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A robust finite element procedure for modelling the localised fracture of reinforced concrete beams at
elevated temperatures is developed. In this model a reinforced concrete beam is represented as an assem-
bly of 4-node quadrilateral plain concrete, 3-node main reinforcing steel bar, and 2-node bond-link
elements. The concrete element is subdivided into layers for considering the temperature distribution
over the cross-section of a beam. An extended finite element method (XFEM) has been incorporated into
the concrete elements in order to capture the localised cracks within the concrete. The model has been
validated against previous fire test results on the concrete beams.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Localised fracture of reinforced concrete members has recently
been of interest to many researchers and engineers. Under fire con-
ditions, reinforced concrete structural members (such as beams or
slabs) are often forced into high deformation. This results in the
formation of large individual cracks within the members, which
has been observed in previous experimental tests [1–3]. These
large individual cracks influence the exposure condition of the
reinforcing steel bar to the fire. In some cases the steel reinforce-
ments are directly exposed to fire, whereby significantly reducing
the fire resistance of the structures. In some extreme cases,
localised large cracks could even result in integrity failure of the
structures [1–3]. A key factor in assessing the fire resistance of
the structures is through predicting the localised fracture of their
structural members. Recently, the performance-based approach
has been used in the fire safety design of reinforced concrete struc-
tures, which requires the use of accurate numerical models for
predicting the response of structural members in fire. In the past
two decades, plenty of numerical simulations and analyses have
been conducted for modelling concrete structures at elevated
temperatures [4–14]. Those studies were all based on the con-
tinuum approach, in which smeared cracking was adopted to
simulate the cracks within concrete members. Existing research
indicates that models based on smeared cracking can predict
global responses, such as deflection and structural stability, with
reasonable accuracy. However, the smeared cracking model cannot
capture the localised fracture within structural members, and
quantitatively predict crack openings. As far as performance-based
fire safety design is concerned, predicting the opening of individual
cracks at critical sections of critical members can be a crucial issue
when evaluating the reliability of structures under fire conditions.
Little research has yet been done on modelling localised fractures
for reinforced concrete structural members under fire conditions.

In the past, a discrete-cracking model has been used successful-
ly for modelling the formation and propagation of cracks in struc-
tural members, when the crack path is known in advance.
However, this approach has to limit the cracks to inter-element
boundaries, which might cause mesh bias, or requires performing
costly re-meshing during the analysis process. To model individual
cracks more effectively, the extended finite element method
(XFEM) was introduced [15,16], based on the partition of unity the-
ory [17]. The XFEM approaches in conjunction with cohesive-zone
models [18–21] allow displacement jumps within conventional
finite elements to analyse localisation and fracture in engineering
materials. In the last decade, the XFEM has been successfully
extended to many applications, such as multiple cracks in brittle
materials, intersecting cracks and dynamic crack growth [22–26].
In terms of computer implementation of enriched finite element
methods, a general structure for an object-oriented enriched finite
element code (the XFEM library) was presented by [27], which had
been designed to meet all natural requirements for modularity,
extensibility, and robustness. Another open-source software
framework called PERMIX for multiscale modelling of material
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NOTATION

Bu
sta regular strain–displacement transformation matrix

Ba
enr enhanced strain–displacement transformation matrix

D material constitutive matrix of plain concrete
fint element internal force vector
fint

a enhanced element internal force vector
fint

u regular element internal force vector
fint
C element internal force vector corresponding to traction

Gf fracture energy of concrete
Kaa enhanced element stiffness matrix

Kuu regular element stiffness matrix
KC element stiffness matrix corresponding to traction
Ta tangent stiffness of traction–separation relation
ta traction within the cracks
signðxÞ sign function
ucont vector of continuous displacement field
udis vector of discontinuous displacement field
WiðxÞ enhancement function
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failure was presented by [28]. The integration method for the
XFEM based on Schwarz–Christoffel mappings was proposed by
[29] to simplify the numerical integration on arbitrary polygonal
domains. The application of strain smoothing in finite elements
was extended to the extended finite element method to form the
smoothed extended finite element method (cell-based smoothed
XFEM, edge-based smoothed XFEM, and node-based smoothed
XFEM) [30–32]. By transforming interior integration into boundary
integration, strain smoothing simplifies the integration of discon-
tinuous approximations of the XFEM and suppresses the need to
integrate singular functions numerically. The smoothed XFEM is
insensitive to mesh distortion and locking and could be a com-
petitive alternative to solve complex 3D problems. The strain
smoothing method was extended to higher-order elements by
[33], and it also concluded that the method is only beneficial when
the enrichment functions are polynomial. Besides the XFEM, there
are also some alternate approaches for modelling the strong dis-
continuity. The numerical results of the embedded finite element
method (EFEM) and XFEM were compared in [34], and various
methods for numerical modelling of multifield fracturing, such as
interface and embedded discontinuity elements, XFEM, thick level
set and phase field models, and a discrete crack approach with
adaptive remeshing, were discussed in [35]. Recently, the meshfree
method based on a partition of unity concept was also developed
to model concrete and more general non-linear materials
[36–38]. This method has been used to successfully model the rein-
forced concrete structural members at the ambient temperature
[39,40], where a coupled particle-finite element approach was
adopted and the reinforcement was coupled with the concrete
via a ‘barscale’ bond model for modelling the pullout and splitting
failure. However, so far, limited efforts have been made to use the
XFEM in modelling reinforced concrete structural members in fire.

The main objective of this paper is to develop a robust finite ele-
ment procedure for modelling the localised fracture of reinforced
concrete members in fire conditions. The model developed can
be used for structural fire engineering design of reinforced con-
crete beams and enable engineers to assess both the structural sta-
bility (global response) and the integrity (localised fracture) of the
beams. In the past, the majority of reinforced concrete beams at
elevated temperatures have been simulated by the conventional
finite element method, in which the generalised isoparametric ele-
ments have usually been used. In the procedure proposed in this
paper the isoparametric elements are still employed so that
relatively small modifications of the available finite element model
are required. The new procedure could be easily applied to the fire
design for practical building structures. In this paper a 2D model is
used to model reinforced concrete beams. Since mesh distortion
and locking are not the main concerns within the scope of this
paper, only the straight crack is considered and the standard XFEM
formulations and numerical integration procedure are employed.
In this new model a reinforced concrete beam is represented as
an assembly of 4-node quadrilateral plain concrete, 3-node main
reinforcing steel bar, and 2-node bond-link elements. The extended
finite element method (XFEM) is incorporated into plain concrete
elements in order to capture the localised cracks of concrete within
the member. The original contributions of the model presented in
this paper are:

