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Abstract

Tessellated surfaces are structured surfaces where the dominant features are organised in periodic
patterns. Tessellated surfaces are becoming increasingly popular for a wide variety of industrial
uses. However, their uptake is hindered by a lack of suitable metrological techniques to categorise
and verify their properties. Areal surface texture parameters, commonly used for characterisation of
surface texture, may not provide relevant information for characterising the periodicity and the other
functionally relevant geometric attributes of the pattern . A possible solution, recently proposed in
the literature, is to directly retrieve the individual features of the pattern and to determine their
relevant geometric and dimensional properties. To achieve such a characterisation it is necessary to
segment the surface in order to extract the pattern units (tiles) and the individual features contained
within, so that their properties can be assessed. This paper reviews a number of different techniques
and compares their ability to accurately identify the tile features and their boundaries. This ability
is important as it has a direct impact on the computation of dimensional and geometric properties
of the features.

1 Introduction
In recent years structured surfaces, i.e. surfaces with a dominant deterministic features designed to
produce a specific function [1, 2], have become popular in a wide variety of industrial applications. In
particular, tessellated surfaces, i.e. structured surfaces featuring periodic patterns, have shown promising
results in applications, such as, friction reduction, optical devices and control of hydrophobicity [1, 3–5].
It is, therefore, important that suitable metrological tools are available to characterise such surfaces, in
order to verify their production and correlate with functional performance. This review illustrates the
main approaches that have been proposed in the literature to characterise such surfaces.

1.1 Structured and tessellated surfaces
Evans and Bryan [1] provided one of the first modern definitions of structured surfaces as, “surfaces
with a deterministic pattern of usually high aspect ratio geometric features designed to give a specific
function”. Subsequent researchers have added slight refinements and further subdivisions [2, 6]. Stout and
Blunt [6] further subdivided structured surfaces into directional and non-directional surfaces depending
on whether the pattern has a dominant direction. Similarly, Jiang and Whitehouse [2] further subdivide
structured surfaces into additional subcategories. Tessellated surfaces are structured surfaces with a
periodic pattern. The most common subclass of tessellated surface has tiles with translational symmetry
(e.g. retro-reflector surfaces consisting of a Cartesian pattern of hexagonal prisms, or the dimpled surface
of a golf ball). The other subclasses of tessellated surface are linear patterned surfaces consisting of a single

1



linear texture unit which is only repeated in only one direction ( e.g. ribbed or grooved structures) and
rotationally invariant patterned surfaces where periodicity is in a polar coordinate system rather than a
Cartesian one (e.g. Fresnel lenses). Finally, structured surfaces which are not classified as tessellated (i.e.
they do not have a periodic pattern) are defined as multi-patterned surfaces, the most famous example
being MEMS devices. Multi-patterned surfaces are not considered directly in this review, which focuses
only on tessellated surfaces. However, many of the approaches discussed could be adapted for the analysis
of such surfaces.

As shown in figure 1, tessellated surfaces are made of topologically connected pattern units, or tiles.
Each tile consists of the same nominal topography, repeated multiple times to form the periodic pattern.
The tiles are occupied by the deterministic features which make up the tessellated surface (e.g. the
dimple of a dimpled pattern, a polygonal prism in retro-reflectors or abrasive surfaces). These features
may cover all or part of the pattern unit. When the functionally relevant feature does not occupy the
entire tile, the space between adjacent features can be referred to as the background. The distinction
between feature and background is somewhat arbitrary, since the background surface is generally still
important to the function, but is often adopted when characterising tessellated surfaces as it generally
resembles the original surface design specifications.

Figure 1: Pattern units/tiles (blue) and individual features (red) of two different surface models: a) A
dimpled surface where the features only fill part of the tile and are surrounded by background surface.
b) A pyramidal surface where the feature fills the entire surface and no background exists.

1.2 Taxonomy of approaches to the characterisation of tessellated surfaces
Tessellated surfaces are formed of micro or nano-scale tiles repeated many times, so that the resulting
pattern covers an area orders of magnitude larger than the scales of the individual features. Function in
tessellated surfaces is generally exploited by the combined interaction of numerous tiles [1, 3]. It is, there-
fore, natural that the final goal of a procedure for characterising a tessellated surface is the assessment
of properties pertaining to the pattern as a whole, instead of being limited to the characterisation of a
single tile or feature. Conceptually, this is consistent with the approach adopted in surface metrology for
characterising conventional surface texture where the ultimate goal is the identification of texture param-
eters, synthetic descriptors that provide information pertaining to the whole topography [7]. However,
although the final goal of the characterisation is the same (i.e. computing parameters), the approaches
adopted in the literature to obtain such results for tessellated surfaces have been varied, sometimes de-
parting significantly from those adopted for more conventional stochastic (i.e. non-structured) surfaces.
While a detailed illustration of the main existing approaches will be provided in the following sections
of the review, a preliminary taxonomy is now introduced with the help of figure 2. Regardless of the
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characterisation method, it is assumed that surface topography data has been obtained by an areal to-
pography instrument and is available as a height map/range image, i.e. a set of pixels arranged into a
regular grid.

Figure 2: Overview of the classification taxonomy for structured surfaces

Two general categories of characterisation route can be considered. The first route considers tessellated
surfaces in a similar manner to how stochastic surfaces would normally be considered, i.e. field parameters
are calculated based on statistical properties of the entire measured area. These parameters can either
be based on the standard areal surface texture field parameters, described in ISO 25178-2 [7, 8], or on
other, custom parameters. The approaches belonging to this characterisation route consider considers all
measured pixels similarly, with no differentiation, and therefore ignore the tile structure of tessellated
surfaces.

