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Abstract
The quantumnavigation problemoffinding the time-optimal controlHamiltonian that transports a
given initial state to a target state through quantumwind, that is, under the influence of external fields
or potentials, is analyzed. By lifting the problem from the state space to the space of unitary gates
realizing the required task, we are able to deduce the formof the solution to the problemby deriving a
universal quantum speed limit. The expression thus obtained indicates that further simplifications of
this apparently difficult problem are possible if we switch to the interaction picture of quantum
mechanics. A complete solution to the navigation problem for an arbitrary quantum system is then
obtained, and the behaviour of the solution is illustrated in the case of a two-level system.

With the advances in the implementation of quantum technologies, the theoretical understanding of controlled
quantumdynamics and, in particular, of their limits, is becoming increasingly important. One aspect of such
limits that has been investigated extensively in the literature concerns the time-optimalmanoeuvring of
quantum states [1–18]. If the time-evolution is unconstrained (apart from a bound on the energy resource),
then this amounts tofinding the time-independentHamiltonian that generatesmaximum speed of evolution.
However, in general there can be a range of constraints that prohibits the implementation of such an elementary
protocol, and various optimizations will have to be applied to determine time-dependentHamiltonians that
generate the dynamics achieving required tasks.

An important class of problems arising in this context is the identification of the time-optimal quantum
evolution under the influence of external fields or potentials that cannot be easily eliminated in a laboratory.
Solutions to such problems are indeed relevant to practical implementations of time-optimal controlled
quantumdynamics because in real laboratories external influences (e.g, electromagnetic fields) are typically
present. Problems of this kind can be thought of as representing the quantum counterpart of the classical
Zermelo navigation problemoffinding the time-optimal control that takes a ship fromone location to another,
under the influence of external wind or currents [19, 20].Within the context of quantumZermelo problems,
there are two distinct questions that arise, namely, finding the time-optimalHamiltonian (i) that generates a
required unitary gate; and (ii) that transports a given initial state to a required target state. In the context of
constructing a unitary gate, this problemwas formulated in [21], and solvedmore recently in [22, 23]. The
construction of the time-optimalHamiltonian that transports a given initial state to a target state, on the other
hand, is a priorimore challenging (see also [24]), because (as shown below) this involves a variational problem
with free boundaries. The purpose of the present paper is to derive the full solution to this latter problem for an
arbitrary quantum system.

Oneway of addressing the quantum-state navigation problem is towork in the space of rays through the
origin of the underlyingHilbert space (i.e. the complex projective space, or simply the ‘state space’). Then the
Schrödinger evolution generated by the backgroundfield gives rise to aHamiltonian vector field on the state
space, and the task at hand can be formulated as aHamiltonian control problem, the solution of which is
typically difficult to obtain.We are nevertheless able to go forward by exploiting certain subtle geometric
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structures of the unitary group, which in turn allows us to efficientlymake use of the results obtained in [22, 23].
A remarkable feature of the solution that we obtain is that it is strikingly reminiscent of the analysis of quantum
dynamics in the interaction-picture of Schwinger andTomonaga [25].On account of this observationwe are
able to revisit our analysis by employing a physical symmetry argument, rather than purely variational
reasoning. As a consequence, a considerably simpler derivation of the solution emerges. In fact, it turns out that
by invoking the line of thinking behind the Schwinger–Tomonaga theory, a straightforward solution can be
found of closely-related and apparently difficult problems in geometry [26, 27]. For an illustrationwe conclude
the paper by presenting examples in the case of a two-level system.

Let us begin by statingmore explicitly the Zermelo navigation problem for quantum states: For a given initial
state ψ∣ 〉I and a final target state ψ∣ 〉F , the task of an experimentalist is tofind the controlHamiltonian H tˆ ( )1 such

that the totalHamiltonian = +H t H H tˆ ( ) ˆ ˆ ( )0 1 will generate the transformation ψ ψ∣ 〉 → ∣ 〉I F in the shortest

possible time.Here Ĥ0 represents theHamiltonian of the background field or potential that cannot be
manipulated. Since the objective is to realize a time-optimal transformation (navigation), it is assumed that the
available energy resource, which evidently has to be bounded, will be consumed fully. This translates into the
‘full throttle’ condition that the squaredmagnitude of the evolution speed generated by the controlHamiltonian
Ĥ1, which is given on account of theAnandan–Aharonov relation [28] by four times the variance ΔH4 1

2 of Ĥ1, is
heldfixed at all times at themaximumattainable value.