� Combine the XFEM plain concrete element with the reinforcing
bar element and bond-link element successfully. Due to the
bond-link element and plain concrete element sharing the same
node, one important issue with which the model should deal is
the compatibility of nodal displacements referenced to the plain
concrete element and bond-link element. This is due to the
nodal displacement of the cracked XFEM plain concrete element
being divided into two parts: continuous part and discon-
tinuous part. These displacements are not compatible with the
nodal displacement of the bond-link element. Therefore, a spe-
cial shifted enhancement function is used in order to obtain the
total nodal displacement (including both continuous and dis-
continuous parts) of the cracked XFEM plain concrete elements.
This satisfies the compatibility of the nodal displacements of
both the XFEM plain concrete element and bond-link element.
� With the help of the bond-link element and steel bar element,

the developed model has the capability to consider the influ-
ence of the bond characteristic between the concrete and rein-
forcing steel bar on the initiation and propagation of each
individual crack within the reinforced concrete beam. Due to
the influence of the reinforcing steel bar, the Newton–Raphson
iteration procedure can be employed to solve this very nonlin-
ear problem up to the failure of the whole beam. This is sig-
nificantly different with conventional XFEM models, in which
a complex solution procedure needs to be developed.
� Even for the adoption of a 2D model for modelling plain concrete,

the model developed in this paper is still complex, because the
effects of temperatures induced by fire need to be taken into
account. The XFEM plain concrete elements are subdivided into
layers for considering the temperature distribution over the
cross-section of a beam. Since the temperature varies across dif-
ferent layers, a robust criterion has been developed to determine
the initiation of individual cracks within the XFEM plain concrete
elements. Moreover, the complications of structural behaviour in
fire, such as thermal expansion, degradation of bond characteris-
tics between a reinforcing steel bar and concrete, and the change
of material properties with temperature, are modelled.

The new model has been validated against some previous fire
tests of reinforced concrete beams. It is clear that the developed
nonlinear procedure proposed in this paper can predict cracking
patterns (flexural cracks and shear cracks) of the reinforced
concrete beams properly. The model is capable of predicting the
global response of reinforced concrete beams in fire with good
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accuracy and, at the same time, capturing the formation and
propagation of individual localised cracks within the beams. The
influences of bond characteristics between the concrete and
reinforcing steel bar on the deflection and crack opening are also
examined in this paper. The model presented in this paper pro-
vides a very useful tool for researchers and designers to assess
the integrity of reinforced concrete structural members under fire
conditions.
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Fig. 2. A layered 4-node quadrilateral plain concrete element.
2. Development of the nonlinear procedure

As shown in Fig. 1, a reinforced concrete beam is modelled as an
assembly of plain concrete, main reinforcing steel bar, and bond-
link elements. The plain concrete elements are subdivided into
layers to take into account the temperature distribution over the
cross-section of a beam. The bond-link elements are used to repre-
sent the interaction between the plain concrete and reinforcing
steel bar elements.

2.1. Layered quadrilateral concrete elements with extended finite
element formulations

Fig. 2 shows a 4-node layered quadrilateral element to simulate
the plain concrete for a reinforced concrete beam under fire condi-
tions. Each node of the element contains two translational degrees
of freedom. In order to consider the temperature distribution over
the beam cross-section, the plain concrete elements are divided
into layers in the z direction, and each layer can have a different
but uniform temperature. The initial material properties of each
layer may be different. Concrete layers are in a state of plane stress,
so the material property, temperature, load and deformation of the
element are symmetric to the reference plane (mid-plane, as
shown in Fig. 2) along the thickness [41]. Within the element the
stress–strain relationships may change independently for each
layer. Since temperature-dependent constitutive models are used
in this study, the material properties and thermal expansions vary
at different layers, but are constant within a layer at each tem-
perature step.

2.1.1. Element stiffness matrix, K
In order to model the localised fracture of plain concrete, the

extended finite element method (XFEM) is used for the
Reference plane 
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Fig. 1. Nonlinear layered finite element procedur
development of plain concrete elements. The model proposed here
can capture individual concrete cracks without remeshing and cal-
culating the magnitude of individual crack openings during the
analysis. The key idea of the extended finite element method
(XFEM) is to use the partition of unity for describing the discon-
tinuous displacement, and then the displacement field is
approximated by the sum of the regular displacement and the
enhancement displacement fields [16]. In order to do this, extra
degrees of freedom are added on the enhanced nodes to represent
the enhancement displacement field. Special enhancement func-
tions are also employed to realise the displacement jump over
the discontinuity. Note that many applications of the XFEM have
been conducted using a step function to enrich the element which
is completely cut by a crack and using branch functions to enrich
the element which the crack tip located inside the element. In this
paper, for simplicity, it is assumed that the crack tip is always
located on an edge of an element; thus, the cracked element can
be successfully enriched by the sign function only without other
enrichment functions. Thus, the crack branching is not included
in the proposed procedure, assuming that a particular element
d quadrilateral concrete element  
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X

y

e for modelling a reinforced concrete beam.
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contains one crack only. The main purpose of the model developed
in this paper is to predict the global response of reinforced concrete
beams in fire with reasonable accuracy and, at the same time, the
major localised cracks within the beam can also be captured.
Therefore, in order to enhance the computational efficiency of
the proposed model, precise modelling of the crack tip and crack
branching is not considered in this paper.

Considering a four-node quadrilateral element crossed by a dis-
continuity (CdÞ (see Fig. 3), the domain is divided into two distinct
domains referenced to an element, which are represented as Xþ

and X� on the different sides of the discontinuity in an element.
Figs. 3(a) and (b) give the definition of sub-domains Xþ and X�

where a discontinuity cuts a quadrilateral element in two different
possible ways, respectively. Then, the total displacement field
uconsists of a continuous regular displacement field ucont and a dis-
continuous displacement field udis[18], that is:

u ¼ ucont þ udis ¼
X4

1

Niui þ
X4

1

NiWiðxÞai ð1Þ

where Ni is the shape function, ui is the regular node displacement,
ai is the additional node displacement to describe the discontinuity,
and WiðxÞ is the enhancement function:

WiðxÞ ¼ signðxÞ � signðxiÞ ði ¼ 1 � 4Þ ð2Þ

in which sign is the sign function and defined as:

signðxÞ ¼ þ1 if x 2 Xþ

�1 if x 2 X�

(
ð3Þ
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Fig. 3. A 4-node quadrilateral element crossed by a discontinuity Cd .
Note that the sign function enrichment is equivalent to the Heav-
iside step function enrichment which has been used in many previ-
ous XFEM models. But the sign function appears more symmetrical
[19]. signðxiÞ is the value of the sign function of the i-th node in a
quadrilateral element. Taking the quadrilateral element in
Fig. 3(a) as an example: signðx2Þ ¼ signðx3Þ ¼ �1 for nodes 2 and 3
and signðx1Þ ¼ signðx4Þ ¼ þ1 for nodes 1 and 4, respectively. Com-
pared with the conventional XFEM models, the sign function given
in Eq. (2) is shifted by signðxiÞ. According to [19], using the shifted
sign function can make the enrichment displacement field vanish
outside the enhanced element.