The second route encompasses many different approaches, sharing a common trait in that they intro-
duce differentiation between measured points. In these approaches a few key steps are always recognisable:
the surface is partitioned so that the individual tiles and/or features are isolated, and parameters are
computed starting from the tiles/features, in the attempt to generate synthetic descriptors which are
more closely linked to the function of the surface. There are a variety of ways of performing partition-
ing/feature identification, and there is a variety of ways to encode the results through parameters. One of
the most common approaches consists of using morphological segmentation to partition the surface, and
then computing the related ISO feature parameters [7] However, many different, non-ISO approaches
have been explored to segment the surface into tiles and features, and to compute parameters that de-
scribe the partitioned surface. Some of these methods target the tiles, others the features within the
tiles, in those situations where the differentiation can be made (i.e. the feature does not entirely oc-
cupy the tile). In either case, the parameters proposed in the literature generally try to capture either
tile/feature-related properties (i.e. tile/feature shape and size), or lattice-related properties (i.e. distance
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between/alignment of the tiles/features).

2 Height map preprocessing
Areal topography measuring instruments, generally used in surface metrology, tend to record data as a
raster image with heights in a regular grid (a height map). When measuring tessellated surfaces there
are several factors that must be considered before the data can be analysed; most of which also apply
for conventional (stochastic) surfaces. These factors include the treatment of non-measured points and
measurement artefacts, filtering and levelling.

2.1 Treatment of non-measured points
Areal instruments often fail to measure the entire surface accurately. Optical instruments, in particular,
may fail to collect enough information to determine the height of a pixel, which may be marked as non-
measured (also referred to as a void). Some consistent method is needed to treat non-measured points so
that the data can be used. There are two general strategies that can be adopted to deal with non-measured
points. Either they can be left as non-measured, in which case algorithms capable of excluding them are
needed, or they can be replaced with a plausible height value, computed from interpolation/fitting of
neighbours. The first approach would be preferable from a metrological standpoint, because it would not
introduce additional error in the data. However, adapting data analysis and processing algorithms so that
they can discriminate between valid and non-valid points (e.g. through masking solutions) is generally not
straightforward and speed/time performance may suffer [9, 10]. Therefore, correction of non-measured
points is often a simpler solution. There are many standard approaches that can be used, usually based
on interpolation/fitting of the surrounding valid pixels to come up with a best fit value. Notable examples
include: linear interpolation [?], median interpolation [11, 12], splines [??] and kriging [13].

The problem of treating non-measured points exists for the characterisation of any kind of surface.
However, it is particularly felt for structured and tessellated surfaces, when considering characterisation
approaches targeting individual surface features because an individual feature is composed of far fewer
pixels than a complete image. Therefore, missing pixel values have a much larger importance.

2.2 Treatment of measurement artefacts
Areal instruments sometimes produce pixels whose value is almost entirely the result of measurement
error, generally because of specific phenomena taking place at the interaction between the probe measure-
ment technology and the surface. These pixels generate false topographic formations (e.g. peaks) which
are commonly referred to as measurement artefacts. Often measurement artefacts are characterised by
height values that significantly differ from their immediate surroundings, and thus can be recognized
by outlier-detection techniques. A typical example are the bat-wing formations generated by coherence
scanning interferometers when encountering a step [??].

Unlike non-measured points measurement artefacts are not detected by the instrument. Therefore,
an algorithmic approach is required to identify the measurement artefacts before treating them. For the
applications and types of measurement error where it is safe to identify measurement artefacts through
the detection of outliers, then multiple outlier detection techniques derived from statistics can be applied.
The standard approach consists of estimating the probability density function of the heights of the good
pixels in the area being investigated, and then identifying those pixels whose heights can be classified
as outliers with respect to such distribution. An example of this approach is Grubbs’ test [14] which
marks the point furthest from the mean as an outlier until the remaining points agree with a students
t-distribution with (N − 2) degrees of freedom (N is the number of remaining pixels in the dataset).
Many other similar algorithms exist.

One issue with such approaches is that they rely on the underlying assumptions of the outlier iden-
tification techniques. For surfaces consisting of uni-modal, simple-shaped local height distributions (e.g.
normal) identifying outliers is generally easy, the ideal case being a horizontal rough surface with no
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significant high-scale formations. On the other hand, even the simplest step, or the presence of an un-
derlying non-flat form or long spatial wavelength components, complicates the distribution of heights
and makes it less stable as the surface is scanned, thus making it more difficult to detect outliers. Unfor-
tunately, tessellated surfaces often contain such components. The typical solution to this problem is to
remove form and long wavelength components from the topography, which can be done by subtracting a
smoothed version of the original surface from the original surface itself, the residual containing only the
higher spatial frequencies. The smoothed topography can be obtained by polynomial fitting on the origi-
nal, although this technique does not work well in presence of steps and other sharp discontinuities, or by
using a moving median filter [11, 12]. Another recent approach by Le Goic et al. is to use discrete modal
decomposition [15]. Once the residual, high-frequency surface is obtained, outliers can be searched on it.
Once identified, outlier pixels can either be excluded or corrected to more plausible height values, as for
non-measured points. The identification and treatment of measurement artefacts is a common problem
in surface metrology, but becomes particularly relevant for structured and tessellated surfaces, especially
for those approaches requiring the inspection and characterisation of individual pattern features. As for
missing values, this has to do with the fact that individual features are made of far fewer pixels, and
the effect of local error is much stronger than when computing conventional texture parameters on the
whole surface.

2.3 Filtering
It is often necessary to filter a measured surface to reduce high frequency noise. For stochastic surfaces
a Gaussian filter is commonly used, which has the advantage of a monotonic frequency response [?,
16] and therefore does not produce any high frequency ringing effects. However for structured surfaces
Gaussian filters are often poorly suited as they can distort the position of edges in the image and can
therefore distort the features of the surface [17, 18]. If the features are large compared to the size of the
smoothing kernel used then this distortion will be relatively small. However, as the feature size decreases
the distortion effect will become more and more significant. Therefore, it is necessary to consider other,
edge preserving, filtering techniques.

One candidate for edge preserving is morphological filtering [11, 16]. This filter is based on applying
morphological open and closing operators to the surface, with spherical or flat structuring element. While
it does a much better job than the Gaussian filter in terms of preserving significant edges, the conventional
algorithms are computationally intensive especially for large structuring elements. This issue can make
the filter prohibitively slow to apply, especially for large images. Recent research [19] has investigated
novel algorithms to apply morphological filters which show promise to achieve much faster computation.

