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ABSTRACT 
 

This paper considers a general model which allows for both deterministic and stochastic 
forms of seasonality, including fractional (stationary and nonstationary) orders of 
integration, and also incorporating endogenously determined structural breaks. Monte 
Carlo analysis shows that the suggested procedure performs well even in small samples, 
accurately capturing the seasonal properties of the series, and correctly detecting the 
break date. As an illustration, the model is estimated for four different US series 
(output, consumption, imports and exports). The results suggest that the seasonal 
patterns of these variables have changed over time: specifically, in the second 
subsample the systematic component of seasonality becomes insignificant, whilst the 
degree of persistence increases. 
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1. Introduction 

This paper analyses seasonality in the presence of structural breaks. Modelling 

seasonality is still a hotly debated topic in the time series literature. Hylleberg (1986) 

classifies seasonal models in three categories. The first includes purely deterministic 

seasonal models, which are characterised by seasonal dummy variables of the form: 
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where yt is the observed time series data with s observations per year, Dit is a seasonal 

dummy adopting a value 1 if t belongs to the ith period of the year and 0 otherwise, and 

ut is a white noise. The definition of the seasonal dummy simply allows for the mean of 

the series to vary by season, and therefore it raises no statistically interesting issues. The 

reason for using models like (1) is that the factor that might produce the seasonal 

variation can be readily identified. 

A second type of seasonality is the one defined in terms of a seasonal stochastic 

stationary process, where yt is specified as 
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and φ (Ls) and θ(Ls) are seasonal AR and MA polynomials with all roots lying outside 

the unit circle. Finally, if the seasonal component is changing across time, seasonal 

differencing is usually adopted. In such a case, the process is said to contain seasonal 

unit roots, and the model is expressed as 

         (3) ....,2,1,)1( ==− tuyL tt
s

Many test statistics have been developed in recent years for testing seasonal unit 

roots: Dickey, Hasza and Fuller (1984), Hylleberg, Engle, Granger and Yoo (1990), 

Tam and Reimsel (1997), etc.  Nevertheless, all these types of seasonality can coexist in 

a single framework, which, in its more general form, can be written as: 
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where the difference between stationary and nonstationary seasonality comes from d 

being equal to 0 and 1 respectively. 

 However, the value d in (4) is not necessarily an integer number. If d is allowed 

to be any real number, the process is said to be seasonally fractionally integrated, with 

much greater flexibility in the dynamic behaviour of the series (see Gil-Alana, 2005). 

The notion of a fractional Gaussian noise with seasonality was suggested by Jonas 

(1981) and extended in a Bayesian framework by Carlin et al. (1985) and Carlin and 

Dempster (1989). Porter-Hudak (1990) applied a seasonally fractionally integrated 

model to quarterly US monetary aggregates, and concluded that a fractional ARMA 

model was more appropriate than the usual ARIMA specification for these series. Other 

recent empirical papers on seasonal fractional integration are those of Gil-Alana and 

Robinson (2001) and Gil-Alana (2002). 

 The present study focuses on the model given by equation (4), extended to 

incorporate endogenously determined structural breaks. Note that fractional integration 

(at the zero frequency) has been recently related to structural breaks (see, e.g. Granger 

and Hyung, 1999; Gourieroux and Jasiak, 2001; Diebold and Inoue, 2001; etc.), and 

thus we should expect a similar relationship in the presence of seasonality. The outline 

of the paper is as follows: Section 2 describes the procedure for estimating the 

parameters in the model. In Section 3 we carry out several Monte Carlo experiments to 

examine the finite sample behaviour of the seasonal procedure we implement. An 

empirical application is carried out in Section 4, while Section 5 contains some 

concluding comments. 
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2. The statistical method 