One significant advantage of using the sign function is that only
the elements cut by the crack need to be enhanced, as the resulting
enhancement vanishes in all elements not crossed by the crack.
The utilisation of a shifted sign function may greatly simplify the
implementation of the extended finite element model, without
altering the approximating basis. Especially for modelling rein-
forced concrete structures, this advantage is more significant
because multiple cracks normally are distributed within a rein-
forced concrete member (due to the bond action between steel
bars and concrete). Other than the simplification in terms of imple-
menting the procedure, the key reason for using the shifted
enhancement function is to obtain the total nodal displacement
directly from the procedure, rather than only the regular part of
XFEM nodal displacement being outputted from the procedure
[42]. This makes the compatibility of total nodal displacements
of the plain concrete element and bond-link element feasible.
Therefore, the bond-link element can be used to link plain concrete
elements and steel bar elements in a conventional way, such as
through the continuous approach, for modelling localised cracking
within a reinforced concrete member.

In the case of the four-node quadrilateral element (Fig. 3), the
element nodal displacement vector û can be represented as:

û¼
ui

ai

� �
¼ u1 v1 u2 v2 u3 v3 u4 v4 a1 b1 a2 b2 a3 b3 a4 b4½ �T

ð4Þ

where ui and mi are the regular nodal displacements related to x and
y coordinates, respectively, and ai and bi are the enhanced nodal
displacements related to x and y coordinates, respectively.

Thus, the strains ðeÞ within an enhanced element consist of the
regular and enhancement parts, which are related to the regular
nodal and enhanced nodal displacements respectively. The strain
vector e can be expressed as:

e ¼ econt þ edis ¼
ex

ey

cxy

8><
>:

9>=
>; ¼ Bû ¼ Bu

sta Ba
enr

�� ui

ai

� �
ð5Þ

where econt is the continuous strain, and edis is the discontinuous
strain. Bu

sta is the standard strain–displacement transformation
matrix corresponding to the regular degrees of freedom ui, and
Ba

enr is the enrichment strain–displacement transformation matrix
corresponding to the additional degrees of freedom ai.

The strain–displacement transformation matrix B including the
regular part and enhancement part can be obtained as
B ¼ Bu

staBa
enr

� �
, in which:

Bu
sta¼ LN¼ L

N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

" #

¼
Bsta1x 0 Bsta2x 0 Bsta3x 0 Bsta4x 0

0 Bsta1y 0 Bsta2y 0 Bsta3y 0 Bsta4y

Bsta1y Bsta1x Bsta2y Bsta2x Bsta3y Bsta3x Bsta4y Bsta4x

2
64

3
75

ð6Þ
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Ba
enr ¼ WiðxÞLN ¼ L

W1ðxÞN1 0 W2ðxÞN2 0 W3ðxÞN3 0 W4ðxÞN4 0
0 W1ðxÞN1 0 W2ðxÞN2 0 W3ðxÞN3 0 W4ðxÞN4

� 	

¼
Benr1x 0 Benr2x 0 Benr3x 0 Benr4x 0

0 Benr1y 0 Benr2y 0 Benr3y 0 Benr4y

Benr1y Benr1x Benr2y Benr2x Benr3y Benr1x Benr4y Benr4x

2
64

3
75

ð7Þ
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where N is the shape function of a general quadrilateral element
[43], WiðxÞ(i = 1–4) is the enrichment function given in Eq. (2),
and the matrix L contains differential operators.

Since the effect of thermal expansion is included in the model,
the total strains ðeÞ include both thermal and stress-related strains
at elevated temperatures. The stress-related strains can be
obtained by deducing the thermal strains ðeTÞ from the total strains
ðeÞ. If strains are reasonably small the stress vector r can be
obtained from the stress-related strain vector as:

r ¼
rx

ry

sxy

8><
>:

9>=
>; ¼ Dðe� eTÞ ¼ D Bu

staui þWiðxÞBu
staai � eT

� �
ð8Þ

in which D is the constitutive matrix of concrete related to plane
stress.

In a finite element model, the equilibrium conditions between
internal and external ‘forces’ have to be satisfied. To form the ele-
ment stiffness matrix and internal force vector, the virtual work
equation without body force reads as:

f int ¼
Z

X
BTr dX ¼ fext ð9Þ

where f int is the internal force vector, and fext is the external force
vector. In this study the cracked concrete is treated as a quasi-brit-
tle heterogeneous material, and the cohesive crack concept is used

for simulating quasi-brittle fracture. The internal force vector f int

contains the regular part ðf int
u Þ, the enhancement part ðf int

a Þ, and

the traction part ðf int
C Þ. The regular internal force ðf int

u Þ balances the

external force ðfextÞ, and the enhancement part ðf int
a Þ is related to

the traction of the crack ðf int
C Þ only [18], that is:

f int
u ¼

Z
X

BuT

star dX ¼ fext ð10Þ

f int
a þ f int

C ¼
Z

Xþ ;X�
BaT

enrr dXþ
Z

Cd

NT ta dCd ¼ 0 ð11Þ

where ta is the traction acting on the discontinuity and can be writ-
ten as:

ta ¼
tan

tas

� �
¼ Taw ¼

Tan 0
0 0

� 	
wn

ws

� �
ð12Þ

where tan and tas are the traction normal and tangential to a crack,
respectively; wn and ws are the crack opening normal and tangential
to a crack, respectively; and Tan is the tangent stiffness of the trac-
tion–separation law.

In order to solve the nonlinear problem, an incremental solution
procedure needs to be developed. By substituting the rate form of
the constitutive relations of Eq. (8) into Eqs. (10) and (11), the ele-
ment stiffness matrix in terms of incremental displacements can
be obtained as:
K dû ¼
Kuu Kua

Kau ðKaa þ KCÞ

� 	
dui

dai

� �
¼ fext

0

( )
�

f int
u

f int
a þ f int

C

( )

ð13Þ

where Kuu is the element stiffness matrix referenced to the regular
degrees of freedom, Kaa is the element stiffness matrix related to the
enhancement degrees of freedom, Kua ¼ KT

au is related to both, and
KC is the element stiffness matrix related to traction. They are
expressed as:

Kuu ¼
Z

X
BuT

staDBu
stadX ¼

ZZ
A

BuT

sta

Z
Dldz


 �
Bu

sta dxdy ð14Þ

Kua ¼
Z

Xþ ;X�
BuT

staDBa
enr dX ¼

ZZ
Aþ ;A�

BuT

sta

Z
Dldz


 �
Ba

enr dxdy ð15Þ

Kau ¼
Z

Xþ ;X�
BaT

enrD Bu
sta dX ¼

ZZ
Aþ ;A�

BaT

enr

Z
Dldz


 �
Bu

sta dxdy ð16Þ



Fig. 5. Concrete biaxial failure envelopes at elevated temperatures.
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Kaa ¼
Z

Xþ ;X�
BaT

enr DBa
enr dX ¼

ZZ
Aþ ;A�

BaT

enr

Z
Dldz


 �
Ba

enr dxdy ð17Þ

KC ¼
Z

Cd

NTTaNdCd ¼
Z

Cd

NTOTTdONdCd

¼
Z

Cd

NT OT
Z

Tdl dz

 �

ONdCd ð18Þ

where N ¼ 2ðNÞ and N is the shape function, Td is the tangent stiff-
ness of the traction–separation law, and O is the orthogonal trans-
formation matrix – for the transformation of the local orientation of
the discontinuity to the global coordinate system. The expression of
O can be found in [44].

