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Abstract

In this study, the modulation of turbulence and scalar mixing by finite-size droplets/ligaments in a dense
fuel spray is investigated using a DNS (Direct Numerical Simulation) dataset. Ejected from a spray nozzle
with a high speed, a liquid-fuel jet deforms and the fuel spray is atomized into many ligaments and drop-
lets. During these processes, the gas flow becomes turbulent due to droplet/ligament dynamics. At the same
time, droplet evaporation and mixing with ambient air are affected by the small-scale gas turbulence. An
understanding of the mixing characteristics in the dense spray zone is important for modeling spray com-
bustion. In a region where the droplet number density is relatively low, a universal feature of isotropic tur-
bulence was found, although the alignments of strain eigenvectors with vorticity and the mixture fraction
gradient are slightly modulated by the presence of droplets, which is a characteristic of particle-laden flows.
In gas-phase regions close to droplet surfaces, where the dissipation rate of turbulent kinetic energy is
strongly increased, the alignments are more modulated, especially those of the scalar gradient with strain
eigenvectors. This can also be seen in the topology similarity among energy dissipation, enstrophy and sca-
lar dissipation in the near field of droplet/ligament surfaces. For the first time, it is found that droplets
whose size is comparable to turbulence scales do affect the mixing characteristics in a realistic turbulent
spray. This finding has shed new light upon the modeling of flow turbulence and scalar mixing in an evap-
orating and atomizing fuel spray.
� 2014 Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Liquid-fuel atomization, evaporation, mixing
and combustion closely interact with turbulence
in spray combustion. The physics is very complex
Combustion Institute.
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since there is a wide range of temporal and spatial
scales in an atomizing spray [1–6]. Droplets/liga-
ments are generated by primary atomization in
the near-nozzle region, and the droplet size and
distribution subsequently impose a significant
impact on the downstream spray dynamics.

In the downstream dilute spray region, the tur-
bulence scale is in general much larger than the
droplet scale. While in the dense spray region near
the injection nozzle, the turbulence scale is compa-
rable to the droplet scale. For combustion, mixing
of fuel/oxidizer is critical. Scalar mixing is
strongly affected by small-scale turbulence struc-
tures [7–23]. Therefore, when the droplet/ligament
size is comparable to the turbulence scale, it is
expected that droplets/ligaments would change
the small-scale structures, hence mixing. Despite
its determining role in the entire spray combus-
tion, droplet/ligament effects on turbulence and
scalar mixing in a dense atomizing fuel spray have
not been fully understood yet and will be the main
objective of the present study.

In turbulent single-phase flows [7–14], correla-
tions between turbulence structures and scalar
mixing have been investigated. Abe et al. [14] con-
ducted a DNS study in a heated channel to inves-
tigate scalar mixing. At the wall, small-scale
structures are dominant due to high strain rates,
and are different from those of isotropic turbu-
lence. The small-scale topologies of the vorticity,
energy dissipation and scalar dissipation rate
become strongly correlated near the wall. Away
from the wall, the correlations become weaker
and the structures appear more similar to those
of isotropic turbulence.

For turbulent multiphase flows, turbulence
modulation by liquid droplets or solid particles
has been of considerable interest [15–19]. In early
studies [15–17], the particle size was much smaller
than the turbulence scale, i.e. point particles. Par-
ticles, even at a low number density, modify the
vorticity dynamics and turbulence production/dis-
sipation rate by the drag force, and the turbulent
mass and heat transport [15,16]. The alignments
between the vorticity vector and strain eigenvec-
tors are changed as a result of increased dissipation
by the particles. Reacting flows laden with point-
droplets were investigated by large-eddy simula-
tion [17]. The turbulence modulation was induced
by droplets (and heat release) due to the change of
the alignments between the strain eigenvectors and
the vorticity and also the scalar gradient. The
effects of particles, whose size is comparable to
the Kolmogorov or Taylor scales, on turbulence
are also of interest recently [18,19]. The strain-rate
eigenvalue modification was also observed for
finite-size particles. In the near field of particles,
the increased dissipation rate of turbulent kinetic
energy due to the non-slip particle interface can
be observed. In most of the studies above, the
particles were solid and spherical. In this study,
turbulent energy dissipation and heat/mass
transport at the surface of deformable droplets/
ligaments in a spray configuration are additional
physical phenomena.