In this section we present a procedure that enables us to examine the deterministic and 

stochastic (stationarity/nonstationarity) seasonal nature of the series of interest in a very 

general framework. This has a number of advantages. Firstly, instead of restricting 

ourselves to the standard I(0) (stationarity) or I(1) (nonstationarity) cases, we consider 

the possibility of fractional orders of integration. Secondly, since seasonal dummies are 

also included in the model along with seasonal fractional/integer differentiation, we are 

able to consider the models described in Section 1 as special cases within our 

framework. Thirdly, we allow for structural breaks, with the breakpoint(s) being 

endogenously determined by the model. For simplicity we start by considering the case 

of a single break and assume that yt is generated as  follows: 
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where the α's and the γ's are intercept and dummy coefficients respectively; and 

 can be any real number and correspond to the orders of integration of each 

subsample, u

)1(d

)2(d

t is I(0), and Tb is the date of the break which is assumed to be unknown. 

Note that the model in equations (5) and (6) can also be written as: 
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 The approach adopted here is based on the least square principle. First, we 

choose a grid for the values of the fractionally seasonal differencing parameters and 

, for example, = 0, 0.01, 0.02, …, 2, i = 1, 2. Then, for a given partition {T

)1(d
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and given , -initial values, we estimate the α's and the γ's by minimising the 

sum of squared residuals, 
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for uncorrelated ut, or, alternatively, using GLS for weakly autocorrelated disturbances. 

Let  and  denote the resulting estimates for partition 

{T
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b} and initial values  and . Substituting these estimated values in the 

objective function, we obtain RSS(T
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all values of d
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Then, the estimated break date, , is such that kT̂
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where the minimisation is over all partitions T1, T2, …, Tm, such that Ti - Ti-1 ≥ |εT|. The 

regression parameter estimates are the associated least-squares estimates of the 

estimated k-partition, i.e.,   and their 

corresponding differencing parameters, for i = 1 and 2. 
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The model can be extended to the case of multiple breaks by considering the 

following specification: 
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for j = 1, …, m+1, T0 = 0 and Tm+1 = T. Then, the parameter m is the number of 

changes. The break dates (T1, …, Tm) are explicitly treated as unknown and for i = 1, 

…, m, we have λi = Ti/T, with λ1 < … < λm < 1. Following the same procedure as 

before, for each j-partition, {T1, …Tj}, denoted {Tj}, the associated least-squares 

estimates of α(j),  and the d)( j
iγ

(j) are obtained by minimising the sum of squared 

residuals in the d(j)-differenced models, i.e., 
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where )(ˆ),(ˆ jij TT γα and  denote the resulting estimates. Substituting them in the 

new objective function and denoting the sum of squared residuals as RSS

)T(d̂ j

T(T1, …, Tm), 

the estimated break dates (  are obtained by )ˆ...,,ˆ,ˆ 21 mTTT
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where the minimisation is again obtained over all partitions (T1, …, Tm). 

 

3. A Monte Carlo simulation study 

This section examines the finite-sample behaviour of the procedure described in Section 

2 by means of Monte Carlo simulations. We generate Gaussian series using the routines 

GASDEV and RAN3 of Press, Flannery, Teukolsky and Wetterling (1986), with 10,000 

replications in each case. 

 First, we consider the following data generating process: 
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with d(1) = 0.3, d(2) = 0.7 and Tb = T/2, and follow the procedure described in Section 2 

for ( ) −
= 2,1

)(
i

i
jd values equal to 0, 0.1, 0.2, …, 0.9 and 1, with the estimated break dates 

T* = T/10, T/10 + 1, …, 9T/10 – 1, 9T/10. 

 Table 1 displays the percentage of cases when the breakpoint is correctly 

determined for different sample sizes. It can be seen that, even for a small sample size 

(T = 120), the procedure correctly detects the break date in a large percentage of cases 

(47.6%); this percentage rises to 81.8% when one time period before and after the break 

is included. Increasing the sample size the method becomes more accurate – for T = 

720, with the percentage of cases when the break date is correctly determined being 

equal to 98.5%. 