Another possible filter, proposed for use on structured surfaces by Jiang and Whitehouse [2], is the
anisotropic diffusion filter [20–22]. This filter results in efficient smoothing of low-gradient regions while
at the same time, sharp edges are preserved.

2.4 Levelling
Just as for measurements of stochastic surfaces, it is necessary to level measurements of structured
surfaces to provide a consistent reference plane. The conventional way to do this is by subtraction of
a least-squares mean plane. However, when considering structured surfaces it is necessary to exclude
the surface features from the least-squares fitting as otherwise they can skew the mean plane [9]. It is
important to note that, the plane should still be subtracted from the entire surface to ensure a single
reference plane for the entire surface. To fit a least-squares plane to the background surface implies that
the features have been identified and their position is known, for example using one of the segmentation
methods described in section 4. However, the segmentation techniques often rely on having well levelled
images. Therefore, an iterative approach is recommended whereby the image is segmented, then levelled,
then segmented again until a stable image is reached [??]. An additional issue is that selectively fitting to
the background is not possible for tessellated surfaces where the features contain the entirety of the tiles,
such as in figure 1(b). Levelling against the whole surface may still be unsatisfactory if all the surface
pixels are used, considering that the tiles may be cut differently at the image borders, and this could
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skew the lest-squares mean plane. The authors are not aware of any techniques designed for levelling of
such surfaces.

3 Overviews of characterisation methods
As mentioned in section 1.2 there are several approaches that can be taken to characterise tessellated sur-
faces. This section provides an overview of these approaches, explaining the pros and cons and providing
examples of each.

3.1 Characterisation without partitioning the topography
This section discusses the characterisation methods aimed at tessellated surfaces which do not require
the topography to be first partitioned in order to identify tiles and/or the functionally-relevant features
located within them. With no partitioning, surface points (pixels) are all treated equally, and included
in the computation of the parameters. The techniques belonging to this category can be divided into
those adopting ISO parameters for describing the topography (ISO 25178-2 [7]) and those that do not,
and are based on devising original parameters instead.

3.1.1 ISO field parameters

Some researchers have attempted to characterise structured surfaces using ISO field parameters. In par-
ticular, Podgornik and Sedaleck [23] have tried, with some degree of success, to find a correlation between
the kurtosis and skewness of laser textured dimples and grooves, and their coefficient of friction under
boundary and mixed lubrication conditions. They succeeded in showing correlation between negative
skewness and positive kurtosis parameters and friction coefficient. Such research results demonstrate
that standard surface texture parameters may be useful for characterisation of structured surfaces. How-
ever, it must be questioned whether similar relationships between field parameters and function could
be derived for other, unstructured, surfaces. Podgornik and Sedaleck note that the relationship they
obtained follows the same pattern as that observed for friction in conventionally machined (i.e. un-
structured) surfaces. In other words, a correlation was found between the distribution of heights of a
surface and friction, however no information could be obtained about how being structured affects the
functional performance of a surface, as many different feature shapes and layouts may lead to the same
height distribution, and thus to the same related field parameters

Accordingly, while ISO field parameters are widely used in analysis of surface texture for stochas-
tic surfaces, several researchers have questioned their suitability for the analysis of structured surfaces.
Weckenmann and Hartmann [24] claim field and profile parameters assume the surface has a random
topography. Such parameters are therefore poorly suited to the analysis of surface with micro and nano
structures and fail to map the geometry of the micro-structures successfully onto the functional per-
formance of the surface, so that many micro-structured components can only be verified by functional
tests. Similarly, Blunt and Xiao [25] argue that conventional surface texture parameters are designed to
determine statistical properties of the entire surface whereas for structured surfaces the primary interest
is in the deviations from the nominal of the individual features.

3.1.2 Custom parameters

Other researchers have attempted to define new parameters (i.e. non-ISO) in order to obtain a stronger
relationship between the parameter and with functional performance, or even with the actual geometric
properties of the features forming the pattern. Of particular note Geringer, Arneke and Seewig [26]
propose a method based on a 3D analogy of granulometry. By calculating the volume of the surface
after opening and closing operations with a range of structuring element sizes, plots of volume against
structuring element size can be created. In the plot, the structuring element size corresponding to the
maximum rate of change of the volume curve was found related to the characteristic lateral size of the
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dominant features in the pattern. Geringer et al. tested this approach on a laser textured surface and
showed a good correlation between the calculated and actual lateral feature size.

While this method appears promising for the characterisation of the specific features tested, care must
be taken when applying this method to other surfaces. All the surfaces considered by Geringer et al.
consist of features that are approximately circular in shape. It is not clear whether if other shape features
are considered the size will be detected correctly. In particular, it appears that if severely elongated
features were considered then only the smallest dimension of the feature would be detected correctly.
Additionally, this approach is limited to considering the lateral size of the feature. While deeper features
will give a stronger response, due to a greater change in volume, there is no way of directly determining
feature depth or other properties which may be of interest.

As for ISO parameters, the main consideration here is that parameters referring to the whole surface
topography may partially succeed in correlating with a surface functional property or specific shape/size
property of the features on a structured surface. However, this correlation is indirect, potentially affected
by many other factors, and hardly generalisable.

Another approach, suggested by Zeng et al. [27] uses the autocorrelation function to find the lattice
properties of a tessellated surface by finding the translation vectors between peaks in the autocorrelation
function (ACF). The translation vectors can be used to define parameters describing layout properties.
Due to the regular nature of tessellated surfaces the ACF should consist of a number of regularly shaped,
sharp peaks. By measuring the distance between such peaks the average lattice properties of the surface
can be calculated. However, robustly determining significant peak position is not a trivial task.

3.2 Characterisation based on partitioning the topography
Many characterisation methods proposed in the literature imply a partitioning of the topography at
some point. Partitioning, also referred to as segmentation, is either aimed at isolating the individual
tiles, or at identifying and extracting the functionally relevant feature located within the tile (when the
feature boundaries do not coincide with the tile boundaries). Once the partitioning is done, the final
characterisation of the surface is based on computing parameters that capture the properties pertaining
to the isolated tiles/features and to their spatial layout (lattice properties).

