
𝑑𝜓 (𝑡)

𝑑𝑡
, 𝜓̃ (𝑡))

𝐹

= (𝐶
∗
(𝜓) , 𝜓̃)

𝐹
+ (𝐺 (𝜓) , 𝜓̃)

𝐹

+ ((
𝑦 (𝜃

𝑡
𝜔)

(−𝜉𝐴 + 2𝜖) 𝑦 (𝜃
𝑡
𝜔)
) , (

𝑤

𝑧̃
))

𝐹

.

(71)

It is easy to see

(
𝑑𝜓 (𝑡)

𝑑𝑡
, 𝜓̃ (𝑡))

𝐹

=
1

2

𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐹
, (72)

(𝐶
∗
(𝜓) , 𝜓̃)

𝐹

= (𝐶 (𝜓) , 𝜓̃)
𝐹
+ ((

0

−ℎ (V∗ − 𝜖𝑢 + 𝑦)) , (
𝑤

𝑧̃
))

𝐹

= (V∗ − 𝜖𝑢, 𝑤)
𝜆

+ (𝜖𝜉𝐴𝑢 − 𝐴𝑢 − 𝜂𝑢 − 𝜉𝐴V∗ + 𝜖V∗ − 𝜖2𝑢, 𝑧̃)

+ (−ℎ (V∗ − 𝜖𝑢 + 𝑦) , 𝑧̃)

≤ 𝛾

𝑛

∑

𝑗=1

(𝐷
𝑗
V∗, 𝐷

𝑗
𝑤) + 𝜆 (V∗, 𝑤) − 𝜖𝛾

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑤)

− 𝜖𝜆 (𝑢, 𝑤) + 𝜖𝜉

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑧̃)

−

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑧̃) − 𝜆 (𝑢, 𝑧̃) − 𝜉

𝑛

∑

𝑗=1

(𝐷
𝑗
V∗, 𝐷

𝑗
𝑧̃)

− 𝜖
2
(𝑢, 𝑧̃) + (−ℎ (V∗ − 𝜖𝑢 + 𝑦) , 𝑧̃)

≤ 𝛾

𝑛

∑

𝑗=1

(𝐷
𝑗
V∗, 𝐷

𝑗
𝑤) + (𝜖𝜉 − 1)

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑧̃)

+ 𝜆 (V∗, 𝑤) − 𝜖𝛾
𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑤)

− 𝜖𝜆 (𝑢, 𝑤) − 𝜆 (𝑢, 𝑧̃) − 𝜉

𝑛

∑

𝑗=1

(𝐷
𝑗
V∗, 𝐷

𝑗
𝑧̃)

− 𝜖
2
(𝑢, 𝑧̃) + (−ℎ (V∗ − 𝜖𝑢 + 𝑦) , 𝑧̃) ,

(73)

where the last inequality follows from assumption (C1), (9),
and the definition of operator 𝐴 in (8).

For simplicity, we denote 𝑖
𝑗
= (𝑖

1
, . . . , 𝑖

𝑗
+ 1, . . . , 𝑖

𝑛
) and

𝑖 = (𝑖
1
, . . . , 𝑖

𝑗
, . . . , 𝑖

𝑛
). Since 𝛾 = 1 − 𝜖𝜉, by the definition of 𝜗,

we have

𝛾

𝑛

∑

𝑗=1

(𝐷
𝑗
V∗, 𝐷

𝑗
𝑤) + (𝜖𝜉 − 1)

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑧̃)

= 𝛾

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

{

{

{

[

[

𝜗(

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗

󵄩󵄩󵄩󵄩󵄩𝑚

𝑀
)𝑢

𝑖
𝑗

(V∗
𝑖
𝑗

− V∗
𝑖
)

−𝜗(
‖𝑖‖

𝑚

𝑀
)𝑢

𝑖
(V∗

𝑖
𝑗

− V∗
𝑖
)]

]

