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ABSTRACT 

The daily structure of the US Treasury Constant Maturity Rates is investigated in this paper by 

means of fractional integration techniques. Using a version of the tests of Robinson (1994) 

along with a model selection criterion based on diagnostic tests on the residuals, we show that 

the behaviour of this series can be captured by I(d) statistical models with the fractional 

parameter d close to, but smaller than 1, which indicates mean reversion. 
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1. Introduction 

Adequately modelling macroeconomic and financial time series is crucial for understanding the 

economy. However, there exists little consensus about the best way to describe their stochastic 

behaviour. In the last couple of decades unit root models, based on first differences of the data, 

have become very popular, especially since the seminal work of Nelson and Plosser (1982), 

who, following on from Box and Jenkins (1970), showed that many US macroeconomic series 

can be specified in terms of unit roots. Their short-run (stationary) dynamic behaviour is also of 

interest. Consider, for instance, financial series: if they follow a random walk process, they are 

completely unpredictable, whilst weak dependence implies that there is a predictable 

component. This paper is concerned with both their long- and short-run components. We show 

first that they can be specified in terms of I(d) statistical models, which include the unit root as 

a particular case when d = 1. A model selection criterion is then adopted to choose the correct 

model specification for the short-run dynamics. The structure of the paper is as follows: 

Section 2 briefly describes a version of the tests of Robinson (1994) which is suitable to test 

I(d) statistical models in the context of weakly autocorrelated disturbances. In Section 3, the 

tests are applied to the US Treasury Constant Maturity Rates. Section 4 proposes a model 

selection criterion based on diagnostic tests on the residuals in order to determine the best 

model specification for the series. Section 5 analyses impulse responses of the selected models, 

while Section 6 concludes. 

 

2. Testing of I(d) hypotheses 

A simple version of the tests of Robinson (1994) consists in testing the null hypothesis: 

,: oo ddH =     (1) 

in a model given by: 

...,2,1,)1( ==− tuxL tt
d ,   (2) 
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where xt is the time series we observe; ut is an I(0) process, defined as a covariance stationary 

process with spectral density function that is positive and finite at the zero frequency, and do in 

(1) can be any real number. The test statistic, which is based on the Lagrange Multiplier (LM) 

principle, is then given by: 
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where T is the sample size, and 
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I(λj) is the periodogram of  and g above is a known function coming from the 

spectral density of u
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t, (e.g. g ≡ 1 if ut is white noise). 

Based on Ho (1), Robinson (1994) established that under certain regularity conditions, 

.)1,0(ˆ ∞→→ TasNr d    (4) 

Thus, an approximate 100α% level test of (1) will reject Ho against the alternative: Ha: d > do 

(d < do) if r̂ > zα ( r̂ < -zα), where the probability that a standard normal variate exceeds zα is α. 

He also showed that the tests are efficient in the Pitman sense, i.e., that against local 

alternatives of the form: Ha: d = do + δT-1/2, with δ ≠ 0, r̂  has a limit normal distribution with 

variance 1 and mean that cannot (when ut is Gaussian) be exceeded in absolute value by that of 

any rival regular statistic. This version of the tests of Robinson (1994) was used in empirical 

applications in Gil-Alana and Robinson (1997) and Gil-Alana (2000), and other applied studies 
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of the tests based on seasonal (quarterly and monthly) and cyclical models are Gil-Alana and 

Robinson (2001) and Gil-Alana (1999, 2001) respectively. 

 

3. Using I(d) models for a US financial series 

The time series analysed in this section is the daily structure of the 1, 3, 5, 7 and 10 year US 

Treasury Constant Maturity Rates (denoted by D1, D3, D5, D7 and D10 respectively), obtained 

from the H.15 Release of the Federal Reserve Board of Governors. The starting date is 3 

January 2000 and all series end on 23 February 2001. 

 Denoting each series in turn xt, we employ throughout model (2), testing Ho (1) for 

values do = 0.50, (0.10), 1.50, with white noise and weakly autocorrelated disturbances. The 

test statistic reported in Table 1 is the one-sided one given by r̂  in (3). Thus, for a given do, 

significantly positive values of r̂  are consistent with an order of integration higher than that, 

whereas significantly negative ones are consistent with smaller orders of integration. In view of 

this, we should expect a monotonic decrease in the value of the test statistic with respect to do, 

and this is precisely what is shown in Table 1, which presents the results based on white noise, 

AR(1) and AR(2) disturbances. 

(Table 1 about here) 

 A notable feature which is apparent in Table 1(i) (with white noise ut) is the fact that the 

only non-rejection values occur for all series when d = 1, implying that the series can be 

specified as random walk processes. However, these results might reflect to a large extent 

unaccounted I(0) autocorrelation in ut. Therefore, in Tables 1 (ii) and (iii), we allow the 

disturbances to follow AR(1) and AR(2) processes respectively. Higher order autoregressions 

were also considered, and the results were very similar to those reported in the table. 