In this study, Gauss quadrature is employed to calculate the
stiffness matrix of quadrilateral elements. Therefore, all stresses,
strains, and the constitutive matrix of material discussed above
correspond to Gauss integration points. Since the elements are
divided into layers along the z- axis (see Fig. 2), and the material
properties are assumed to be constant within each layer at each
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Fig. 6. Uniaxial compressive stress–strain relationships of concrete at elevated
temperatures.
time or temperature step, the matrices D and Td in Eqs. (14)–(18)
at a Gauss point are a function of zonly, and the inner integrationsR

Dl dz
� �

and
R

Tdl dz
� �

can be performed separately. Integration
along the z- axis is replaced by summation over the layers as:Z

Dl dz ¼
Xn

l¼1

zlþ1 � zlð ÞDl ð19Þ

Z
Tdl dz ¼

Xn

l¼1

zlþ1 � zlð ÞTdl ð20Þ

where

zl is the distance from the reference plane to the l-th layer
(Fig. 2),
Dl is the material stiffness matrix for the l-th layer,
Tdl is the tangent stiffness matrix of traction–separation law for
the l-th layer, and
n is the total number of element layers.

2.1.2. Element internal force vector, f int

Using the principle of virtual work, the internal force vectors
can be written as [18]:

f int
u ¼

Z
X

BuT

sta rdX ¼
ZZ

A
BuT

sta

Z
rl dz


 �
dxdy ð21Þ

f int
a ¼

Z
Xþ ;X�

BaT

enr rdX ¼
ZZ

Aþ ;A�
BaT

enr

Z
rl dz


 �
dxdy ð22Þ

f int
C ¼

Z
Cd

NT ta dCd ¼
Z

Cd

NT OT
Z

tdl dz

 �

dCd ð23Þ

As mentioned above, the Gauss quadrature is used to calculate

f int
u ; f int

a and f int
C . Therefore,

R
rdz

� �
and

R
tdl dz

� �
at a Gauss point

are a function of z only, and the inner integrations
R
rl dz andR

tdl dz in Eqs. (21)–(23) can be expressed by summation over the
layers as:Z

rl dz ¼
Xn

l¼1

zlþ1 � zlð Þrl ð24Þ

Z
tdl dz ¼

Xn

l¼1

zlþ1 � zlð Þtdl ð25Þ

where rl is the stress vector in the l-th layer, tdl is the traction in the
l-th layer, and n is the total number of layers.

In this study, Gauss quadrature is employed to calculate the
stiffness matrix and internal force vector of the concrete element.

Kuu and f int
u can be integrated in the usual way over the whole

domain ðXÞ, but for Kaa; Kua; Kau and f int
a , integration should be

performed separately on both sides (Xþ and X�) of the crack,
respectively. This means that the sign function sign ðxÞ needed to
be applied for each Gauss point within the element. In the current
model, a crack is represented by a straight line within the enhance-
ment element, with two Gauss points employed to integrate the

discontinuity terms KC and f int
C over the discontinuity Cd using a

one-dimensional integration scheme. For the regular four-node
element without a crack, four Gauss integration points are used
(as recommended by Bathe [43]). But for those enhanced elements
containing a crack, conventional four Gauss integration is insuffi-
cient to distinguish the enhancement function from a constant
function over different sides (Xþ and X�) of the crack, resulting
in linearly independent shape functions [18]. Therefore, the
enhanced elements need to be integrated separately on each side
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of the crack. Note that there are many different integration
schemes that could be used for an enhanced quadrilateral element
with sufficient accuracy [45]. In this paper the scheme that parti-
tioned the element into sub-triangles is adopted for its flexibility
because it might be desirable to add other enhancement functions
into the procedure in future research. Then, in the case of the ele-
ment being cut by a crack into two sub-quadrilaterals, as shown in
Fig. 4(a), four sub-triangles with 12 Gauss points are applied
within each sub-quadrilateral. Fig. 4(b) shows the element being
cut by a crack into a pentagon and a triangle. In this case, five
sub-triangles with 15 Gauss points are applied within the pen-
tagon, and three sub-triangles with nine Gauss points are used
within the triangle. More detailed information related to the inte-
gration schemes can be found in [44]. Due to the high non-linearity
of the current model, a full Newton–Raphson solution procedure is
adopted.
2.1.3. Constitutive modelling of concrete at elevated temperatures
Before cracking or crushing occurs, the concrete is assumed to

be isotropic, homogeneous, and linearly elastic. Barzegar-Jamshidi
[46] proposed a biaxial concrete failure envelope at an ambient
temperature, which was based on a slight modification of the
Kupfer and Gerstle [47] expressions. At present, there are still very
little data and few theoretical models available regarding the
Enhanced node

Regular node

Enhanced element

Regular element

Crack

Fig. 8. The finite element mesh for a plain concrete structure with a crossed crack.
constitutive modelling of concrete under biaxial states of stress
at elevated temperatures. Based on the Barzegar-Jamshidi [46]
model, Huang et al. [11] developed a biaxial concrete failure envel-
ope at elevated temperatures by considering all of the relevant
material properties as temperature-dependent. As shown in
Fig. 5, with the increasing temperatures the area enclosed by the
failure envelope tends to be decreasing. The model was validated
against the test results in [11,12]. Therefore, this model is adopted
to determine the cracking and crushing of concrete in this paper. In
the figure, f 0cðTÞ and f 0tðTÞ are the temperature-dependent compres-
sive strength and tensile strength of concrete, respectively; rc1 and
rc2 are the principal stresses. The failure surfaces of the biaxial
strength envelope are divided into four regions which depend on
the stress state as represented by the principal stress ratio
a ¼ rc1=rc2. It is assumed that compressive stresses are negative
and tensile stresses are positive, and the principal directions are
chosen so that rc1 P rc2 algebraically.