− [

[

𝜗(

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗

󵄩󵄩󵄩󵄩󵄩𝑚

𝑀
) V∗

𝑖
𝑗

(𝑢
𝑖
𝑗

− 𝑢
𝑖
)

− 𝜗(
‖𝑖‖𝑚

𝑀
) V∗

𝑖
𝑗

(𝑢
𝑖
𝑗

− 𝑢
𝑖
)]

]

}

}

}

≤ 𝛾

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

[

[

𝜗(

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗

󵄩󵄩󵄩󵄩󵄩𝑚

𝑀
) − 𝜗(

‖𝑖‖𝑚

𝑀
)]

]

(𝑢
𝑖
𝑗

V
𝑖
− 𝑢

𝑖
V
𝑖
𝑗

)

≤
𝛾𝑀

0

𝑀
𝛾

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

(𝑢
𝑖
𝑗

V
𝑖
− 𝑢

𝑖
V
𝑖
𝑗

)

≤
2𝑛𝛾𝑀

0

𝑀
‖𝑢‖ ‖V‖ , ∀𝑡 ∈ [0, 𝑇] , 𝑇 > 0, 𝜔 ∈ Λ

0
,

(74)
𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑤)

=

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

{

{

{

[

[

𝜗(

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗

󵄩󵄩󵄩󵄩󵄩𝑚

𝑀
) − 𝜗(

‖𝑖‖𝑚

𝑀
)]

]

𝑢
𝑖
𝑗

(𝑢
𝑖
− 𝑢

𝑖
𝑗

)

+ 𝜗(
‖𝑖‖𝑚

𝑀
)(𝑢

𝑖
𝑗

− 𝑢
𝑖
)

2}

}

}

≥ −
2𝑛𝑀

0

𝑀
‖𝑢‖

2
, 𝑇 > 0, 𝜔 ∈ Λ

0
.

(75)

Also, similar to the derivation of (75), we get

𝑛

∑

𝑗=1

(𝐷
𝑗
𝑢,𝐷

𝑗
𝑧̃)

=

𝑛

∑

𝑗=1

∑

𝑖∈Z𝑛

{

{

{

[

[

𝜗(

󵄩󵄩󵄩󵄩󵄩
𝑖
𝑗

󵄩󵄩󵄩󵄩󵄩𝑚

𝑀
) − 𝜗(

‖𝑖‖𝑚

𝑀
)]

]

V∗
𝑖
𝑗

(V∗
𝑖
− V∗

𝑖
𝑗

)



10 Mathematical Problems in Engineering

+ 𝜗(
‖𝑖‖

𝑚

𝑀
)(V∗

𝑖
𝑗

− V∗
𝑖
)

2}

}

}

≥ −
2𝑛𝑀

0

𝑀

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩

2

, 𝑇 > 0, 𝜔 ∈ Λ
0
,

(76)

where ‖𝑖
𝑗
‖
𝑚
= max{𝑖

𝑗
+ 1, ‖𝑖‖

𝑚
}.

It is not difficult to see

(V∗, 𝑤) = ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V
∗

𝑖

󵄨󵄨󵄨󵄨 , (77)

(𝑢, 𝑤) = ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2

, (78)

(𝑢, 𝑧̃) = ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨V
∗

𝑖

󵄨󵄨󵄨󵄨 , (79)

(V∗, 𝑧̃) = ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)
󵄨󵄨󵄨󵄨V

∗

𝑖

󵄨󵄨󵄨󵄨

2

. (80)

Substituting (74)–(80) into (73) yields

(𝐶
∗
(𝜓) , 𝜓)

𝐹

≤
2𝑛𝛾𝑀

0

𝑀
‖𝑢‖ ‖V‖ +

2𝑛𝑀
0
𝜖𝛾

𝑀
‖𝑢‖

2
+
2𝑛𝑀

0
𝜉

𝑀

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩

2

− ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)[𝜎

󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹
+
𝛼

2

󵄨󵄨󵄨󵄨V
∗

𝑖

󵄨󵄨󵄨󵄨

2

] − 𝛼 (𝑦, 𝑧̃) .

