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ABSTRACT 

Holoscopic 3D imaging also known as “Integral imaging” was first proposed by 

Lippmann in 1908. It facilitates a promising technique for creating full colour spatial 

image that exists in space.  It promotes a single lens aperture for recording spatial 

images of a real scene, thus it offers omnidirectional motion parallax and true 3D 

depth, which is the fundamental feature for digital refocusing. 

While stereoscopic and multiview 3D imaging systems simulate human eye 

technique, holoscopic 3D imaging system mimics fly’s eye technique, in which 

viewpoints are orthographic projection. This system enables true 3D representation 

of a real scene in space, thus it offers richer spatial cues compared to stereoscopic 

3D and multiview 3D systems.   

Focus has been the greatest challenge since the beginning of photography. It is 

becoming even more critical in film production where focus pullers are finding it 

difficult to get the right focus with camera resolution becoming increasingly higher. 

Holoscopic 3D imaging enables the user to carry out re/focusing in post-production. 

There have been three main types of digital refocusing methods namely Shift and 

Integration, full resolution, and full resolution with blind. However, these methods 

suffer from artifacts and unsatisfactory resolution in the final resulting image. For 

instance the artifacts are in the form of blocky and blurry pictures, due to 

unmatched boundaries.  An upsampling method is proposed that improves the 

resolution of the resulting image of shift and integration approach.  Sub-pixel 

adjustment of elemental images including “upsampling technique” with smart 

filters are proposed to reduce the artifacts, introduced by full resolution with blind 

method as well as to improve both image quality and resolution of the final 

rendered image. 

A novel 3D object extraction method is proposed that takes advantage of disparity, 

which is also applied to generate stereoscopic 3D images from holoscopic 3D 

image. Cross correlation matching algorithm is used to obtain the disparity map 

from the disparity information and the desirable object is then extracted. In 
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addition, 3D image conversion algorithm is proposed for the generation of 

stereoscopic and multiview 3D images from both unidirectional and 

omnidirectional holoscopic 3D images, which facilitates 3D content reformation. 
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1 Chapter One 

Introduction 

This chapter presents the PhD research aim and objectives, including a brief 

background of the research.  In addition, it discusses the original contributions 

of the research and the outline of the thesis.   
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1.1 The Research Area 

Content creators are constantly pursuing and searching for enterprise based 

and more innovative methods of improving and delivering more sensational 

ways of enhanced media content, one of which has been High Definition 

Television (HDTV). The greatest innovation in film-making is 3D production 

that enhances the viewing sensation to realise the perception of depth. Since 

then, 3D imaging systems have been on a constant pursuit both in scientific 

community and entertainment industry [1]. One of the significant focuses in the 

area of image processing is 3D imaging in the present day. Based on the current 

trend, 3D technology has the potential to establish the future mass-market in 

the area of entertainment, medical, military and design.[2] 

In the past, researchers have attempted different approaches to achieve the 

perception of depth.  One of earlier 3D methods is stereoscopic 3D that is still 

widely used in today’s 3D systems. It works on the principle of projecting both 

right and left images down to viewer’s left and right eye respectively to realize 

the 3D effect. This technique requires special glasses to correctly channel the 

left and right images to the corresponding eye of the viewer. This makes the 

brain to fuse two different perceptive images to create a 3D sensation. However, 

this strains the viewer’s eyes, which results in headaches after long periods of 

exposure [5]. Also, stereoscopic 3D productions with dual cameras are a 

ponderous and expensive method due to huge amount of work to be done in the 

post-production and this makes the technology unsuitable for mass-market. 

Many different companies in the past have attempted to address the complexity 

of 3D production without modifying the basic notion of dual capturing device 

[6].  

The growth in 3D TV has not been as momentous as HDTV. This being partly 

due to the fact that physical 3D glasses are still needed to perceive 3D cues, 

which is not comfortable for home users in particular. Recently, Liquid crystal 

display manufactures are searching for new ways of displaying 3D without the 

need of wearing 3D glasses where technologies like multiview, holographic and 

holoscopic (Integral image) displays have emerged and that is considered as a 

major tipping point as it makes the 3D technology suitable to domestic arenas. 
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Multiview 3D technology utilizes stereoscopic 3D technique that projects more 

than two perspective views using parallax barrier or lenticular technology.  

However viewers still suffer from motion sickness, eye fatigue and unnatural 

image quality [5]. Holographic and holoscopic 3D, on the other hand, offers true 

3D imaging systems [2]. 

Holographic imaging offers full colour high-resolution images with an ultimate 

3D viewing sensation that overcomes the limitation of stereoscopic 3D imaging. 

Now the question is “why the implementation of holographic 3D TV remains of 

great interest to the research community?”. Unfortunately, holographic images 

require a coherent light source and a confined dark room whilst recording, 

which makes it impractical for live capturing whereas Holoscopic 3D imaging is 

capable of recording true 3D information by its unique optical component. In 

addition, holoscopic 3D imaging does not require a coherent light source, thus 

making it more practical for live capturing and displaying. Furthermore it offers 

a free viewing sensation to more than one person simultaneously independent 

of viewers’ position without causing eye fatigue.  Recent developments in the 

field of holoscopic 3D imaging have gained huge interest and acquired good 

candidacy for being the future generation 3D imaging technique [2]. 

1.2 Aim and Objectives 

The aim of this research is to enhance post-production techniques of holoscopic 

3D imaging systems, which delivers a richer representation of the scene 

compared to stereoscopic 3D and 2D production.  Post-production techniques 

are highly beneficial for various applications in 2D and 3D video production. 

Today, inventive decisions are taken partly during shooting and partly in post-

production. In many cases, problems that may arise during the shooting could 

be fixed in post-production.  However, content captured with a holoscopic 3D 

camera provides a new possibility to re-assign many critical decisions during 

the production stage to the post-production stage. 

Focus is a prominent example, since this has been the greatest challenge from 

the birth of photography. It is becoming even more critical in film production 

where focus pullers are finding it difficult to get the right focus, with camera 
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resolution becoming increasingly higher. An exacerbating factor is that mis-

focusing is generally hard to correct in the post-production stage and 

expensively time consuming. Content with mis-focus is generally useless and 

requires to be recaptured again with the correct focus for it to be of any use. 

This is a quite time consuming and expensive process. However, content 

captured with holoscopic 3D camera that contains a richer representation of the 

scene allows the focus to change after image was captured. 

The other challenge in stereoscopic 3D production is the cameras interocular 

distance as the interocular distance defines the 3D depth in the production. 

Smaller interocular distance leads to less roundness of the scene, whereas 

larger interocular distance leads to more roundness. The filmmaking director 

might want to make decision not on the set but at a later stage in the production 

process. The reason might be to maintain consistency from shot to shot, which 

in many cases is not being captured in the same order as they appear in final 

movie. Setting the interocular distance on a set requires extra personnel and 

time.  

This research finds ways of resolving longstanding problems of mis-focusing 

and also the interocular distance in today’s film production. Holoscopic 3D 

imaging can compensate for the mis-focusing problem with one of its refocusing 

applications. This gives the opportunity to change the focus plane within a 

desirable range at the post-production stage and therefore this offers the ability 

to change or make creative decisions after capturing, which is a key benefit for 

such setups. In addition, holoscopic 3D imaging offers the interocular distances 

adjustment in the post-production. The interocular distance obtained from 

holoscopic 3D images resolves the problems with the near objects; whereas a 

different approach such as the wider view angle microlens with different 

camera calibration approach might be needed to deal with the far objects. 
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1.3 The Original Contributions 

This PhD research incorporates the following contributions.  

1.3.1 Digital Refocusing in Holoscopic 3D images 

A sub-pixel adjustment algorithm with a smart filter is proposed to reduce 

blocky artifacts and to improve the image resolution.  

Recently, researchers have addressed various ways of performing digital 

refocusing after capturing photography with holoscopic 3D imaging system. But 

still the resulting image suffers from blocky artifacts and resolution. Two novel 

methods were proposed to address the issue.  The first approach is based on 

upsampling of orthographic viewpoint images with shift and integrating 

method. The upsampling defines the resolution of the output 2D image. On the 

other hand, the level of the shifts defines the focus plane on the final image.  

The second approach is based on extracting sub-images under element images 

to create a higher resolution of viewpoint images and refocusing is achieved 

through the choice of sub-images size under the each microlens, as addressed in 

[4]. However, this approach suffers from various artifacts for which, a new 

algorithm is proposed to reduce the artifact “blocky noise”. The proposed 

approach is based on a sub-pixel adjustment and smart filtering technique to 

blur out the out of focus regions in the output image that contains artifacts and 

also to decrease blur on the focus regions. 

1.3.2 3D Image Generation from Holoscopic 3D Image 

This section presents a 3D image conversion algorithm, which generates a 

stereoscopic 3D image pairs as well as multiview 3D images from a single 

holoscopic 3D image. 

In the past, researchers have proposed stereoscopic 3D capturing with a single 

aperture holoscopic 3D lens. However, the results are observed with poor 

resolution as well as aliasing effect. The proposed method compensates both 

the above issues through using a sub-pixel adjustment algorithm with a smart 

filter. Moreover, the problem of ocular distance has been addressed and an 
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alternative method have been proposed to improve the results with improved 

optical parameters and better pixel resolution on motion picture camera.  

Furthermore, Multiview 3D creation is rather a complex process and is 

becoming gradually more expensive as it requires multiple camera 

configurations and synchronisation [3]. However, holoscopic 3D imaging 

system is used to capture 3D content, which can be parsed to multiview 3D 

format and this simplifies the whole multiview 3D creation. A number of views 

are extracted based on the multiview 3D display requirements.  The views are 

rendered using the sub-pixel adjustment algorithm with a smart filter, which is 

proposed in this thesis.  

Recently researchers successfully demonstrated the process of 3D capturing for 

holoscopic 3D display with the help of image processing, though it has so far 

been attempted on still images. This was the first attempt to shoot moving 

images to exhibit the whole holoscopic 3D capturing process as well as parsing 

the content to various visualization systems such as HD 2D, S3D and multiview 

3D. This illustrates that holoscopic 3D camera could be the ideal solution to the 

existing 3D content creation limitation as its content can be parsed 

computationally to different visualization systems. This approach provides a 

simple and efficient way of capturing real 3D content [1]. 

1.3.3 Object extraction based on Depth map 

An object extraction algorithm is proposed that segments tangible objects based 

on disparity map, which is created from the holoscopic 3D image. 

Image segmentation and object extraction has been a challenging topic for 

many years and researchers proposed numerous ways of performing image 

segmentation and object extraction. A very simple way of object extraction is 

proposed that is based on disparity map. This method works by extracting 

stereo images from holoscopic 3D image, where cross correlation matching is 

used to obtain the disparity map from those stereo images. Finally, this 

disparity map is used to extract a desirable object from the image.  

Experimental results are shown on the final extracted object with minor errors. 
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1.5 The Thesis Outline  

Chapter 1: Introduces the research subject and provides an overview of 

holoscopic 3D imaging.   It also presents the research contributions. 

Chapter 2: Presents exploitations of 3D imaging and display technologies, 

which also include digital refocusing. 

Chapter 3: Presents an improved method of refocusing and all-in-focused 

based on viewpoint orthographic images. 

Chapter 4: Presents a high resolution refocusing based on sub-images with 

sub-pixel adjustment using upsampling with shifting and integration technique. 

Chapter 5: Presents a smart filter, which reduces noises and artifacts in the 

resulting final refocused image without affecting the image details. 

Chapter 6: Presents the integration of different 3D display technologies with 

holoscopic 3D contents.  In addition, object extraction based on disparity map 

generated from holoscopic 3D image data is presented. 

Chapter 7:  Concludes the research undertaken and the accomplishments made 

within this thesis. Further potential development of the research is also 

discussed.   
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2. Chapter Two 

Exploitation of 3D Imaging Technology 

This chapter presents an in-depth literature review of 3D imaging systems for 

the past decade. State-of-the-art 3D imaging systems are discussed with 3D 

image processing techniques which have been proposed in this research to deal 

with the simplest form of presenting the true 3D including their major 

drawbacks. 

2.1 3D Imaging Technologies 

The concept of 3D has been around since early 11th century by Arabian 

mathematician and philosopher Al-hazen, who reported in his published optic 

book [1][2].  However, at that time the use was not appropriate to the world of 

arts until 400 years later, when the Italian architect Fillippo Brunelleschi 
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discovered and formulated a set of drawings to prove the principle of 

perspective.  In 1692 the French painter Bois-Clair noticed in real life, where 

each eye view the scene from slightly different perspective due to the distance 

between the eye pupils [3][4]. Therefore, he carefully combined two different 

perspective paintings, interlaced in thin vertical stripes. This is to allow left and 

right eye perceive with two different perspectives of the scene simultaneously 

by carefully positioning of the vertical stripes.  Later, Sir Charles Wheatstone was 

the first to formulate the binocular vision and demonstrate the stereoscope 

technology to the Royal Society in 1838 [5]. Since then, more advanced methods 

of 3D imaging have manifested themselves such as integral imaging (holoscopic 

3D imaging) and holography.  Recently, the two have gained greater attention 

from the scientific communities and industries.  Despite many efforts made, 

work still remains in perfecting the technology as a package to fully launch it on 

to home users.  The need for 3D technology has made significant benefits to the 

numerous application areas, such as scientific visualization, 3D analysis, 

medical imaging, telepresence, gaming as well as photography, movies and 

television. The purpose of all these applications is to offer rich and immersive 

user experience. As there are several types of 3D imaging systems i.e. capturing, 

processing and displaying it will be discussed in more depth in section 2.2. 

2.2 3D Imaging Technologies 

Over the past years up until now, successful 3D imaging technologies have been 

adopted to bring new sensation to the viewers by fulfilling real-world depth 

cues as possible. This is still an ongoing research that gains greater interest in 

opening other application possibilities to bring 3DTV, e.g. computer games, 

virtual reality, immersive environment and depth measurement [6]. They are 

mainly categorised as stereoscopic and autostereoscopic which are described in 

more detail in section 2.3. Stereoscopic 3D technology has been used in many 

entertainments and commercial industries and it has offered the simplest 

method for representing the 3D depths with 2D display system for many years, 

where different means exist in demonstrating the stereoscopic technology [15].  
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2.3 Stereoscopic 3D 

Most researchers had concentrated on stereoscopic method for years; but up 

until now it has had limited acceptance as it required the viewer to wear the 

special headgear equipment or stereoscopic glasses for the perception of depth. 

The stereoscopic glasses are used to channel a different perceptive image from 

each eye.  There are different methods in separating the two perceptive images 

to each eye [7][8][9][10]. 

• Anaglyph 

• Polarisation 

• Time division. 

2.3.1 Anaglyph 

Anaglyph method uses colour coded image projection to separate the views 

with colour glasses from left eye and right eye.  The viewer only observes the 

opposite colour of the images projected to the viewer glasses on its left and 

right eye simultaneously as shown in Fig 2.1. That means blue filter views only 

red and red filter views only blue. The anaglyph glasses separate the left and 

right views to give the perception of depth to the viewer [11]. This system is the 

earliest and most recognized, while it is cheap and easy to produce. 

Nevertheless, this system lacks in preserving the natural colour of the image 

and various degrees of cross-talk or ghosting effect. That is when part of the left 

view leaks over into the right in the process, which leads to producing 

eyestrain. Another drawback of the system is retinal rivalry, which is when the 

brightness of left and right views is not the same, making the 3D unpleasant to 

watch [70].  

Some alternative methods have been proposed to solve the anaglyph’s 

challenges, one of which was the polarisation 3D that find its way to commercial 

success. This method overcomes the colour problems that anaglyph faced [16]. 
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Fig 2.1 : Anaglyph [65]. 

2.3.2 Polarisation 

The most modern version of stereoscopic 3D imaging system in the 

entertainment industry is the perpendicular polarisation technique, where it 

projects the two separate views simultaneously and then polarised glasses are 

used to filter out the views to perceive the correct views [12]. Both linear and 

circular polarisation work in the same principle, however the only benefit of 

circular polarisation over linear is to allow the viewer to tilt their head without 

disturbing the effect of 3D perception [13]. One of the advantages of polarised 

stereoscopic 3D systems over anaglyph [13] is that it offers full-colour image, 

which is more comfortable to watch. But its disadvantage is that it 

simultaneously displays both left and right views at the same time, avoiding 

content delivery at its full resolution. This is due to confusing both left and right 

views along horizontal direction, which reduces the resolution by half [70]. An 

alternative method such as Active Shutter was introduced to address the 

resolution problem in 3D polarisation. 
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Fig 2. 2 : Polarisation [66]. 

 

2.3.3 Time division 

Time division technique, also known as ‘active shutter’ in commercial industry, 

works in such a way that left and right views are displayed in sequence one 

after the other in a very high frame rate [14]. The active shutter glasses are 

required to synchronise with the display, in such a way that one of the eyes sees 

nothing while the other eye sees the correct image and few microseconds later 

the situation is reversed as shown in Fig 2. 3. 

It is important to note that each method possesses its drawbacks. For example 

anaglyph system lacks in preserving the natural colour of the image and various 

degrees of cross-talk. That is when part of the left view leaks over into the right 

in the process, which leads to producing eyestrain. Polarisation and time 

division methods suffer from similar cross-talk that results in visual eye strain. 
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In addition, all stereoscopic systems fail to provide motion parallax, as only two 

perceptive views of the scene are captured [70]. The glasses are also required in 

perceiving the 3D depth, which makes them uncomfortable to wear for 

prolonged period of time [16]. 

 

Fig 2. 3 : Time Division [67]. 

 

2.4 Autostereoscopic 3D 

Autostereoscopic 3D display systems pursue natural viewing as they do not 

require any special headgear to observe the 3D depth, making this approach 

more comfortable and practical from viewers’ point of view [17]. There are 

various autostereoscopic 3D imaging principles, namely Holography [18][6], 

Volumetric display [19], multiview [20] and integral imaging, also known as 

holoscopic 3D imaging [21]. 