For simple configurations such as a single
droplet or a droplet array in a gas flow, the
flow-droplet interaction has been investigated
extensively on turbulence, evaporation and com-
bustion modes [20–23]. Although simple configu-
rations are useful to improve our understanding,
actual turbulent flow fields in a spray are more
complicated. Since a dense liquid spray contains
many droplets and ligaments, whose size is com-
parable to the turbulence scale, and the liquid–
gas relative velocity is high, it is expected that tur-
bulence modulation will occur. Formation of
wake and vortex shedding by droplets/ligaments
will change the production and dissipation of
the gas-phase turbulence. This phenomenon can
alter flow structures and fuel/oxidizer mixing,
and thus impact the combustion characteristics
in the downstream dilute spray region. Therefore,
it is important to investigate the turbulent mixing
of the gas phase with finite-size droplets in a fuel
spray to properly model spray dynamics and
combustion.

In this study, to elucidate the turbulent mixing
characteristics in the dense spray region, the DNS
dataset of the primary atomization of a liquid fuel
jet is utilized. Since the droplet distribution is non-
uniform due to atomization [3,4], the turbulence
and mixing characteristics in regions with distinct
droplet number densities are investigated. To the
best of our knowledge, this is the first study on
turbulence and scalar mixing in a dense fuel spray.
2. DNS of an evaporating and atomizing fuel spray
[6]

The liquid fuel n-heptane is injected from a
round nozzle of diameter DN = 0.1 mm into hot
quiescent air (900 K, 30 atm) at a high speed
(100 m/s). The bulk liquid Weber number
ðWe ¼ qlU

2
l a=rÞ is 14,100 and the bulk liquid Rey-

nolds number (Re ¼ qlU la=ll) is 1477, where
a = DN/2, q denotes density, U the injection veloc-
ity, r the surface tension coefficient, l viscosity
and the subscript l denotes liquid. Slip velocity
still exists between the liquid and gas phases, with
the estimation of the Stokes number around 20
(St ¼ qlD

2
32U s=18lgL; where D32 is the Sauter

mean droplet diameter, Us the slip velocity, L
the characteristic flow length and the subscript g
stands for gas) [6]. The droplet size is
D32=g ¼ 4:3, where g is the Kolmogorov scale.

The governing equations for mass, velocity,
temperature, interface shape and species mass
fractions of C7H16, O2, CO2, H2O, and N2 are
solved [6]. The global one-step reaction model by
Westbrook is used [6]. The reaction heat release
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is negligible in the dense spray region. (The tem-
perature rise is below 1 K within the simulation
period.) Therefore, both temperature and mixture
fraction are nearly passive scalars, and the current
results can be compared with those of Abe et al.
[14] where the temperature is a passive scalar.
The Lewis number is assumed to be unity. The
evaporation rate is formulated by the equilibrium
vapor pressure model and given by the jump con-
dition at the interface [24]. The mixture fraction z
is z ¼ ðsY F � Y O þ Y O;0Þ=ðsY F ;0 þ Y O;0Þ with s ¼
mOW O=mF W F . mi is the stoichiometric coefficient
and Wi molecular weight. The subscript F denotes
fuel, O oxidizer, and 0 the inlet condition for the
fuel or oxidizer. z = 1 for the fuel stream and
z = 0 for the air stream. The stoichiometric mix-
ture fraction is zst = 0.062.