 

INSERT TABLES 1 AND 2 ABOUT HERE 

 

 Table 2 focuses on the values for the fractional differencing parameters when T* 

is correctly assumed to be Tb. One can see that in this case, if the sample size is small (T 

= 120), the probability of correctly determining the seasonal fractional differencing 

parameters is very small (9.3%) and the highest value (9.4%) corresponds to the close 

alternative d(1) = 0.2 and d(2) = 0.7. However, when increasing the sample size, the 

highest probabilities correspond to the true values, being higher than 85% for T = 720. 

For this size the closest departures are d(1) = 0.3 and d(2) = 0.6 (5.4%), and d(1) = 0.3 and 

d(2) = 0.8 (1.7%). 
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INSERT TABLES 3 AND 4 ABOUT HERE 

 

Tables 3 and 4 are similar to Tables 1 and 2 and concern the same DGP as 

before, but with d(1) = 0.8, d(2) = 0.4, and Tb = T/4. It is apparent that the probability of 

correctly determining the break date is slightly higher than in the previous case, though 

with a larger dispersion across T* (see Table 3). Once more the procedure becomes 

more accurate as the sample size increases. Focusing now on the fractional differencing 

parameters (Table 4), we find that, even for the smallest sample size (T = 120), the 

highest probability (9%) corresponds to the true values of the d parameters, and again it 

increases with T. 

 

4. An empirical application 

The time series analysed in this section are US Gross Domestic Product (GDP), 

Personal Consumption Expenditure (PCE) and exports and imports of goods and 

services, quarterly, seasonally unadjusted, for the time period 1947Q1 – 2005Q4, 

obtained from the National Economic Accounts, US Department of Commerce, Bureau 

of Economic Analysis (BEA). 

Figure 1 contains the plots of the four raw series. Visual inspection suggests that 

all them are nonstationary and trending upwards. Unit root tests (Dickey and Fuller, 

1979; Phillips and Perron, 1988) on the log-transformed series produce in all cases 

strong evidence in favour of unit roots. Thus, in the following analysis, we focus on the 

first differences of the log-transformed data (the growth rate of the series). These appear 

to be stationary (see Figure 2). 

 

INSERT FIGURES 1 AND 2 ABOUT HERE 
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 Next, we perform the procedure described in Section 2. Specifically, we 

consider models of the type given by (5) and (6) with s = 4, i.e., 
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and estimate all the parameters for the three cases of white noise ut, (in Table 5), AR(1) 

ut (in Table 6) and a seasonal (stationary) AR(1) process of the form: ut = ρut-4 + εt, with 

white noise εt (in Table 3). Note that, although we do not explicitly provide confidence 

intervals for the fractional differencing parameters in the procedure presented in Section 

2, they can be obtained by using Robinson’s (1994) univariate tests (specifically 

designed for the seasonal case) for each subsample. These values are also displayed in 

the tables. 

Overall, the results suggest that the seasonal patterns in the quarterly time series 

under examination are not constant for the whole period, if a structural break is taken 

into account. Starting with the results based on white noise ut, we find that for GDP and 

PCE the break takes place at 1981Q1 and the two series behave very similarly: d(1) (the 

order of integration for the first subsample) is 0.49 for GDP and 0.48 for PCE, while d(2) 

is equal to 0.80 for both series, and the unit root null hypothesis cannot be rejected for 

these two series in the second subsample. Therefore, there is an increase in the degree of 

persistence after the break. It is interesting to note that the seasonal dummy variables 

are statistically significant in both cases before the break, implying the presence of a 

systematic component. On the contrary, after the break most of the dummies are 

insignificant, indicating a decrease in the relevance of the systematic component of the 

seasonality in these series. As suggested by van Dijk et al. (2001), this decrease could 
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be due to the use of "just-in-time" techniques that have affected the seasonal cycle in 

inventory investment.  

 

INSERT TABLE 5 ABOUT HERE 

 

 Moving on to exports of goods and services, the break is found to occur at 

1970Q4, with the order of integration of the first subsample being negative (-0.07) and 

d(2) being equal to 0.39. For this series the I(0) hypothesis cannot be rejected in the first 

subsample, while both the I(0) and I(1) hypotheses are rejected after the break. Once 

again the dummies are only significant in the first subsample. Finally, for imports, Tb = 

1953Q1, d(1) = 0.11 and d(2) = 0.28, the I(0) hypothesis cannot be rejected in the first 

subsample, and practically all dummies are insignificant. 