2.4.1 Holography 

Holography is the most well-known technique for creating complete 3D 

parallax in all directions using light wave interference pattern recorded on 

photographic film, which later can replay in 3D image with the correct light. The 

first holography principle was recognised in 1948 and 1949 by Denis Gabor 

[22].  Fig 2.4 shows the simplest form of creating holographic images using the 

original 3D model.  One way of recording hologram image is to split the laser 

beam into two. One beam aims directly to the film while passing through the 
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lens and spreading the beam on the film plate and the other reflects off the 

object onto a film, causing a beam to reflect light off the object with slight delay 

on the film. The two beams interference pattern recorded on the film creates 

holographic image when it is replayed. A model appears on its original position 

during recording in playback and virtually identical to the real model.  The 

viewer can move around the foreground of the model and see its behind. 

 

Fig 2.4 : Holography [71]. 

Holography has a unique characteristic in identifying both the phase and the 

amplitude of the light waves from a 3D object during recording. It does this by 

recording the reflected beam. The reflected beam provides the amplitude and 

the time delay while the reference beam provides the phase. Many variations of 

holography have been proposed and demonstrated to show the limitation and 

capability of the technology [8][23][24][25]. One of the best known 

developments of holography can be found on credit cards and merchandise, 

where they are used as a security feature [26].  However, the practicality of this 

technology reduces due to its requirement in making the hologram, as it 
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requires a coherent light source, dark room conditions and high mechanical 

stability. Considering the requirement in producing 3D motion picture, the use 

of Holography is impractical at this stage.    

Nevertheless, with recent development on the area of holographic display, a 

company called “Holografika” launched the HoloVizio display not purely relying 

on the holographic system itself, but rather based on the holographic 

geometrical principles with special focus on reconstructing the key elements of 

spatial vision [36]. This Display is driven with 12 PCs whereas the newer 

version only requires 4 highly modified PCs. However, the quality of the real 

image being displayed is poor due to the display rendering process that causes 

colour deformation of the final image. Also this display is mainly used in 

scientific lab at this stage for research purposes.   

2.4.2 Volumetric displays 

Volumetric displays generate 3D images through emission, scattering or 

relaying of illumination from well-defined region of (x, y, z) space, where they 

are mostly seen as hovering inside a rotating projection screen. The first 

volumetric display was proposed in 1912 and until now the technology is still 

under development for it to reach the general population [27][28]. Different 

means exist that can be utilized in presenting the volume display [29], one of 

which is placing multiple 2D display on top of each other and displaying slices 

of the scene on them to give the 3D effect [30] as shown in Fig 2. 5a. Another 

method is the swept-screen volumetric display system in which the 3D image is 

generated on circular screen by emission of rapid movements. Therefore, 

circular display offers large field view that is viewable in 360 degrees around 

the display simultaneously by almost unlimited number of viewers as shown in 

Fig 2. 5b. Despite many advantages, the volumetric technique is difficult to 

design given its complexities that limit its use in many applications of 3D 

display area. 
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Fig 2. 5 : Volumetric [68]. 

2.4.3 Multi-view 3D displays 

The first attempt was made by Auguste Berthier [31] to build multiview 3D 

display “Autostereoscopic” using parallax barrier technology and later Frederic 

E. Ive developed the functional mechanism to prove the concept of parallax 

barrier in 1901. The parallax barrier is placed in front of the display that 

separates left and right images. This allows channelling both images correctly to 

the viewer’s left and right eyes. This is achieved by strips of stereo pair images 

placed in grid screen so that the left strip images can only be seen by left eye 

and vice-versa as shown in Fig 2. 6. The 3D effect can be perceived if the viewer 

is within minimum and maximum viewing range that is defined for the display. 

This was seen as a disadvantage and therefore, complex modification was done 

to accurately project the appropriate images to the eyes by knowing the 

position of the viewer’s head. A head tracking system was used to make this 

possible [32] but it had its own limitations for multi-user situation.  The head-

tracking 3D display does not support more than one viewer at one time as the 

display can only be adjusted to one viewer’s eyes.  
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Fig 2. 6 : Parallax barrier [69]. 

Extensive research continued in improving the parallax barrier’s method by 

introducing the use of lenticular screen to separate the left eye and right eye 

images to the correct eyes. [28] The simplest form of screen that works on the 

parallax barrier is the one where lenticular sheet is accurately placed in front of 

the screen and the stereo pair of view strips is precisely located behind the 

lenticular sheet as shown in Fig 2. 7. The lenticular sheet works based on the 

refraction of light whereas the parallax barriers is based on occlusion of light; 

therefore, the brightness is reduced by half to the viewer perception. Two 

advantages of lenticular screen over the parallax barrier are the achievement of 

brighter image quality and lower manufacturing cost.  In addition, it allows the 

observer to position itself to the ideally spot for the 3D effect. The idea of “look-

around” capability emerged from this concept by increasing the number of 

views to achieve multiple viewing zones [33][34]. This technique is widely 

known as “multi-view” that gives the ability to the viewers to move their head 

side to side to experience various direction of the scene in 3D.  
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Fig 2. 7 : Lenticular sheet [69]. 

Multi-view is considered to be the technique with the greatest prospects [35]. 

This is because Multi-view technique allows capturing based on multiple 2D 

cameras, hence the migration from 2D techniques is easier in comparison with 

holographic and volumetric techniques. In recent years, numerous 3D display 

systems have concentrated on using multiple cameras for recording the scene 

from different perspectives. This is to allow various degrees of parallax when 

played back on multi-view displays. The degree of 3D parallax depends on the 

number of viewpoints. The drawback of such technology lies in its real time 

capturing that requires complicated multiple camera configurations [38], which 

is not feasible and becomes an expensive process.  It is also essential to 

introduce clever techniques to improve time-consuming algorithms to render 

out viewpoints. Multiview 3D imaging mimics human eye technique, thus it 

relies upon the brain to fuse two disparate images to create the 3D perception. 

This can cause eyestrain and headache, because the viewers are focusing at the 

screen plane while simultaneously converging their eyes to a location in space, 

making an unnatural viewing experience [37]. 

As a result, it is a great motivation for researchers to continue pursuing an 

alternative solution to compensate for the complexity of 3D systems such as 

expensive multiple cameras configuration and multi-step post-production 
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processes. The result is a promising true 3D imaging system, called Integral 

Imaging, which uses holography characteristics for reconstructing true 3D 

scene in space and at the same time, it is applicable to day light environment 

[21]. 

2.4.4 Integral Imaging (II) 

Integral Imaging also known as holoscopic 3D imaging offers the simplest 

technique that is capable of recording and replaying the true spatial optical 

model of the 3D scene in form of a planar intensity distribution by using the 

optical components [6]. Despite the fact that Integral Imaging is the closest 

technology to the holographic technique, it records the 3D information in 2D 

form and displays it in full 3D with optical component, without the need of 

coherent light source and confine dark fine, making this more practical 

approach to live capture and display [37]. 

 

Fig 2. 8 : Principle of Integral Photography [72]. 

The person who pioneered the integral photography was G. Lippmann in 1908. 

It was another quest in portraying the 3D scene as accurately as possible [39]. 

He used a set of small microlens arrays closely packed together and placed 

them between the object and photographic film, where each microlens views 

the scene at slightly different angle to its neighbouring one. Single recording 

captures a number of small perspective 2D images, which is called elemental 
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images [7][40] as shown in Fig 2. 8a. Once the scene is recorded on the film, a 

full natural colour with continuous parallax can be replayed by placing an 

appropriate microlens on the image surface as shown in Fig 2. 8b. 

In the traditional setup, the reconstruction of the 3D scene is replayed with 

pseudoscopic image (spatially inverted).  Many researchers have proposed 

numerous methods of correcting the depth. One optical method was proposed 

by H. E. Ive in 1931, to address pseudoscopic problem by introducing another 

optical subsystem during recording, which can be replayed with correct depth 

as shown in Fig 2. 9. A second-stage recording enabled each microlens image to 

rotate 180 degrees with respect to its optical axis. This optical approach 

possessed its own drawbacks by creating a significant amount of noise 

associated with second-stage recording process [41]. 

 

Fig 2. 9 : Principle of two recording [28] (a) a second stage recording of integral photograph. (b) 

Replay and viewing of orthoscopic image scene. 

Therefore, a two-tier network was proposed by Davies and McCormick in De 

Montfort University (DMU) to address image degradation. The two-tier network 

worked as an optical “transmission inversion screen” allowing a direct 

capturing of correct 3D image spatial for orthoscopic replay. The modification 

of optical element, as shown in Fig 2. 10, illustrates the two-tier network 

consisting of two pairs of microlens array placed back to back to generate 

spatial inversion [37]. 
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Fig 2. 10 : The advance integral imaging system from [67]. 

This optical arrangement transfers volumetric image signal in space to such a 

form that each object points in real space are recorded to the same object 

position in the image sensor. This allows image signal to transfer with no 

inversion in the recording as well as preserving the same spatial co-ordinates. 

There are two types of microlens arrays e.g. Omnidirectional and 

Unidirectional, which are capable of recording and replaying the 3D images, as 

shown in Fig 2. 10. The omnidirectional holoscopic 3D imaging requires square 

based spherical microlens structure in recording, which offers parallax from all 

direction. The unidirectional holoscopic 3D imaging uses 1D cylindrical 

microlens arrays in capturing, thus contains only horizontal direction parallax 

[42]. This makes the two-tier network approach capable of capturing the true 

3D on the image sensor. However, this form of recording requires an ultra-high 

resolution imaging sensor together with special optical element, which makes it 
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impractical in real world capturing. Also, the reconstruction of the image will 

appear distorted due to the non-constant lateral magnification of the 

converging lens [37] 

 

Fig 2. 11 : Diagrammatic representation of the lens array from [42]. 

Few digital methods were proposed by different researchers to accommodate 

the pseudoscopic to orthoscopic conversion. The work by Okano et al. [61][62] 

inverts each micro-image during the capturing process, which reduces the 

parallax angle to an acceptable point in the scene. Another digital contribution 

was made by Martinez-Corral et al. [63], where they proposed a way of fixing 

the aliasing problem in the pixel mapping. It is vital to have the number of pixels 

per lenslet as a multiple of the number of lenslets, which makes the number of 

pixels per micro-image very large (order of 100s) and rendering is impractical 

for many 3D display applications. [37] 

In recent years the focus has been on improving many data processing issues 

that required special solution to holoscopic 3D imaging. Additionally, there 

exists the challenge created by the constrained resolution of Charge-Coupled 

Device (CCD) and Liquid Crystal Display (LCD) that limited scene depth and 

narrow viewing angle [36]. Based on these problems, comprehensive studies 

were undertaken to revolutionise the optimal cylinder and intense theory to 
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resolve them.  Many techniques were proposed to mitigate such obstacles; such 

as time-multiplex [74], spatial-multiplex [37], and super-resolution [75] to 

improve the resolution of view point images.  Further enhancement has been 

achieved in the area of scene depth and viewing angle to optimise a wider 

viewing angle with appropriate size to accommodate high resolution holoscopic 

3D image; examples are Multi-layered display device [76], Holographic Optical 

Element (HOE) lens array [36], curved screen [77], and lens switching [17]. 

Later in 2005, new handheld 3D camera design, known as the plenoptic camera, 

capable of recording holoscopic 3D image was proposed by Ng as well as Fife 

and Lumsdanine[45]. Ng was the first to insert a microlens array into a 

conventional handheld camera by simplifying the form of 7D directional 

information to 4D. This represents both 2D position and 2D directional 

information.  This idea, which had been initially introduced by Adelson and 

Wang, later was improved by Ng making it more practical [43]. It was mainly 

used for digital refocusing on photography after capturing, as opposed to the 

holoscopic 3D imaging technique that was capable of live capturing and 

displaying the true 3D. 
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2.5 Plenoptic Camera 

It is worthwhile to point out the difference between traditional plenoptic 1.0 

[45] and focused plenoptic 2.0 [46] cameras before continuing with the camera 

optical components. The traditional plenoptic camera renders the image in a 

significantly low resolution due to its design as shown in Fig 2. 12. [47] The 

focal length ‘L’ of the main lens to the microlens in comparison to the focal 

length ‘F’ of microlens to the sensor is considerably large. Therefore, each 

microlens receives parallel light ray of all the possible directional rays with low 

spatial resolution. The integration of all the pixels under each microlens will 

represent one pixel of the overall final images at particular depth plane. 

 

Fig 2. 12 : Traditional Plenoptic camera from [46] 

For simplicity purposes, the four-dimensional light rays of Omnidirectional 

Integral Images OII(j,i,n,m) are reduced to two-dimensional ∂ - Ω planes to 
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illustrate the behaviour of plenoptic cameras. Fig 2. 13 shows the light field I (r 

(∂, Ω)) in plenoptic 1.0, which signifies both position ∂ and directional Ω of light 

ray in space with given r radiance [48]. Therefore, each 3D point in space is 

sampled by one element image, as a result of which the final rendered image is 

equal to the number of microlens included in the capturing stages [47]. 

 

Fig 2. 13 : Behavior of traditional plenoptic camera where the number of microlenses limits the 

spatial resolution in ∂ direction however, directional information Ω is determined by the number 

of pixels under each element image 

On the other hand, focused plenoptic (also known as plenoptic 2.0) works in 

such a way that each microlens is considered as a single camera capturing a 

small portion of what the main lens sees [48]. It’s designed in a way that the 

microlens focal plane is set to the image plane of the main lens L leading to 

higher spatial resolution with lower directional information [47]. As shown in 

Fig 2. 14, the microlens array moves away from the image sensor at distance b, 

where main lens image plane L forms image in the form of the microlens array 

at distance a. Each microlens fulfils the lens equation, 1/a+1/b=1/f, where a,b, 

and f are the distance from the microlens to the main lens image plane, the 
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distance from the microlens to the sensor, and the focal length of the microlens, 

respectively.

 

Fig 2. 14 : Focused Plenoptic 2.0 microlens imaging in Keplerian mode. The main lens image plane 

is in front of the microlenses 

Therefore, each microlens acts as a relay imaging system of the main lens image 

plane L [48]. This outputs an image, where objects that are placed in different 

distance in real world, will have different scaling under each microlens to the 

image sensor. In other words, objects located at various distances from each 

other are captured by the main camera lens as they appear but the microlens 
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array sensor is what gives them different scaling relative to their distance and 

angle. 

Hence, focused plenoptic offers higher spatial resolution compared with 

traditional plenoptic. Fig 2. 15 shows an imitation of focused plenoptic’s 

behaviour to illustrate the relation between spatial resolution and directional 

resolution. The spatial resolution is directly related to the directional 

resolution, where the high spatial resolution accommodates areas of directional 

information; and total resolution of the end image is equal to b/a times the 

camera sensor size. Therefore, a trade-off exists between the directional 

resolutions and spatial resolution focusing on plenoptic design. This camera 

mode setup, known as Keplerian, places the main lens image plane in front of 

the microlenses to capture image plane at distance L [48]. 

 

Fig 2. 15 : Behavior of Focused Plenoptic camera 

In holoscopic 3D imaging, focused plenoptic camera design is used in capturing 

true 3D video images, where it is aimed to achieve not only for digital 

refocusing after capturing but for whole different purposes. The focused 

plenoptic camera was designed mainly for the purpose of digital refocusing on 

photography; whereas holoscopic 3D takes one step further, by offering 

realistic 3D viewing experience in a cost effective manner. Therefore, with its 
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unique optical element no camera calibration is necessary in capturing the 3D 

information as opposed to 3D stereoscopic production. Also in holoscopic 3D 

compactness capturing a true 3D information gains a lot of attraction for which 

novel depth extraction is proposed to accommodate the conventional stereo 

matching techniques [38]. 
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2.6 Digital Refocusing 

In recent years, researchers have been pursuing a new way to create images 

through the process of reconstruction for which, the knowledge of digital 

refocusing after capturing has come to the attention.  The first digital refocusing 

image was generated in 1995 from two views each focused at different depth 

[49]. This method is called “depth from defocus” in computer vision, where the 

depth of an object is estimated based on the blur matrix from the two views 

focused at different depth.  Unfortunately, this process returns high artifacts in 

the final image when changing the virtual plane closer to image plane 

[49][50][51]. Therefore, the method was rather unsuccessful until some other 

systems like depth estimation for videos on real-time emerged depth from 

defocusing algorithm [52][53].   

The first demonstration of digital refocusing on light field (also called as 

holoscopic 3D imaging) was reported in 2000 by Isaksen, McMillan and Gortler, 

after which other similar attempts were carried out with different title names 

[54][55][56][57].  However, these methods faced two drawbacks. First, 

capturing light field data required moving camera with lengthy scanning or an 

array of cameras packed together, which is impractical for normal shooting as 

it’s carried with regular handheld cameras. Second, the final refocused images 

were observed with high aliasing on defocused regions, due to a mismatch in 

rendering process [45]. Both drawbacks were addressed by Ng[45], as he was 

the first to introduce a more practical way of capturing light field data with 

conventional hand-held camera. In addition, aliasing on the final images was 

resolved with a new optical design in which microlens array was introduced 

inside the conventional camera with microlens closely pact together in order 

for all rays to pass through single aperture lens to the image sensor [45]. 

In 2005, Ng introduced a new plenoptic camera with a new processing 

technique followed by the work by Fife [58] and Lumsdanine [46][47]. 