The four regions of the failure surfaces of the strength envelope
in Fig. 5 can be expressed as follows:

(1) In the tension–tension region ðrc1 ¼ tension; rc2 ¼ tensionÞ,
line segment A–B, failure by cracking:
rc1 ¼ f 0t
rc2 ¼ rc1

a

)
a P 1:0

In the tension–compression region ðrc1 ¼ tension;
(2)
rc2 ¼ compressionÞ, line segment B–C, failure by cracking:
rc1 ¼ arc2

rc2 ¼ f 0t
a�0:6r

)
a 6 �0:73r

where r ¼ f 0t= j f
0
c j.
(3) In the tension–compression region ðrc1 ¼ tension;
rc2 ¼ compressionÞ, line segment C–D, failure by crushing:
Fig. 9. Bi-lineal softening fracture curve of concrete.
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rc1¼arc2

rc2¼ f 0c
12:8r 9rþaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9rþað Þ2�66:56r2

q� 	9=; �0:73r<a60

In the compression–compression region ðrc1 ¼ compression;
(4)
rc2 ¼ compressionÞ, line segment D–E, failure by crushing:
rc1 ¼ arc2

rc2 ¼ 1þ3:65a
1það Þ2

f 0c

)
0 < a 6 1
Within this model the initiation of a cracking or crushing pro-
cess at any location occurs when the concrete stresses reach one
of the failure surfaces. It is also assumed that after concrete crush-
ing, all strength and stiffness are lost. The main advantages of this
model are that it is simple and the required data are readily obtain-
able from uniaxial tests on the concrete.

As shown in Fig. 6, the models specified in EN1992-1-2 [48] are
adopted to determinate the uniaxial properties of concrete at
elevated temperatures. The uniaxial tensile strength of concrete

(in MPa) is obtained by f 0tðTÞ ¼ 0:3321
ffiffiffiffiffiffiffiffiffiffiffi
f 0cðTÞ

q
[49]. Therefore, the

concrete tensile strength f 0tðTÞ changes with temperature as well.
The thermal elongation of concrete is calculated according to the
model suggested by EN1992-1-2 [48]. For concrete in the biaxial
stresses case, it is assumed that free thermal expansion produces
zero shear strain.

2.1.4. The determination of enhancement elements and nodes
Under fire conditions, each concrete layer within an element

has different temperatures and material properties. The magnitude
and orientation of principle stresses at a Gauss point may also not
be the same for each layer. Therefore, the failure envelope of
concrete at a Gauss point, which is temperature-dependent, may
change over the different concrete layers. Thus, a criterion is need-
ed for determining whether or not an element should be enhanced.
In this study, the weighted average values of maximum principal
stresses and concrete material properties over the element are
proposed to examine the initiation of cracks in an element. For
an element the weighted average stress in the x direction ðrx;aveÞ
and the weighted average tensile strength of concrete f t;aveðTÞ
can be expressed as (see Fig. 2):

rx;ave ¼
Pn

l¼1

Pm
g¼1 rl

x;g zlþ1 � zlð Þ
mðznþ1 � z1Þ

ð26Þ

f t;aveðTÞ ¼
Pn

l¼1 f l
tðTÞ zlþ1 � zlð Þ

znþ1 � z1
ð27Þ
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. Stress–strain relationships of reinforcing steel at elevated temperatures.
where

rx;ave is the average stress in the x direction,
f t;aveðTÞ is the average tensile strength of concrete,

rl
x;g is the stress in the x direction at the g-th Gauss point of the

l-th layer,

f l
tðTÞ is the tensile strength of the l-th layer concrete,

m is the total number of Gauss points in each layer,
n is the total layer number of an element, and
ðznþ1 � z1Þ is the total thickness of an element.

Using the same procedure, the weighted average stress in the y
direction ðry;aveÞ and the weighted average shear stress ðrxy;aveÞ can
also be calculated. The weighted average principle stresses rp1;ave

and rp2;ave can be obtained from rx;ave;ry;ave and rxy;ave. Again,
the same method is used to calculate the weighted average com-
pressive strength f 0c;aveðTÞ, and weighted average modulus of elas-
ticity Ec;aveðTÞ, for the concrete element. Based on those
parameters the biaxial concrete failure envelope (see Fig. 5) can
be constructed for each concrete element at each time or tem-
perature step.

At each time or temperature increment, all concrete elements
are examined one by one. Once the average principal tensile stress-
es of a concrete element reach one of the ‘average failure surfaces’,
either in the biaxial tension region or in the combined tension–
compression region, a straight crack is inserted through the entire
element, and the orientation of the crack is normal to the average
maximum tensile principal stress. The initial crack is assumed to
go through the centroid point of a quadrilateral element. Then,
when the average principal stresses of the next element reach
one of the tension failure surfaces, the crack will propagate from
the tip of the existing crack into the next element, following the
orientation normal to the corresponding average maximum tensile
principal stress of the element. Fig. 7 illustrates how a crack initi-
ates and propagates. As can be seen, there are two different possi-
ble ways in which an initial crack cuts a quadrilateral element:
initial crack 1 in Fig. 7(a) and initial crack 2 in Fig. 7(b), each of
which has possibly three crack propagation paths within the next
element when the initial crack extends from element 1 into
element 2.

Since the enhancement function (sign function) related to
enhancement nodes is shifted by sign ðxiÞ, the enhanced displace-
ment field vanishes outside the element enclosing the crack. Thus,
only the elements crossed by the crack need to be enhanced, rather
than all of the elements that contain enhanced nodes. This
0

20

40

60

80

100

0 4 8 12 16

Mid-span deflection (mm)

Lo
ad

 (k
N

)

 200 concrete elements+
40 bar elements

 400 concrete elements+
80 bar elements

Fig. 11. Comparison of predicted loads versus mid-span deflection curve using
different FE meshes.
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procedure is illustrated in Fig. 8, where the enhanced elements are
filled with grey colour, and the enhanced nodes are indicated by
the solid circles and regular nodes by the hollow circles. To model
multiple cracks within a reinforced concrete member, the model
developed in this paper allows two or more cracks to initiate and
propagate at the same time. For simplicity, it is assumed that only
one crack may exist within a particular element.