 When imposing AR(1) ut, we find that the unit root null hypothesis cannot be rejected 

for any series. Non-rejections also occur when d = 0.90 and 1.10 for D1 and D3; when d = 0.90 
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for D5; and when d = 0.80 and 0.90 for D7 and D10. Thus, it seems that the order of integration 

is slightly smaller as the number of years in the maturity rate increases. Similarly, if we allow 

AR(2) disturbances, the unit root case cannot be rejected for any series, though orders of 

integration slightly smaller may also be plausible in some cases, especially for D5, D7 and 

D10. To sum up, if we impose white noise disturbances, a random walk model cannot be 

rejected for these series, however, when allowing weakly parametrically autocorrelated 

disturbances, both unit roots and orders of integration slightly smaller than or greater than one 

appear to be suitable specifications for describing the nonstationary behaviour of the series. 

The distinction between I(d) models with d smaller than or greater than one is important from 

an economic viewpoint. Specifically, a time series which is I(d) with d ≥ 1 will be 

nonstationary and non- mean-reverting, with the effects of shocks persisting forever. On the 

other hand, if d < 1, the series will be nonstationary (if d ≥ 0.50) but mean-reverting, with the 

effects of shocks dying away in the long run. Consequently, it is crucial to determine correctly 

the order of integration of the series. In the following section, a model selection criterion is 

adopted to determine the best model specification for each of the series analysed here. 

 

4.  A model selection criterion 

As a first step, we investigate more in depth the order of integration of the series of interest. 

Specifically, we redo the calculations reported in Table 1, but this time allowing do to take 

values 0.50 (0.01), 1.50, choosing for each series the value which produces the lowest r̂  

across do. The intuition behind this procedure is that the selected model will be the one with the 

closest residuals to a white noise process. We repeat this for white noise, AR(1) and AR (2) 

disturbances; the results are displayed in Table 2. 

(Table 2 about here) 
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 It can be seen that in all cases except one (corresponding to D10 with AR(2) ut), the 

orders of integration are smaller than or equal to 1. Also, in two cases (D5 and D7 again with 

AR(2) disturbances), this value is exactly 1, while for the remaining models d oscillates 

between 0.88 and 0.98. 

(Table 3 about here) 

Next, we examine each of these potential models by looking at several diagnostic tests 

on the residuals. In particular, we perform tests of no serial correlation, homocedasticity and 

functional form. The results are given in Table 3. Starting with D1, models B and C both pass 

the diagnostic tests at the 95% significance level (though in the case of model C the second AR 

coefficient is not significant). For D3 and D5 the best specifications are those with AR(1) 

disturbances (model B), while D7 and D10 can best be described in terms of pure I(d) 

processes with no weak dependence (model A). In all these cases d is smaller than 1, implying 

that mean reversion occurs; D1, D3 and D5 have a component of weak dependence, whilst D7 

and D10 are specified with white noise disturbances.  

 

5. Impulse response functions 

The impulse responses of each of the selected models are shown in Table 4. As one would 

expect, in view of the large values for the fractional differencing parameters, the series are 

highly persistent; however, the fact that d is in all cases smaller than 1 implies that mean 

reversion occurs, with the effects of shocks dying away in the long run.  

(Table 4 about here) 

D1 and D3 are the most persistent series, with an increasing initial effect that is above 1 

even 100 periods after the initial shock in case of D1, and six periods after in the case of D3. 

For the latter series (and also for both D7 and D10, whose behaviour can described by the same 
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model), more than 80% of the initial shock is still affecting the series after 200 periods, while 

D5 appears to be less persistent , with the effect of shocks dying away much quicker. 

 

6. Conclusions 

In this paper we have analysed the daily structure of the US 1- 3- 5- 7- and 10-year Treasury 

Constant Maturity Rates by means of fractional integration techniques. In particular, we have 

used a testing procedure due to Robinson (1994), which, unlike other methods, has standard 

(normal) null and local limit distributions. The initial results indicated that, if the disturbances 

are white noise, the series can be modelled as random walk processes. However, when 

allowing for weakly parametrically autocorrelated disturbances, fractional orders of integration, 

with d smaller than or greater than one, are also plausible. A model selection criterion, based 

on diagnostic tests on the residuals, was then adopted to determine the best model specification 

in each case. It suggested that for all series the best statistical model is an I(d) one, with d close 

to but smaller than 1. Therefore, these series appear to be mean reverting, with the effects of 

shocks disappearing in the long run. 
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TABLE 1 

Testing Ho (1) in (2) with the tests of Robinson (1994) 
i)      White noise disturbances 
Series / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

D1 20.89 15.09 9.69 5.22 1.84 -0.58’ -2.31 -3.54 -4.45 -5.14 -5.68 
D3 21.97 15.83 10.16 5.50 2.01 -0.48’ -2.24 -3.50 -4.43 -5.13 -5.67 
D5 22.06 15.90 10.23 5.57 2.05 -0.45’ -2.23 -3.51 -4.44 -5.15 -5.70 
D7 21.65 15.63 10.10 5.54 2.10 -0.38’ -2.16 -3.44 -4.38 -5.10 -5.66 
D10 21.23 15.38 9.97 5.50 2.10 -0.37’ -2.14 -3.43 -4.38 -5.10 -5.66 

ii)     AR(1) disturbances 
Series / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