(81)

Also, it is obvious that

(𝐸
∗
(𝜓) , 𝜓̃)

𝐹
= ((

𝑦 (𝜃
𝑡
𝜔)

(−𝜉𝐴 + 2𝜖) 𝑦 (𝜃
𝑡
𝜔)
) , (

𝑤

𝑧̃
))

𝐹

= ∑

𝑖∈Z𝑛

(𝜗(
‖𝑖‖𝑚

𝑀
)𝑢

𝑖
, 𝑦

𝑖
)

𝜆

+ ((−𝜉𝐴 + 2𝜖) 𝑦 (𝜃
𝑡
𝜔) , 𝑧̃) .

(82)

Next, we estimate the term (𝐺(𝜓), 𝜓̃)
𝐹
in (71) as follows:

(𝐺 (𝜓) , 𝜓̃)
𝐹
= ((

0

𝑓 (𝑢) + 𝑔
) , (

𝑤

𝑧̃
))

𝐹

= (𝑓 (𝑢) , 𝑧̃) + (𝑔, 𝑧̃)

= ∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
) 𝑢̇

𝑖
)

+ ∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
)𝑢

𝑖
)

− ∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
)𝑦

𝑖
)

+ ∑

𝑖∈Z𝑛

(𝑔
𝑖
, 𝜗 (

‖𝑖‖𝑚

𝑀
) V∗

𝑖
) .

(83)

By assumption (C2), we have

∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
) 𝑢̇

𝑖
) =

𝑑

𝑑𝑡
∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)𝑉

𝑖
(𝑢

𝑖
) ,

(84)

∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
)𝑢

𝑖
) = ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)𝑉

𝑖
(𝑢

𝑖
) , (85)

∑

𝑖∈Z𝑛

(𝑓
𝑖
(𝑢

𝑖
) , 𝜗 (

‖𝑖‖
𝑚

𝑀
)𝑦

𝑖
)

≤ ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)[𝑐

2
(
󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

2𝑝+2 󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑢𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨)] .

(86)

Furthermore, by Young’s inequality, we know

∑

𝑖∈Z𝑛

(𝑔
𝑖
, 𝜗 (

‖𝑖‖
𝑚

𝑀
) V∗

𝑖
)

≤
𝜎 + 𝛼

2
∑

‖𝑖‖
𝑚
≥𝑀

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄨󵄨󵄨󵄨V

∗

𝑖

󵄨󵄨󵄨󵄨

2

+
1

2 (𝜎 + 𝛼)
∑

‖𝑖‖
𝑚
≥𝑀

𝑔
2

𝑖
,

(87)

‖𝑢‖𝜆 ‖V‖ ≤
1

2√𝜆

‖𝑢‖
2

𝜆
+
√𝜆

2
‖V‖2 . (88)

Substituting (72), (81)–(88) into (71) leads to

𝑑

𝑑𝑡
[∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)(

󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹
+ 2𝑉

𝑖
(𝑢

𝑖
))]

≤ −𝜎∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹

− 2𝑐
1
𝜖∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)(𝑉

𝑖
(𝑢

𝑖
))

+
4𝛾𝑀

0
𝑛

𝑀√𝜆

‖𝑢‖𝜆 ‖V‖ +
4𝑀

0
𝑛𝜖𝛾

𝑀𝜆
‖𝑢‖𝜆 +

2𝑀
0
𝑛𝜉

𝑀

󵄩󵄩󵄩󵄩V
∗󵄩󵄩󵄩󵄩

2

+𝑀
4
( ∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨

2

+ ∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

)

+
1

𝜎 + 𝛼
∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨

2

,

(89)

where𝑀
4
only depends on 𝛼, 𝛽, 𝑛, 𝑝, 𝜆, and 𝑐

2
.