After concrete cracking, the constitutive model based on the
cohesive crack concept [50] is adopted for the cracked concrete
element. The crack opening is related to the traction forces acting
on the crack. The constitutive model is formed in an orthogonal
local coordinate system ðn; tÞ related to the crack, in which the n
direction is normal to the crack and the t direction is tangential
to the crack. Note that in the cohesive cracks, although the crack
faces are not in contact the frictional forces may still exist between
the faces due to the applied cohesive stresses if there is relative
sliding [51]. However, for the reinforced concrete beam modelled
in this paper, the friction between crack faces will not play an
important role in the structural behaviour of the beam, due to
the fact that the beam is mainly dominated by bending rather than
shear. Therefore, the friction between cohesive crack faces was
ignored in the current model. The traction–separation law can be
expressed as the following equation, in which the crack opening
can be obtained from the enhancement nodal displacements relat-
ed to the enhanced degrees of freedom:

tdl ¼ Tdlw ¼ TdlN ai ð28Þ

where tdl is the traction in the l-th layer, Tdl is the tangent stiffness
matrix of the traction–separation law for the l-th layer, w is the lar-
gest crack opening reached during the loading history, and ai is the
enhancement nodal displacement. For a cracked element, linear
elastic material properties are still assumed in the continuous solid,
but the enhancement internal force related to traction over the
crack would decrease with the increase of the crack opening. In
the cohesive interface the softening curve is governed by the frac-
ture energy ðGf Þ. A concrete bi-linear softening curve is used herein
to describe the decrease of traction with the increase of the crack
opening after cracking, as shown in Fig. 9, where f 0t is the tensile
strength of concrete, tdn is the traction normal to the crack, and w
is the crack opening. As tdn is not less than 0:2f 0t the relation
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Fig. 12. Details of a simply supported reinforced concrete beam under ISO834 fire.
between traction and opening is given as tdn ¼ f 0t � 1:25 f 02t
Gf

w, and

after tdn drops below 0:2f 0t the relation is given as

tdn ¼ 0:2f 0t � 0:2
6:16

f 20
t

Gf
ðw� 0:64wchÞ until the opening attains 0:68wch

wch ¼
Gf

f 0t


 �
. When the crack opening exceeds the traction-free open

width ð0:68wchÞ, the tangent stiffness is set to zero.
Bazant and Becq-Giraudon [52] proposed the fracture energy at

an ambient temperature as:

Gf ð20 �CÞ¼2:5�a0
f 0cð20 �CÞ

0:051


 �0:46

1þ da

11:27


 �0:22

ðRatiow=cÞ�0:3 ð29Þ

where a0 ¼ 1:0 for rounded aggregates and a0 ¼ 1:44 for crushed or
angular aggregates, da (in mm) is the maximum aggregate size, and
Ratiow=c is the water-to-cement ratio. However, under fire condi-
tions the fracture energy of concrete is expected to change at
elevated temperatures. This should be taken into account in the
current model. In order to extend the above model to the
temperature-dependent cohesive model, the tensile strength ðf 0tÞ
and fracture energy ðGf Þ in Fig. 9 should be temperature-related.
The temperature-dependent tensile strength f 0tðTÞ is calculated
using the model specified in EN1992-1-2 [48], and the tem-
perature-dependent fracture energy Gf ðTÞ is determined according
to the CEB-FIP model code [53] as:

Gf ðTÞ ¼ Gf ð20 �CÞð1:06� 0:003TÞ ð30Þ

where T is the temperature in �C. To replace Gf and f 0t with Gf ðTÞ and
f 0tðTÞ in Fig. 9 respectively, the temperature-dependent cohesive
curve is obtained in the current model.

2.2. Reinforcing steel bar and bond-link elements

As shown in Fig. 1, a reinforced concrete beam is modelled as an
assembly of plain concrete, reinforcing steel bar, and bond-link ele-
ments. Previously, a general 3D three-node beam column element
was developed by the second author [54], which proved being able
to model the reinforced concrete beams and reinforcement bars
well. Note that both the 3-node beam element and 2-node element
are compatible with the 4-node quadrilateral concrete element in
modelling the reinforced concrete structures. For convenience pur-
poses, the three-node beam element developed in [54] is employed
in this paper to model the reinforcing steel bar. Each node of the
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steel bar element contains the conventional six degrees of freedom
(three translational and three rotational, in both local and global
coordinates). As shown in Fig. 10, the steel mechanical properties
and thermal elongation are calculated based on the models
specified in EN1992-1-2 [48]. The beam column element allows
(a)  Predicted cracking patter

(b) Predicted deformed mesh (perfect bond, x-axi

(c) Predicted deformed mesh (partial bond with
has been amplified 5 times). 

23.0 17.4 

94.6 

23.0 17.4 0.14 

Fig. 15. Predicted localised cracks of reinforced concrete b
the reference axis to be placed outside the cross-section. Thus,
the reinforcing steel bars can be easily modelled using beam
column elements, together with layered concrete elements, to
simulate a reinforced concrete beam in fire.

At present there are several ways in which to model the con-
crete–reinforcement interface, such as the bond-link element and
cohesive crack model using the enrichment function. However,
the bond-link element has been widely used for structural analysis
and design of reinforced concrete structures. Therefore, in order to
model the bond characteristic between the concrete and reinforc-
ing steel bar in fire, a two-node bond-link element developed by
Huang [55] is employed in this research to link the nodes between
a plain concrete element and reinforcing steel bar element. The
bond-link element has no physical dimensions, and the two con-
nected nodes originally occupy the same location in the finite ele-
ment mesh of the undeformed structure. Three bond-link elements
are used to connect two plain concrete elements with one 3-node
steel bar element. Each node of the bond-link element includes
three translational and three rotational degrees of freedom. It is,
however, assumed that the slip between reinforcing steel and con-
crete is related only to the longitudinal axis direction of the steel
bar element. The bond element is capable of modelling full, partial
and zero bonds between the concrete and reinforcing steel within
the reinforced concrete structures.

In order to investigate the mesh sensitivity of the current model
a simply supported reinforced concrete beam at an ambient tem-
perature was modelled using different meshes, i.e. 200 concrete
n (perfect bond) 

s displacement has been amplified 5 times).  

 smooth bars, x-axis displacement 

0.16 

eams in fire for different bond conditions (unit: mm).
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elements plus 40 steel bar elements and 400 concrete elements
plus 80 steel bar elements. The beam with a length of 2000 mm
and a cross-sectional dimension of 150 mm in width and
200 mm in height is reinforced by two ribbed 16 mm (in diameter)
tensile steel bars and two ribbed 10 mm (in diameter) compressive
steel bars. The compressive strength of concrete at testing is
23.8 MPa. The yield strengths of the 16 mm (in diameter) bar and
10 mm (in diameter) bar are 406 MPa and 365 MPa, respectively.
The beam was modelled under four-point loads. The comparison
of predicted loads versus mid-span deflection by using different
FE meshes is given in Fig. 11. It can be seen that the results are
almost identical to each other. Therefore, the current model is
not very mesh-sensitive.
3. Numerical example and validations