To illustrate the nature of the task involved, let usfirst consider amore elementary problemof Zermelo
navigation on the plane 2, with constant (in space and in time)wind, represented by the vector w⃗. Suppose
that, departing from the origin o the desired destination is given by the endpoint of a vector ξ ⃗. Towork out the
time it takes to reach the destination, consider a circle whose radius is determined by the distance that can be
reachedwith full speed over one unit of time. In the absence of wind this unit circle is clearly centred at the
origin.However, under the influence of thewind the centre of the circle is shifted by w⃗. For themoment let us
assume that thewind is not dominant, i.e. ∣ ⃗ ∣ <w 1 so that the origin remains inside the shifted circle. This
configuration is schematically illustrated infigure 1.Under the influence of thewind, therefore, to reach the
endpoint ξ of the vector ξ ⃗, it suffices to determine the distance ρ∣ ⎯ →⎯⎯ ∣ξo , where ρξ is the point of intersection of the

vector ξ
⎯→⎯
o with the shifted circle. This follows on account of the fact that since it takes one unit of time to reach

ρξ, it will take ξ ξ ρ= ∣
⎯→⎯

∣ ∣⎯→⎯ ∣ξF o o( ) units of time to reach ξ. Elementary algebra then shows that the required time

ξF ( ) is given by the expression

ξ
ξ ξ ξ

=
⃗ ⃗ + ⃗ − ⃗ − ⃗ ⃗

− ⃗

( )
F

w w w

w
( )

, 1 ,

1
, (1)

2 2 2

2

where ξ ξ〈 ⃗ ⃗〉 = ⃗ ⃗w w, · is the Euclidean inner product, ∣ ⃗ ∣ = 〈 ⃗ ⃗〉w w w,2 , and ξ ξ ξ∣ ⃗ ∣ = 〈 ⃗ 〉⃗,2 .
The foregoing analysis on 2 extends naturally to the general case of navigation on aRiemannianmanifold

of arbitrary dimension, albeit the Euclidean inner product 〈 〉, has to be replaced by theRiemannian one. This is
because the total journey time can be decomposed into a large number of infinitesimal journey times, each on a

Figure 1.Unit circle in thewind. In the absence of thewind, the ‘unit-time’ circle is centred at the origin o. However, with the
prevailingwind, with strength ∣ ⃗ ∣ <w 1, the unit-time circle reachable from the origin is shifted in the direction of thewind. Since it
takes one unit of time to reach ρξ, reaching the target ξwill take ξ ρ∣

⎯→⎯
∣ ∣⎯→⎯ ∣ξo o units of time.
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tangent space of themanifold. In the case of optimal quantumnavigation, we recall that the space of pure states
is equippedwith the unitary-invariant Fubini–Studymetric [29–31]. Thewind w⃗ is then replaced by the

infinitesimalHamiltonian symplectic flow generated by Ĥ0, whereas ξ ⃗ is some vector tangent to quantum state

space. The total journey timeT along a path on state space is given by the integral of ξF ( ), where ξ ⃗ is the velocity
vector. In particular, for the Zermelo problem, ξ ⃗ is generated by = +H t H H tˆ ( ) ˆ ˆ ( )0 1 , and this implies that ξF ( )

in the quantum context is given by a function of the variance ΔH0
2 of Ĥ0, the variance ΔH1

2 of Ĥ1, and the

covariance 〈 〉H Hˆ ˆ
0 1 of the twoHamiltonians. The optimal control is obtained byminimizingT over all H tˆ ( )1 ,

subject to the full throttle constraint Δ =H4 11
2 . The no-dominance condition on thewind is required in the

case of a navigation problemon an openmanifold such as n, since otherwise the targetmay never be reached.
In the quantum context we are able to relax the requirement Δ <H4 10