 Next, we allow for weak dependence in the error term. Specifically, in Table 6 ut 

is assumed to be AR(1). The results are fairly similar to those presented above for the 

white noise case. More in detail, for GDP and PCE the break takes place at the end of 

the 1970s/beginning of the 1980s, the orders of integration being around 0.5 for the first 

subsample and close to 0.8 after the break, the unit root null is not rejected in the second 

subsample and the dummy variables are only statistically significant in the first 

subsample. Also, note that the AR coefficients are in all cases positive but small. For 

exports the findings are to some extent different. The break date is now 1952Q4, the 

order of integration before the break is substantially smaller than previously and 

significantly different from zero (d(1) = -0.74), and all the dummy variables are now 

significant. For imports, they are no big differences compared to the white noise case. 

The break date is the same (1953Q1), d(1) is slightly negative (-0.18) and d(2) is positive 

(0.27), and both are statistically significant. 
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INSERT TABLES 6 AND 7 ABOUT HERE 

 

 Finally, we also consider the case of stationary seasonal autoregressions for the 

error term. This is the most general specification, since it includes in a single framework 

the three types of seasonality, that is, deterministic seasonality (through the dummy 

variables), stochastic stationary seasonality (through the seasonal AR coefficients), and 

fractional/integer differentiation. In Table 7 ut is assumed to follow a seasonal AR(1) 

process. The results are consistent with those presented in the earlier tables. For GDP 

and PCE the break occurs at 1981Q4, and the orders of integration are around 0.6 before 

the break, and around 0.8 after that date. The seasonal dummy variables are now all 

significant for both series in both subsamples. For exports, the most important result is 

that d(1) is close to 1 (-0.99), implying then that the original series is I(0) in the first 

subsample, with seasonality being captured by a combination of deterministic and 

stationary stochastic AR components. Finally, for imports the break occurs at 1954Q1, 

both orders of integration are positive and higher after the break, and there is no 

evidence of deterministic seasonality. 

 

5. Conclusions 

This paper considers a general model which allows for both deterministic and stochastic 

forms of seasonality, including fractional (stationary and nonstationary) orders of 

integration, and also incorporating endogenously determined structural breaks. Monte 

Carlo analysis shows that the suggested procedure performs well even in small samples, 

accurately capturing the seasonal properties of the series, and correctly detecting the 

break date. As an illustration, the model is estimated for four different US series 
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(output, consumption, imports and exports). The results can be summarised as follows. 

First, we find evidence of a structural break in all the series, with the seasonal pattern 

changing over time. Second, the systematic component of the seasonality, captured by 

the seasonal dummies, becomes insignificant in the last period of the sample, while the 

persistence of the series increases. The decrease in the seasonal amplitude of the series 

might reflect technological change, changes in institutions or habits, such as the use of 

the "just-in-time" production techniques (see van Dijk et al., 2001). The fact that the 

seasonal patterns of the series tend to change over time raises the question of the 

consequences of using seasonally adjusted series in macroeconomic modelling.  

 This paper can be extended in several directions. First, other deterministic linear 

or even non-linear models can be included in the regression models (4) and (5), and the 

estimation can be carried out adopting the same procedure described here. Second, 

confidence intervals directly based on our procedure can be obtained using 

bootstrapping  methods,  although these are highly computationally intensive, especially 

if the sample size is large. Another possible extension is to consider different degrees of 

seasonal integration at each of the frequencies for each subsample. Note that the 

polynomial (1 – L4) can be decomposed into (1 - L)(1 + L)(1 + L2), and therefore using 

the polynomial (1 – L4)d implies that the same order of integration d is imposed at all 

frequencies. However, a problem with this approach is that it is even more 

computationally intensive, given the greater number of values required in the grid-