It is noted that under fire conditions the temperature distribu-
tion within the reinforced concrete beam may be significantly
affected due to the formation of big localised cracks. In particular,
some major cracks may result in the main reinforcing steel bars
being directly exposed to fire. However, it is a difficult task to
precisely predict the impact of localised cracks on the thermal
behaviour of the beam in fire, and this is outside the scope of the
current paper. According to the experimental investigations con-
ducted recently by Ervine [56,57], in which the rate of thermal
propagation through the undamaged beams was compared with
the beams with minor cracking (surface crack opening was around
1 mm) and the beams with major cracking (surface crack opening
up to around 5 mm), the effect of tensile cracking on the thermal
propagation of the beam was not significant and could be ignored
in structural analyses. Thus, in this paper, for simplicity, the impact
of localised cracks on the thermal behaviour of the beam is not tak-
en into account. However, previous research has indicated that the
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thermo-hygro-mechanical effect of concrete at a high temperature
is significant, especially when concrete is spalled under fire
conditions [58–62]. The second author of this paper successfully
modelled the effects of concrete spalling on the thermal and
structural behaviour of reinforced concrete slabs by using a layer
procedure to allow some concrete layers to be ‘‘void’’ (with zero
mechanical strength and stiffness; zero thermal resistance) [63].
This method can be easily incorporated into the current layered
quadrilateral concrete element procedure to model the impact of
concrete spalling. For modelling a reinforced concrete beam in fire,
the first step of the analysis is to perform the thermal analyses on
the beams modelled. Huang et al. [64] developed a two-dimension-
al nonlinear finite-element procedure (FPRCBC-T) to predict the
temperature distributions within the cross-sections of reinforced
concrete members subjected to a given fire time–temperature
curve. In this study the program FPRCBC-T is used to obtain the
temperature history across the section of reinforced concrete
beams. The influence of moisture on the concrete is considered.
However, the influence of concrete cracking on the temperature
distribution is not included. The predicted temperature histories
are then used to perform structural analysis for the reinforced con-
crete beams. The mesh of the cross-sections of the beams used for
thermal analysis is also used for the structural analysis. It is
assumed that changes in loads or temperatures occur only at the
beginning of each time or temperature step. During each step the
external loads and temperatures in the layers of all elements are
assumed to remain constant.
3.1. A simply supported reinforced concrete beam in fire

As a numerical example, a simply supported reinforced concrete
beam (subjected to ISO834 standard fire) was modelled to demon-
strate the capability of the current model developed for capturing
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the localised fracture of reinforced concrete beams in fire. Fig. 12
shows the details of the modelled beam. The beam was reinforced
by two ribbed 16 mm (in diameter) tensile steel bars and two
ribbed 10 mm (in diameter) compressive steel bars. The compres-
sive strength of concrete was 23.8 MPa. The yield strengths of the
16 mm (in diameter) bar and 10 mm (in diameter) bar were
406 MPa and 365 MPa respectively. The transverse point load at
mid-span was 40 kN, which was kept constant during the fire.
Three cases of a perfect bond, partial bond with ribbed steel bars,
and partial bond with smooth steel bars were modelled.

Fig. 13 presents the predicted mid-span deflections of the beam
against time for different bond characteristics. For the perfect bond
case the deflection–time relation can be generally characterised as
four stages before the beam reaches failure, as shown in Fig. 13. At
stage 1, the deflection of the beam developed slowly, mainly due to
the thermal bowing. The degradation of materials caused by rising
temperatures was not remarkable in terms of strength and Young’s
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modulus during this period. At stage 2, the deflection–time curve
shows a flat segment from 13 min to 17 min. This is because the
temperature of tensile reinforcing steel bars remained almost
constant, due to the effect of free water evaporation within the
concrete. At stage 3, the temperature of tensile steel bars rose from
120 �C to more than 500 �C, and the deflection rate was increased
due to the remarkable deterioration of material strengths at high
temperatures. After the tensile reinforcing steel bars yielded (at
stage 4), the deflection of the beam increased significantly until
the fracture of the steel bars at mid-span. It is obvious that the
bond-slip characteristic, between the reinforcing steel bar and
the concrete, has a significant influence on the behaviour of rein-
forced concrete beams in terms of fire resistance and deflection.
For instance, the fire resistances of the perfect bond and ribbed
bar cases were around 66 min and 62 min, respectively. However,
the fire resistance of the smooth bar case was only 13 min.

Fig. 14 shows the predicted crack opening history at mid-span
of the beam, in which the crack openings were calculated using
Eq. (28). It was found that the crack opening at mid-span decreased
slightly at the initial stage due to the effect of thermal expansion,
and then the crack opening increased gradually. After the steel bars
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reinforcing steel bars of Beams 1 and 5.
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yielded, the crack opening increased significantly until the fracture
of the steel bars. It is obvious that the bond characteristic between
the reinforcing steel bar and concrete has a significant influence on
the maximum crack opening. Under the same fire exposure time,
the opening of the ribbed bar case was greater than that of the per-
fect bond case, and the difference between the two cases became
more significant after the tensile steel bars yielded. In the smooth
bar case, its maximum crack opening had already exceeded 15 mm
at the ambient temperature before the fire, and the crack opening
of the smooth bar case increased dramatically at elevated
temperatures.

The cracking pattern and deformed mesh of the beam, with a
perfect bond condition at 66 min of fire time, are shown in
Fig. 15(a) and (b). It can be seen that the XFEM developed in this
paper can reasonably predict the formation and propagation of
individual cracks. For the perfect bond case at 66 min of fire time,
the openings of two major cracks at mid-span were 23.0 mm and
17.4 mm respectively. However, the cracks near the supports were
only 0.14 mm and 0.16 mm, respectively. As shown in Fig. 15(c),
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Fig. 20. Comparison of predicted and measured maximum deflections of Beam 1
(ASTM fire).
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Fig. 21. Comparison of predicted and measured maximum deflections of Beam 3
(ASTM fire).
for the smooth bar case, the maximum opening of the major crack
at mid-span reached 94.6 mm. In both cases the mid-span ele-
ments appear obviously distorted, because the mesh held a very
big localised crack. It is evident that the model proposed is able
to capture the localised fracture of reinforced concrete beams
under fire conditions very well.

3.2. Fire tests of reinforced concrete beams

In order to validate the model proposed in this paper, four rein-
forced concrete beams subjected to fire tests were modelled here-
in. These fire tests on normal-strength reinforced concrete beams
with ribbed steel bars were conducted by Lin et al. [65]. For these
tests, two heating curves, the ASTM fire and Short Duration High
Intensity (SDHI) fire, were adopted. Here the four beams, designat-
ed as Beams 1, 3, 5 and 6, were modelled. Beams 1 and 3 were
heated using the ASTM fire, and Beams 5 and 6 were subjected
to the SDHI fire. Fig. 16 provides details of Beams 1, 3, 5 and 6,
where the load P was kept constant at 44.48 kN during each fire
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Fig. 22. Comparison of predicted and measured maximum deflections of Beam 5
(SDHI fire).
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Fig. 23. Comparison of predicted and measured maximum deflections of Beam 6
(SDHI fire).
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Fig. 24. Comparison of predicted deflections at the cantilever end of Beam 6 (SDHI
fire).
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test, although the cantilever force Po varied as the test progressed.
The history of the cantilever force Po is illustrated in Fig. 17. The
measured material properties at room temperature were the: con-
crete’s compressive strengths: f 0cð20 �CÞ = 27.86 MPa (Beam 1),
f 0cð20 �CÞ = 31.5 MPa (Beam 3), f 0cð20 �CÞ = 33.73 MPa (Beam 5),
f 0cð20 �CÞ = 34.54 MPa (Beam 6), and steel yield strengths:
f tð20 �CÞ = 487.27 MPa (bar #7), and f tð20 �CÞ = 509.54 MPa (bar
#8). Those tested material properties were used for the validations.