Plenoptic cameras were mainly used for refocusing in photography and the 
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images rendered by Ng were in low resolution [47]. Since Ng used the angular 

ray information that refers to the viewpoint image in refocusing, the spatial 

resolution is defined by the number of microlenses along y and x directions 

[59]. Next, a full resolution method [47] was introduced to compensate for the 

poor resolution in Ng’s method. The final images of the full resolution method 

were considerably better compared to the Ng’s approach. This facilitated a 

completely new configuration to the traditional plenoptic camera, where the 

focus of main camera lens is well in front of the microlenses and focuses the 

microlenses on the image that is formed inside the camera [48] so that each 

microlens captures a focused perspective image from a specific position. This 

would have had a full resolution rendering, which has been applied to acquire a 

higher resolution image. The full resolution method works by selecting pitch 

size under each element image to create focused image, but this technique 

returns artifacts making it unnatural on the final image.  Therefore, introducing 

the depth information to the full resolution method serves the purpose of 

sustaining a natural looking photographic image. This will remedy the blocky 

noise artifact problems in the final refocused images. Unfortunately this process 

is time consuming, as it requires matching the position of each individual 

element image from its four neighbouring element images. 

Later, some research work in the field was presented in [60] to minimise 

artifacts in the final image by new optical camera design to minimise 

magnification of scene depth where objects at different depth almost have 

constant magnification throughout. However, this design reduces the resolution 

on the number of refocusing planes. In 2012, new blending algorithm was 

introduced to overcome the arising artifacts down to their minimum, which was 

caused by patch processing [48]. Yet, this full resolution with blending observed 

with the aliasing effect of the final rendered images.  

The theme of this research is to find alternative way to solve the resolution 

problem and improving the visual quality by using the orthographic projections 

(viewpoint) as well as sub-images approach. For more clarity, we will apply the 
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same algorithm on two different types of light field (holoscopic 3D) images 

namely omnidirectional integral image (OII) and unidirectional integral image 

(UII) to check the strength of the aforesaid technique. 

2.7 Conclusion 

This chapter explored state-of-the-art 3D imaging technologies, among which 

the simplest form of representing a true 3D image is Integral Imaging. Integral 

Imaging offers true 3D capturing and replay that opens up a new direction and 

possibilities for digital imaging such as changing the focus plane after the 

capture as well as more advanced techniques for measuring the scene depth. 

Furthermore, Integral Image is a promising technique to deliver rich viewing 

sensation to the eyes without glasses and fatigue effects. Also digital refocusing 

techniques were touched on here while emphasising their major drawbacks and 

ways to avoid them. 
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3. Chapter Three 

Digital Refocusing based on VI 

This chapter explores digital refocusing techniques in holoscopic 3D (Integral) 

imaging that includes state-of-the-art digital refocusing in comparison with the 

proposed method. The main focus is on an alternative solution to the refocused 

image resolution as well as to improve the visual quality.  The proposed 

algorithm is applied to both types of holoscopic 3D images namely 

omnidirectional and unidirectional to check the robustness of the 

aforementioned technique. Omnidirectional holoscopic 3D content contains 

both horizontal and vertical 3D information. This allows the algorithm to take 

advantage of both horizontal and vertical directional 3D information in 

generating the refocusing image planes. Also, the final rendered image will 

increase resolution along both horizontal and vertical directions.  



Post-Production of Holoscopic 3D Image 

 

Chapter 3 – Digital Refocusing based on VI Page 45 

 

The proposed method works by extracting the viewpoint images as illustrated 

in Fig 3.5. The viewpoint image is a low-resolution orthographic projection type 

of rays from a particular direction. To generate high-resolution images at a 

particular plane one requires a new interpolation technique, which involves up-

sampling, shift and integration of viewpoints. In up-sampling stage, the 

viewpoints are up-sampled using bi-cubic interpolation before shift and 

integration of viewpoints. This enhances both visual quality and resolution of 

the final image, which is an improvement against what was mentioned earlier in 

the literature review, as to the state-of-the-art refocusing algorithms suffered 

from poor resolution and artifacts in the final image. In addition, to generate the 

all-in-focused image, different depth planes are obtained. The Michelson 

contrast algorithm [15] is applied on an individual plane of the selected window 

size. The highest contrast will return a window size where the plane is focused 

and the position of the shift is recorded as a disparity value. The disparity value 

can be used later to generate the depth map of the scene to benefit coding, 

transmission, interactive 3D display, as well as interactive video games. 

3.1 Operational characteristics of the holoscopic 3D imaging 

system  

Holoscopic 3D imaging system involves two processes, namely recording and 

replaying as shown in Fig 3. 1a. In the recording process, an object is imaged 

through an array of lenses, where each microlens captures a perspective 2D 

elemental image of the object from a specific angle.  The final captured image 

contains the intensity and directional information of the corresponding 3D 

scene in 2D form. The key aspect of holoscopic 3D imaging principle is that its 

viewpoint images are orthographic i.e. sets of parallel rays are considered to be 

projected at various angles from the object, forming viewpoint images (VPIs). 

The replay phase works in the reverse manner of the pickup; the elemental 

images are projected through the microlens arrays to optically reconstruct the 

3D object at the same depth as the original object location, as shown in Fig 3. 1b. 
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Fig 3. 1 : Holoscopic 3D imaging principle: (a) recording and (b) display process 

 

3.2 Flowchart of the proposed method 

Fig 3. 2 presents the flowchart of the proposed method that shows the steps and 

processes of how to acquire the all-in-focused image, disparity map, and 

refocusing image planes. The processes of up-sampling, shift, and integration of 

viewpoints enable us to focus at particular depth of plane with a given shift 

value after capturing. Therefore, at each shift’s value, the point is focused at a 

particular depth of plane. Thus it allows us to change the depth of field 

computationally at any desired plane. Furthermore, in obtaining the all-in-focus 

image and depth information, the Michelson contrast estimation [16] is applied 

on all depth planes. Finally, the depth information of the objects is extracted by 

examining the point in space. At the focused point, the Michelson contrast 

estimation reaches its highest and blur is reduced to its lowest values [15]; 

whereas if the contrasts decreases and blur increases, the depth plane would be 

moving away from the object point. Therefore, the highest contrast with the 

lowest blur will return the object’s original position.  This means that highest 

contrast window from different depth planes will return the all-in-focus image. 
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Fig 3. 2 : Flowchart of the proposed method 
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3.3 Viewpoint Construction in Holoscopic 3D Imaging System 

The holoscopic 3D camera is a single aperture camera that is capable of 

capturing both intensity and directional information in 2D, at fixed-time. Both 

UH3I and OH3I are shown in Fig 3. 3. 

 

The real world light rays are captured via a microlens array as shown in Fig 3. 

4(a).  The rays marked n1, n2, n3, n4, and n5 represent different perspective 

views of the same scene. Since a microlens array is involved in the recording 

stage, the local pixel position under each microlens contains directional view of 

the scene as shown in Fig 3. 4(b). 

Fig 3. 3 : Holoscopic 3D Images with its constructed viewpoint image 
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Fig 3. 4 : Holoscopic 3D capturing systematic  

A single orthographic (VPI) is reconstructed by sampling of all pixels in the 

same location under different microlenses; this creates a perspective image that 

portrays one directional view of the scene. The construction of viewpoint 

images in both UH3DI and OH3I are graphically illustrated in Fig 3. 5. It is also 

mathematically expressed in eq 3.1. 



Post-Production of Holoscopic 3D Image 

 

Chapter 3 – Digital Refocusing based on VI Page 50 

 

 

Fig 3. 5 : illustration of (a) UH3DI viewpoint image extraction, (b) OH3DI viewpoint image 

extraction. 
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�, �
 � �
� � ��, � � ��
    eq (3.1) 

The above equation describes the viewpoint sampling, the n and m are the pixel 

co-ordinates under micro-lens of j and i, where	� = 1 to �, � = 1 to �, � = 1 to N and 

� = 1 to M are the horizontal and vertical positions of an Omnidirectional Image 

(	�)’s pixel respectively as shown in Fig 3. 5b. It is important to mention that 

each individual viewpoint can also be defined as ��	�, �
�,�
 � 	�
�, �, �,�
, 

where n,m are the co-ordinates of parallel light rays that is different from 

perspective image property. Therefore, the final output		
�, �
’s image 

resolution is equal to (�  x �) pixels. 

It should be noted that viewpoint images are different from elemental images 

(EI) and sub-images (SI). EI is defined using light field terminology 

���, �
�, �
 � 	�
�, �, �,�
. An elemental image is the recording image under 

the recording microlens where the resolution is defined as � x � pixels. On the 

other hand, the sub-image is defined as a group of adjacent pixels under the 

Fig 3. 6 : Illustration of the viewpoint (VP), elemental image (EI) and sub-image (SI).  

(For illustration purposes, suppose there are 4 pixels under each microlens. One pixel under 

each microlens is defined as one viewpoint. Whereas a group of pixels under the same 

microlens are defined as a sub-image and the whole image under the microlens is known as 

elemental image. 
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same microlens that are responsible for large spatial angle; but it is not the total 

number of pixels under the same micro image like El, as shown in Fig 3. 6.  

3.3.1 Lens error correction before viewpoint image extraction 

The UH3DI and OH3DI data are acquired by placing the microlens array in front 

of the camera sensor, enabling each microlens to capture the 3D scene from 

different directions. The most common distortion caused by the lens is barrel 

distortion, which is the result of fitting the image in a smaller space. The 

squeezing of image varies radially due to the design of the lenses—making it 

more visually prominent at the corner and sides of the image, as can be seen in 

Fig 3. 7. This can be neglected in most of the image applications where the 

visual barrel effect cannot be noticed by the human eye. However, it does effect 

in viewpoint image extraction process which requires extracting excel pixel of 

the same location from different elemental images. Thus, the image distortion 

needs to be corrected before proceeding to viewpoint extraction. Fig 3. 8a 

shows a viewpoint image extracted without correcting its distortion. Notice that 

the final viewpoint image looks unnatural due to being unable to extract the 

same positioned pixel under different elemental images, leaving out a portion of 

the scene and part of the object. 

 

Fig 3. 7 : Illustration of barrel distortion effect 
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At this point the lens correction is used to reduce such barrel effect, as much as 

possible. Some lenses exhibit much less distortion than others. The quality of a 

lens and its type usually determine how much distortion occurs [7]. Lenses with 

a single focal length, also called prime lenses, tend to produce less distortion 

because there are fewer elements and a reduced need for optical compromise. It 

can also be optimized for its particular focal length. While the zoom lenses 

involve many elements and some compromise, wide-angle involves more 

compromising. However, all lenses produce distortions. While in the cheaper 

type of lenses they may be quite prominent and robust, they can hardly be seen 

in the very best of lenses (see Fig 3. 9 for lens types). During capturing, prime 

type lens were used together with micro-lens in 5D canon camera. 

 

Fig 3. 9 : Representation of lens types [17] 

As mentioned above, the captured holoscopic 3D images have barrel distortion 

for which it is necessary to use Photoshop tool to reduce the barrel distortion 

on both UH3DI and OH3DI. In this case, raw data of the acquired image is used, 

because data is in its richest form without any compression or interpolation of 

Fig 3. 8 : (a) VI (25, 25) without barrel distortion correction. (b) The same VI with barrel distortion 

correction 
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any type, before correcting the barrel distortion. Otherwise the distortion may 

be harder to correct, because the intensity of a pixel value spreads across its 

neighboring pixels, resulting in a decrease in the richness of pixel intensity. The 

raw data enables greater flexibility in adjusting data parameters; for example 

brightness, contrast and colour as shown in Fig3. 10. 

 

Fig 3. 10 : Illustration of Photoshop lens correction tool 

3.4 Digital Refocusing 

Digital refocusing in holoscopic 3D imaging means changing the focus plane 

after the picture is acquired. This is achieved by converging all the light rays to 

a desired virtual depth plane. The viewpoint rendering pixel manipulation 

method is used to refocus at different depth planes. In this chapter, the OH3DI 

are captured in Galilean mode. The main lens is focused behind the image 

sensor creating a virtual parallax image and each microlens satisfies the 

equation -1/a+1/b=1/f, as the distance remains within the same distance from 

the microlens, but in the opposite direction. Therefore, 1/a in Keplerian mode 

changes to -1/a in this setup [13] as shown in Fig 3. 11. 
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Fig 3. 11 : Focused Plenoptic 2.0, Microlens imaging in Galilean mode. The main lens image plane is 

virtually created behind the image sensor for the microlenses to capture. 

Full resolution rendering process results introduces unnatural artifact in areas 

that are not ‘in focus’ [10]. At this stage, the full resolution rendering is only 

used to determine the distant object in the OH3DI. 

The full resolution rendering method works by selecting a number of pixels 

(sub-image) from every EI under the same position. Therefore, the size of sub-

image determines the depth plane of the real world “in focus”, as can be seen in 

Fig 3. 11. 
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Fig 3. 12 : Focused Plenoptic 2.0: Microlens image is in Galilean mode. Full resolution rendering 

applied on the above images: left image extracts foreground but leaves the background with 

artifacts as the size of sub-images is too small for the background, where 

To overcome the artifact problem, up-sampling, shift, and integration of 

viewpoint (VP) are performed to refocus at a different depth of plane. This 

helps to sustain the natural look of the photograph without affecting the image 

quality and resolution too much.  Therefore, VPs are up-sampled by a factor N in 

horizontal and vertical directions before shift and integration process is 

applied. N is ascertained by knowing the farthest object from the camera. This is 

when the main lens image plane is in Galilean mode—where the farthest object 

from the camera appears to be the closest in the virtual image plane and fewer 

microlenses capture that point. Thus, knowing the farthest object will allow 

extracting the whole object  points that appear in fewer microlenses. That 

means the other objects in the close distant contain all the possible information 

that can be refocused.  The farthest object is discovered using the full resolution 

rendering, which brings only one of the image planes “in focus”. Depth plane is 

determined by the size of the sub-image under every EI and combining them 

together. Therefore, size of the sub-image gives the value of N, where every VP 

is up-sampled by N times. Also, N number of VP images is used in the refocusing 

stage to get different depth planes in focus. Up-sampled VPs are stacked 

adjacently in horizontal and top-to-bottom in vertical directions to form a 4D 

stack of images ���, �, �,�. Fig 3. 13 (b) shows the steps in achieving the 

refocused images using VPs pixel manipulation method. 
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Fig 3. 13 : (a) Illustration of shift and integration of VPs to generate one high resolution image with 

a final image size of (nxN) x (mxN). (b) Present the steps for the proposed refocused image. 

 

The Refocusing operation can be expressed algebraically for OH3DI in a concise 

form as shown in eq 3.2, where Hnm is the result of the integrated up-sampled 

VPs with coordinates � and �; � and � are the indexed number of VPs ranging 

from 1 to N. Other parameters include the shift parameter ∆, whose sign 

modifies the index �,�. � and � are the number of horizontal and vertical 

resolution elemental images. Each viewpoint is equal to the number of lenses 
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multiplied by the up-sampling factor. The amount of relative shift in the images, 

obtained by integration of viewpoints, determines the depth at which the sharp 

image is formed. This process is graphically illustrated in Fig 3. 13 and eq (3.2). 

Hnm=∑ ∑ 	Nj=1 		VPsn±∆
1∓i
,i,	m±∆
1∓j
,jN
i�1   eq (3.2) 

The resolution enhancement in the refocusing process is explained 

schematically in a 1D example with two viewpoints represented by vectors; 

viewpoints integrating their pixel values with shown pixel coordinate within 

the circles in Fig 3. 14. When shifted by 1, whole pixel = 2 sub pixels—there is 

no resolution enhancement. This produces the same resolution image as 

integrating un-shifted viewpoints. Red arrows represent up-sampled sub pixels 

with the same values and coordinates as their blue counterparts. With half a 

pixel shift = 1 sub pixel, twice as many integration points are introduced. This is 

depicted by blue and red rays, integrating their pixel values in the ellipses, 

resulting in an enhanced resolution image, at a slightly different depth in the z 

direction.   

 

 

Fig 3. 14 : Schematic illustration of resolution increase 
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Integration of N VPs at different shift values results from a different depth plane 

in focus, as it can be illustrated in Fig 3. 15. To focus at depth plane z5, the pixel 

one under n1 EI is intersected with pixel five under n2 EI and shift value equals 

to 4. The resolution enhancement is also demonstrated when focusing at the 

depth plane z1 in Fig 3.15 with up-sampling, shift, and integration process. The 

depth plane z1 can be seen from different EI by setting the shift value to 1; 

therefore, pixels under EI n*shift will pick up the position point z1 from 

different EI. With up-sampling, shifting, and integration of one pixel shift will 

focus at depth plane z1. Fig 3. 15b shows an enhanced resolution by 

representing one of the points in depth location z1 with up-sampling that 

gained 3 more pixels in comparison to standard shift and integration process as 

shown in Fig 3. 15c.  
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Fig 3. 15 : Ray tracing in holoscopic 3D imaging system 
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3.5 Depth Analysis 

The analysis of depth planes with shift and integration process, using simple 

triangle geometry, is used to calculate the object distance from microlens to the 

main lens. The real depth can be calculated in relation to the real world 

distance, given the virtual distance from microlens to main lens. 

 

 

 

                                 
'

(
�

)

*
                                       eq (3.3)               

+ �  
,)(

*-
                                               eq (3.4) 

Let S = 1 

+ �  
).

-
                                                     eq (3.5) 

The depth z inside the L shown in Fig 3. 11 is the point at which intersection 

occurs for N VPs forming an image plane at particular z distance with given shift 

value. n is the number of pixels under each lens, b= distance from microlens to 

image sensor, B = pitch, Ψ is width of a pixel = B/n, and S=shift. From simple 

triangle geometry, the distance Z can be calculated with equation 3.5. But as 

mentioned above, the camera mode is set to Galilean mode, which the equation 

z=(-bn)⁄N changes, because the image plane from main lens to microlens are set 

Fig 3. 16 : Depth Analysis 
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behind the image sensor creating a virtual image plane. The distance z will 

always be equal to a native value since the object is in the virtual image plane. 

Hence, the closest object to the camera looks the farthest and vice-versa. 