search procedure. 
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TABLE 1 

Probabilities of detecting the break date Tb = T/2 

 T = 120 T = 240 T = 480 T = 720 

T/2 – 5 0.013 0.004 0.000 0.000 

T/2 – 4 0.016 0.007 0.001 0.000 

T/2 – 3 0.025 0.010 0.003 0.000 

T/2 – 2 0.045 0.021 0.006 0.001 

T/2 – 1 0.270 0.084 0.041 0.012 

T/2 0.476 0.651 0.942 0.985 

T/2 + 1 0.072 0.019 0.007 0.002 

T/2 + 2 0.062 0.003 0.000 0.000 

T/2 + 3 0.008 0.001 0.000 0.000 

T/2 + 4 0.012 0.000 0.000 0.000 

T/2 + 5 0.001 0.000 0.000 0.000 
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TABLE 2 

Probabilities of detecting the parameters in the model Tb = T/2, d(1) = 0.3 and d(2) = 0.7 

d(1) d(2) T = 120 T = 240 T = 480 T = 720 

0.1 0.4 0.001 0.000 0.000 0.000 

0.1 0.5 0.006 0.002 0.000 0.000 

0.1 0.6 0.020 0.017 0.003 0.001 

0.1 0.7 0.026 0.037 0.009 0.003 

0.1 0.8 0.012 0.012 0.002 0.000 

0.2 0.4 0.001 0.000 0.000 0.000 

0.2 0.5 0.008 0.001 0.000 0.000 

0.2 0.6 0.047 0.102 0.065 0.014 

0.2 0.7 0.094 0.103 0.096 0.026 

0.2 0.8 0.031 0.060 0.037 0.008 

0.3 0.4 0.001 0.000 0.000 0.000 

0.3 0.5 0.013 0.003 0.000 0.000 

0.3 0.6 0.066 0.101 0.090 0.054 

0.3 0.7 0.093 0.306 0.569 0.858 

0.3 0.8 0.026 0.059 0.044 0.017 

0.4 0.5 0.002 0.000 0.000 0.000 

0.4 0.6 0.010 0.016 0.007 0.001 

0.4 0.7 0.012 0.023 0.018 0.003 

0.4 0.8 0.004 0.008 0.002 0.000 

0.4 0.9 0.001 0.000 0.000 0.000 

0.5 0.6 0.001 0.001 0.000 0.000 

0.5 0.7 0.001 0.000 0.000 0.000 
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TABLE 3 

Probabilities of detecting the break date Tb = T/4 

 T = 120 T = 240 T = 480 T = 720 

T/4 – 7 0.002 0.001 0.000 0.000 

T/4 – 6 0.006 0.003 0.000 0.000 

T/4 – 5 0.009 0.006 0.002 0.000 

T/4 – 4 0.003 0.004 0.001 0.000 

T/4 – 3 0.021 0.012 0.003 0.000 

T/4 – 2 0.053 0.051 0.007 0.002 

T/4 – 1 0.143 0.130 0.019 0.005 

T/4 0.565 0.659 0.943 0.991 

T/4 + 1 0.114 0.083 0.013 0.002 

T/4 + 2 0.043 0.032 0.008 0.000 

T/4 + 3 0.015 0.007 0.003 0.000 

T/4 + 4 0.007 0.007 0.001 0.000 

T/4 + 5 0.002 0.001 0.000 0.000 

T/4 + 6 0.002 0.001 0.000 0.000 

T/4 + 7 0.002 0.001 0.000 0.000 

T/4 + 8 0.007 0.001 0.000 0.000 

T/4 + 9 0.004 0.001 0.000 0.000 

T/4 + 10 0.002 0.000 0.000 0.000 
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TABLE 4 