Now, setting 𝑀
5
= max{2𝑟𝑀

0
𝑛(1 + 𝜖)/𝑀𝜆,𝑀

0
𝑛(2𝛾 +

̄𝜉)/𝑀}, we estimate

𝑑

𝑑𝑡
[∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)(

󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹
+ 2𝑉

𝑖
(𝑢

𝑖
))]

≤ −𝜎∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹
− 2𝑐

1
𝜖∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖𝑚

𝑀
)𝑉

𝑖
(𝑢

𝑖
)
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+𝑀
5

󵄩󵄩󵄩󵄩𝜓𝑖

󵄩󵄩󵄩󵄩

2

𝐹
+

1

𝜎 + 𝛼
∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨

2

+𝑀
4
( ∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨

2

+ ∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨

2𝑝+2

) .

(90)

By Grownwall inequality, for all 𝑡 ≥ 𝑇
𝐾
= 𝑇

𝐾
(𝜔), we can

deduce that

∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑡, 𝜔, 𝜓
0
(𝜔))

󵄩󵄩󵄩󵄩

2

𝐹

≤ 𝑀
2
𝑒
−𝑐
3
(𝑡−𝑇
𝐾
)
∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑇
𝐾
, 𝜔, 𝜓

0
(𝜔))

󵄩󵄩󵄩󵄩

2

𝐹

+𝑀
5
∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝜏−𝑡) 󵄩󵄩󵄩󵄩𝜓 (𝜏, 𝜔, 𝜓0

(𝜔))
󵄩󵄩󵄩󵄩

2

𝐹
𝑑𝜏

+
1

𝑐
3
(𝜎 + 𝛼)

∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨

2

+𝑀
4
∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝜏−𝑡)

× ∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏,

(91)

where 𝑐
3
,𝑀

2
,𝑀

4
, and𝑀

5
are defined above.

Next, let us estimate each term on the right hand side of
(91). From (65) inTheorem 10 and property (Y3), we find that

𝑒
−𝑐
3
(𝑡−𝑇
𝐾
)
∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑇
𝑘
, 𝜃

−𝑡
𝜔, 𝜓

0
(𝜃

−𝑡
𝜔))

󵄩󵄩󵄩󵄩

2

𝐹

≤ 𝑒
−𝑐
3
(𝑡−𝑇
𝐾
)
[𝑀

2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑇
𝐾 +

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

𝑇
𝐾

0

𝑒
𝑐
3
(𝑠−𝑇
𝐾
)
(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2

) 𝑑𝑠]

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝑡
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝑒
−𝑐
3
(𝑡−𝑇
𝐾
)

+
2𝑀

3

2𝑐
3
+ 𝜖

𝑏 (𝜔) 𝑒
−(𝜖/2)(𝑡−𝑇

𝐾
)
.

(92)

Hence, for any given constant 𝜇 > 0, there exists 𝑇
1
(𝜇, 𝜔) >

𝑇
𝐾
(𝜔) such that, for all 𝑡 > 𝑇

1
(𝜇, 𝜔),

𝑀
2
𝑒
−𝑐
3
(𝑡−𝑇
𝐾
)
∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑇
𝐾
, 𝜃

−𝑡
𝜔, 𝜓

0
(𝜃

−𝑡
𝜔))

󵄩󵄩󵄩󵄩

2

𝐹

≤
1

4
𝜇.

(93)

Using (65) in Theorem 10 and property (Y3) again, we
have

∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝜏−𝑡) 󵄩󵄩󵄩󵄩𝜓 (𝜏, 𝜔, 𝜓0

(𝜔))
󵄩󵄩󵄩󵄩

2

𝐹
𝑑𝜏

= ∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝜏−𝑡)

[𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
𝑒
−𝑐
3
𝜏
+

1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+𝑀
3
∫

𝜏

0

𝑒
𝑐
3
(𝑠−𝜏)

(
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2𝑝+2

+
󵄩󵄩󵄩󵄩𝑦 (𝜃𝑠−𝑡𝜔)