The tested beams were subjected to three-face heating from its
bottom and two sides. For the thermal analysis the cross-section of
beams is divided, as 12 columns by 14 rows, with a total of 168
segments. This means that each concrete element was divided into
12 layers for the structural analysis. As an example, Fig. 18 shows
the division of the cross-section of Beam 1, where the size of the
concrete segments close to the fire boundary is less than that of
the concrete segments away from the fire. Fig. 19 illustrates the
predicted temperatures, together with tested results for four main
reinforcing steel bar layers of Beams 1 and 5, where the reinforcing
steel layers are denoted in sequence from bottom to top as Layers
1–4 (see Fig. 16). It is evident that good agreement has been
achieved between the tests and predictions. The temperature
(a) Beam 1 

(b) Beam 5

Maximum crack ope

Maximum crack

Fig. 25. Predicted cracking pa
histories obtained in the thermal analysis were subsequently used
for the structural analyses of the beams.

In the analysis, each beam was modelled as an assembly of 1652
(14 � 118) layered quadrilateral plain concrete elements, 146 steel
bar beam elements, and 296 bond-link elements. The mesh sensi-
tivity test was conducted before the analysis, where the doubly
finer mesh was used for the comparison. The results of the current
mesh and the finer mesh were almost identical to each other. It is
evident that the predicted results are not sensitive to the element
size under the current mesh used. The predicted maximum vertical
deflections for Beams 1, 3, 5 and 6, against time, are presented in
Figs. 20–23. The maximum vertical deflections of all beams
appeared at a position about 3500 mm away from the right-hand
side support (see Fig. 16). It is evident that the predictions of the
developed model agree reasonably well with the test results for
the four beams in terms of deflections. It was found that the beams
showed small upward deflections at the initial stage of the fire.
This was due to the fact that the cantilever force Po kept increasing
at the initial stage (see Fig. 17), which tended to result in the
downward deflection at the cantilever end, and the corresponding
upward deflection at the first bay of beams. Afterwards, when Po

was kept stable, the beams developed downward deflections due
to the influence of elevated temperatures.

From Figs. 20 and 21 it can be seen that for Beams 1 and 3 there
is no obvious difference between the ribbed bar case and perfect
bond case in terms of deflections until the later stage of fire. Two
predicted deflection curves diverted: after 180 min for Beam 1,
and 225 min for Beam 3. It is evident that the bond characteristics
have a considerable influence on these two beams in terms of the
deflections at the later stages of a fire. Generally, compared to the
perfect bond case, the predicted deflections by the ribbed bar case
agreed better with the test results. Therefore, if a perfect bond
condition is assumed for modelling the interaction between
reinforcing steel bars and concrete, the predicted results may be
on the unconservative side.

The results of Beams 5 and 6 are respectively shown in Figs. 22
and 23. It can be seen that the effect of bond characteristics on the
deflection of the mid-span areas of the beams is relatively small,
compared to Beams 1 and 3. This is due to the fact that these
beams were subjected to a Short Duration High Intensity (SDHI)
fire, and the maximum temperatures of the reinforcing steel bar
did not exceed 400 �C (see Fig. 19). It is also interesting to see that
the deflection of the ribbed bar case is even slightly smaller than
that of the perfect bond case. This is owing to the fact that the
ribbed bar case has slightly bigger upward deflections than the
(ASTM fire)  

 (SDHI fire) 

ning=6.05 mm 

 opening=0.65 mm 

tterns of Beams 1 and 5.
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perfect bond case at the initial stages of the fire. However, from the
deflection of the cantilever end (shown in Fig. 24) for Beam 6, it can
be seen that bond conditions have a more significant influence on
the continuous support than the mid-span areas of the beam.

Fig. 25(a) and (b) present the predicted cracking patterns of
Beams 1 and 5, respectively. It is evident that the current model
can predict the formation and propagation of individual cracks
quite well. The predicted crack patterns are reasonable where the
flexural cracks caused by a sagging moment distribute at the lower
part of mid-span areas, whilst the flexural cracks caused by a
hogging moment distribute at the upper part over the continuous
support. Besides that, diagonal cracks were also found within the
reinforced concrete beam. The maximum crack opening of Beam
1 attained 6.05 mm near the mid-span, and the maximum crack
opening of Beam 5 reached 0.65 mm only due to the Short
Duration High Intensity (SDHI) fire applied.

4. Conclusions

In this paper a robust layered finite element procedure is pro-
posed for modelling the localised fracture of reinforced concrete
beams at elevated temperatures. In this new model the plain
concrete is modelled by 4-node layered quadrilateral elements,
incorporated into the extended finite element method (XFEM).
The element is divided into layers to take into account the
temperature distribution over the cross-section of the beam. Addi-
tional degrees of freedom are used to describe a discontinuous
displacement field, and the enhancement function is used to rea-
lise the displacement jump over a crack for the cracked elements.
A criterion based on a weighted average stress approach is pro-
posed to determine the initiation of individual cracks within the
plain concrete elements. The complications of structural behaviour
under fire conditions, such as thermal expansion, the bond
characteristic between reinforcing steel bars, concrete at elevated
temperatures, and the change of material properties with tem-
perature, are all considered in the model.

The new model has been validated against previous fire test
results on reinforced concrete beams. A numerical example of
modelling a simply supported reinforced concrete beam (subjected
to ISO834 fire) has been analysed to demonstrate the capability of
the current model for capturing the localised fracture of reinforced
concrete beams under fire conditions. It has been shown that the
XFEM nonlinear procedure proposed can predict the global respon-
se of reinforced concrete beams with good accuracy. The formation
and propagation of individual cracks within the beams are also
modelled, capturing the localised fracture, and predicting crack
openings during the analysis. The model developed in this paper
provides an excellent numerical approach for assessing both struc-
tural stability (global behaviour) and integrity (localised fracture)
of reinforced concrete members in fire. The model proposed here
will be further extended to 3D modelling of localised fracture of
reinforced concrete slabs under fire conditions in order to assess
the integrity failure of concrete floor slabs.
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