Probabilities of detecting the parameters in the model Tb = T/4, d(1) = 0.8 and d(2) = 0.4 

d(1) d(2) T = 120 T = 240 T = 480 T = 720 

0.5 0.2 0.006 0.000 0.000 0.000 

0.5 0.3 0.011 0.002 0.000 0.000 

0.5 0.4 0.014 0.002 0.000 0.000 

0.5 0.5 0.005 0.000 0.000 0.000 

0.6 0.1 0.002 0.000 0.000 0.000 

0.6 0.2 0.011 0.005 0.001 0.000 

0.6 0.3 0.015 0.004 0.000 0.000 

0.6 0.4 0.017 0.006 0.006 0.000 

0.6 0.5 0.022 0.009 0.007 0.000 

0.7 0.1 0.003 0.000 0.000 0.000 

0.7 0.2 0.011 0.004 0.002 0.000 

0.7 0.3 0.034 0.020 0.013 0.002 

0.7 0.4 0.050 0.032 0.099 0.007 

0.7 0.5 0.022 0.031 0.025 0.003 

0.7 0.6 0.006 0.001 0.000 0.000 

0.8 0.1 0.003 0.000 0.000 0.000 

0.8 0.2 0.018 0.024 0.011 0.001 

0.8 0.3 0.060 0.044 0.095 0.087 

0.8 0.4 0.090 0.292 0.477 0.850 

0.8 0.5 0.024 0.040 0.062 0.015 

0.8 0.6 0.007 0.002 0.000 0.000 

0.9 0.1 0.003 0.002 0.000 0.000 

0.9 0.2 0.015 0.008 0.003 0.000 

0.9 0.3 0.037 0.033 0.024 0.004 

0.9 0.4 0.048 0.029 0.088 0.012 

0.9 0.5 0.016 0.021 0.020 0.010 

0.9 0.5 0.002 0.001 0.000 0.000 

1.0 0.2 0.001 0.000 0.010 0.000 

1.0 0.3 0.009 0.001 0.000 0.000 

1.0 0.4 0.012 0.003 0.000 0.000 

1.0 0.5 0.001 0.000 0.000 0.000 
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FIGURE 1 

Raw time series (US National Accounts) 
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FIGURE 2 

Growth rates  
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TABLE 5 

Estimates of the parameter coefficients: White noise case 

  GDP PCE EXPORTS IMPORTS 

d(1) 0.49 
(0.17, 0.62) 

0.48 
(0.15, 0.59) 

-0.07 
(-0.37, 0.12) 

-0.11 
(-0.34, 0.19)

)1(α  -0.0834 
(-7.05) 

-0.0840 
(-7.06) 

0.0380 
(-3.48) 

0.0374 
(1.31) 

)1(
1γ  0.1171 

(7.01) 
0.1191 
(7.09) 

0.1167 
(7.65) 

-0.0518 
(-1.35) 

)1(
2γ  0.0980 

(5.86) 
0.0947 
(5.63) 

-0.0630 
(-4.13) 

-0.0476 
(-1.24) 

 
 
 

First 
Subsample 

)1(
3γ  0.1469 

(8.79) 
0.1492 
(8.87) 

0.1028 
(6.67) 

-0.0434 
(-1.13) 

Time of the break 1981Q1 1981Q1 1970Q4 1953Q1 

d(2) 0.80 
(0.56, 1.01) 

0.80 
(0.44, 1.00) 

0.39 
(0.17, 0.63) 

0.28 
(0.05, 0.37) 

)2(α  0.0104 
(1.97) 

0.0105 
(1.92) 

0.0105 
(0.74) 

-0.0188 
(-1.38) 

)2(
1γ  0.0173 

(2.27) 
0.0176 
(2.30) 

0.0136 
(0.67) 

0.0724 
(3.66) 

)2(
2γ  

0.0118 
(1.54) 

0.0116 
(1.52) 

-0.0385 
(-1.89) 

0.0173 
(0.87) 

 
 
 

Second 
Subsample 

)2(
3γ  

0.0061 
(0.80) 

0.0059 
(0.78) 

0.0194 
(0.95) 

-0.0131 
(-0.66) 
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TABLE 6 

Estimates of the parameter coefficients: AR(1) case 

  GDP PCE EXPORTS IMPORTS 

d(1) 0.50 
(0.22, 0.71) 