󵄩󵄩󵄩󵄩

2

) 𝑑𝑠] 𝑑𝜏

≤ 𝑀
2

󵄩󵄩󵄩󵄩𝜓0
(𝜃

−𝑡
𝜔)
󵄩󵄩󵄩󵄩

2

𝐹
(𝑡 − 𝑇

𝐾
) 𝑒

𝑐
3
𝑡

+
1

𝑐
3
(𝜎 + 𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
4𝑀

3

𝜖 (4𝑐
3
+ 𝜖)

𝑏 (𝜔) .

(94)

Since 𝜓
0
(𝜃

−𝑡
𝜔) ∈ 𝐾(𝜃

−𝑡
𝜔), from Theorem 10, we have

‖𝜓
0
(𝜃

−𝑡
𝜔)‖ ≤ 𝐵(𝜃

−𝑡
𝜔). So, for any 𝜇, there exist 𝑇

2
(𝜇, 𝜔) >

𝑇
𝐾
(𝜔),𝑁

1
(𝜇, 𝜔) > 0, and𝑀 > 𝑁

1
(𝜇, 𝜔) such that

𝑀
5
∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝜏−𝑡) 󵄩󵄩󵄩󵄩𝜓 (𝜏, 𝜔, 𝜓0

(𝜔))
󵄩󵄩󵄩󵄩

2

𝐹
𝑑𝜏 ≤

1

4
𝜇. (95)

By assumption (C4), there exists 𝑁
2
(𝜇, 𝜔) > 0 such that,

for all𝑀 > 𝑁
2
(𝜇, 𝜔), the following inequality holds:

1

𝑐
3
(𝜎 + 𝛼)

∑

‖𝑖‖
𝑚
≥𝑀

󵄨󵄨󵄨󵄨𝑔𝑖
󵄨󵄨󵄨󵄨

2

≤
1

4
𝜇. (96)

Let𝑇
0
be a positive constant to be determined later.When

𝑡 > 𝑇
0
+ 𝑇

𝐾
, we have

𝑀
4
∫

𝑡

𝑇
𝐾

𝑒
𝑐
3
(𝑠−𝑡)

∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝑠−𝑡𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝑠−𝑡𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝑠

= 𝑀
4
∫

0

𝑇
𝐾
−𝑡

𝑒
𝑐
3
𝜏
∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏

= 𝑀
4
∫

0

−𝑇
0

𝑒
𝑐
3
𝜏
∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏

+𝑀
4
∫

−𝑇
0

𝑇
𝐾
−𝑡

𝑒
𝑐
3
𝜏
∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏.

(97)

Choosing 𝑇
0
≥ 2/(2𝑐

3
+ 𝜖) ln{16𝑀

4
𝑏(𝜔)/𝜇(2𝑐

3
+ 𝜖)} and

by property Y3, we have

𝑀
4
∫

−𝑇
0

𝑇
𝐾
−𝑡

𝑒
𝑐
3
𝜏
∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏 ≤
1

8
𝜇.

(98)
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For the fixed 𝑇
0
, from Lebesgue’s theorem, there exist

𝑁
3
(𝜇, 𝜔) > 0 and𝑀 > 𝑁

3
(𝜇, 𝜔) such that

𝑀
4
∫

0

−𝑇
0

𝑒
𝑐
3
𝜏
∑

‖𝑖‖
𝑚
≥𝑀

(
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2𝑝+2

+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜃𝜏𝜔)

󵄨󵄨󵄨󵄨

2

) 𝑑𝜏 ≤
1

8
𝜇.