3.6 All-in-focus image 

All-in-focus image is extracted by looking at all depth planes and returning 

areas, which have high contrast and low blur. The choice of one shift value 

returns one depth plane ‘in focus’ with integration of VPs as mentioned above. 

Thus, a different shift value would correspond to a different depth plane. In 

other words, the refocusing is accomplished through the choice of shift value 

with the integration of VPs. The final all-in-focused image process is given by 

the following equations. 

AF= H {F} (n+Ӄ, m+Ӄ)       eq (3.6) 

Where, 

F = arg{max{W(S)}}       eq (3.7) 

Where, 

W(S)= 
/{1}
�,�
/
1
єӃ   [

567
8,9
	:	5;.
8,9

567
8,9
<	5;.
8,9
 ]      eq (3.8) 

[
= 567 	:	=	5;.
=567	<	=	5;.]        eq (3.9) 

The H (S)n,m is the result of high resolution image, where the depth plane is 

dependent on the shift value (S), and the number of shift returns the same 

number of high resolution image, i.e. S = 1,2. All depth planes are stored in H 

(S)n,m and each H(S) image is focused at particular depth within the scene. 

Therefore, to extract the all-in-focus image, the contrast values are calculated 

for each H(S) with the given local window. The contrast values are calculated 

with window block size (Ӄ) in W(S) as defined in eq 3.8. The Michelson contrast 

[12] is used to calculate the contrast value for each local window in W(S). The 

Michelson contract is defined in eq 3.9 and used in eq 3.8 to define contract of 

the local window within the image.  The �>?
.,5
 and ���
.,5
 represent the 

highest and lowest luminance in the local window respectively. The highest 
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Fig 3. 17 : All-in-focus image rendering algorithm creates a final image using high resolution images 

contrast score window within W(S) is selected and stored in F—indicating the 

depth plane where the objects are ‘in-focus’.  Furthermore, the final image is 

rendered in AF with window size (Ӄ) of H {F}n,m at higher contrast with lower 

blur to extract all-in-focus image as shown in eq 3.6 and Fig 3. 17. 
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3.7 Experimental Results 

The experiment demonstrates the success in acquiring refocusing, all-in-focus 

image, and depth map results. One of the setup scenes used in this experiment 

is illustrated in Fig 3. 18, where the objects are placed in a precisely measured 

distance from the camera. Each object is named ‘Target’ with the recorded 

distance from the camera’s microlens, where Target 1, Target 2, Target 3, and 

Target 4 are located at z1=3190mm, z2=2000mm, z3=1000mm, and z4=700mm 

respectively as show in Fig 3. 18. In the recording process, 3D objects are 

captured in 2D format by microlens array placed in front of the camera sensor, 

enabling each microlens to capture the objects from a particular direction. 

Therefore, the outcome H3D image holds both direction and position of the 

scene. 5D canon camera was used with 50mm main lens and 21-megapixel 

image resolutions. The main lens is attached with a mountable extension tube 

on the camera to provide a flexible way of adjusting the distance between the 

main lens image plane to the microlenses and microlenses to the image sensor. 

The microlens focal length is 0.025mm and pitch size is 0.9mm. Furthermore, 

the main lens aperture is modified from circle to square, to achieve a more 

effective way of using sensor space, as the microlenses are in square. 

 

Fig 3. 18 : Illustrates one of the experiment setup scenes. 
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3.7.1 Subjective Quality Comparison 

 

 

Fig 3. 19 : Native shift and integration refocusing is illustrated: (a) shows the magnified part of final 

refocusing image where the focus is at the object. (b) is focused at the background: Notice both (a) 

and (b) images are in poor quality, containing blocking artifacts with significant noise that is seen 

more pixelated with naked eyes. 
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Fig 3. 20 : Up-sampling, shift and integration refocusing using 7 by 7 VPs: (a) shows the magnified 

part of Target 1 that is the ARRI Media test chart. (b)Target 4 is focused at the toy. The final image 

is at resolution of 1344 x 903 pixels. 

 

Fig 3. 21 : Up-sampling, shift and integration refocusing using 7 by 7 VPs:(a) shows the magnified 

part of Target 1 that is the ARRI Media test chart. (b)Target 4 the blur looks natural and no 

artifacts. 
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3.8 Analysis and Discussion 

The OH3DI is acquired at resolution of 5616 X 3744 pixels that contains 193 X 

129 elemental images, which have resolution of 29 X 29 pixels. VP resolution is 

determined by the number of microlens contained in the recording, which is the 

same as the number of microlenses i.e. 193 X 129 pixels. The result of applying 

up-sampling, shift, and integration is to enhance the resolution of the final 

image in comparison to the traditional refocusing method using VPs 

manipulation method. Both the methods are compared with each other, as it is 

clear that the traditional refocusing outputs the same resolution as its VP 

resolution. The up-sampling, shift, and integration, on the other hand, outputs 

an image equal to the VP resolution multiplied by the up-sampling factor. 

Resolution result on normal shift and integration is clearly shown in Fig 3. 19. 

The final refocusing images in normal shift and integration suffer from poor 

resolution, as its resolution equals 193 X 129 pixels.   

However, applying the up-sampling, shift, and integration algorithm on the 

same OH3DI, results in a significant increase in resolution and quality of the 

final refocused images, as shown in Fig 3. 20.  An Arri Media test chart is used to 

determine the effect in comparing both results. The native and proposed 

method used 7 by 7 VPs in acquiring different depth planes, where the value 7 

is obtained by using the high-resolution rendering. This is to locate the distant 

object plane in the scene that uses patch size. The size of the patch initializes the 

number of VPs (N), which is required in the refocusing. Note that in Fig 3. 18(b) 

the “ARRI MEDIA” is successfully reconstructed without having the effect of 

blackening artifacts and noise, leading to an increased resolution and quality of 

the final image. 

Also note that in Fig 3. 20b artifacts arise on the final image. This is due to the 

focus being at a greater distance from the optical image plane. In other words, 

the artifacts are more visible in the close up object when the focus is on the far 

away distance. Therefore, enhancement was made to cure the artifacts by 

having a smoother transition of VP’s pixels integration to gain a natural 

photographical looking image. The VPs are interpolated, up-sampled before 

shift and integration of VPs. The VPs are up-sampled by N times using quadratic 
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interpolation. As a result the final refocused image compensates for the 

resolution factor, as well as visual quality by sustaining the natural 

photographic look (see Fig 3. 21). 

Also this method is applied to UII with pitch 1.65mm, f 2mm and 67pixels per 

lens at VP resolution of 84 x 3744 pixels shown in Fig 3. 22. 5 VP images are 

used in up-sampling, shift, and integration process to improve the visual 

resolution quality in the refocus image. Now, it is possible to obtain a high 

resolution refocused image from the VP approach, compared to native VP 

refocusing, and by forming additional integration points at user defined depth 

using up-sampling, shift, and integration algorithm. 

 

Fig 3. 22 : Rendered VP of UH3DI 

 

Fig 3. 22a shows processed VP of UH3DI upsampled by 5 along x axis. Fig 3. 22b 

and (c) show magnified region of (a) without and with interpolation, 

respectively. Fig 3. 22d is result of shift and integral of 5 VPs, while (e) is the 

magnified region of (d) without using bi-cubic interpolation during VP up-

sampling and (f) is that with bi-cubic interpolation. Fig 3. 22arepresents 420 x 

3744 pixels, while (b) and (c) are original image sizes, showing detail of fore-

finger without and with interpolation, respectively. After shift and integration 

algorithm is used to increase the resolution by selecting four neighboring VPs, 

the result is shown in (d) at resolution 420 x 3744. (e) and (f) represent the 

improved versions of the forefinger image using the algorithm without and with 

interpolation, respectively. 

The obtained high-resolution images are focused at particular depth, therefore 

Michelson contrast algorithm is used in all the depth plane images to return all-
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in-focus image, as shown in Fig 3. 24. The depth plane is dependent on the 

choice of shift value. In the experiments the shift values are selected from 1 to 9, 

as the result of the different depth planes are extracted (see Fig 3. 23a). At each 

shift, a different plane is ‘in focused’ and virtual depth z is also calculated at 

each shift with a given eq 3.5, where N = 7 * pixel size (0.0031mm), f = 

0.025mm, b = 0.127mm and n is the total number of viewpoints 29 x 29 that 

equals to 0.09mm. The N is the acceptable number of VP that can be used in the 

refocusing process, which is equal to N= 0.0217mm. 

 

Fig 3. 23 : 7 by 7 VP are used in refocusing process to extract different depth plane in (a). In (b) 

where focus is on the background with virtual depth z=-0.518mm and (c) focuses at foreground 

with virtual depth z =-4.147mm. 

In addition, all-in-focus image is generated by using Michelson contrast [14] 

algorithm on each depth plane with a window size of 20 x 20. The highest 

contrast values with the lowest blur in the same window locations from the 

other nine planes are extracted to identify windows where the object is in focus, 

at a given shift plane. The highest contrast window’s shift with the lowest blur 

are recorded, which can later be used in calculating the virtual depth, as shown 

in Fig 3. 24. Depth z is calculated by shift values S using eq 3.5. The size of the 
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window in calculating the contrast has great impact on the final all-in-focus 

image as well as the virtual depth information. Fig 3. 26 shows the  result using 

different window sizes and it is noticed that a large window size generates 

better results in comparison with small window sizes. 

 

Fig 3. 24 : In (a) all-in-focus image is extracted using different planes with window size 20 by 20 

pixels. (b) is the virtual depth map from the microlenses to the main lens with the given virtual 

distant the real depth can be calculated in relation to the main. 

3.9 Conclusion 

In this Chapter, a novel approach was introduced that effectively refocuses low-

resolution orthographic images to form a high-resolution image. A new pixel 

interpolation approach was introduced to improve the visual quality of the final 

image. As a result, the final image looks more like a natural photography image 

without artifacts. A set of different depth planes were extracted using the above 

refocusing algorithm, where Michelson contrast algorithm was used on all the 

depth plane images to estimate the contrast of the refocusing points. The 

extraction of the all-in-focus image was experimentally demonstrated. Depth 

information of the 3D object was also extracted from the focused points. 

Computational experiments were carried out to prove the enhancement on the 

resolution of the final image using the VP method and also to improve visual 

quality using new interpolation approach with refocusing. The experiments 

were performed on both, UH3DI and OH3DI, resulting in a successful outcome 

of an improved final image.  The new all-in-focus, with virtual depth 

information algorithm, was also successful in extracting the all-in-focus image 

with exceptional depth information. The effect of window sizes was also 

addressed in generating both the all-in-focus image and virtual depth 
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information. Finally, the possibility of the proposed contrast based location 

coordinated extraction method was confirmed. 

 

 

 

Fig 3. 25 : In (a) 7 by 7 VPs to focused at the background. (b) Focused at the distant 100mm. (c) 

using 5 by 5 VPs focused at background. (d) Focused at 1 meter from the microlens array. 
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Fig 3. 26 : Result of All-in-focus with disparity 
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4. Chapter Four 

Digital Refocusing Based on SI 

This chapter presents a novel way of applying the up-sampling, shift, and 

integration with full resolution rendering to reduce artifacts and to improve the 

image quality and resolution.   It works by extracting a patch (sub-image) under 

each microlens and it improves resolution of the  view by total microlens times 

the patch size [1]; This can be compared to what was presented in chapter 3 

where only one pixel was extracted under each microlens, forming the final 

viewpoint at total resolution of total microlenses along vertical and horizontal 

directions. The shift and integration of views happens by sub-pixels allowing an 

accurate intersection of different rays coming from individual views. The views 

were extracted from a holoscopic 3D image by taking a group of pixels under 

each microlens as mentioned above, which increases the resolution of 

individual views. Also, the sub-pixel adjustment improves the visual quality and 

resolution in comparison with the method discussed in chapter 3 as well as 
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other methods mentioned in the literature.  It is important to explore the effect 

of basic full resolution rendering [1] as well as full resolution rendering with 

blending [2]. It is also reported in [3] that artifacts on the final image were 

resolved using the depth-based rendering. However, the depth-based rendering 

is not used here, as it requires depth map, which is rather a time-consuming 

process. 

4.1 Full Resolution Basic Rendering 

The basic full resolution rendering method takes the full use of the resolution 

[1]. However, it introduces artifacts on the final image. In chapter 3, the 

viewpoint images (VPs) were defined as	��;,@
.,5
, where n, m are the number of 

Element Images (EI) along vertical and horizontal directions with i, j being the 

coordinates of EI. It is worth mentioning that i,j and n,m are the recorded 

position and direction, respectively. The resolution of the resulting image is 

higher compared to the viewpoint image; this is because the sampling of full 

resolution approach uses sub-images (SIs) instant of VP.  

The VP images are obtained by extracting one pixel from every EI that makes 

the resolution equal to the number of EI along vertical and horizontal 

directions. On the other hand, full resolution rendering is achieved by extracting 

sub-image with SI x SI pixels.  This makes the overall resolution to be SI times 

the viewpoint resolution. For example, let the SI = 2, by enabling to extract two 

pixels from each EI making the resolution twice as higher as the VP resolution. 

The size of SI is dependent on the final depth plane; different size of SI will 

return a different depth plane ‘in focus’ [3]. The EI is defined as ��.,5
@,;
 to 

render full resolution image. We present the algorithm in Fig 4. 1. 
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Fig 4. 1 : The full resolution rendering algorithm resulting image at resolution of n* SI by m*SI 
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4.1.1 Full Resolution Rendering Algorithm: 

n=1: EI : length(OHI,2) 

m=1: EI : length(OHI,1) 

output_Full_resolution=(1:n* A,1:m* A) 

nA = 1:	A ∶ n* A 

mA = 1:	A : m* A 

for Row= 1: length(nA) 

InRow(nA(Row): nA(Row+1)-1 )=(n(Row):n(Row)+ A) 

end 

for Col=1:length(mA) 

InCol(nA(Col): mA(Col+1)-1 )=(m(Col):m(Col)+ A) 

End 

Output_Full_resolution(1:length(inRow), 1:length(inCol))=OHI(inRow,inCol) 

 

The above pseudo code illustrates how the full resolution rendering works, as 

graphically shown in Fig 4. 1. The Row and Col variables are row and column of 

the view size, where the InRow and InCol are row and column of the index 

locations of view from OHI, which is extracted. The final image in the basic full 

resolution rendering returns a strong artifact. This is because the size of SI 

depends on the scene depth. In other words, different depth plane within the 

scene requires different size of SI. Unfortunately, the basic full resolution 

rendering uses fixed size SIs; as a result, artifacts become more apparent on the 

edges of the EI where the size of SI doesn’t match the depth plane of the scene. 

Refocusing is achieved by specifying the size of the SI, but the artifacts remain 

strong in un-matching region of the scene depth plane. Within this process two 

artifacts arised - as explained earlier in Fig 3. 12. First is due to the size of SI 

being too big for a particular object within the scene.  As a result, repetitive 

portion of the same objects are extracted resulting in ‘repetitive’ artifacts. The 

second is due to the size SI being too small for that same object within the 

scene, resulting in ‘pixelated’ artifacts.  Therefore, an up-sampling, shift, and 

integration is introduced in this method to effectively converge the angular light 

rays to a particular depth plane making the refocusing look more natural and 

remove the articles on the final image. 

4.2 Up-sampling, Shift and Integration with Full Resolution Method 

The up-sampling, shift, and integration were discussed earlier in chapter 3. In 

this chapter, however, it has been fused with full resolution method, which 
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reduces the artifacts in the final refocused images. Different prospective views 

of full resolution are extracted, shifted and then integrated by converging the 

same light rays across different SIs to give natural blur on the artifacts region. 

This is because the same points in different SIs are correctly intersected which 

return ‘in focus’ points at that particular image (depth) plane; whereas, the 

mismatch intersection of a point will return a blur region on the image.     

Different views are extracted by shifting the axis of j and i under EI with same 

size SI throughout other EI, shown graphically in Fig 4. 2. Those different views 

are up-sampled by the number of rendered images that are used in shift and 

integration processing to remove the artifacts in the out-of-focused regions. The 

out-of-focus regions in this method appear to be pixelated or repetitive. The up-

sampling is performed before shift and integration; as a result, it enables sub 

pixel integration of the same spatial point across different views to enhance the 

resolution of the refocused image by facilitating more pixels to represent the 

same point. 

It is important to point out the characteristics of full resolution rendering where 

the refocusing is achieved through the size of SI, as the size determines the 

image plane in-focus, whereas the out-of-focus regions emerge with artifacts. 

Therefore, up-sampling, shift, and integration of views compensate the artifacts 

infected regions by appearing blurred, as the in-focus region will remain in-

focus. This is due to different views that have the same disparity value, where 

the image plane is in-focus and it remains in-focus by integrating the same 

spatial point with its different views. In this method, the value of shift is not 

dependent on the image plane, but the image plane is dependent on the size of 

SI, as mentioned above. 
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Fig 4. 2 : The full resolution rendering algorithm is shown with two different views by shifting the 

axis of j by 1 which extracts a full resolution view 2 with the same size of SI. 
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The views are stacked adjacently in horizontal and top-to-bottom in vertical 

directions from one another, forming 4D stack of images 1	
7C

DE
 where (x, y) 

are the coordinates of the image views with (k, p) being the pixel coordinate of 

each view as shown in Fig 4. 3. Furthermore, the selected numbers of views are 

up-sampled to the number of views used, i.e. if two by two views are selected in 

shift and integration process, then each view is up-sampled by two in horizontal 

and vertical directions. Finally, the shift and integration of views are performed 

on the up-sampled view, which is described in eq 4.1. 

FDE = ∑ ∑ 1G
7<-HI;JKL
:L7,			
C<-HI;JKL
:LCM,
D<L7,E<LC	
-HI;JKLLCNO-HI;JKLL7NO             eq (4.1) 

 

where FDE is the result of the integration of different views along vertical and 

horizontal direction and NoViews is the number of views used; k and p are the 

coordinates of the pixels inside each view, which are up-sampled by the 

NoViews to obtain the final refocused image with minimum artifacts. The final 

image resolution is equal to SI times by the up-sampling, where the up-sampled 

pixels are replaced with new pixels after shift and integration of different views. 