2 , since themanifold of pure states is
compact, whichmeans that if thewind against the shortest path is too strong, one can always go ‘the other way
around’ to reach the target state (note incidentally that ξF ( ) remainswell defined in the limit ∣ ⃗ ∣ →w 1 since

ξ ξ ξ→ ∣ ⃗ ∣ 〈 ⃗ ⃗〉F w( ) 2 ,2 ).
TheHamiltonian control problem specified above is not straightforward to solve directly, and this leads us to

employ an alternative approach based on the idea of lifting the problem from state space to the unitary group
acting on the states. In fact, from a physical point of view this ismore appealing, since, althoughwe are seeking
the time-optimal path on state space, physical implementations are always carried out by constructing the
Hamiltonian that generates the desired unitary operator.

With this inmind, we proceed by considering afibre space above the state space with the property that for
any state ψ∣ 〉, the fibre above it consists of elements u{ ˆ}of the special unitary group fulfilling the condition that

ψ ψ∣ 〉 = ∣ 〉û I . Although our solution is applicable to bothfinite and infinite dimensionalHilbert spaces, to
simplify the discussion let us assume that theHilbert space is offinite dimension +n 1. The totality of such
fibres, when bundled together, then forms the group SU +n( 1), which acts on the state space (the complex
projective space n). This configuration is illustrated infigure 2. Let ûF be an element of the fibre above the
target state ψ∣ 〉F , i.e. ψ ψ∣ 〉 = ∣ 〉ûF I F . Then the problemoffinding the time-optimal transformation ψ ψ∣ 〉 → ∣ 〉I F

translates into the problemof constructing the unitary gate ûF from the identity element ∈ +e nˆ SU( 1) in the
shortest possible time, under the influence of an external field. This translation of the problemhelps us because
the optimal Zermelo navigation for a specified unitary gate has beenworked out recently [22, 23], andwe can
make use of the result in deducing the optimal controlHamiltonian for the state transfer; however, we encounter
two difficulties: (a) the ‘target’unitary gate ûF is not unique since a priori it can be any element of the fibre above
ψ∣ 〉F . In other words, if v̂F is any unitary operator that leaves the state ψ∣ 〉F invariant, then the unitary gate v uˆ ˆF F

also satisfies the required condition ψ ψ∣ 〉 = ∣ 〉v uˆ ˆF F I F sowe have to deal with a freefinal boundary; (b) the ‘full

throttle’ condition Δ =H4 11
2 on state space is concernedwith the evolution speed, whereas the condition used

in [21–23] for unitary gates appears to be distinct since it concerns theHilbert–Schmidt norm =H2tr( ˆ ) 11
2

. In

Figure 2. Lifting of the navigation problem.We construct a fibre space of unitary group elements above the state spacewith the
property that any element û in thefibre above the state ψ∣ 〉 is projected down according to ψ ψ∣ 〉 = ∣ 〉û I . Starting from the identity
element ∈ +e nˆ SU( 1) in thefibre above ψ∣ 〉I , the unitary group elements that can be reached in one unit of time under the influence

of the ‘wind’ Ĥ0 form a shifted unit sphere. The projection of the sphere onto the state space n then determines the set of states
reachable in that time. The furthest that one can transport the state is bymoving away from ê in the horizontal direction. There remain
many horizontal directions, one ofwhich is singled out by the boundary condition ψ ψ∣ 〉 = ∣ 〉ûF I F .
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what followswe shall show that these two apparent issues evaporate once the relevant ‘horizontality condition’ is
imposed on the controlHamiltonian.

To see this we begin by noting that since ψ ψ∣ 〉 = ∣ 〉ê I I , the identity element ê belongs to thefibre above the
initial state ψ∣ 〉I . In fact, the fibre above ψ∣ 〉I coincides with the totality of unitary group elements v{ ˆ }I that leave
the initial state ψ∣ 〉I invariant. Intuitively, to reach from ê a target gate ûF above ψ∣ 〉F in a timelymanner we
would like tomove away from ê as quickly as possible, and this is achieved bymanoeuvring horizontally, i.e.
towards a direction that is orthogonal to thefibre. That is to say, the choice of the initial controlHamiltonian
Ĥ (0)1 has to be such that =H Htr( ˆ (0) ˆ ) 0I1 for all Hamiltonians ĤI that leave the initial state invariant (i.e.