3.2.1 ISO morphological segmentation and feature parameters

ISO 25178-2 only recommends one method to partition the surface, morphological segmentation. In
morphological segmentation the topography is partitioned into topologically connected hills or dales [11,
28, 29]. After segmentation is done, parameters can be computed that capture the properties of such
hills or dales; these are known as ISO feature parameters [7]. For tessellated surfaces, the ISO approach
to partitioning and computing parameters may be applicable, as long as a hill or dale segmentation can
be appropriately configured to capture the tiles and/or the features contained within. This is a non-
trivial problem, as illustrated in the work by Senin et al. [30]. In addition, even when each tile/feature is
appropriately modelled by a subset of segments in the partitioning, it is still necessary to identify those
feature parameters that better capture the properties of the tiles and of their layout. If successful, the
combination of ISO morphological segmentation and ISO feature parameters allows the topography to
be ultimately described in standardised and highly repeatable terms, thus favouring usability in terms
of ease of information exchange in collaborative environments.

Hartmann and Loderer [31] have used morphological segmentation to identify the features in dimpled
surface for friction reduction. Once features are identified their diameters and depths are calculated to
produce distributions of diameter and depth for the entire surface.

Blunt, Xiao and Scott [25, 32] have considered the characterisation of laser textured hard disk drives
with a tessellating pattern of bumps. The Laplacian of a Gaussian (LoG) operator is used before ISO
morphological segmentation on the resulting image to ensure that the partitioned regions are represen-
tative of the real bumps. Parameters such as average diameter and depth of the bumps and average
separation between bumps are then considered.
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An entirely different strategy, still involving an ISO-compliant partitioning process, consists of apply-
ing a segmentation technique not directly to the original topography of the tessellated surface, but to an
ancillary surface obtained from it. Jiang, Scott and Whitehouse [2, 33] have applied ISO morphological
segmentation to the ACF of a tessellated surface. The partitioning leads to a robust identification of the
general shape of the tile and therefore lattice parameters, because dale partitioning correctly identifies
the shape of the region comprised within adjacent peaks in the ACF.

3.2.2 Other partitioning techniques and custom parameters

Many other methods have been used to partition the topography of a tessellated surface; they are dis-
cussed in detail in section 4. Accordingly, researchers have introduced various new parameters to describe
the pattern units and their spatial layouts as obtained after the partitioning. For example, Kong et al. [34]
used a height based threshold (see section 4.1) to identify the lenses in a micro-lens array. Various pa-
rameters were then used to characterise the micro-lens array, including the minimum, maximum and
standard deviation of the roundness and lattice deviations in both a spatial and angular sense. Zhu et
al. [35, 36] have considered an active contour (see section 4.3) based algorithm for segmentation of a
range of surfaces, including etching silicon patterns, laser textured patterns and computer chip pins, and
show that this method can accurately identify the surface features. Although, the calculation of relevant
parameters is from these regions is not directly considered. Recently the authors of this paper have used
thresholds on the gradient to partition laser textured silicon nitride surfaces into feature and background
areas [37]. Using these partitions the mean and standard deviation of the diameter, volume and depth
of a sample of the features were then calculated.

4 Segmentation methods
Segmentation, i.e. partitioning the surface into regions, can be used to identify tiles and features on
a tessellated surface and then identify their boundaries. In the following section various segmentation
methods will be examined and the application of such methods to feature/tile extraction in the specific
case of tessellated surfaces will be discussed.

4.1 Thresholding
One of the most straightforward and widely used ways to segment surfaces in order to extract relevant
features is to threshold the surface based on some local property of the pixels. Under this approach a
threshold, T , is set; all pixels with value less than T are marked as points in a feature and all points
greater than T are marked as not belonging to the feature, or vice versa as appropriate for the surface.
Many different local surface properties can be used for thresholding with differing effects as shown in
figure 3.

Height of the pixel is probably the most straightforward and widely used threshold. Height thresholds
provide an intuitive and computationally simple way to segment the surface. They are most effective when
used to detect sharp edges, such as steps, and have been used extensively in the field of computer vision
[38, 39]. Senin, Blunt, and Tolley [12] have recently devised a technique for the identification of thin
foil laser targets for ion beam acceleration experiments, which at one step uses a height thresholding
operation to discriminate between the target and background surfaces, as shown in figure 4. For tessellated
surfaces, Kong et al. [34] have used a height threshold to identify the lenses and separate them from the
background in a micro-lens array.

However, there are several issues with height thresholds which limit their applicability. Firstly it is
difficult to select an appropriate threshold value. While several techniques exist to aid in selection of an
appropriate threshold, including using the image histogram [11], Otsu’s method [40], k-means clustering
[41–43] or using a percentage of a field parameter [9], these approaches rely on the height distribution
being multi-modal and the feature being contained entirely within a well defined number of modes.
Indeed, if this is not the case there is no algorithmic approach which can correctly identify the threshold
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Figure 3: Effect of thresholding on example profile using different image properties. The principle is the
same for areal data, profiles are shown here for ease of visualisation. In each case the red line shows the
threshold value and feature areas are highlighted: a) surface height, b) gradient, c) local Sq in 21 × 21
moving window.

[11]. Another concern is that height thresholds can produce many spurious features, such as those shown
in figure 5, either due to noise in the measurement or the roughness of the background surface. While
it may be possible to use filtering or other techniques to remove these falsely identified regions these
approaches are unlikely to be perfect and must be tuned for a particular surface. A third serious concern
when performing a height threshold is the effect of levelling. Height thresholds can perform poorly
when dealing with unlevelled data because slopes can affect how pixels are marked. For example, if the
background is tilted a threshold that successfully detects the feature is likely to also select a significant
part of the background.