Liquid–gas interfaces are captured by the level-
set method and surface tension is formulated by
the CSF (Continuum Surface Force) method.
The advection term is solved by the CIP (Cubic
Interpolated Pseudo-particle) method. The com-
putational domain size is 5.5 � 4.5 � 4.5 in DN.
The grid system is fixed on the jet head, which is
20DN away from the injection nozzle [6]. The grid
resolution is 0.35 lm, and the total number of grid
points is 2.2 billion. Grid resolution tests have
been done in our previous research on primary
atomization and spray evaporation [3–6]. For
cold-flow cases [3], where finer resolution is gener-
ally needed to capture smaller vortex structures
due to a lower gas kinematic viscosity (thus a
higher Reynolds number), the current resolution
was sufficient. Additionally, several evaporating
droplet cases at similar droplet Reynolds numbers
have been tested to obtain satisfactory results of
evaporation at droplet/ligament surface [6].
3. Results and discussion

Hereafter, an upper-case letter denotes the
mean of a variable and a lower-case letter its fluc-
tuation. For example, uinst ¼ �uþ u ¼ U þ u,
where inst stands for “instantaneous” and the
bar denotes a mean value. In the present study,
the time period for averaging to obtain a mean
value is Dt̂ ¼ 1:5, which is non-dimensionalized
by DN/Ul. x,y,z are also denoted by the subscripts
1,2,3, respectively, and the velocity components
are u,v,w or u1,u2,u3. @a=@xi is abbreviated as a;i.
The Einstein notation applies in aibi, i.e.
aibi ¼ a1b1 þ a2b2 þ a3b3.

3.1. Overall flow field

Figure 1a shows the instantaneous shape of the
liquid fuel jet head and gas-phase eddies visual-
ized by the second invariant of the velocity gradi-
ent tensor (Q-value) [4,6]. At this time, the liquid
jet head is 20DN away from the nozzle. It is
deformed like an umbrella due to the impact on
the ambient air. At the head edge, the gas flow
separates and large-scale vortex shedding occurs.
A large recirculation zone is formed behind the
jet head, where a significant amount of droplets/
ligaments is detached from the liquid head edge
and fine eddies are generated [6]. Jets or shear lay-
ers develop self-similarly in both the near-nozzle
and downstream regions [25,26]. For the spray
shown in Fig. 1, the recirculation zone develops
self-similarly [4]. This is confirmed by the
streamwise velocity profiles in the recirculation
zone and the size development of the recirculation
zone during the calculation time period (not
shown).

Figure 2 shows the mean strain rate
Sij ¼ ð1=2ÞðU i;j þ U j;iÞ in the recirculation zone,
which is covered by the dashed rectangle in
Fig. 1b. High shear is observed at the spray-jet
head edge in the solid circle, where the gas flow
separates and vortex shedding occurs. Much
lower shear is observed on the periphery of the
recirculation zone in the dashed ellipse, and the
lowest near the liquid core in the dotted ellipse.
It is expected that the flow field becomes closer
to isotropic turbulence when the mean shear is
low.

At t̂ ¼ 0, the gas-phase flow is quiescent. All
the gas kinetic energy is supplied from the injected
liquid [3]. Part of the energy is initially used to
form the umbrella-like jet head, and the residual
is supplied to the gas flow through high-shear
regions to form the recirculation zone behind the
jet head, which is a large-scale energy-containing
region of the gas flow. The gas-phase kinetic
energy is about 7% of the total energy of the
injected liquid at the time of Fig. 1 [3]. At this
stage, most of the energy is being transferred to
the gas through the atomized droplets and liga-
ments. The turbulent Reynolds number is defined

as Rek ¼ u0k=m where k ¼ u2=u2
;1

� �1=2

is the Taylor

microscale in the axial direction, u0 the root-mean-
square (rms) of the axial velocity fluctuation and m
the kinematic viscosity. It is almost the same (Rek

� 60) during the current simulation period.

3.2. Unsteady flow dynamics around droplets and
ligaments

Before presenting turbulence statistics,
unsteady mixing dynamics around droplet wake
regions is investigated due to its close relation to
turbulence generation and small-scale turbulent
scalar mixing. Fig. 3 shows an example of vortex
shedding in the recirculation edge region where
the local droplet number density is high
(�3 � 1014 m�3). The gas phase flows from the
lower-right region to the upper left, as indicated
by the streamlines in Fig. 3c. Figure 3a shows a
3D view of liquid structures superimposed on a
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Fig. 1. Overall liquid structures and gas-phase eddies.