Example: If SI =3, n=193, m=129, k = (SI*n), p=(SI*m), y=4, x=4, and NoViews 

=3, where the views resolution equals to (k * NoView) by (p * NoView). Note that 

at this point the view’s pixels are up-sampled by 3 times. These pixels are later 

replaced with new values in the shift and integration process, creating the final 

image with higher resolution than the views. This means that by representing 

one pixel with 3 x 3 pixels, it gives the final image more richer looking.  
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Fig 4. 3 : Graphically illustration of 2 by 2 full resolution rendering with up-sampling of 2 in x and y 

direction. 



Post-Production of Holoscopic 3D Image 

 

Chapter 4 – Digital Refocusing Based on SI Page 83 

 

4.3 Experimental Results and Observations 

To test the proposed method in comparison with the VP pixel manipulation 

technique, a scene that has four objects placed at different distances. The scene 

setup was described in detail earlier in chapter 3. The given test chart is placed 

in the background to check the quality and resolution of the final refocused 

images. This also gives a clearer and easier way of comparing the quality of the 

image with other methods that are clearly taken into consideration in this 

section. The optical system used to capture the images is explained in details in 

[3] with microlens pitch size (B), focal length (F), and pixel pitch (Ѱ) being 

0.09mm, 1.0mm and 0.0031mm, respectively.  

Multiple 2D views of the scene are extracted using high resolution rendering 

method to examine quality of the views. Each view’s quality deteriorates as we 

move closer to the edge of microlens; this is due to the poor quality of 

microlenses itself. Considering the poor views in the process will affect the 

quality and colour of the final image. Thus, a view pickup position is developed 

to visualise and make it more convenient to navigate through the views, 

avoiding the corners of the EI in extracting the multiple views of the scene, as 

shown in Fig 4. 4.  

Before multiple views are extracted, it is important to determine the size of SI.  

This is because the size defines the image planes [2]. The size of the SI is set to 7 

by 7 under every EI, which gets the background (test chart) ‘in-focus’, to 

affectively compare the quality of that image plane with others. Single 2D high-

resolution view at 1344 x 903 pixels is extracted as shown in Fig 4. 5a. 

After multiple views are extracted with 7 by 7 SI, up-sampling, shift, and 

integration of views are performed to defocus the artifact infected regions, 

where the adjustment of blurring is directly related to the amount of views that 

are used in shift and integration. Also up-sampling is taken into consideration 

before the shift and integration process takes place, which largely enhances the 

quality and resolution of the final image–by generating extra pixels in 

representing the same point with multiple pixels from different views.  
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Fig 4. 4 : A small zoomed portion of OH3DI and red squares shows the view pickup position under 

each EI 

 

Fig 4. 5a : Signal 2D view at 1344 x 903 resolutions using 7 by 7 SI size under each EI having the test 

chart ‘in-focused’. 

The shift and integration on high-resolution views shows an increase in 

resolution, (see Fig 4. 6) for the same OH3DI that was used in chapter 3. VP 

pixel manipulation technique in chapter 3 and high-resolution up-sampling, 
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shift, and integration of views are compared, as both are focused at the test 

chart to see the visual quality. Fig 4. 6(b) shows a magnified region of the test 

chart to demonstrate the resolution enrichment by the clearly visible circular 

lines. The obtained results using the VP pixel manipulation technique are 

shown in Fig 4. 7. A magnified section of the background shows that the method 

fails to rebuild the circles properly as compared to the results shown in Fig 4. 

6(b).  This is due to the fact that using VP images are low resolution, to start 

with in this algorithm. 
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4.4 Sub-pixel Adjustment Technique (SPA) 

High resolution with up-sampling, shift, and integration technique still 

produces artifacts. For example, putting the focus at distant object results in 

visible artifacts in the close objects, as seen in Fig 4. 6(c). On the other hand, the 

VP approach doesn’t suffer from such artifacts but suffers from poor resolution 

quality, as shown in Fig 4. 7(c). The arising artifacts are due to a constant size of 

SIs throughout rendering. As real scenes are not at constant depths, mismatch 

exists between different SI sizes. To eradicate this artifacts problem when 

taking such cases, a modification to the eq 4.1 is needed by introducing a 

parameter delta (δ). This delta in eq 4.2 acts as a SPA to blur out the artifacts 

regions in the final image. The SPA is able to intersect light rays coming from 

sub pixels, which allows more control over the integration of pixels with other 

views’ pixels.   

 

eq (4.2) 

FDE = ∑ ∑ 1G
7<-HI;JKL
:L7,			
C<-HI;JKL
:LCM,PD<GQ∗
L7:O
M,			EGQ∗
LC:O	
MS-HI;JKLLCNO-HI;JKLL7NO    

 

 

The value of δ is defined by taking the camera mode into consideration as there 

are two modes Keplerian and Galilean [4]. Both modes are explained in chapter 

2 and have been considered in the process. In Keplerian mode SPA is set to 

positive as the main image is formed in front of the microlenses. This will 

reduce the artifacts to its minimum by setting δ to positive value by blurring the 

artifacts regions in the final image. The amount of blurring depends on the SPA 

that is related to the value of the artifacts in the image to which the value of δ is 

assigned. If the effect of the artifacts is very strong on the image, then δ is set to 

higher value to minimise the artifacts. Whereas, in Galilean mode, the focus of 

the main lens is behind the microlenses that create a virtual image; this sets the 

value of δ to negative to compensate the artifacts region down to its minimum. 

This process is illustrated graphically in Fig 4. 5b with two high resolution 

views. Note that the delta is set to -1 and each pixel is up-sampled by 3x3 in 
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high resolution views before the shift and integration process. Therefore, SPA is 

considered based on how strong the artifact is, whereas in this case assuming 

the artifacts is not as strong by setting delta to -1, it changes to 2. This is 

because views are up-sampled by 3 in x and y directions and integrating the 

pixel by sub-pixel of 0.66666; therefore, it is set to -1 in shift and integration 

process where the delta value changes by the number of views that is up-

sampled in the process, namely 2. 
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Fig 4. 5b : Graphical illustration of SPA 

 

  



Post-Production of Holoscopic 3D Image 

 

Chapter 4 – Digital Refocusing Based on SI Page 89 

 

4.5 Experimental Results and Observations 

The SPA is tested on the same set of images to compare the effect with the other 

methods. The results of this technique are presented against those of the others 

to show the improvement of the artifacts region in the final image with proper 

distribution of colours. This is achieved with proper selection of SI size in the 

process and also the value of delta to reduce the artifacts down to its minimum.  

Where the object is too close to the camera and the focus is on distant objects, it 

has to be taken into consideration, as mentioned above.  

4.5.1 Comparison of Subjective Image Quality 

 

 

 

Fig 4. 6 : (a) The high resolution rendering with up-sampling, shift, and integration. (b) magnified 

region of the test chart ‘in-focus’ and (c) illustrate the foreground object. 
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Fig 4. 6 : Up-sampling, shift and integration refocusing using 7 by 7 VPs: (a) shows the magnified 

part of ARRI Media test chart. (b) Is the foreground looks, as it should be. 

 

 

Fig 4. 7 : The SPA on high resolution rendering with up-sampling, shift and integration (a). (b) 

Magnified region of the test chart ‘in-focus’ and (c) illustrate the foreground object. SI = 7, δ = 6, 

number high resolution views used 10. 
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Fig 4. 8 : The SPA on high resolution rendering with up-sampling, shift and integration (a). (b) 

Magnified region of the test chart ‘in-focus’ and (c) illustrate the foreground object. SI = 2, δ = 2, 

number high resolution views used 7. 

 

 

 

Fig 4. 9 : The SPA on high resolution rendering with up-sampling, shift and integration (a). (b) 

Illustrate the foreground object. SI = 2, δ = 7, number high resolution views used 7. 
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Fig 4. 10 : Rendered image using up-sampling, shift and integration with high resolution views, 

focused at background with SI = 7 by 7, Size of EI = 74 by 74. Red square is the result of up-

sampling, shift and integration and the yellow square is rendered high resolution with Blending 

[2]. 

 

Fig 4. 11 : (a) Rendered focused at seagull with SI = 9 by 9, Size of EI = 74 by 74. (b) Red square is 

the result of up-sampling, shift and integration. (c) Yellow square result is rendered with high 

resolution with Blending [2]. 
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Fig 4. 13 : (a) Rendered image without delta. (b) Magnify red square region of the rendered image 

(a) containing artifacts. 

 

4.5.2 Analysis and Discussion 

Fig 4. 8 shows an improvement on the image with proper distribution of colour 

and blur, with reduced artifacts on infected regions. This also blurs other 

regions on the final image, though not noticeable compared to the artifacts on 

infected region that is blurred out. Note that blurring on the final image with 

SPA has not affected the lines on the test chart, but it has reduced the artifacts 

to give a natural photographic look. 

Fig 4. 12 : (a) Rendered image using SPA. (b) Magnify red square region of the rendered image (a). 
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As the artifacts remain challenging, if needed to be completely removed from 

the image, the size of SI has to be reduced to give more natural look to the final 

image. This will affect the resolution of the image.  The artifacts will be 

completely reduced from the final image, as shown in Fig 4. 9. This 

demonstrates that there is a trade-off between resolution and removing the 

artifacts. 

Moreover, the Todor’s image from adobe called ‘Seagull’ is rendered with up-

sampling, shift, and integration to see the quality and resolution of the final 

image when they are refocused and also rendered with SPA, where the results 

are compared. It’s worth mentioning that Todor’s plenoptic camera design is 

modified to minimise the artifacts in rendering processing [3]. This is due to the 

scene having different magnification at variance depth that causes final 

rendered image with artifacts. The modified design reduces the magnification 

by comprising scene across the entire microlenses. 

Results show an improvement in the proposed approach compared to the high 

resolution rendering with blending. In such a modified version, the final results 

are rendered in high-resolution artifacts free, whereas the SPA in this design 

can benefit from rendering the all-in-focused image as it can be seen in Fig 4. 

12. This is because different scene depths are imaged at different 

magnifications to the camera sensor, as in the modified version the 

magnification does not differ much in different scene depths [3]. SPA makes a 

great impact in rendering all-in-focused images as well as in refocusing.Fig 4. 12 

shows an example of 8 by 8 SI with delta=1 using SPA to generate an all-in-

focused image. The choice of SI size (SS) is determined by SI background (BG) 

size plus SI foreground (FG) size divided by 2 (see eq 4.3), and delta (δ) is set to 

positive value, as camera is in Keplerian mode. The value of delta is set to 9 as 

defined in eq 4.4. To get the background ‘in-focus’ the size SI of a BG is set to 7 

and that of the FG to 9 in getting the foreground ‘in-focused’, as can be seen in 

Fig 4. 11 and Fig 4. 12, respectively. The number of views used in this process is 

equal to the same number as the size of SI that is calculated from the eq 4.3. 

This equation is used to work out what size of SI is needed for extraction of 
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views. Then the outcome of this equation will be added in eq(4.4) to work out 

the δ value.   

SS = 
UV + WV
/2    eq (4.3) 

 

  δ = (
WV − UV
/2 ) + SS 

   δ = FG                                    eq (4.4) 

The same parameters are set in comparing the outcome results without δ in 

SPA. This causes the final image with artifacts that can be seen with the naked 

eyes as demonstrated in Fig 4. 14. Therefore, SPA with delta in up-sampling, 

shift, and integration process is clearly justified by the improvements in the 

final images through visibly removing the artifacts in the modified optical 

design by compressing the scene depth. It also works better without 

compressing the scene depth as demonstrated above with minimum artifacts in 

the refocused images. 
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Fig 4. 15 : demonstrate refocusing with constant SI size in SPA by changing the value of delta in the 

process. 

Fig 4. 14 : illustrates in changing the depth plane from background in (a) to foreground in (f). 
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4.6 Conclusion 

In this chapter, a novel method of refocusing on high resolution views using the 

up-sampling, shift, and integration, as well as SPA were explored and discussed. 

Section 4.2 concentrated on applying the up-sampling, shift and integration on 

high resolution views by comparing the results with the existing methods. 

Experiments proved the effectiveness of the methods in using the same data 

throughout when comparing the results with the existing methods. Sets of other 

images were also used to check the quality of the final image. The images 

proved that the proposed method can achieve higher resolution with acceptable 

quality compared to the current methods.  

To further improve the performance of the method in removing the artifacts 

down to its minimum, the SPA in section 4.4 was presented by introducing the 

delta in the equation to work affectively. This is carried out by using SPA in 

blurring out the artifact regions of the final image, given the value of delta. 

Experiments have shown a clear improvement in the final refocused image, 

achieved by the SPA method on several captured OHI.  The seagull image from 

‘Todor’ is used in this experiment where the optical elements of the camera are 

modified to reduce the artifacts in the final image by rendering with blending. 

Using the Seagull image with SPA returns an all-in-focus image with promising 

results, whereas the same parameters used with up-sampling, shift, and 

integration result in the final image being infected with artifact. The results 

obtained from both methods have improved but still returns unwanted noise in 

the final image. 
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5. Chapter Five 

Smart Filters 

This chapter presents a new method that further enhances the image quality 

generated using up-sampling, shift, and integration process described in 

chapter 4. This process is known as high-resolution or super-resolution image 

reconstruction, which is achieved by combining a set of low-resolution noisy 

blurred images to generate a higher resolution image [1]. The process was first 

introduced in [2] where the idea was carried out on data obtained through 

traditional light field camera [3]. Later in [4] new optical design was introduced 

to reduce the artifacts and also to increase the resolution. The new focused 

plenoptic design in [4] reduces the artifacts but also decreases the refocusing 

plane, as this setup is limited to the number of refocusing planes.  

The images in focused plenoptic camera are rendered with blending, where the 

final image results contain artifacts. Therefore, up-sampling, shift and 
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integration with sub-pixel adjustment introduced in chapter 4 reduce the 

artifacts on both focused plenoptic and modified focused plenoptic [4]. Based 

on the results in chapter 4, noises on the final refocused image is observed, 

where the image features are blurred out with noise on the ‘in-focus’ regions 

during the process. Therefore, a method referred to as ‘smart filters’, is 

introduced to enhance the quality of the final refocused images in the process.  

Removing noise from the final refocused image is challenging since only ‘in-

focus’ part of the final refocused image needs filtering to obtain an enhanced 

artifacts free image.  

5.1 Flow chart of The Proposed Method  

Fig 5. 1 illustrates the steps of smart filter in generating the final enhanced 

refocused image.  

 

Fig 5. 1 : Illustrate the three steps pre-process, high resolution refocusing and post-processing 

respectively in achieving the final enhanced image.  
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5.2 Image Correction on Pre-processing 

Before proceeding with high resolution refocusing, the noises of the acquired 

holoscopic 3D images (H3DI) are removed that affect the final results. As 

mentioned in chapter 3, the microlens array of low quality are placed in front of 

camera, where it will refract light by introducing noise on the captured image. It 

is vital to recover every detail of the image while removing the unnecessary 

noise that is obtained during the capture stages. In order to decrease the noise 

on the holoscopic 3D image, an efficient image processing technique is 

introduced. 

The image is first processed using low-pass Gaussian filtering by suppressing 

noise and small fluctuations. In the frequency domain, this process refers to the 

suppression of high frequencies [5]. The most general function formula in 1D is 

given in eq 5.1 

V
7
 =	 O
[√]^ 	_:	


`ab
c
cdc        eq (5.1) 

 

Fig 5. 2 : (a) Gaussian or normal distribution and (b) Gaussian distribution truncated at point ±3 σ 

Where σ is the standard deviation of the distribution and a is a statistical 

expectation responsible for distribution shifting along x axis to be zero: a = 0; 

and work with simplified form in eq 5.2. The distribution is assumed to have a 

mean of 0. Graphical illustration of Gaussian distribution is shown in Fig 5. 2.  

The standard deviation of the Gaussian function plays an important role in its 

behavior. 
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V
7
 =	 O
[√]^ 	_:	

`c
cdc         eq (5.2) 

 

Note that real axis x ∈ (-infinity, infinity) spread endlessly to the left and right. 

Therefore, using the rule of 3σ Gaussian distribution is utilized, which is x ∈[-

3σ, 3σ] as shown in Fig 5. 2b. The values set between +/- σ account for 68% of 

the set, while two standard deviations from the mean (blue and brown) account 

for 95% and three standard deviation (blue, brown and green) account for 

99.7%. If input signal S= {f;} is applied for every signal element	f;, a new 

modified value f′;will be calculated. In other words, “for every element put in 

window so that this element is in the centre of the window, multiply every 

element in the window by corresponding weight and sum up all those products, 

the result of which is the new filtered value.” The smoothing is achieved without 

suppressing high frequencies to enhance the signal. The method is described 

below. 

f′′; = 2f;  - f′;     eq (5.3) 

 

The above formula suppresses the low frequencies and also amplifying the high 

frequencies, as it is simple and effective in removing the noise in the signal. This 

is shown in Fig 5. 3, where s′′g is the modified value from the original signal 

element of 2sg	subtracting it from the smooth signal element of	s′g. The above eq 

(5.3) acts as unsharpened filter that derives its name from the fact it enhances 

edges via a procedure which subtracts an unsharpened, or smoothed version of 

signal from the original signal. This method is commonly used in the 

photographic and printing industries for crispening edges [27]. To better 

understand how the eq (5.3) is derived, below shows the working. 

f;h = f; – fi;                    eq (5.4) 

Where f′;is the smooth signal of f;, the original signal. 