0.49 
(0.24, 0.80) 

-0.74 
(-0.94, -0.13) 

-0.18 
(-0.55, -0.02)

)1(α  -0.0849 
(-7.15) 

-0.0842 
(-7.07) 

0.0118 
(-0.96) 

0.0365 
(1.41) 

)1(
1γ  0.1206 

(7.18) 
0.1193 
(7.09) 

0.0405 
(2.56) 

-0.0499 
(-1.45) 

)1(
2γ  0.0983 

(5.85) 
0.0945 
(5.63) 

-0.1058 
(-6.69) 

-0.0458 
(-1.33) 

)1(
3γ  0.1478 

(8.79) 
0.1491 
(8.87) 

0.0340 
(1.95) 

-0.0422 
(-1.22) 

 
 
 
 

First 
Subsample 

AR coeff. 0.271 0.158 0.574 0.290 

Time of the break 1979Q2 1981Q1 1952Q4 1953Q1 

d(2) 0.73 
(0.52, 1.02) 

0.83 
(0.56, 1.04) 

0.31 
(0.05, 0.44) 

0.27 
(0.05, 0.41) 

)2(α  
0.0071 
(1.06) 

0.0112 
(1.83) 

-0.0166 
(-1.08) 

-0.0200 
(-1.55) 

)2(
1γ  0.0206 

(2.40) 
0.0172 
(2.25) 

0.0622 
(2.80) 

0.0740 
(3.93) 

)2(
2γ  

0.0099 
(1.16) 

0.0114 
(1.49) 

-0.0448 
(-2.02) 

0.0191 
(1.01) 

)2(
3γ  0.0200 

(2.34) 
0.0055 
(0.71) 

0.0593 
(2.68) 

-0.0117 
(-0.62) 

 
 
 
 

Second 
Subsample 

AR coeff. 0.341 0.231 -0.198 0.026 
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TABLE 7 

Estimates of the parameter coefficients: Seasonal AR(1) case 

  GDP PCE EXPORTS IMPORTS 

D(1) 0.61 
(0.45, 0.72) 

0.57 
(0.41, 0.70) 

-0.99 
(-1.42, -0.17) 

 0.28 
(-0.14, 0.43)

)1(α  -0.0833 
(-5.92) 

-0.0084 
(-6.11) 

0.0168 
(-5.83) 

0.0381 
(0.95) 

)1(
1γ  0.1194 

(6.01) 
0.1218 
(6.26) 

0.0759 
(19.76) 

-0.0289 
(-0.52) 

)1(
2γ  0.1047 

(5.27) 
0.0988 
(5.07) 

-0.0853 
(-20.93) 

-0.0528 
(-0.95) 

)1(
3γ  0.1581 

(7.95) 
0.1585 
(8.14) 

0.0769 
(18.89) 

-0.0420 
(-0.76) 

 
 
 
 

First 
Subsample 

S. AR coeff. -0.282 -0.214 0.527 -0.607 

Time of the break 1981Q1 1981Q1 1958Q3 1954Q1 

d(2) 0.84 
(0.64, 1.13) 

0.84 
(0.64, 1.11) 

0.31 
(0.13, 0.39) 

0.40 
(0.27, 0.61) 

)2(α  0.0118 
(1.92) 

0.0119 
(1.94) 

-0.0026 
(-0.16) 

-0.0105 
(-0.60) 

)2(
1γ  0.0166 

(2.17) 
0.0169 
(2.20) 

0.0466 
(1.98) 

0.0650 
(2.61) 

)2(
2γ  0.0113 

(1.68) 
0.0112 
(1.66) 

-0.0507 
(-2.16) 

0.0053 
(0.21) 

)2(
3γ  0.0052 

(0.68) 
0.0050 
(0.65) 

0.0421 
(1.79) 

-0.0148 
(-0.59) 

 
 
 
 

Second 
Subsample 

S. AR coeff. -0.104 -0.105 -0.163 -0.265 
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