It is also possible to threshold on other local surface properties. One option is to use the value of a
surface texture parameter as the threshold. From a metrological point of view surface texture is generally
considered in terms of the areal surface texture parameters described in ISO 25178-2 [7] and is calculated
as a single value for the entire surface or image. However, if these parameters are calculated in a local
region around each pixel, rather than for the whole image, then a value can be attached to each pixel
and thresholds can be set to segment the surface. Senin, Zilliotti, and Groppetti [43] have done this and
succeeded in segmenting different textured squares and micro-indentations by using k-means clustering
to determine thresholds on the local Sq value.

Depending on how texture parameters are calculated, texture based thresholds may be less susceptible
to levelling issues than height thresholds. Parameters involving local high-pass filtering or local levelling
in their computation may end up being completely insensitive to global levelling of the topography.
However, levelling effects are generally an issue to be considered in thresholding. There are also additional
drawbacks to consider. Due to texture parameters being calculated on each pixel using information from
a given amount of neighbouring pixels, a sharp transition in the topography (e.g. a step) may produce
various results in terms of the transition of the local texture parameter, since at each position the
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Figure 4: Height thresholds can be very effec-
tive when the surface contains step-like features
[12].

Figure 5: When the surface contains shallow
features with not sharp edges height threshold-
ing often produces many false features [9].

parameter would be the computed from an aggregation of pixels belonging to both sides of the step in
the topography, with varying relative weights as the point moves across the transition itself. The simplest
example of this would be the moving average, which results in a smoothed transition when applied to
a sharp step. Most texture parameters computed locally over a region of neighbours would have similar
behaviour, which must be taken into account.

Additionally, variations of the texture parameter value when computed over boundary pixels must be
considered: at the image boundaries, fewer pixels are available to compute the local texture parameters,
and this may affect the parameter value. Also choices on how to obtain the missing points (e.g. symmetric
extrapolation, wraparound, constant value padding) affect the variation of the parameter, and thus the
segmentation results.

Finally, texture thresholds suffer many of the same issues as height thresholds with regard to setting
appropriate values for the threshold. Senin, Zilliotti, and Groppetti [43] used k-means clustering, with
between two and six clusters to deal with this problem, which seems to have been quite effective for the
surfaces they considered.

Another common option is to set the threshold based on the gradient of the surface. There are a
number of ways to calculate the gradient of a surface. The Sobel filter is a popular method for range
images, which convolves the surface with a pair of filter kernels to produce gradients in the x and y
direction [11]. These maps can then be combined to produce the gradient magnitude, against which the
threshold is applied. Setting such a threshold detects areas of high local slope, which generally includes
the feature boundary and therefore separates the background and feature regions. Thresholding based
on the gradient has similar pros and cons to texture based thresholds as they are closely related. In
particular the choice of threshold is still an issue. As before automated methods can be used. However,
on possible advantage of gradient based thresholds is that it is slightly easier to set the threshold manually
as in many cases the expected gradient of the background is zero (or at least very small). However, in
practise the choice of threshold still has a significant effect on the segmentation boundary. Additionally,
the centre of features often have low gradient compared to the boundaries and therefore may not be
marked as features, depending on how the threshold is set. As for texture based thresholds filling of
enclosed regions can mitigate this issue. Recently, gradient based thresholds have been applied to the
segmentation of laser textured silicon nitride disk [37] and successfully segmented the feature regions
from the background.

Threshold based techniques are generally poorly suited to identifying pattern units (tiles) in tessel-
lated surfaces as all the units will have similar properties and cover the entire surface. Depending on the
specific surface it may be possible to set a threshold such that a region near the boundaries of the texture
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units are segmented from the rest of the surface. For example by setting a threshold on the height on
the pyramidal surface in figure 1(b). However, this is still a non-ideal situation as the resulting boundary
region will inevitability be thick and so accuracy in determining the tile boundaries will not be possible,
unless some skeletonisation algorithm is applied [11].

4.2 Morphological segmentation
Morphological segmentation is an approach to segmentation based on the idea of morphological water-
sheds proposed by Maxwell [44] in 1870. This idea is similar to the principle of the watershed of a river
basin, in that the surface is segmented such that a drop of water placed at any point within a region
flows down to the same point. The boundaries between regions are then the watershed lines, where a
drop can flow in either direction. Reverse considerations lead to morphological segmentation into hills.
Figure 6 shows a schematic of morphological segmentation for profile data. This can easily be generalised
to areal data. Several different algorithms for efficient watershed segmentation have been developed [45–
47]. These work either on the basis of immersion simulations (floodfill techniques) [46] where the image is
flooded from beneath and watershed lines are defined where two flooded regions meet, or by considering
how each point on the image flows to a minima (rainfall techniques) [45].

Figure 6: Schematic of morphological segmentation on a profile. Watershed lines exist at maxima of the
profile (ridge lines for when generalised to areal data).

One of the major issues with the watershed transform is that it tends to severely over-segment the
image, as shown in figure 7 on a test surface of a laser-textured micro dimple. This oversegmentation is
due to the fact that each local minima in the image will have its own watershed region. Due to noise
in the image and roughness of the surface there will be many such regions which are unlikely to have
any relevance to the surface function. Therefore, some method of region merging is required to merge
the insignificant regions together into more significant regions, that ideally correspond to the structures
on the surface. One of the simplest ways to merge regions is to smooth the image before segmentation
using a Gaussian, or some other filter [48, 49]. This will reduce the number of minima in the image and
therefore the number of watershed regions. However, such smoothing will also distort the image and
cause the boundaries to move.

Another approach to deal with over-segmentation, often used in conventional image processing, is
marker based segmentation [11, 50, 51]. Marker based segmentation relies on placing markers on the
image which correspond to the significant features. The image is then morphologically deformed such
that minima only exist at these markers. This reduces the number of watershed regions and helps them
to agree with the significant features. However, marker based segmentation is not widely used in surface
metrology because placement of markers requires significant a priori knowledge about the location of
the features, either to place the markers manually or to control some algorithm to place them. This
information is not generally available in conventional surface metrology but may be when considering
structured surfaces.