When subtracting away the low-passed signal from original signal that will 

produce only a high-passed signal of f;h, Fig 5. 3(c) is generated. This high-
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passed signal can be used to achieve enhanced signal combined with original 

image. Adding back the original signal to f;h will sharpen the signal as defined 

in eq (5.5). The characteristic of this signal response is shown in Fig 5. 3(d). 

f′′;Nf;h+f;                                  eq (5.5) 

The eq (5.5)’s complete form is shown below in eq (5.6). 

fii;N
f;:fi;
+f;                  eq (5.6) 

Where this is further simplified and expressed in eq (5.3) as shown in Fig 5. 

3(e).  

 

Fig 5. 3 : Presentation of 1D Signal. (a) Original signal, (b) smooth signal, (c) is the difference 

between (a) and (b), (d) is (a) minis (b) plus (a) and (e) is the complete filtering operator. 

The red line in Fig 5. 3 signifies the original signal before smoothing by the 

Gaussian filter. Smoothing will suppress the high frequencies and amplifies low 

frequencies element whereas s′′g	suppresses the low frequencies and amplifies 

the high frequencies element depending on the smooth signal (see Fig 5. 3). 

While working with images, it’s important to use the two-dimensional Gaussian 

function which is expressed in eq 5.9. This is simply the product of two 1D 

Gaussian functions eq (5.7) and eq (5.8), which means that 2D distribution is 
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split into a pair of 1D in horizontal and vertical directions as shown in Fig 5. 4 

for 2D distribution.  

V
7
 =	 O
[√]^ 	_:	

`c
cdc      eq (5.7) 

V
C
 =	 O
[√]^ 	_:	

jc
cdc     eq (5.8) 

V
7,C
 =	 O
]^[c 	_:	

`ckjc
cdc  = 	 O

[√]^ 	_:	
`c
cdc 	 O

[√]^ 	_:	
jc
cdc = V
7
V
C
 eq (5.9) 

 

Fig 5. 4 : 2D Gaussian or normal distribution 

 

The 2D Gaussian filter is applied on the original image as a point-spread 

function and this is by convolution. Since the images are stored as a collection of 

discrete pixels, that need to produce a discrete approximation to the Gaussian 

function before convolution is applied. After a suitable kernel has been 

calculated, the Gaussian smoothing can be performed using standard 

convolution methods. The convolution is applied efficiently since the equation 

for 2D Gaussian shown above (see eq (5.8)) is separable into x and y 

components. The 2D convolution is performed by first convolving 1D Gaussian 

along x direction and then along y direction with another 1D Gaussian. The 

Gaussian smoothing function is to blur an image, which is similar to the mean 
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filter. However, in this particular one, the degree of smoothing is determined by 

standard deviation of the Gaussian. The smoothing for each pixel is weighted 

average that is more towards the value of the central pixels. This provides 

gentler smoothing and preserves edges better than a similarly sized mean filter 

does. Finally the eq 5.3 is applied where the original image of sg,l is multiplied by 

2 and is subtracted from the filter image of s′g,l, which will have an inverse 

smoothing effect along x and y directions, without affecting the details of the 

image. Fig 5. 5 shows the obtained results by performing the pre-processing 

stage. In doing so it will not act as a high-pass filter by amplifying both high and 

low frequencies, but it will reduce the noise on the image without affecting the 

details. In other words, when multiplying the original image by 2, this will 

increase the effect by a factor of 2. Whereas on the Gaussian filtered image, the 

smoothing process reduces noise while affecting the details, as shown in Fig 5. 

5(b). In order to apply negative smoothing effect on the image with the same 

amount that is applied on the original image effectively without distressing the 

details, taking the 2sg,l-s′g,l approach will sustain a detailed image of the HI, as 

every detail in the HI is vital for high resolution refocusing process. 
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Fig 5. 5 : Illustrates the results of pre-processing with different values sigma. (a) section of portion 

of the original HI. (b) low-pass image, (c), (d), (e) and (f) are the result of �′′�,� with different sigma 

value and with 10 by 10 kernel. 

5.3 Image Smoothing on Post-Processing 

Post-processing is an important stage in this section, by effectively removing 

part of the noises such as slight blur to make the result more photographic 

without any artifacts on the final image. In this post-processing smoothing 

technique via mn	,	gradient minimisation [6] approach is adopted, which is 

particularly effective for sharpening major edges by increasing the steepness of 

transition while eradicating manageable degrees of low-amplitude structures. 



Post-Production of Holoscopic 3D Image 

 

Chapter 5 – Smart filters Page 107 

 

This edge-preserving smoothing approach depends on global important edge 

instant of local feature [7][8][9][10][11][12], which aims to globally maintain 

and possibly enhance the most prominent set of edges by increasing steepness 

of transition while not affecting the overall acutance [6]. 

The mn	gradient minimisation produces smoothing results based on new metric 

to discreetly constrain the number of none-zero gradients. In Fig 5. 6, a 1D 

scanline of a natural image is presented, after restricting the number of none-

zero gradients while smoothing is performed in a global manner. Lower 

amplitude structure is removed during the process, though it does not reduce 

blur salient edges even with a close approximation. 

5.3.1 The Background 

The study in [6] presents most of the edge-preserving smoothing operation that 

can be achieved using local filtering. The most commonly used filter is bilateral 

filter for its simplicity in removing noise-like structures effectively. Tomasi and 

Mansuchi first adopted this method in 1998 [7] and later a fast version of this 

method was presented in [8][13], producing similar results with less 

computation time. Shortly after 2006 a real-time bilateral smoothing technique 

was proposed by Chen and Paris in [14]. Other similar bilateral filters emerged 

in later years [15][16][17][18].  

The bilateral filter provides a trade-off between details flattening and sharp 

edge preservation when it is compared with weighted least square (WLS) 

method [10]. Another filter was reported in [19][20] for suppressing noise 

while preventing its effect on strong edges.  At the same time in 1992 total 

variation (TV) method was used in [6] where the process influences the 

contrast with large gradient magnitudes during smoothing. The method called 

edge-preserving multiscale image decomposition based on local extreme was 

reported in 2009 [11]. The method is originated from Hilbert-Huang transfer 

(HHT) and is used to remove small noises. 
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Fig 5. 6 : Result obtained for both details and sharp edges of an image. (a) Bilateral filtering. (b) 

Anisotropic diffusion used in the LCIS system. (c) Weighted least squares optimization. (d) Total 

variation smoothing. (e) Smoothing via op	gradient minimisation. 

 

The mn	gradient minimisation smoothing works by accurately selecting the 

boundaries using graph-cut techniques based on the work reported in 

[21][22][23] and segmentation process reported in [24][25]. An approach to 

deal with textural replacing a geodesic image and video editing was proposed in 

[26] and techniques for diffusion maps for edge-aware image editing was 

reported in [17]. The aim is to effectively remove the noise and globally 

preserve and enhance salient edges. 

5.3.2 op	Gradient Minimisation 

This method confines the discrete number of intensity change among 

neighboring pixels that links mathematically to the	mnnorm for formation 

sparsity pursuit. It leads to new discrete metric, as reported in  [6] involving 

global optimisation that enables diversified edge manipulation, making edges 

easier to detect and more visually distinct. This smoothing method globally 

locates the most prominent set of edges while effectively removing part of 

noises, unimportant details, and even of slight blurriness, making the resulting 

image visually high quality without affecting the overall acutance around the 

edges. 

In 2D image representation, the gradient q71E, qC1E for each pixel p is calculated 

as a color difference between neighboring pixels along x and y directions. The 

auxiliary variables ℎE and sE are introduced that correspond to q71E and	qC1E, 
respectively.  β is an automatically adapting parameter to control the similarity 

between variable (h, v) and their corresponding gradients. In [6], the equation 

was diagonalised to derivative operator after Fast Fourier Transform (FFT) is 

applied to speed up the process (see eq (10)). 
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z  eq (10) 

Where ƭ is the FFT operator and ƭ
	
∗ denotes the complex conjugate. ƭ(1) is the 

Fourier Transform of the delta function. The plus, multiplication, and division are all 

component-wise operators. Computing in the Fourier domain is much faster due to 

the simple component-wise division [28]. Also defined in eq (11) is its minimum 

energy �E∗ condition, where for each pixel p the minimum energy �E∗ is computed. λ 

is a smoothing parameter that controls the degree of smoothing. A large λ makes the 

result have very few edges.  

GℎE, sEM = 	{ 
0, 0

Gq71E, qC1EM		

	
q71E
] +	
qC1E
] 	≤ 	}/~
	�ℎ_���f_     eq (11) 

The minimisation algorithm is sketched below: 

Input: image I, smoothing weight λ, parameter~n, ~567 and rate κ 

Initialization: S	⃪	I,	β	⃪~n, i ⃪ 0 

Repeat 

 With 1
;
, solve for ℎE
;
and sE
;
 with eq (11) 

 With ℎ
;
and s
;
, solver for 1
;<O
 eq (10) 
 β ⃪ κβ, i++ 

Until β ≥ ~567 

Output: result image S 

 

The parameter β is automatically adapted in iteration starting from a small 

value	βn; it is multiplied by κ each time. This scheme is effective to speed up the 

convergence [6]. 

5.3.3 The Smoothing Technique 

After successfully rendering the refocusing images from recorded HI as 

described in chapter 4, blurry noise is still noticeable to the naked eyes. 

Therefore, a post-processing technique is considered to take care of the 

unnecessary noises that are observed on the image. Image smoothing via mn 

gradient minimisation method is taken into consideration. This is chosen due to 

its strong outcomes as reported in [6] when using the 2D example of Farbman 

et al in 2008, to evaluate and compare the smoothing performance. Fig 5. 7(a) 
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shows the results with the same noisy image created by Farbman et. al (2008) 

to illustrate the performance of smoothing. Study in [6] reported that image 

smoothing via mn gradient minimisation generated a cleaner result (see Fig 5. 

7(e)) among other approaches, as shown in Fig 5. 7(b)-(d). 

 

Fig 5. 7 : Visual representation created by Farbman. (a) Color visualized Noisy input image (b) 

Result of Subr et al [11]. (c) Result of Bilateral filtering (BLF) with (σs=12, σr=0.45). (d) Weighted 

least square optimization (α=1.8, λ=0.35). (e) Smoothing via op	gradient minimisation (λ=0.01). 

This smoothing is based on a sparsity measure of global preservation of edges, 

even in very narrow object boundaries. Two features of this smoothing 

operator that are ideal for our post-processing stage are that, (i) it flattens the 

insignificant details by removing small non-zero gradients and (ii) it enhances 

prominent edges because large gradients receive the same penalty as the small 

ones. As shown in Fig 5. 7(e), acceptable removing of the noise and preserving 

the edges result in rich textual image, whereas Fig 5. 7 (b) to (d) fail in doing so.   

5.4 Experimental Results and Observations 

In this process, the blurry noise affect is removed successfully in refocused 

image that was seen in chapter 4.  Fig 5. 8(a) shows the outcome of refocused 

image portrayed against Fig 5. 8(b), which is the result of preforming the image 

smoothing via L_0 gradient minimisation to enhance the quality through 

successfully removing the blurring noise on the focused region as well as 

smoothing the defocused region, giving more natural blurring effect.  Also the 

results obtained look far better in comparison to (a), reason being that this 

smoothing automatically determines a different size of Gaussian kernels for 

each pixel to optimum smoothing. Therefore, an enhanced edge can visually be 

observed on the final image in the Fig 5. 8(b).  

Fig 5. 9(a) shows the image plane focused on foreground object, portrayed 

against Fig 5. 8(b), which is focused on the background, from the same HI in Fig 
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5. 8(c) performing the refocusing algorithm in chapter 4. The Sub-image (SI) is 

set to 2; shift (δ) to 6 and 7 by 7 different views are used in Fig 5. 8(a) whereas 

in Fig 5. 9(a), SI= 2, δ=1 and the same 7 by 7 different views are used to change 

the focus plane to foreground object.  
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5.4.1 Subjective quality comparison 

 

Fig 5. 8(a) : Illustration of image focused on the background. (SI = 2, δ = 6 and 7 by 7 different 

views). 

 

Fig 5. 8(b): Demonstrates the result of Fig 5. 8(a) after performing smoothing via �p gradient 

minimisation (λ=0.007). 
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Fig 5. 8(c) : Demonstrates HI with microlens pitch = 90μm, focal length = 1mm, EI size 29 by 29 

pixels resolution. 

 

Fig 5. 9 : (a) Shows the image plane focused on the foreground object with set parameters (SI = 2, δ 

= 1 and 7 by 7 different views). (b) is the result from (a) using image smoothing via opgradient 

minimisation (λ=0.007). 

As seen in the figures, increasing the lambda (λ), which is the smoothing 

parameter controlling the degree of smoothing, affects the edge strength. Thus 

the parameter λ is set manually depending on the input image to achieve the 

best possible outcome. Just to note that when smoothing an image in some 

filters it causes blurring to the edges. However, mn	gradient minimisation 

sharpens the edges while flattening the noise to an appropriate level for each 

pixel.  The obtained results demonstrated the effectiveness of this smoothing 

approach. 
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Fig 5. 10 : Illustrates results of smoothing via opgradient minimisation with different lambda 

starting from 0.005, 0.007, 0.009, 0.01, 0.02, 0.03, 0.04 and 0.09 respectively and other parameter 

are set the same throughout in this figure where the focus is set to the background with set 

parameter, SI = 2, δ = 6 and 7 by 7 different views. 
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Fig 5. 11 : Illustrates results of smoothing via L_0 gradient minimisation with different lambda 

starting from 0.005, 0.007, 0.009, 0.01, 0.02, 0.03, 0.04 and 0.09 respectively and other parameter 

are set the same throughout in this figure where the focus is set to the foreground object with set 

parameter, SI = 2, δ = 1 and 7 by 7 different views. 
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5.5 More Analysis of Resulting images 

To clarify the difference in setting the lambda, different images are used in 

order to find the optimum value in successfully suppressing the noise to its 

minimum by keeping the natural photographic look. In general photos normally 

consist of very small amount of noise. But with clever image processing, noise 

can be removed while maintaining a fine edge remains still difficult. In our case, 

however, the refocused image contains noise as well as blur due to two factors. 

(1) The microlens array is of a low quality and also it has scratch marks which 

introduces noise in the final image as it abstracts light flow to right direction(s), 

(2) the blurring affect in the refocused image is obtained with our refocusing 

algorithm as explained in chapter 4 with recursive or iterative shift and 

integration of different views causing the blurring effect on the overall image. 

Therefore gradient minimisation smoothing is considered to compensate both 

suppressing noise without deteriorating edges and removing the overall blur on 

the image down to its minimum.  

Detailed observation of our experiment reveals the best λ weight, namely 

0.005< λ<0.02, in achieving the optimum result. This can be perceived from our 

experiment by generating high quality result in suppressing noise and 

preserving the edges. On the other hand, increasing the λ greater than 0.02 will 

diminish insignificant details of the image, which looks more non-photorealistic 

as this can be seen in the results of our experiment. 
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Fig 5. 12 : Results of smoothing via L_0 gradient minimisation with different lambda with 0.007, 

0.01, 0.02, 0.03, 0.04 and 0.09 respectively and other parameter are set the same throughout in this 

figure. Parameter, SI = 4, δ = 4, microlens pitch = 90μm, focal length = 1mm, EI size 29 by 29 pixel 

resolution. 
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Fig 5. 13 Our final refocused image results with different lambda values. .  λ = (0.007, 0.01, 0.02, 

0.03, 0.04 and 0.09) respectively, SI = 4, δ = 2, 7 by 7 different views, microlens pitch = 90μm, focal 

length = 1mm. 

 

Our smart filter framework produces an effective result in removing blur on the 

focused plane and suppressing noise down to its minimum acceptable level 

with λ set to 0.005< λ<0.02 as mentioned above. Fig 5. 14 shows the shadow of 

the cube that is faded away in red square due to low contrast that is 

indistinguishable around boundaries with large λ. This resulted in significant 

details loss by global optimisation and maintaining the main structure, while 

slightly sharpening the overall image. The same resulting image goes under 
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post-processing with λ set to 0.007, which does not affect the major details of 

the image, yet it mainly removes unwanted small enough structures that are 

considered as noise, leaving the final image in much higher quality with more 

fine edges (see Fig 5. 15). Notice that the faded region in Fig 5. 14 remains 

visible in Fig 5. 15. Further, other major details look more photographic in Fig 

5.15 compared to those in Fig 5. 14. 

 

Fig 5. 14 : (a) Post- processing result with λ set to 0.09 focuses on the test chart. (b) shows the 

close-ups results in (a) that is illustrate with two square color blue and red. 
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Fig 5. 15 : (a) Post- processing result with λ set to 0.007 focuses on the test chart. (b) close-ups 

results in (a) that is illustrate with two square color blue and red. 
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5.6 Subjective Assessment of Image Quality 

Image quality is measured in two ways; subjective and objective methods [29]. 

Subjective image quality assessment is geared directly toward properties of the 

human visual system where the evaluation of quality is obtained by mean 

opinion score (MOS) [30]. Objective image quality assessment is designed 

mathematical to predict the quality of an image accurately and automatically. 

The ideal Objective image quality assessment is to mimic the quality predictions 

of an average human observer based on the availability of reference image that 

is measured to be undistorted and have perfect quality [31]. Since there is no 

reference image, as the images are reconstructed from Holoscopic 3D image, 

subjective image quality assessment is considered. This is to obtain a better 

understanding of how the spatial resolution affects the perceived quality in 

different refocusing algorithms. The main goal of many subjective image quality 

assessments is based on objective judgment and rational comparison of an 

external image with the image imprinted or remembered more or less distinctly 

by the subject [32]. Since human observers are the ultimate users in most of the 

multimedia applications, the most reliable and accurate methodology of 

assessing the quality of image is through the subjective evaluation [29]. This 

section investigates subjective assessment for four different algorithms of 

refocusing on four images. Subjective tests are performed to verify the quality 

image for each refocusing algorithm including the proposed refocusing 

algorithm. 