(99)

By setting

𝑇 (𝜇, 𝜔) = max {𝑇
1
(𝜇, 𝜔) , 𝑇

2
(𝜇, 𝜔) , 𝑇

𝐾
(𝜇, 𝜔) + 𝑇

0
(𝜇, 𝜔)} ,

𝑁
∗
(𝜇, 𝜔) = max {𝑁

1
(𝜇, 𝜔) ,𝑁

2
(𝜇, 𝜔) ,𝑁

3
(𝜇, 𝜔)} ,

(100)

then, for 𝑡 > 𝑇(𝜇, 𝜔) and𝑀 > 𝑁
∗
(𝜇, 𝜔), we obtain that

∑

‖𝑖‖
𝑚
≥2𝑀

󵄩󵄩󵄩󵄩𝜓𝑖
(𝑡, 𝜃

−𝑡
, 𝜓

0
(𝜃

−𝑡
))
󵄩󵄩󵄩󵄩

2

𝐹

≤ ∑

𝑖∈Z𝑛

𝜗(
‖𝑖‖

𝑚

𝑀
)
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑡, 𝜃
−𝑡
, 𝜓

0
(𝜃

−𝑡
))
󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝜇.

(101)

It means that if constant𝑁(𝜇, 𝜔) is large enough,

∑

‖𝑖‖
𝑚
≥𝑁(𝜇,𝜔)

󵄩󵄩󵄩󵄩𝜑𝑖
(𝑡, 𝜃

−𝑡
, 𝜓

0
(𝜃

−𝑡
))
󵄩󵄩󵄩󵄩

2

𝐹

≤ 2 ∑

‖𝑖‖
𝑚
≥𝑁(𝜇,𝜔)

(
󵄩󵄩󵄩󵄩𝜓𝑖

(𝑡, 𝜃
−𝑡
, 𝜓

0
(𝜃

−𝑡
))
󵄩󵄩󵄩󵄩

2

𝐹
+
󵄨󵄨󵄨󵄨𝑦𝑖 (𝜔)

󵄨󵄨󵄨󵄨

2

)

≤ 4𝜇

(102)

holds. The proof of the lemma is now completed.

Finally, we prove the asymptotic compactness of the
absorbing set 𝐾(𝜔).

Theorem 12. If assumptions (C1)–(C5) hold, then for any 𝜔 ∈

Λ
0
the set 𝐾(𝜔) is asymptotically compact.

Proof. For any 𝜔 ∈ Λ, consider the sequence 𝑑
𝑛

=

𝑠(𝑡
𝑛
, 𝜃

−𝑡
𝑛

𝜔)𝑥
𝑛
in 𝑠(𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔)𝐾(𝜃
−𝑡
𝑛

𝜔), where 𝑥
𝑛
∈ 𝐾(𝜃

−𝑡
𝑛

𝜔)

and {𝑡
𝑛
}
𝑛∈N is an increasing sequence in R+ with 𝑡

𝑛
→ +∞

as 𝑛 → +∞.
First, let us show that (𝑑

𝑛
)
𝑛∈N has a convergent

subsequence. Since 𝐾(𝜔) is a bounded absorbing set,
𝑠(𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔)𝑥
𝑛

∈ 𝐾(𝜔) holds for large 𝑛. Then, there
exists a subsequence of {𝑠(𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔)𝑥
𝑛
} (still denoted by

{𝑠(𝑡
𝑛
, 𝜃

−𝑡
𝑛

𝜔)𝑥
𝑛
}) such that

𝑠 (𝑡
𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
󳨀→ 𝑥

0
weakly in 𝐹. (103)

In what follows, we prove that the weak convergence (103)
is actually strong convergence. In other words, we will show
that, for every 𝜇 > 0, there exists 𝑁̃(𝜇, 𝜔) > 0 such that when
𝑛 > 𝑁

0
(𝜇, 𝜔),

󵄩󵄩󵄩󵄩󵄩
𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
− 𝑥

0

󵄩󵄩󵄩󵄩󵄩

2

𝐹
≤ 𝜇. (104)

By Lemma 11, there exist 𝑁̃
1
(𝜇, 𝜔) > 0 and 𝐾

1
(𝜇, 𝜔) > 0

such that, for 𝑛 > 𝑁̃
1
(𝜇, 𝜔),

∑

‖𝑖‖
𝑚
≥𝐾
1
(𝜇,𝜔)