A third approach to the problem is region merging techniques, of which several equivalent methods
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(a) (b)

Figure 7: Comparison of a laser textured dimple surface, segmented by the watershed transform, before
and after wolf pruning. a) With no pruning the feature is severely over-segmented. b) After pruning with
a height threshold of 20% of Sz and area threshold of 10% of the image the feature is segmented into a
single region.

exist [7, 52–54]. These rely on setting thresholds on properties of the watershed regions, often the depth
and area. Watershed regions with values smaller than these parameters are then merged with neighbour-
ing watersheds until all remaining regions are above the threshold. The problem with this approach is
that the thresholds must be chosen heuristically as they will depend on both the desired segmentation
and the surface. Therefore, there is no guarantee that a threshold which was successful for one surface
will also be successful for another [30].

In surface metrology, morphological segmentation is primarily used as the method to segment a
surface before determining feature parameters [7]. For this purpose region merging techniques are used
to deal with over-segmentation. ISO 25178-2 [7] recommends using Wolf’s method [52] for region merging,
although it points out that other methods, such as [53] are equivalent. Indeed, Scott [54] has shown that
Wolf’s method provides a stable segmentation for determining surface features.

While apply morphological segmentation on height maps has been successful for many surfaces mor-
phological segmentation can equally be applied to other surface maps, e.g. the gradient map [30, 55]. In
many cases such approaches can be more successful in detecting the significant features. In particular
morphological segmentation on the height map often produces unsatisfactory results when there is a
large flat surface with a sharp step, as shown in figure 8(a), in such cases there is no sharp ridge and
regions are merged such that the boundary lies a significant distance from the transition. On the other
hand, segmentation on the gradient map, figure 8(b), is more satisfactory in such situations and places
the transition in the centre of the transition, which is a ridge of high gradient.

Other maps can also be used to segment the surface. Blunt, Xiao and Scott [25, 32] have applied
morphological segmentation to the surface after applying a LoG filter. This approach will detect the
ridges of maximum curvature and has been successfully used to detect the dimpled structures of a laser
textured hard disk drive.

In many ways morphological segmentation is ideally suited to detecting texture units as the segmenta-
tion approach can be seen as just looking for significant boundaries and determining regions based on the
boundaries. Therefore, it is just a question of choosing a parameter such that the significant boundaries
agree with the boundaries of the texture unit. This choice will depend on the surface in question. One
method, proposed by Jiang, Scott and Whitehouse [33, 56], is to apply morphological segmentation to
the autocorrelation function of the surface. Just as peaks are formed in the ACF due to the tile structure
of the surface, the tile boundaries will lie on the valley lines of the ACF at minimal correlation. This
approach has been shown to successfully identify the tiles for a range of surfaces.
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(a) (b)

Figure 8: Segmentation of a laser textured dimple using height and gradient watersheds. a) Morphological
segmentation on the height map, pruned with height threshold of 20% Sz and area threshold of 10% of
the image. It was not possible to choose a threshold such that the background forms a single region and
the feature is accurately identified. b) Morphological segmentation on the gradient map, pruned with
height threshold of 5% of the maximum gradient and area threshold of 10% of the image. This approach
more accurately identifies the feature boundary and forms the background into a single region.

4.3 Active contours
Another approach to segmentation is active contours [57–60]. Active contours start by placing a contour,
C(s), on the surface and defining its energy, E(C). The contour is then evolved through space to try and
minimise the energy. The final (minimum energy) contour then defines the boundary of the segmented
object. Figure 9 shows the evolution of the algorithm on the test surface featuring a laser textured micro-
dimple, with initial, intermediate and final contours shown. Clearly the definition of the contour energy
will define where the boundary is placed. There are a wide range of energy functions that could be used.
In image processing two of the most common are known as geometric active contours [58] and active
contours without edges [60]. The geometric active contour [58], is based on an edge detection approach
such that

E(C) = α

∫ 1

0
|C ′(s)|2ds+ β

∫ 1

0
|C ′′(s)|2ds− λ

∫ 1

0
|∇I(C(s))|ds (1)

where C ′(s) and C ′′(s) are the first and second derivatives along the contour, α, β and λ are coefficients
controlling the relative magnitude of each term, although commonly β = 0 is used, and ∇I(C(s)) is the
image gradient at that point. From (1) it is clear that, barring effects due to the contour shape, the
energy will be minimised when the gradient is maximised.

An alternative approach, proposed by Chan and Vese [60], is active contours without edges. This
method is more similar to the thresholding as section 4.1. It defines the contour energy

E(C) = µ.Length(C) + ν.Area(inside(C))

+ λ1

∫
inside(C)

|I(x, y)− c1|2dxdy + λ2

∫
outside(C)

|I(x, y)− c2|2dxdy (2)

where the first two terms serve a similar purpose to the first two terms in (1) and similarly ν = 0 is
generally used. I(x, y) is the surface height at that point and c1 and c2 are the average height inside and
outside the contour respectively. λ1 and λ2 are constants controlling the position of the segmentation,
with λ1 = λ2 = 1 being the most common choice. This approach minimises the variance between the
two groups and is therefore similar to k-means clustering [41] and Otsu’s method [40], which also try
and minimise the inter-region variance.

One of the issues with active contours is the choice of initial contour. Ideally this should be placed
close to the optimal contour to ensure swift convergence. If it is not, then the solution may take a long
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Figure 9: Evolution of the active contour algorithm showing: a) initial contour, b) intermediate contour
and c) final contour. In this case the active contours without edges algorithm was used [61].

time to converge, especially when there is a large background with little in the way of gradient for the
contour to move down. In severe cases the algorithm may become stuck in a local minima and not
converge to the optimal solution.

In surface metrology there has been some limited use of active contours for surface segmentation. In
particular Zhu et al. [35, 36, 62] have used active contours with the geometric active contour algorithm
for segmentation of various structured surfaces such as microprocessor chips and etched structures. In
these cases they appear to be able to accurately segment the features, although no quantitative tests are
made.