Ĥ (0)1 has to be orthogonal to all generators of v̂I). This suggests that the horizontality condition

=H Htr( ˆ (0) ˆ ) 0I1 gives rise to themaximum evolution speed. To show thismore explicitly we shall derive a kind
of universal quantum speed limit. The statement of the result we shall establish is as follows: The squared speed
of the evolution of a quantum state generated by aHamiltonian Ĥ , as defined byAnandan andAharonov [28], is

bounded above by twice theHilbert–Schmidt norm Htr( ˆ )
2
of theHamiltonian, and the bound is attained if Ĥ is

horizontal. The implication of this result is that under the horizontality requirement the norm condition and the
maximum speed condition are equivalent, and this resolves the issue (b) raised above. As a consequence, we are
able to borrow the results of [22, 23] to deduce that the time-optimal controlHamiltonian H tˆ ( )1 is necessarily of
the form

= −H t Hˆ ( ) e ˆ (0)e . (2)H t H t
1

i ˆ
1

i ˆ
0 0

Notice that the horizontality condition is preserved under the adjoint action (2), which is indeed required since
the full throttle condition has to bemaintained throughout the operation.

The horizontality condition alone, of course, does notfix Ĥ (0)1 uniquely, since the constraint

=H Htr( ˆ (0) ˆ ) 0I1 on Ĥ (0)1 leaves n2 degrees of freedom.However, by demanding that the required gate should
generate the target state ψ∣ 〉F , which imposes n2 conditions, we are able to select a unique initial control

Hamiltonian Ĥ (0)1 . In otherwords, the freedom in the boundary is eliminated by the horizontality condition

=H Htr( ˆ (0) ˆ ) 0I1 alongwith the boundary condition ψ ψ∣ 〉 = ∣ 〉ûF I F , and this resolves the issue (a) raised above.

Beforewe turn to determining the initial controlHamiltonian Ĥ (0)1 , and the amount of timeT that is
needed to reach the target state under the optimal control, let us discuss the claim above on the universal speed
limit (see also [32]). From a physical point of view the claim is plausible if wemake note of the following
observation. Suppose that theHamiltonian contains a vertical component tangent to the fibre that leaves the
state below invariant. In this case, although energy is scarce, the experimentalist will be consuming energy that
produces nowork (except for shifting the overall phase). This is clearly not energy efficient. It follows that the
optimal performance is ensured by eliminating vertical components altogether. Amore precise derivation,
which essentially follows from a standard result on complex projective spaces outlined, e.g., in Kobayashi and
Nomizu [33] (see section 11.10), is given in the appendix.

Having established the ‘geodesic’ curve (2) thatminimizes the action ∫=T Fds we are now in the position

to identify the initial control Ĥ (0)1 so that the target state is reached. To this endwe observe that the form (2) of

the solution is indicative of the analysis in the interaction picture of quantummechanics, if we view Ĥ0 as the

‘free’ and Ĥ (0)1 as the ‘interaction’Hamiltonian. Alternatively stated, if we change from the ‘rest frame’ to the

‘moving frame’ on the state space according to thewind Ĥ0, thenwithout the controlHamiltonian the initial

state remainsfixed, while the target statemoves against thewind according to ψ ψ∣ 〉 = ∣ 〉t( ) eF
H t

F
i ˆ

0 . Evidently,
the state ψ∣ 〉t( )F thus defined is the solution to the (nonrelativistic version of) the Tomonaga–Schwinger
equation. In particular, standard results in the interaction-picture analysis [25] show that the time-ordered

product of the unitary group generated by theHamiltonian = + −H t H Hˆ ( ) ˆ e ˆ (0)eH t H t
0

i ˆ
1

i ˆ
0 0 gives rise to the

evolution equation of the form

ψ ψ= − −t( ) e e . (3)H t H t
I

i ˆ i ˆ (0)0 1

This result can also be verified directly (see also [22]) by differentiation: writing = − −u tˆ ( ) e eH t H ti ˆ i ˆ (0)0 1 , wefind
∂ = −u t H uˆ ( ) i ˆ (t) ˆ (t)t . As indicated above, tofix the initial condition Ĥ (0)1 weneed tomake use of the boundary
condition, which implies that