5.6.1 Review of Subjective Quality Assessment Methods 

The most reliable method for assessing the quality of image is through the 

human visual system. In this method, human performs the task of assessing 

visual quality and understanding the quality perception [33]. In subjective 

testing a group of observers are asked to give their opinion on each of the image 

quality. In order to perform subjective image quality testing, numerous 

international standard frameworks have been proposed to provide reliable 

results [32]. Below are some of the international image quality testing 

standards: 
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• ITU-R BT.500-11 [34] proposes the standard of different subjective 

quality assessment of television content. This standard quality 

assessment method contains information about the observer’s viewing 

condition, instructing how to conduct the subjective experiment, test 

materials and presentation style of subjective results.  

• ITU-T P.910 [35] proposed the standard for video quality assessment 

with transmission rate below 1.5 Mbits/sec. 

• ITU-R BT.814-1 [36] proposed to set the brightness and contrast of the 

testing equipment. 

• ITU-R BT.1129-2 [37] is for assessing the quality of the standard 

definition (SD) in video sequence. 

Below is a list of standardized subjective IQA methods: 

1. Single stimulus categorical rating 

2. Double stimulus categorical rating 

3. Ordering by force-choice pair-wise comparison 

4. Pair-wise similarity judgments 

5.6.2 Description of Assessment Methods 

We applied subjective image quality assessment methodology to obtain the 

participant’s opinions using single stimulus methods (SS). In this method, test 

images are displayed on a monitor for a fixed period of time, and then observers 

are asked to rate their quality on a scale of one to five : excellent, good, fair, 

poor or bad. All rendered refocused images are randomly displayed on the 

monitor to avoid quantisation artifacts, (see Table 5. 1 for grading). In this 

assessment, no comparison with an impaired reference is made during the 

presentation and only single test image is displayed each time. In Fig 5. 16 a 

typical structure representation of the method is shown.  

Table 5. 1 : Five grade quality scale 

1 2 3 4 5 

Bad Poor Fair Good Excellent 
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Assessors have been given a survey form, which includes the scale very clearly, 

and has numbered boxes or some other means to record the grading. 

 

5.6.3 Presentation of the test material 

 

Fig 5. 16 : Structure of presentation for subjective test material 

At the beginning of each session, it is important to give the observer an 

explanation of the whole process of evaluation. That includes type of 

assessment, the grading scale, the image sequence and timing (test image, 

voting period). The range and the type of images are shown to the observer for 

better understanding of how it is done. The observer should be asked to base 

their judgment on the overall impression given by each image. The observer is 

asked to continuously look at the display monitor when the image is displayed 

for 4-5 seconds, then voting should be permitted only during 3 seconds after 

image is disappeared from the display monitor.    

 

5.6.4 Equipment used and viewing conditions 

In the experiment, we displayed the images on a 24-inch display monitor with 

screen resolution of 1920x 1200 pixels, at frequency of 60 Hz x 60 Hz. The 

display monitor was at a viewing distance of 1m. Each subject had to judge all 

the images from the same distance. All participants are asked to sit at 1m 

distances away from the display monitor during the experiment. All the images 

are displayed in a controlled environment with a constant balance of light in the 

lab. 
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5.6.5 Databases of Subjective results & test materials 

The dataset that we used for this experiment were those that have been used in 

previous chapters in this thesis and also the seagull that made public by 

researcher Todor Georgiev at tgeorgiev.net. These images were rendered using 

four algorithms, 1) Native VP refocusing [40], 2) Full resolution refocusing [38], 

3) Full resolution with blend [4][39] and 4) SPA with smart filters (proposed 

method).  These images are used for testing in order to show that the proposed 

method renders images in higher quality across other mentioned algorithms. 

  

(a) (b) 

 
 

(c) (d) 

Fig 5. 17 : Illustration of dataset used in testing, (a) OHI Image A with micro image size 29x 29 

pixels, (b) OHI image B with micro image size 29x 29 pixels, (c) OHI image C with 74x 74 pixels and 

OHI image D with 29x 29 pixels with different lighting condition than image A. 
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Table 5. 2 : Presentation of algorithms 

Count Name Description 

1 Algorithm 1 Native VP refocusing 

2 Algorithm 2 Full resolution refocusing 

3 Algorithm 3 Full resolution with blend 

4 Algorithm 4 SPA with smart filters (proposed method) 
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Table 5. 3 : Presentation of rendered image for subjective testing 

Name Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

 

 

 

    A 

    

 

 

 

    B 
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    C 

    

 

 

 

    D 
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5.6.6 Subjective Participants 

In order to measure human perception on the quality of rendered images using 

different algorithms, a total of 35 candidates with 19 males and 16 females 

were volunteered to participate in the CMCR lab experiment at Brunel 

University. Their age range varies from 18 to 55 with good colour vision. The 

observers were mostly research students including few undergraduate students 

with a relevant technical background. All experiments were conducted based on 

the ITU-R requirement of subjective quality image assessment, based on which 

the participants are not experienced in or exposed to image quality 

assessments, nor are they aware of the purpose of the experiment. 

Table 5. 4 : Distribution of participants in the subjective studies 

Group Age Range Female Male Sub Total 

CMCR Lab, 

Brunel 

18-to-25 6 11 17 

26-to-35 6 6 12 

36-to-45 4 1 5 

46-to-55 0 1 1 

56-to-65 0 0 0 

Total Participants 16 19 35 

 

5.6.7 Subjective Protocol 

At the beginning of the experiments, each participant received a brief 

explanation and performed trial tests. This experiment includes four images 

that were rendered with different refocusing algorithms in the viewing trial and 

rating it. But these trial test images were not included in the actual 

experimental data analysis, as they were only for the purpose of familiarity. 

The participants were required to take the actual experiment after completing 

the trial experiment session. The participants were also asked to accurately 

grade each image as possible in their judgment, but within a given time period 

during the voting. After completing the experiment, the participants were 

required not to change their recorded scores prior to the submission of their 

scoring sheet.  
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5.6.8 Subjective Grading 

For each experiment, the qualities of images were rated by participants on the 

scale of: 

• Excellent, Good, Fair, Poor, Bad 

• Very important, Important, Less important, Poor, Not important 

Participants were required to continuously assess all of the test images and 

grade the quality of the image accurately according to the provided scale. Table 

5.5 shows the observed results. All the scales were based on ITU-R five point 

quality scales [37]. Subjective opinion scores obtained from the above studies 

were averaged across all the subjects to act as an indicator of the perceived 

image quality. This experiment does not have a reference image to compare it 

with, but the participants are asked to judge the quality of the image based on 

the contrast, lighting, artifacts, blurring and colour balance as a whole for each 

image. 

Table 5. 5 : Data view of the Mean Opinion Scores 
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5.6.9 Mean opinion scores 

After completing the screening, the mean opinion score (MOS) of the statistical 

distribution of the measured for each test image is computed as: 

�	1 = 	∑ �	. �
�
�;NO      eq (12) 

Where � is the grade of subject participants and �
�
 is the grade probability. 

The standard deviation is calculated in eq (13) to show how spread out the 

mean opinion scores is. The relationship between the estimated mean values 

based on a sample of the population and the true mean values of the entire 

population is given by the confidence interval of estimated mean.  

�] = ∑ 
� − �	1
]	.		�
�
�;NO     eq (13) 

 

��		+	�	 � √��      eq (14) 

Confidence α/2 Z score 

90% 0.05 1.65 

95% 0.025 1.96 

99% 0.005 2.58 

 

where α is a degree of confidence, � corresponds to the number of subjects, σ is 

the standard deviation of a single test across participants and �� is a sample 

mean that estimates the best point of the confident interval. The confidence 

interval means that if the same test is repeated for a large number of times 

using random sample of the population, then the confidence interval will 

contain the true mean value. We compute our confidence intervals for an α 

equal to 1.96, which corresponds to a degree of confidence of 95%. The results 

from the study clearly shows that the experiments’ entire range of quality levels 

are satisfactory [31]. Also, the confidence intervals are reasonably small, hence 

proving that the response required from each participant were accurate and 

consistent with their grading [32]. This is equivalent to say that we are 95% 
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confident that the population mean or the true mean value lies within the 

confidence interval calculated by the eq (14). 

5.6.10 Results and Analysis  

A detailed statistical analysis of the subjective results was processed using excel 

tool to obtain the MOS by averaging all the respondents’ grades. Also 95% 

confidence interval was computed. Fig 5. 18 shows the distribution of age and 

gender for subjective studies. Fig 5. 19 shows the gender representation of the 

subjective studies. 

Fig 5. 20, shows the familiarity of image quality amongst the participants. This 

is carried out using questionnaire survey before starting the screening test. It 

illustrates that a high number of participants have a good knowledge of image 

quality for this studies, a total of 9, 16, 8, 2 and 0 have excellent, good, fair, Don’t 

Know and Bad knowledge of image quality, respectively. 

The knowledge of Holoscopic 3D amongst the participants are shown in Fig 5. 

21. A large number of subjects in the studies were unaware of Holoscopic 3D, 

whereas 3, 9, 9 and 3 of the subjects expressed their knowledge as excellent, 

good, fair and bad, respectively.  

Through the series of experiments conducted, we analysed all the respondents’ 

feedback and observed how each of the respondents assessed each image using 

different algorithms. The results were plotted in graph and tabular formats to 

show the respondents’ rated assessment of the image quality.  
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Fig 5. 18 : Participants distribution in term of age and gender using bar chart 

 

 

Fig 5. 19 : Gender representation in pie chart 
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Fig 5. 20 : Representation of image quality in term of gender in line graph 

 

 

Fig 5. 21 : Knowledge of Holoscopic 3D in bar chart 
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Algorithm 1: (Native VP refocusing) 

 

Fig 5. 22 : MOS values for image quality using Algorithm 1 represented in bar chart 

Table 5. 6 : Mean, Standard Deviation for Algorithm 1 computed 

Algorithm 1 Image A Image B Image C Image D 

Excellent Quality 0 0 0 0 

Very Good Quality 0 0 0 0 

Good Quality 10 8 7 4 

Poor Quality 16 18 7 15 

Very Poor Quality 9 9 21 16 

MOS 2.03 2 1.6 1.66 

Standard Deviation 2.302 2.06 2.77 2.208 

95% Confidence Interval 0.762 0.682 0.917 0.731 

Confidence interval outside - 1.267 1.317 0.682 0.928 

Confidence interval outside + 2.792 2.682 2.517 2.391 

 

Table 5. 7: Confidence interval for all the test images using Algorithm 1 

Name Confidence level Confidence interval 

Image A 95% (1.267 < μ < 2.792) = 0.95 

Image B 95% (1.317 < μ < 2.682) = 0.95 

Image C 95% (0.682 < μ < 2.517) = 0.95 

Image D 95% (0.928 < μ < 2.391) = 0.95 
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Fig 5. 22 shows the MOS of image quality for algorithm 1 using all the test 

images. For each image, the MOS is computed and presented in both graph and 

tabular formats. Table 5. 6 shows the computed mean, standard deviation and 

confidence interval for each image rendered with algorithm 1.  Table 5. 8 

presents the MOS values, standard deviation and confidence interval associated 

with algorithm 2.  Table 5. 10 and Table 5. 12 present the MOS, standard 

deviation, and confidence interval using all the test images for algorithms 3 and 

4, respectively.  Fig 5. 23, Fig 5. 24 and Fig 5. 25 show the MOS in bar chart 

format for algorithms 2, 3 and 4, respectively. These figures better visualise 

algorithms in terms of the image quality. 

In image A, the confidence limits are 2.03	+	�. ��	 �. �p� √��� , or 2.03 + 0.762. 

The 95% confidence interval for the population mean µ lies between 1.267 and 

2.792. This means that the probability that the population’s mean image quality 

for algorithm 1 on image A lies between 1.267 and 2.792 is about 95% or 0.95. 

We can write this as p(1.267 < μ < 2.792) = 0.95.  In other words, we are 95% 

confident that the population’s mean (or true mean) quality of image A using 

algorithm 1, lies between 1.267 and 2.792. The population’s mean image quality 

associated with algorithm 1 for all the four test images are presented in Table 

5.7.  Table 5. 9, Table 5. 11 and Table 5. 13 show the computed 95% confidence 

intervals associated with the algorithms 2, 3, and 4, respectively.  
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Algorithm 2: (Full resolution refocusing) 

 

Fig 5. 23 : MOS values for image quality using Algorithm 2 represented in bar chart. 

Table 5. 8 : Mean, Standard Deviation and Confidence interval for Algorithm 2 presented. 

 

 

 

 

 

 

 

 

Table 5. 9 : Confidence interval for algorithm 2 on all the test images. 

 

 

Algorithm 2 Image A Image B Image C Image D 

Excellent Quality 0 0 0 0 

Very Good Quality 3 0 2 1 

Good Quality 13 10 15 12 

Poor Quality 16 16 13 15 

Very Poor Quality 3 9 5 7 

MOS 2.46 2.03 2.40 2.20 

Standard Deviation 2.056 2.303 2.2181 2.268 

95% Confidence Interval 0.681 0.762 0.734 0.751 

Confidence interval outside - 1.778 1.267 1.665 1.448 

Confidence interval outside + 3.141 2.792 3.134 2.951 

Name Confidence level Confidence interval 

Image A 95% (1.778 < μ < 3.141) = 0.95 

Image B 95% (1.267 < μ < 2.792) = 0.95 

Image C 95% (1.665 < μ < 3.134) = 0.95 

Image D 95% (1.448 < μ < 2.951) = 0.95 
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Algorithm 3: (Full resolution with blend) 

 

Fig 5. 24 :MOS values for image quality using Algorithm 3 represented in bar chart. 

Table 5. 10: Mean, Standard Deviation, Confidence interval for algorithm 3 computed  

 

Table 5. 11 : Confidence interval computed for algorithm 3 

Algorithm 3 Image A Image B Image C Image D 

Excellent Quality 5 8 7 0 

Very Good Quality 11 10 7 8 

Good Quality 11 11 17 11 

Poor Quality 8 6 4 12 

Very Poor Quality 0 0 0 4 

MOS 3.37 3.57 3.48 2.66 

Standard Deviation 2.72 2.495 2.86 2.63 

95% Confidence Interval 0.901 0.826 0.947 0.871 

Confidence interval outside - 2.468 2.745 2.538 1.788 

Confidence interval outside + 4.271 4.398 4.433 3.531 

Name Confidence level Confidence interval 

Image A 95% (2.468 < μ < 4.271) = 0.95 

Image B 95% (2.745 < μ < 4.398) = 0.95 

Image C 95% (2.538 < μ < 4.433) = 0.95 

Image D 95% (1.788 < μ < 3.531) = 0.95 
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Algorithm 4: (SPA with smart filters - (proposed method)) 

 

Fig 5. 25: MOS value for image quality on all the test images using Algorithm 4 

Table 5. 12 : Mean, Standard deviation, Confidence interval for algorithm4 computed 

 

Table 5. 13 : Confidence interval computed for algorithm 4 represented in tabular fashion 

Name Confidence level Confidence interval 

Image A 95% (3.315 < μ < 4.964) = 0.95 

Image B 95% (3.468 < μ < 5.051) = 0.95 

Image C 95% (3.398 < μ < 5.121) = 0.95 

Image D 95% (2.854 < μ < 4.285) = 0.95 

Algorithm 4 Image A Image B Image C Image D 

Excellent Quality 13 15 16 4 

Very Good Quality 14 14 12 16 

Good Quality 8 6 7 11 

Poor Quality 0 0 0 4 

Very Poor Quality 0 0 0 0 

MOS 4.14 4.26 4.26 3.57 

Standard Deviation 2.49 2.39 2.6 2.16 

95% Confidence Interval 0.824 0.791 0.861 0.715 

Confidence interval outside - 3.315 3.468 3.398 2.854 

Confidence interval outside + 4.964 5.051 5.121 4.285 
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The confidence intervals are calculated for each image using one of the four 

algorithms. We can therefore calculate the probability that the population’s 

mean image quality for each image is between the range of A and B, as shown 

above for each algorithm in tabular format. For more in-depth evaluation, we 

took a step further by averaging the MOS for all four images used by one 

particular algorithm, then calculating standard deviation for that particular 

algorithm as well as those for the other three. This is to calculate the confidence 

interval of image quality associated with each individual algorithm on all the 

test images in the study (See table 5.15). 

MOSA is the mean score value associated with each algorithm as computed by 

averaging all the MOS for that particular algorithm on different test images (see 

eq (15)).  

�	1�@ =	∑ �	1@��,.;NO �	1��    eq (15) 

where MOS is the mean opinion score of the test image i for algorithm j and 

MOSn is the number of images. This formulae computes the mean opinion score 

for each individual algorithm on all test images amongst 35 participants. 

Standard deviation of each algorithm is computed using eq (16). Then the 

confidence intervals are computed for each algorithm.  

�@] = ∑
�	1@ −�	1�@
] �	1� − 1�    eq (16) 

 Table 5. 14: MOSA, standard deviation and 95% confidence interval for four algorithms computed 

Name MOS Algorithm 1 MOS Algorithm 2 MOS Algorithm 3 MOS Algorithm 4 

Image A 2.03 2.46 3.37 4.14 

Image B 2 2.03 3.57 4.26 

Image C 1.6 2.4 3.48 4.26 

Image D 1.66 2.2 2.66 3.57 

MOSA 1.82 2.27 3.27 4.05 

Standard Deviation 0.150 0.115 0.516 0.326 

95% confidence Interval 0.049 0.038 0.171 0.108 

Confidence Interval outside - 1.772 2.234 3.098 3.949 

Confidence Interval outside + 1.872 2.310 3.441 4.165 
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Table 5. 15 : Confidence interval for four algorithms 

Name Confidence level Confidence interval 

Algorithm 1 95% (1.772 < μ < 1.872) = 0.95 

Algorithm 2 95% (2.234 < μ < 2.310) = 0.95 

Algorithm 3 95% (3.098 < μ < 3.441) = 0.95 

Algorithm 4 95% (3.949 < μ < 4.165) = 0.95 

 

The MOSA obtained from all four algorithms are presented in Table 5.14, where 

the algorithm 4(the proposed algorithm) scored the highest in image quality 

amongst the other algorithms that were used in the studies. The MOSA 

associated with the algorithm 4 lies between 3.949 and 4.165 with 95% 

confidence. Algorithm 1 scored the lowest in terms of image quality with 

confidence interval  (1.772 < μ < 1.872). Fig 5. 26 shows the MOSA values in 

histogram format. 