5 Feature identification and determination of geometric attributes
5.1 Feature identification
The aim of feature identification is to recognise a region of the topography as an instance of a class/category
of geometry being searched for. When applied to tessellated surfaces, feature identification can be re-
ferred to the process of recognising regions of the topography as instances of the pattern unit (tile), or
as instances of the functionally relevant features contained within the tile (if they do not coincide with
it). Feature identification can be implemented as a subsequent step to segmentation, in which case the
regions produced by segmentation are post-processed and analysed in order to recognise those to be
associated with the target class, or without a segmentation step, typically through template-matching
approaches.

5.1.1 Feature identification based on segmentation

This family of techniques first involves post-processing the regions resulting from segmentation (e.g. for
removing the ones that do not comply to specific size and shape criteria, and/or for merging regions into
more relevant formations, etc.) Common approaches are to remove regions below a certain size [37] or
that are an abnormal shape (e.g. not round) [31]. Similarly some segmentation methods (e.g. gradient
thresholds) may result in partitions that do not correspond to the feature being searched for, just to
its boundary. To deal with this issue any enclosed region of background surround by a feature can be
merged with the boundary to obtain a topologically connected (filled) region, as a good candidate for
the subsequent feature identification step.

Another common issue is that regions intersecting the boundary of the image generally need to be
excluded, as they may eventually result in features that are partially cropped out of the image, thus
unusable for the determination of most geometric attributes. Finally, sometimes regions may need to be
merged with each other before they can represent good candidates for feature identification. Whether
this situation occurs is dependent on algorithm used, but is most common when using thresholding with
multiple thresholds [43] or morphological segmentation [30]. In some cases this effect can be advantageous.
For example, if the combined regions provide a more accurate description of the feature than could be
achieved by segmenting the feature into a single region. In such situations these regions should be merged
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together to form a single feature. Suitable algorithms to perform such merging are often determined
heuristically. A common approach is to mark the largest single region as the background and merge all
other adjacent region together. Post-processed regions are typically subjected to heuristic analysis in
order to perform the final identification step. Typically identification is based on compliance to specific
size, placement and form factor attributes. For example, in the test case involving laser textured micro
dimples, segmented regions are identified as dimples based on their shape and size.

5.1.2 Feature identification based on template matching

Template matching is a feature identification approach that does not rely on segmentation. Rather than
segmenting the surface and using the resulting regions to identify the feature, template matching starts
with a geometric model (template) of the surface feature and moves this model over the surface to
search for a best match with the local topography, as an indication of successful feature identification.
Deviations between the identified features and the template can then be assessed to determine the
feature’s properties.

Senin, Pini and Groppetti [63] describe template matching as consisting of three steps. First fea-
ture identification is performed. This finds candidate regions in the image where features matching the
template can be found. Next comes feature extraction where the template is aligned with the feature
in each candidate region and the region bounded by the template is extracted as a separate geometric
entity. Finally the nominal (aligned template) and measured (extracted region) geometry are compared
to determine deviations from the model. Each of these steps will now be considered in more detail.

Feature identification is one of the key steps in template matching. Some method must be used to
compare the template and surface to find points where there is a good agreement between the two. This
provides the rough location of the features which can then be accurately matched to the template. Many
methods have been developed to perform this feature identification. Primarily these methods are based
on finding a correlation between some property of the template and the surface.

Directly performing cross-correlation between the template and surface can be successful in some
cases but is not ideal as the result is sensitive to the orientation of the template to the feature on the
surface. Therefore a variety of other properties of the template have been investigated for locating the
features. Senin, Pini and Groppetti [63] use a method based on the ring projection transform [64]. Jiang,
Zhang and Scott [65] have also developed a similar technique called the structured region signature based
on the point signature method [66]. The ring projection approach looks at the sum of around rings of
different radii, whereas the structured region signature approach takes a single radius ring and looks for
the best match at different locations.

Once the features have been identified coarse registration can be performed. This step aims to deter-
mine the rough alignment of the feature so that the fine alignment step can be performed successfully.
If the alignment is already known for example if the template is rotationally invariant or is already
determine by the feature identification step then coarse alignment is not necessary. Alternatively if the
template consists of similar size area to the measured area, rather than just a single feature, then need
for feature identification is lessened as course registration should cover all the significant features.

Again various methods exist. The most simple approach to coarse registration, as used by Senin, Pini
and Groppetti [63] is to try a fixed number of orientations and determine which has the best fit between
the template and the model. Yu et al. have developed an alternative approach based on matching the
salient points of the template and surface [67]. This approach may be more complex but is well suited
to cases where feature identification has not been explicitly performed and the location of the features
is not yet well known.

Fine registration is used to create an accurate alignment between the template and surface. The
most widely used algorithm for this step is the iterative closest point (ICP) method [68]. This algorithm
computes the rigid transformation of the template which minimises the least squares sum of differences
between the template and surface. However, being an iterative algorithm it is relatively computationally
expensive and can easily become stuck in local minima. To avoid this issue good coarse registration is
needed.
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Once the surface and template are well aligned the difference of the two can be taken to determine
form error in the surface model. This error could be assessed in a number of ways depending on the surface
either using the sum of errors over the surface [63] or conventional dimensional tolerancing approaches
such as tolerance zones [69].

5.2 Geometric attribute determination
The final step in determining feature parameters is to determine the relevant attributes of the individual
features. The statistics of these attributes, computed from a sample of features collected while inspecting
the measured area, are what constitutes the feature parameter. There are a vast array of different
attributes that could be considered. It is therefore useful to consider attributes of the individual features
and attributes of the pattern separately.

Attributes of the feature refer to properties of the individual features such as their shape and size.
The method to determine the attribute will depend on the attribute in question. In general attributes of
the features will either fit a shape to the boundary to determine its size (e.g. fitting a circle to determine
feature radius) or will use some or all of the height data in the feature to determine the attribute (e.g.
roughness or depth of the feature).