Fig. 2. Mean strain rate S (s�1). The instantaneous
liquid shape is shown for reference.
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plane view of the fuel mass fraction YF. The red
arrow indicates a front ligament in the gas flow.
Fig. 3. Unsteady flow dynamics around droplets/ligaments. At
vapor/air mixing starts; at a later time t̂ ¼ þ0:42, evaporation b
(a) Liquid structures and YF at t̂ ¼ þ0:32, (b) YF at t̂ ¼ þ0:42
Several droplets and ligaments exist behind this
ligament. Figure 3b and c present YF at a later
time when mixing is more developed. The Rey-
nolds number of the front ligament is 230, which
is larger than the critical Reynolds number for
the Karman vortex shedding over a cylinder in a
uniform flow (Rec �50 [27,28]). Therefore, the
Karman vortex shedding occurs as seen in
Fig. 3. The observed Strouhal number is 0.23.
The kinematics of fuel gas pockets is strongly
affected by these vortices. Evaporated fuel gas
pockets from each droplet/ligament can easily
interact with each other and form a larger cluster
of fuel vapor in a short time. Here, the local inter-
droplet distance L is L=D32 6 5. Qualitatively, this
clustering phenomenon is similarly observed for
droplet arrays with a small inter-droplet distance
[22].

In a region where the local droplet number
density is smaller (the far left side in Fig. 1), the
an earlier time t̂ ¼ þ0:32, evaporation is strong and fuel-
ecomes weaker, and fuel vapor and air are better mixed.
, (c) streamlines and YF at t̂ ¼ þ0:42.
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droplet Reynolds number is lower (Red < 30). On
the other hand, the velocity fluctuation of the gas
flow is typically much larger. Here, vortex shed-
ding from each droplet is also observed because
the incoming velocity-fluctuation is large (u0/U �
0.3). Even for low Red, the Karman vortex shed-
ding occurs when the gas-flow velocity-fluctuation
is large [27,28]. The inter-droplet distance is
L=D32 P 8. Each fuel gas pocket is affected by
these vortices, but is typically isolated (not
shown).

The above unsteady vortex shedding is the
source of turbulence generation. The vortices are
convected away from the mean wake region.
Thus, the gas flow is turbulent even in the recircu-
lation zone where the droplet number density is
low (shown later). In the high number-density
region, the mutual interaction among wakes
makes the wake survival slightly longer. In both
regions, vortex shedding by droplets/ligaments
alters the local flow structures and mixing at the
droplet scale, and thus at the turbulence scale. A
rough estimation of the droplet evaporation Dam-
köhler number Dav using the classical formulation
[23] is Dav �O(0.01–0.1), which suggests a slight
increase in evaporation due to turbulent eddies
around droplets in the dense spray region [6]. In
the downstream dilute spray region where the
droplet Stokes number reduces, the wake charac-
teristics are different and therefore the turbulence
and mixing characteristics are different
accordingly.

3.3. Turbulence structures and mixing
characteristics

The turbulent production terms for xixi and
z;iz;i are xixjsij and �z;iz;jsij, respectively, where
sij ¼ ð1=2Þðui;j þ uj;iÞ is the fluctuating strain ten-
sor. The alignments between the vorticity xi; the
scalar gradient z;i and the principal rate of sij are
(a)
Fig. 4. PDFs of the alignment angles between the principal st
shear and droplet number density are low. (a) Vorticity (b) sc
important to determine the variation of the turbu-
lent production terms [7–14]. Since sij is symmet-
ric, the eigenvalues a, b, c are real and satisfy
a P b P c ða P 0 P cÞ and aþ bþ c ¼ 0.
Hereafter, the eigenvectors are denoted as a, b, c
for the eigenvalues of a, b, c, respectively.