ψ ψ=− −e e (4)H T H T
I F

i ˆ i ˆ (0)0 1

must hold for someT that is to be determined. Observe that there are n2 unknowns in Ĥ (0)1 , andwe have an
additional unknown parameterT. The boundary condition (4) gives rise to n2 constraints. Togetherwith the

norm condition =H2tr( ˆ ) 11
2

we are thus able tofix all the unknowns, and this in turn solves the quantum-state
Zermelo navigation problem.

4
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Toproceedwith this let us rewrite (4) in the form

ψ ψ=−e e . (5)H T
I

H T
F

i ˆ (0) i ˆ
1 0

Although the transformation from(4) to (5) is in itself trivial, it sheds a different light on the problemat hand.As
indicated above, if we transform to themoving framegenerated by thewind such that the initial state remains

stationary, then theobjective becomes ‘hitting’ amoving target ψ∣ 〉e H t
F

i ˆ
0 as quickly as possible. Exactly how long it

will take to achieve this task depends onhow fast themotion towards the target canbe, but for afixed speed the

shortest timeT achievable is attainedby following the geodesic path on the state space joining ψ∣ 〉I and ψ∣ 〉e H T
F

i ˆ
0 .

On the other hand, the curve ψ ψ∣ 〉 = ∣ 〉−t( ) e H t
I

i ˆ (0)1 joining ψ∣ 〉I and ψ∣ 〉−e H T
F

i ˆ
0 is a geodesic on theFubini–Study

manifold if andonly if Ĥ (0)1 is horizontal, and this is indeed the situationwehave in (5). Todetermine Ĥ (0)1

explicitly, let θ θ= T( )be the angular distance between ψ∣ 〉I and ψ∣ 〉e H T
F

i ˆ
0 defined by the relation:

ψ ψ θ=e cos
1

2
. (6)I

H T
F

i ˆ
0

Evidently, the angular distance θ ω=T T( ) is given by the speedω of the evolution generated by Ĥ (0)1

multiplied by the durationT of the journey, but the evolution speed isfixed on account of the condition

=H2tr( ˆ ) 11
2

to ω = 1, sowe deduce that

ψ ψ = T2 arccos e . (7)I
H T

F
i ˆ

0

Since Ĥ0, ψ∣ 〉I , and ψ∣ 〉F are given, we see therefore that the smallest positive root of (7) uniquely determinesT.
OnceT isfixed, the optimal controlHamiltonian at time zero can be obtained explicitly bymaking use of the
result in [10]:

ψ ψ ψ ψ
=

−−

( )
H

T
ˆ (0)

i e e

2 sin
. (8)

I F
H T H T

F I

1

i ˆ
i ˆ

1

2

0 0
⎛
⎝⎜

⎞
⎠⎟

Note that without loss of generality we can adjust the overall phase such that ψ ψ〈 ∣ ∣ 〉eI
H T

F
i ˆ

0 is real.With this
convention, which is assumed in (8), one can easily verify that thisHamiltonian is indeed horizontal.

This completes the derivation of the solution to the quantum-state Zermelo navigation problem: the optimal
controlHamiltonian is given by (2), where Ĥ (0)1 is given by (8) andwhere the parameterT is determined by (7).
To gain further intuition on the behaviour of the solution, infigure 3we plot the trajectories of the quantum
state generated by theHamiltonian = +H t H H tˆ ( ) ˆ ˆ ( )0 1 in the case of a two-level system. In particular, we show
the time-optimal paths for a range of wind strengths, indicating for instance that if the headwind is too strong,
then the optimal strategy is to switch the direction of themanoeuvre to turn the headwind into a tailwind. To
investigate theminimum journey times associatedwith different wind strengthswe have also considered a one-