Attributes of the pattern, on the other hand, focus on the properties of the lattice which makes up
the structured surface (e.g. the spacing and angle between features). To determine these attributes a
consistent reference point is needed for each feature or tile to allow for consistent calculation of the
parameters. For circular shaped features, such as the dimpled surface test case, one common approach,
as applied by Kong et al. [34], is to fit a circle (or other appropriate shape) to the boundary of the feature
and use the centre of the fitted shape as the centre of the feature. Other similar approaches could be
used based on placing the centre at the centre of mass of the feature.

Once the relevant attributes have been computed feature parameters can be calculated by calculating
the relevant statistics of the attribute distribution. Commonly used statistics are the mean, standard
deviation and median. However, a wide range of other statistics could be considered, such as, mean of
the five biggest/smallest values.

6 Discussion
Due to the wide range of characterisation techniques discussed in this review it is important to consider
if there is an ideal method to characterise tessellated surfaces. On one hand, field parameters are well
developed from characterisation of conventional surface texture. However, field parameters also have
many limitations for characterising structured surfaces. As mentioned in section 3.1.1 field parameters
generally do not account for the deterministic tile layout and shape, typical of tessellated surfaces.
Therefore, they may be insensitive to changes in topography which change the functional performance of
the surface. For this reason field parameters are often poorly suited to characterising tessellated surfaces.
However, in situations where functional relationships with field parameters can be established or only
verification is required field parameters may be suitable due to their relative simplicity and widespread
understanding.

On the other hand, segmentation based methods produce feature parameters that are much more
closely related to how such surfaces are designed. Such parameters allow for easier direct comparison with
the specification and are more likely to correlate with functional performance. However, segmentation
based techniques are generally more complicated with a larger number of control parameters to optimise.
Within the range of segmentation based methods there are those that target individual features and
those that target tiles. The two approaches have slightly different aims and are specialised for different
purposes. Tile based methods have limited ability to determine properties of size or shape of the feature
within the tile, as they do not separate the feature from the surrounding background, unless the feature
is perfectly coincident with the tile that contains it. On the other hand, methods targeting individual
features can still be used to determine lattice parameters of the surface, for example Kong et al. [34]
determine spacing between the centroids of features after height thresholding.
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For characterisation approaches relying on segmentation the choice of partitioning method should
also be considered. Different segmentation methods will produce slightly different features and therefore
will alter the resulting parameter values. Additionally the segmentation algorithms generally have at
least one control parameter (e.g. threshold level, wolf pruning parameters) which can have a strong
effect on the final segmentation results. It would therefore be of interest to consider how changing the
control parameters affects the segmentation and attributes computed from it. The authors have recently
presented an initial study of this effect [70] by considering the change in measured attributes when
segmenting a particular surface with a variety of algorithms and varying the control parameters of each
one. However, such an approach can only provide limited information as does not consider how this effect
varies as the surface changes. Therefore it may be of interest to consider this effect in a more general
way by considering a range of surfaces or by a modelling based approach.

Another outstanding issue is that quantifying the uncertainty in characterisation by segmentation
based methods has not yet been attempted. One simple approach to calculating the uncertainty is via
repeated measurement of the surface. However suitable experiments must be designed and performed to
account for the wide range of factors that can vary between measurements. The disadvantages of such
an approach are that it can be very time consuming to perform the large number of repeats required to
account for all variations and the uncertainties achieved are not very general, they only apply to that
particular measurement set-up.

An alternative approach would be to be able to calculate uncertainties analytically based on knowledge
of the uncertainties associated with the measurement instrument. The key steps here are to calculate
the pixel-wise uncertainty in the measurement and then propagate it through the segmentation and
characterisation processes. The easiest way to determine a pixel-wise measurement uncertainty is again
by repeat measurement. This may somewhat defeat the point but it may be easier to develop a more
generalisable model of measurement uncertainty in this way. Some work has been done determining
analytical uncertainties associated with various segmentation methods, for example, De Santo et al. [71]
considers the propagation of the image measurement uncertainty through the calculation of the Gaussian
and gradient of the image and applies them to the calculation of lengths and areas of segmented images
and their uncertainties. Additionally, De Santo et al [72] and Anchini et al [73] have calculated analytical
uncertainties in various edge detection operators.

However, these approaches only consider specific segmentation methods and do not consider many
of the pre and post processing steps, such as, smoothing and removal of small regions which are likely
to be used in real processes. Many of these would be difficult to consider as they do not have simple
analytical forms. A possible alternative to these approaches may be to consider a Monte Carlo approach
[74]. If knowledge of the image measurement uncertainty is available this can be propagated through the
algorithms in a statistical way without requiring detailed knowledge of how the uncertainty propagates
through the algorithms. The drawback of such an approach is that it is very computationally expensive
as numerous replicates must be calculated for each image.

Another issue, not so far discussed, is how to deal with the large lateral extent of patterned surfaces.
Real structured surfaces will have large lateral extent, possibly up to several metres in size, and are likely
to consist of many thousands of features. It is not always realistic to measure the entirety of such a surface
with sufficient resolution to determine the properties of individual features. While using higher speed
measurement instruments can mitigate this issue it in turn increases the measurement cost. Additionally
as structured surfaces tend to work on the combined effect of multiple features knowledge of the mean
and variance of the feature properties is often important. Therefore it may be possible to use standard
statistical techniques to estimate these properties using only a sample of the surface features. However,
in such a case it would be necessary to consider any spatial correlation between the structures which are
likely to be created in the manufacturing process.

7 Summary
This review has considered a number of techniques to characterise tessellated surfaces. Field parameters
are well developed from conventional surface metrology. However, they have limited ability to distinguish
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between different tessellated surfaces and so are of limited use for these surfaces. On the other hand, tile
and/or feature-oriented parameters, based on the identification of the tiles and/or the features within,
show promise for use with tessellated surfaces as they can easily identify the dimensional parameters
that are naturally specified during design of such surfaces. The segmentation and feature identification
step is one of the key differences between these two approaches. Therefore, several different methods
were examined and their strengths, weaknesses and applications were discussed.

Additionally areas where further work is needed were discussed. These include attaching uncertainty
values to the parameters associated with tessellated surfaces and how to deal with the sampling problem
of measuring a surfaces consisting of many thousands of features with a large spatial extent.
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