Figure 4 shows the probability density func-
tions (PDFs) of the cosine of the angle of the
alignment between the eigenvectors and xi or z;i
in an area far away from the major liquid struc-
tures (encircled by the dashed line in Fig. 2).
cos h ¼ �1 means strong alignment and
cos h ¼ 0 no alignment. The mean shear normal-
ized by the Kolmogorov velocity and length scales
is S� < 0:1, thus the mean strain effect is not dom-
inant here. The circles and triangles in Fig. 4 are
from the literature for isotropic turbulence [10],
isotropic turbulence with a mean scalar gradient
[11] and a turbulent channel flow with wall heat
transfer [14]. Known as a universal feature of iso-
tropic turbulence, xi and z;i align with the inter-
mediate (b) and compressive (c) strain rates,
respectively [10,11]. In [14], this trend was also
observed in the far-wall region out of the bound-
ary layer. The current results show the same trend.
Turbulent eddy generation is strongly correlated
with wake formation due to droplets/ligaments.
When the eddies are convected to the central
region of the recirculation zone where the droplet
number density is low, the flow there exhibits sim-
ilar characteristics to gas-phase isotropic turbu-
lence. The PDF of the normalized intermediate

eigenvalue b� ¼
ffiffiffi
6
p

b=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
is plotted in

Fig. 5. It shows that b� is mostly positive and thus
extensional. This was also observed in [11,12,17].
The vorticity can have both sheet-like and tube-
like structures [9]. When a vortex sheet wraps
up, a tube-like structure is formed. By the align-
ment with b�, it will be stretched and become
longer along its axis with increased rotational
motion [14,17] (see the sketch in Fig. 4a). This
(b)
rain rates and (a) xi, (b) z;i in a region where the mean
alar gradient.



Fig. 5. PDF of the normalized intermediate eigenvalue
b�.
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sheet-to-tube process indicates a process of energy
cascade from large scales to small scales [9,17].
The alignment of z;i with the compressive strain
rate c means that z;i is sheet-like (see the sketch
in Fig. 4b). The z;i sheets will wrap tube-like struc-
tures of vorticity [9]. Therefore, it has been shown
that turbulence structures similar to those in
canonical turbulent flows [7–14] also develop in
the dense fuel spray in a region away from the
major liquid structures.

In Fig. 4, some discrepancies between the sta-
tistics of the dense fuel spray and those of isotro-
pic turbulence can be observed. The alignment of
xi with b is reduced, while that with c is increased.
For z;i, the alignment with c is reduced, while that
with b is increased. (Reduced alignment can be
indicated by reduced PDF near cos h ¼ �1 and
increased PDF near cos h ¼ 0; similarly for
increased alignment.) The same modulation is
similarly observed in flows laden with point parti-
cles/droplets [15–17] and with finite-size particles
[18,19]. Particles increase the local velocity gradi-
ents, thus the strain rate sij and energy dissipation
e ¼ 2msijsij [15–20]. Even if the particle number
density is low, the strain rate eigenvalues are
increased (sijsij ¼ a2 þ b2 þ c2) and the alignments
are affected. Figure 6 shows an instantaneous
snapshot of the energy dissipation rate, in which
droplets are edged by black lines. The existence
of droplets increases the local dissipation.

In near-droplet regions (L/D32 < 1/4), the
alignments are changed by stronger local dissipa-
tion due to droplets/ligaments boundary layer for-
mation. As shown in Fig. 7, xi still aligns with the
intermediate (b) strain rate. However, the align-
ments of z;i with the compressive (c) and exten-
sional (a) strain rates switch to an orientation
angle of about 45� (cos h ¼ �0:7). Both trends
of the alignment of xi and z;i with the principal
strain rates are the same as those in the near-wall
region of channel flow turbulence (Fig. 4 of [14]).
This implies that the droplet surface acts like a
wall, makes the local flow non-isotropic and
changes the local mixing characteristics.