D1 3.88 3.61 3.24 1.93 0.51’ -0.65’ -1.48’ -2.05 -2.46 -2.77 -3.03 
D3 9.05 8.35 5.18 2.52 0.65’ -0.65’ -1.59’ -2.29 -2.83 -3.28 -3.66 
D5 10.90 8.51 4.72 2.06 0.27’ -1.02’ -2.00 -2.76 -3.36 -3.83 -4.22 
D7 11.03 7.65 3.81 1.40’ -0.16’ -1.34’ -2.28 -3.03 -3.63 -4.11 -4.50 
D10 9.47 6.52 3.45 1.62’ 0.35’ -0.75’ -1.75 -2.60 -3.31 -3.88 -4.33 

iii)     AR(2) disturbances 
Series / do 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 

D1 3.11 2.82 2.73 1.71 0.32’ -0.96’ -1.49’ -2.67 -3.14 -3.46 -3.69 
D3 4.30 4.05 2.65 1.73 0.54’ -0.58’ -1.53’ -2.29 -2.88 -3.36 -3.75 
D5 3.58 3.03 2.66 2.03 1.03’ -0.06’ -1.69 -1.97 -2.71 -3.31 -3.82 
D7 3.58 2.99 2.21 1.64’ 0.90’ -0.07’ -1.71 -1.94 -2.70 -3.35 -3.89 
D10 2.64 1.95 1.84 1.61’ 1.19’ 0.40’ -1.67 -1.99 -2.34 -3.09 -3.72 

‘ and in bold: Non-rejection values at the 5% significance level. 
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TABLE 2 

Values of do which produce the lowest r̂  for each series 
ut  /  Series D1 D3 D5 D7 D10 
White nosie  0.97 0.98 0.98 0.98 0.98 

AR (1) 0.91 0.94 0.91 0.88 0.93 
AR (2) 0.92 0.95 1.00 1.00 1.04 

 
 
 
 

TABLE 3 

Diagnostic tests on the residuals of the selected models 
Series  Model Diagnostics 

A) 
ttxL ε=− 97.0)1(  B 

B) 
1

91.0 38.0,)1( −==− tttt uuuxL  A  B  C 

 
D1 

C) 
21

92.0 07.037.0,)1( −− −==− ttttt uuuuxL  A  B  C 

A) 
ttxL ε=− 98.0)1(  B  C 

B) 
1

94.0 14.0,)1( −==− tttt uuuxL  A  B  C 

 
D3 

C) 
21

95.0 01.013.0,)1( −− −==− ttttt uuuuxL  A  B 

A) 
ttxL ε=− 98.0)1(  B 

B) 
1

91.0 10.0,)1( −==− tttt uuuxL  A  B  C 

 
D5 

C) 
21 10.001.0,)1( −− −==− ttttt uuuuxL  A  B 

A) 
ttxL ε=− 98.0)1(  A  B  C 

B) 
1

88.0 08.0,)1( −==− tttt uuuxL  A  B 

 
D7 

C) 
21 13.003.0,)1( −− −−==− ttttt uuuuxL  A  B 

A) 
ttxL ε=− 98.0)1(  A  B  C 

B) 
1

93.0 08.0,)1( −==− tttt uuuxL  A  B 

 
D10 

C) 
21

04.1 12.006.0,)1( −− −−==− ttttt uuuuxL  A  B 

N.B. A: no serial correlation; B: homoscedasticity;  C: functional form at the 95% significance level. 
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TABLE 4 

Impulse responses of the selected models 
 D1 D3 D5 D7  and  D10 

Selected model B B B A 
0 1.000 1.000 1.000 1.000 
1 1.290 1.079 1.010 0.980 
2 1.359 1.062 0.970 0.970 
3 1.359 1.042 0.939 0.963 
4 1.340 1.026 0.918 0.958 
5 1.318 1.013 0.900 0.955 
6 1.298 1.002 0.887 0.951 
7 1.280 0.993 0.875 0.949 
8 1.264 0.986 0.865 0.946 
9 1.250 0.979 0.856 0.944 

10 1.238 0.973 0.848 0.942 
20 1.162 0.934 0.798 0.930 
30 1.120 0.912 0.770 0.922 
40 1.091 0.897 0.751 0.917 
50 1.069 0.885 0.736 0.913 
60 1.052 0.875 0.724 0.910 
70 1.037 0.867 0.714 0.907 
80 1.025 0.860 0.705 0.905 
90 1.014 0.854 0.698 0.903 
100 1.004 0.849 0.691 0.901 
125 0.984 0.838 0.678 0.897 
150 0.968 0.828 0.667 0.893 
175 0.955 0.821 0.657 0.891 
200 0.943 0.814 0.650 0.888 
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