󵄩󵄩󵄩󵄩󵄩
(𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹
≤
1

8
𝜇
2
. (105)

Also, since 𝑥
0
∈ 𝐹, there exists 𝐾

2
(𝜇) such that

∑

‖𝑖‖
𝑚
≥𝐾
2
(𝜇)

󵄩󵄩󵄩󵄩(𝑥0
)
𝑖

󵄩󵄩󵄩󵄩

2

𝐹
≤
1

8
𝜇
2
. (106)

Let 𝐾(𝜇, 𝜔) = max{𝐾
1
(𝜇, 𝜔), 𝐾

2
(𝜇)}. By (103), we infer

that

((𝑠 (𝑡
𝑛
, 𝜃

−𝑡
𝑛

) 𝑥
𝑛
)
𝑖
)
‖𝑖‖
𝑚
≤𝐾(𝜇,𝜔)

󳨀→ ((𝑥
0
)
𝑖
)
‖𝑖‖
𝑚
≤𝐾(𝜇,𝜔)

in R
2𝑛𝐾(𝜇,𝜔)+1

,

as 𝑛 󳨀→ ∞,

(107)

which implies that there exists 𝑁̃
2
(𝜇, 𝜔) > 0 such that when

𝑛 ≥ 𝑁̃
2
(𝜇, 𝜔),

∑

‖𝑖‖
𝑚
≤𝐾(𝜇,𝜔)

󵄩󵄩󵄩󵄩󵄩
(𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
)
𝑖
− (𝑥

0
)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹
≤
1

2
𝜇
2
. (108)

Setting 𝑁̃(𝜇, 𝜔) = max{𝑁̃
1
(𝜇, 𝜔), 𝑁̃

2
(𝜇, 𝜔)}, we get from

(105)–(108) that for 𝑛 ≥ 𝑁̃(𝜇, 𝜔)

󵄩󵄩󵄩󵄩󵄩
𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
− 𝑥

0

󵄩󵄩󵄩󵄩󵄩

2

𝐹

= ∑

‖𝑖‖
𝑚
≤𝐾(𝜇,𝜔)

󵄩󵄩󵄩󵄩󵄩
(𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
)
𝑖
− (𝑥

0
)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ ∑

‖𝑖‖
𝑚
≥𝐾(𝜇,𝜔)

󵄩󵄩󵄩󵄩󵄩
(𝑠 (𝑡

𝑛
, 𝜃

−𝑡
𝑛

𝜔) 𝑥
𝑛
)
𝑖
− (𝑥

0
)
𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹

≤
1

2
𝜇
2
+
1

2
𝜇
2
≤ 𝜇

2
.

(109)

Therefore, we arrive at

𝑠 (𝑡
𝑛
, 𝜃

𝑡
𝑛

𝜔) 𝑥
𝑛
󳨀→ 𝑥

0
strongly in 𝐹. (110)

The proof is therefore completed.

Finally, the main conclusion follows from Theorem 5,
Theorem 10, andTheorem 12.

Theorem 13. Assume that (C1)–(C5) hold. Then, for any
𝜔 ∈ Λ, the continuous random lattice dynamical system
𝑠(𝑡, 𝜔) generated by the general second-order stochastic lattice
dynamical system (1) has a unique global random attractor.

6. Conclusions

In this paper, we have investigated the random attractors in
second-order stochastic lattice dynamical systems. First, we
first proved the uniqueness and existence of the solutions
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of second-order stochastic lattice dynamical systems in the
space 𝐹 = 𝑙

2

𝜆
× 𝑙

2. Then, by proving the asymptotic
compactness of the random dynamical systems, we have
established the existence of the global random attractor with
the set of tempered bounded sets. These results could be
further extended to more general nonlinear systems with
uncertainties as in [25–27].
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