To see this further, topologies of energy dissi-
pation e, enstrophy xixi and scalar dissipation
Dz;iz;i are investigated. D is the mass diffusion
coefficient. Figure 8 shows instantaneous snap-
shots. The positive Q-value is superimposed using
solid lines to identify vortex structures. Ligaments
and droplets exist mostly in the lower right region
and there are few liquid structures in the central
region. For isotropic turbulence, the energy dissi-
pation and enstrophy are alike because �e ¼ mxixi.
The structures of e and xixi are similar in the cen-
tral region, as shown in Fig. 8a and b. As indi-
cated by the red arrows, the structures of e, xixi

and Dz;iz;i wrap a vortex (indicated by the blue
arrow) with some phase-angle difference. This is
characteristic to isotropic turbulence. Meanwhile,
near the liquid surface in the lower right region,
all the structures become similar. This was
similarly observed in [14]. The physical reason is
that the strong velocity and scalar gradients near
the surface lead to xixi � ð@u=@xnÞ2 and
Dz;iz;i � Dð@z=@xnÞ2 where xn is the wall normal
direction.

The quantified topology correlations in the far-
and near-surface regions are shown in Fig. 9 using
joint PDFs. The joint PDFs are obtained by one
realization data of Fig. 8. The axes represent the
values normalized by the mean of samples in each
region. In the far-surface region, the correlations
are weak between the scalar dissipation and ens-
trophy (Fig. 9b) and between the scalar dissipa-
tion and energy dissipation (Fig. 9c). Meanwhile
in the near-surface region, the corresponding cor-
relations (Fig. 9e and Fig. 9f) are relatively
stronger.

The PDF shapes in both regions are similar to
those in [13,14]. The no-slip droplet surfaces form
layers of velocity, temperature and scalar gradi-
ents, hence changing the local flow topology.
Since the mixing time scale is linked to the scalar
dissipation rate, the mixing characteristics near
the surfaces are also changed. It is expected that
if the Reynolds, Prandtl and Schmidt numbers
are similar to the present study, this effect is gen-
eric in multiphase turbulent flows where the wall
modulation exists.
4. Concluding remarks

The turbulence and mixing characteristics in a
dense fuel spray, which is critical to combustion,
have been investigated using DNS data. In
the dense spray zone, turbulence is generated by
the atomization dynamics, meanwhile droplets/
ligaments modulate the small-scale turbulence



Fig. 6. Increased energy dissipation (m2 s�3) around
droplets.
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characteristics, hence mixing. In most of the gas-
phase regions except for near-surface regions, the
alignments of the vorticity and scalar gradient with
Fig. 8. Close-up view of the instantaneous flow field. (a) Energy
dissipation Dz;iz;i (s�1).

(a)
Fig. 7. PDFs of the alignment angles between the principal s
Vorticity (b) scalar gradient.
the principal strain rate eigenvectors show similar
trends to those of isotropic turbulence. This indi-
cates the turbulent energy cascade from large scales
to small scales. The observed small discrepancies of
the alignments between the dense fuel spray and
isotropic turbulence are due to the increased gas-
phase energy dissipation by the existence of drop-
lets, which is a characteristic of particle-laden tur-
bulent flows. In regions close to droplets, the
alignments are different due to increased local
energy dissipation by droplets, which affects the
local small-scale fuel/air mixing. The effects of
finite-size droplets, namely wake formation, vortex
shedding and near-wall gradients generation, on
turbulence and mixing in a realistic dense fuel spray
have been investigated for the first time. An
improved understanding of the droplet/ligament
effects on turbulence and scalar mixing in the dense
spray region is essential to properly model spray
dynamics and combustion, and these effects should
be taken into account in such a model.
dissipation e (m2 s�3); (b) enstrophy xixi (s�2); (c) scalar

(b)
train rates and (a) xi, (b) z;i in near-droplet regions. (a)



Fig. 9. Joint PDFs in (a–c) the far-surface region and (d–f) the near-surface region.
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