Figure 3.QuantumZermelo navigation. The ‘wind’ Ĥ0 corresponds to an externalfield in the direction indicated by the red arrow;
the associatedflow lines are indicated by latitudinal circles. In this example, thewind is in the direction almost directly against the
shortest path from ψ∣ 〉I to ψ∣ 〉F .When the strength of thewind is close to zero, the path generated by the optimalHamiltonian closely
follows the geodesic curve.However, as the strength of thewind is increased, the optimal path is drifted away from the geodesic curve.
Once thewind is sufficiently strong, it is optimal to go the otherway around; the loss generated by the additional journey length is
compensated by the fact that the headwind has turned into a tailwind.

5
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parameter family of winds ϵĤ0, corresponding to the setup shown infigure 3, and determined the optimal time

ϵT ( ) for a range of ϵ; the result is shown infigure 4.
In summary, we have been able to deduce in closed form the solution to the quantumZermelo problem in

complete generality. Since the result obtained takes a rather simple form,we expect that a practical
implementation is feasible in a number of realistic situations. Of course, for some applications the controllable
degrees of freedom in theHamiltonian can be limited, in which case additional constraints will have to be
imposed infinding the optimal control—some steps towards this direction in the context of unitary gates have
been initiated in [22]. In fact, further progress can again bemade by switching to the interaction picture: If we

write = = …f H{ ( ˆ ) 0}k k N1 1, , for theN constraints on the controlHamiltonian, then in themoving frame the

constraints will take for each k the form =−f h(e ˆe ) 0k
H t H ti ˆ i ˆ

0 0 , where = −h Hˆ e ˆ eH t H ti ˆ
1

i ˆ
0 0 is the generator of the

dynamics ψ ψ∂ ∣ 〉 = ∣ 〉hi ˆ
t . The analysis of [8], for instance, can then be appliedwith essentially just one

modification, namely, that the target state ismoving. The initial controlHamiltonian can then be identified by
adapting the strategy proposed in [18].

It is worth noting that the use of the interaction picture, or equivalently the switch to themoving frame,
which allowed us to simplify the problem considerably, has implications beyond the quantumnavigation
problem considered here. In this connectionwe remark that if we endow the quantum state spacewith the
metric of the form (1), then the resulting space is known as a Randers space (see [34]), which is an example of a
Finsler space (for ∣ ∣ →w 1 the space reduces to aKropina space). In the literature of Finsler geometry it is known
that every Zermelo navigation problemon aRiemannianmanifold can be solved by finding geodesics of the
corresponding Randers space [26]. The classification of spaces in terms of their curvatures is of particular
importance in geometry, and in the case of Randers spaces the identification of constant curvaturemetrics has
been obtained by solving the associated navigation problemwhen thewind is a conformal vector fieldwith
constant scale factor [27] (thefield generated by a unitarymotion belongs to this class, with vanishing scale
factor).However, andwith hindsight, themain theoremof [27] can be proven in essentially two lines by
adopting the interaction picture, and this shows that in the present context a physical intuition can offer insights
into a purelymathematical question.We conclude by remarking that an interesting generalization of the present
problem is to consider the case under which the external influences contain noise. In such a situation, the idea of
reaching a target pure state is no longer tenable, whereas reaching a particularmixed statemight be feasible.
Although there appears to be a surprisingly limited amount of work in the stochastic extensions of the classical
Zermelo navigation problem (see [35] for an exception), extensions into themixed-state domain are desirable
for the designing and understanding ofmore robust controlled quantumdynamics.

Acknowledgments
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Meier for support in producing figure 2.

Figure 4. Journey time on the Bloch sphere. The trajectories ψ∣ 〉t( ) sketched infigure 3 correspond to thewindHamiltonian ϵĤ0 for
ϵ = …0, 0.1, 0.2, , 1.0, for the choice of Ĥ0 sketched therein. Here, journey time ϵT ( ) is plotted for a continuous range of ϵ,
showing that once thewind is sufficiently strong, by going the otherway around,T can be reduced by turning headwind into a
tailwind.
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Appendix. Derivation of the universal quantum speed limit

The purpose of this appendix is to offer a proof of the following claim in the paper:The squared speed of the
evolution of a quantum state generated by aHamiltonian Ĥ is bounded above by twice theHilbert–Schmidt norm

Htr( ˆ )
2
of theHamiltonian, and the bound is attained if and only if Ĥ is horizontal.

Webegin by establishing some properties of the space of horizontalHamiltonians. Recall that aHamiltonian
Ĥ is horizontal with respect to some state ψ∣ 〉 if and only if =ψ∣ 〉HHtr( ˆ ˆ ) 0 for all Hamiltonians ψ∣ 〉Ĥ that leave
ψ∣ 〉 invariant. For simplicity, we fix the state ψ∣ 〉 to be the onewhose homogeneous coordinates are given by

… ∈ +(1, 0, , 0)T n 1. It should be stressed, however, that the conclusions of the discussion below remain valid
for any choice of ψ∣ 〉, owing to the homogeneous nature of the state space n. Let us write ψ∣ 〉V for the subgroup
of SU +n( 1) that leaves ψ∣ 〉 invariant and v ψ∣ 〉 for the set of the corresponding generators (i.e. its Lie algebra).
Then ψ∣ 〉V consists of all unit determinantmatrices of the form

∈ = …
θ

U
U U n

0

0
0

e
ˆ

, ˆ ( ), (0, 0, , 0),
T

n
n

T
i⎛

⎝⎜
⎞
⎠⎟

and v ψ∣ 〉 consists of all trace-freematrices of the form

uλ λ ∈
B

B n0

0 ˆ
, imaginary and ˆ ( ).

T⎛
⎝⎜

⎞
⎠⎟

The orthogonal complement v ψ
⊥ of this spacewith respect to theHilbert–Schmidt norm coincides, up to a

factor of i, with the space of horizontalHamiltonians. Specifically, the set v ψ
⊥ can be found by requiring that

λ μ λμ− = + =( )z

zB C
BC0

0
tr

ˆ
¯
ˆ

tr ˆ ˆ 0 (9)
T T⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

for all choices of λ and B̂ with λ + =Btr( ˆ) 0. Herewe have parameterized the full Lie algebra su +n( 1)using
an imaginary μ, a vector ∈ z n and u∈C nˆ ( )with μ + =Ctr( ˆ) 0. It follows that v ψ

⊥ consists of allmatrices of
the form

−

z

z
0 ¯ ,

T⎛
⎝⎜

⎞
⎠⎟

where ∈ z n and  is a nullmatrix. As a consistency check, we note that this space has n2 real dimensions,
which of course is the same as the dimensionality of the state space n. It follows that if Ĥ is a horizontal
Hamiltonian, then

= − − =
( ) z

z
zH2tr ˆ 2 tr 0 ¯ 4 . (10)

T2
2

2
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

On the other hand, if ψ∣ 〉 evolves according to the Schrödinger equation, then the squared speed (in the Fubini–
Studymetric) of its evolution is given, on account of the Anandan–Aharonov relation, by four times the variance
of Ĥ :

Δ ψ ψ ψ ψ= − =( ) zH H H4 4 ˆ ˆ 4 . (11)2 2 2 2

This establishes part of our claim:Namely, by comparing (10) and (11)we see that the square of the evolution

speed equals twice theHilbert–Schmidt norm Htr( ˆ )
2
if Ĥ is horizontal. To complete the proof, note that any

Hamiltonian Ĥ can be decomposed into vertical and horizontal parts, i.e. it can bewritten in the form

λ= + −

z

z
H

B

0

0
ˆ i

ˆ
i 0 ¯ . (12)

T T⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Then

λ= −( ) zH
B

0

0
2 tr ˆ 4 2 tr

ˆ
, (13)

T2 2
2⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

but the trace on the right hand side is strictly negative if the vertical part of Ĥ is nonzero. Therefore, the squared

speed of evolution on state space, given by ∣ ∣z4 2, is strictly smaller than H2 tr( ˆ )
2
if theHamiltonian contains a

vertical component. This completes the proof of the claim.
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