 

Fig 5. 26 : MOSA values for image quality 
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5.7 Conclusion  

In this chapter smart filters were discussed. Both pre-processing and post-

processing stages were equally important in imaging systems, as pre-processing 

allows to enhance visual data whereas post-processing allows to do various 

adjustments to the final image to improve the quality and resolution.  

Pre-processing played a very vital role at the beginning of the process, where it 

effectively removed any unnecessary noise on the HI. This was done with a 

simple but effective process, which suppresses the noise as well as keeping the 

details of the overall HI by avoiding the effect of over sharpening. This process 

does not put too much emphasis on the edges, making it easier for the human 

eyes to pick up, but it is far more similar to unsharpened masking.  The results 

were shown in Fig 5. 5 to illustrate the effects when compared with the original 

HI. The overall structure of the processed HI in Fig 5. 5(b)-(e) was well-defined 

with high contrast that brought out every small detail, hence achieved a better 

result compared to the original. This made a prominent impact on refocused 

images, bringing out structural details on the focused regions of the image. 

Otherwise, small structural details were completely faded away with recursive 

or iterative shift and integration of different views. 

Post-processing smoothing method is called “smoothing via mn gradient 

minimisation”. This smoothing mechanism has effectively removed parts of the 

noise, unwanted details and even of slight blurriness that was introduced in 

refocusing stage. The final results of smart filtering was compared, in section 

5.6, with those presented earlier in chapter 4. It clearly shows the improvement 

in terms of image quality and resolution. Also comprehensive experiments were 

carried and it defined the right weighting value for lambda, which was applied 

on refocused images to maintain a more photorealistic look, and successful 

achieving the high quality image without artifacts. 

Also, the subjective image quality assessment experiments were conducted to 

evaluate the human perception for the quality of each image rendered under 

different refocusing algorithms. The work addressed image quality assessment 

on refocusing algorithms using the subjective test. Subjective results were 
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analysed to demonstrate the most effective refocusing algorithms for 

determining image quality in holoscopic 3D content. The results show that the 

output of the proposed method (SPA with smart filters) correlates strongly with 

overall viewer perception of image quality. The results also claim that the 

algorithm 1 scores the weakest in terms of subjective image quality assessment. 
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6. Chapter Six 

Integration and Object Segmentation 

This chapter presents the integration technique of different display 

technologies such as 2D, stereoscopic 3D and autostereoscopic 3D displays. All 

displays are put under test to see if the Holoscopic 3D content can be 

reformatted and replayed on various displays. As each display has different 

requirements to perform their optimal results, it is important to take the 

display specifications into consideration during rendering. We know that 

holoscopic 3D content contains a richer representation of the scene and with 

proposed (SPA with smart filters) method could render images with good 

resolution. Therefore, combining this method with the whole system of post-

production of holoscopic 3D content rendering makes a complete package 

including the object segmentation. This will benefit content creators, as a single 

format of holoscopic 3D content is reformat-able to various other formats. The 

displays considered are listed below: 
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• LG 47 Inches, 2D 

• LG 47 Inches (3D polarised stereoscopic)  

• Alioscopy 47 Inches (Autostereoscopic Multiview 3D Display) 

The contents are acquired using Arri ALEXA XT, which is modified by placing a 

microlens array in front of the image sensor.  This camera captures video 

sequences, whereas in the previous chapters it was focused on still holoscopic 

3D images.  

Finally, object extraction is described using stereo pair images. The stereo pair 

images are rendered from Holoscopic 3D content and disparity map is 

calculated to extract objects at a particular distance within the captured scene.  

Detailed experiments are conducted to show the findings as well as the 

integration of different display technologies in this chapter.  

6.1 Camera 

The first holoscopic 3D camera was assembled with a Canon 5D II camera, 

which was part of the 3D VIVANT project developments. It consists of an 

adapter that contains a microlens array to simulate the fly’s eyes and a relay 

lens to relay the holoscopic 3D image onto the sensor. This included optical 

distortions such as barrel effect, which was discussed in chapter 3. This design 

was then extended to accommodate the Alexa camera. 

The first version is a modular solution with a holoscopic camera adapter for 

Alexa [7]. This component is placed at an intermediate position between 

camera body and objective lens. It contains the microlens array, which 

generates a plenoptic replica of the scene. The manipulation of the lens is 

different. Focus setting is no longer a matter of setting the focus dial to the 

correct value. The focus dial is to be kept in a predefined position rather than 

pulling the focus while scene objects move. Also the aperture setting is kept in a 

fixed and predefined position, which is given by specifications of the microlens 

array. This type of holoscopic 3D camera is flexible.  It is very easy to replace 

the holoscopic tube and the front lens in order to generate different styles of 

holoscopic 3D images (number of views, depth budget, interocular distance, re-

focusable range, etc.).  
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Fig 6. 1 : (a) First version of holoscopic adapter for Alexa camera. (b) A holoscopic 3D camera 

prototype based on Canon 5D MKII [7]. 

The first version of Alexa camera images were captured at a resolution of 2048 

x 1080 pixels and the results are shown in this chapter to see the effect that 

they may have caused on the image rendering as well as on the image quality. 

Fig 6. 2 shows a frame of the sequence recorded with the Alexa camera using 

the adapter with master prime 50mm lens. 

Second version of the holoscopic 3D camera images is fully integrated [7]. The 

microlens array is mounted in closer proximity to the sensor. Hence the 

physical dimensions of the camera are almost identical with regular camera. 

Specifications and operation of the camera are similar to the first version and 

the adapter. The optical quality, however, is greatly improved. As the design 

gets along without a relay lens, vignetting and distortions are reduced. The 

fixed mounting position (factory setting) leads to tighter tolerances for 

positional parameters of the microlens array. Therefore, the calibration of the 

system is easier and more durable. The second version, namely, Alexa XT 

camera, captures at resolutions of 3424 x 2202 pixels resulting in more 

microlenses, which makes the final rendered frames at a higher resolution than 

it does in the previous version. It is important to point out here that the main 

lens image plane is formed in front of microlens arrays allowing it to capture a 

portion of the scene from different perspectives. 
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Fig 6. 2 : Sample of acquired holoscopic 3D sequence from Alexa camera at resolution of 2880 x 

1620 pixels. 

 

Fig 6. 3 : Alexa XT camera with microlens built close to the image sensor and capture frames at 

resolution of 3424 x 2202 pixels [7]. 

 

6.1.1 2D Display  

LG 47 inches 2D TV is selected to illustrate the integration process from 

holoscopic 3D capture to 2D display. For the purpose of simplicity, the 

workflow is graphically illustrated in Fig 6. 4, which involves capturing, 

processing and visualisation. Once the content is captured with holoscopic 3D 
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camera, the acquired holoscopic 3D content is converted into 2D format that is 

replayed on 2D displays. 

 

Fig 6. 4 : The workflow block diagram. (a) Scene capture with (b) holoscopic camera. (c) Frames are 

rendered in post-production and playing on 2D display (d). 

In the capturing stage, both position and angular information of the scene is 

recorded in the image sensor. This allows users to change the focus after the 

image is acquired in the post-production stage. It can also extract the depth of 

field without decreasing the aperture.  

Rendering process involves up-sampling, shift and integration with smart filter 

to extract only one 2D view from the record content to be replayed on LG TV. It 

is worth mentioning that each element image (EI) is at resolution of 37 x 37 

pixels, which is due to the microlens pitch being equal to 250μm.  Therefore the 

number of microlenses involved in the capturing stage is equal to the total 

number of pixels along horizontal and vertical directions divided by the 

resolution of EI. The total number of EIs along horizontal and vertical directions 

are equal to 92 and 59, respectively.  
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To extract a single view, it is vital to define the size of sub-image (SI) under each 

microlens, because a different size of SI determines a different image plane as 

discussed earlier in chapter 4. The pickup position of SI under a microlens is 

another essential element that needs to be considered. This is because 

extracting SI from the corners of EI makes the final image to be darker and 

noisier due to the circular aperture of the camera, while the microlenses are 

square (see Fig 6. 5). Increasing the circular aperture of the main lens will result 

in an over exposure of light to its neighbouring microlenses. Decreasing the 

aperture, on the other hand, will increase the dark areas in the corners of the 

every EI by allowing less light through. Therefore, keeping the acceptable 

aperture is ideal in the capturing stage, as shown in Fig 6. 5(b). Also it is 

important to avoid the corners of the EI during rendering, which will have a 

greater impact on the final rendered image. 

As shown in Fig 6. 5(b), each EI is inverted by 180 degrees, which is due to the 

main lens image plane set in front of the microlens array. Therefore, EIs are 

rotated by 180 degrees before up-sampling, shift and integration process. This 

accurately integrates all the rays across other EI at particular depth given the SI 

size. The results are shown in Fig 6. 6, where SI = 10, number of different views 

of 8 x 8 are used, pickup position along j = 8 and i= 8, σ = 6, kernel = [10x10] 

and λ = 0.005. Fig 6. 6 shows the final rendered image, which is achieved by 

applying pre-processing, high resolution refocusing and post-processing, smart 

filters.   

6.1.2 Experimental Results and Observations 

In pre-processing stage, an effective and efficient technique is applied to 

remove unnecessary noises that may affect the image quality in the rendering 

process. Then, high resolution refocusing technique is performed on the pre-

processed frame to extract one view from location j=8 and i = 8 under every EI 

image with SI = 10 as mentioned above and will remain the same throughout 

the whole sequence. Finally post-processing smoothing mechanism is applied to 

remove the noises, which are introduced in high resolution refocusing. During 

this smoothing process, edges are also preserved and efficiently enhanced. All 

the sequence frames get applied the same process one after the other, 
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converting frame sequences to video, while at the same time they are being 

processed. 

 

Fig 6. 5 : (a) A frame sample of a sequence, (b) the magnified version. 

 

 

Fig 6. 6 : (a) 2D result of rendered frame no.14 and (b) rendered frame no.18. 

After successfully converting 2D rendered sequence to video, it is then sent to 

the appropriate display.  The processed video sequence is replayed on the LG 

TV using a movie player to show whether the holoscopic content can deliver 2D 

videos, as there are so many researchers who have only attempted to play still 

images but not video. Therefore, this is the first experiment to successfully 

capture, process and display holoscopic 3D video.  

6.2 3D Stereoscopic Display  

In this section, a single aperture holoscopic 3D camera is used to generate high-

resolution stereoscopic 3D content. Using a single aperture camera in 

stereoscopic 3D production will reduce the complexity of dual cameras 

calibration. There has been intensive research in reducing complexity of 

stereoscopic 3D systems, yet there is not a successful method that overcomes 
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this challenge. In this section, the generation of stereoscopic 3D content from 

holoscopic 3D content is investigated.  The results are replayed on LG 40 inches 

stereoscopic 3D display and the image quality and depth perception are 

analysed.  

The steps involved in rendering stereoscopic from 3D holoscopic are explained 

in this section and also, perception of depth is analysed with anaglyph 

visualisation tool to give a detailed analysis in generating better stereo. The 

same holoscopic 3D content of the 2D content is used here for rendering 

stereoscopic 3D content. As mentioned earlier it has the capability of capturing 

the whole scene in true 3D in 2D format as shown in Fig 6. 5.  

In rendering stage, the method relies on up-sampling, shift and integration of 

viewpoints with a smart filter to extract only one view of stereo.  In order to 

extract the second viewpoint from the same frame, a different position along x-

axis within the same EI is selected. The distance of a second view from first 

view is directly related to the baseline in stereoscopic 3D production, whereas 

this can be controlled by selecting different starting points on the x-axis during 

the rendering process. However, the baseline is fixed in stereoscopic 3D 

production. Also if the baseline distance is incorrect during the capture, then 

the whole scene needs to be shot again; otherwise there is not a correct depth 

information. This is expensive and time consuming, but this issue is reduced 

with holoscopic 3D camera.  
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Fig 6. 7 : Illustration of baseline distance in single Element Image (EI). 
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For instance, the element images have resolution of 37 by 37 pixels and 92 by 

59 element images in total. To extract view one, the position of x-axis (x1) and 

y-axis (y1) inside the element image are 4 and 15, respectively. On the other 

hand, the second view of y-axis (y2) stays constant, because in stereoscopic 3D 

capturing both cameras are setup side by side in the straight line along y-axis. 

This is why rendering the second view from holoscopic 3D content requires us 

to set the position of y2 = y1 to keep in the same line along y direction. But the 

x-axis (x2) in the second view is changed to 35 depending on the suitability of 

the scene and SI = 2, as shown in Fig 6. 7. 

6.2.1 Experimental Results and Observations 

Stereoscopic 3D content creation from holoscopic 3D content is discussed as 

shown in Fig 6. 8.  The parameters remain the same as 2D image creation in 

section 6.1.1 .  However, the position of x-axis and y-axis are different here. In 

the first view, position of x-axis and y-axis in Fig 6. 8(a) equals to 4 and 15, 

respectively. In second view, however, position of  x-axis and y-axis are 24 and 

15, respectively, as shown in Fig 6. 8(b).  In this experiment the parameters are 

fixed throughtout, to simplify the rendering process.  
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Fig 6. 8 : Rendered sequences - (a) is the first rendered frame no. 3 of the sequence and (b) is the 

second view. (c) is the first view and (d) is the second view of the rendered frame no. 18th of the 

sequence. 

 

Fig 6. 9 : Stereo 3D resulting images in anaglyph view. (a) Result of Fig 6.8(a)-(b) and (b) is result of 

Fig 6.8(c)-(d). 

 

The first view in Fig 6. 8(a) and (c) represents as left frame and the other two 

(b) and (d) as the right frame in stereoscopic 3D concept. Achieved results offer 

reasonably good image quality as well as stereo 3D depth parallax (??).  This 

experiment confirms that initial stereoscopic 3D production requirement is met 

by holoscopic 3D camera, which is clearly the simplest and most efficient way of 
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capturing 3D content compared to any other 3D acquisition systems.  Having 

said this, holoscopic 3D camera is still in its initial stage compared to 

Stereoscopic 3D cameras in the context of acquiring depth perception. This is 

due to wider ocular distance in stereoscopic production that increases the 3D 

depth.  

 

Fig 6. 10 : Stereo 3D image pair rendered from a holoscopic 3D image 

The rendered stereoscopic 3D image is shown in Fig 6. 10, which is replayed on 

the LG 3D TV.  This experiment aims to exhibit the integration of stereoscopic 

3D technology with holoscopic 3D imaging technology which confirms 

holoscopic 3D capturing that can serve the desire for a single capturing device 

of the future with further improved optical parameter, such as wider ocular 

distance and bigger image sensor.  

6.2.2 Analysis and Discussion 

The Canon 5D Mark II camera has a bigger image sensor, capturing at resolution 

of 5K, enabling to see the impact of depth perception on final rendered images. 

The highest motion captures resolution out in commercial sector at present is 

4K, which recently came to attraction. It has also been known that NHK from 

Japan manufactured 8k motion capturing camera as well as an 8k display and 

presented them in IBC 2012. This experiment shows that in the near future, 

with image sensor vastly becoming bigger and storage cheaper, it could be the 

most desirable solution. This may affect the stereo images generated from 

holoscopic capturing using the 5K resolution camera image. It is because this 

approach is very clearly focused at simple and efficient way of capturing real 3D 

content. 
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Notice that in Fig 6. 11 the EIs do not hold darker areas around corners. This is 

due to the square aperture designed for the camera to take full use of the sensor 

without covering any areas in EIs [7]. In this case, widely apart views can be 

used to give a wider ocular distance in stereo generation.  The microlens array 

used is 250μm capturing resolution of 80 x 80 pixels containing 68 by 44 EIs in 

total. Hence, the same steps are taken in rendering the stereo views from Fig 6. 

11.  

 

Fig 6. 11 : (a) shows the captured image from holoscopic camera at resolution of 5466 x 3588. (b) 

Shows a small portion of (a) high lighting it with blue square around it. 

 

6.2.3 Experimental Results and Observations 

Results of stereo 3D are shown in Fig 6. 12 with parameters SI= 12, x-axis and y-

axis of first view equal to 2 and 35, respectively. While in the second view the x-

axis is 42 and y-axis is 35. In both views 24 views are used in up-sampling, shift 

and integration processing in order to digitally put the image plane on the 

foreground object and this can be observed from the results. The final rendered 
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results are observed with richer and better contrast as shown in Fig 6. 12(a).  

Every small detail of the object can visually be seen with the naked eyes. The 

anaglyph viewing is also shown to point out the effect of 3D in Fig 6. 12(c). A 

better 3D effect is observed when analysing with anaglyph glasses as well as 

with polarised 3D. 

 

Fig 6. 12 : The result of stereo 3D image from holoscopic content. (a) Crop area of the first view. (b) 

Shows both stereo views and (c) is the anaglyph result of the both view in (b). 

 

Image of chapter 5 are also used in this experiment to show result of stereo 3D 

with two focuses, first focused at the background and the second at the 

foreground. The parameters used in extracting the two views of Fig 6. 13(a)-(b) 

are SI = 2, δ = 6 and 7 by 7 different views with (λ=0.007) as mentioned earlier 

in chapter 5, but the only difference is the x-axis and y-axis of both views. There 

is 9-pixel differences in between the first and second views. In the first view, x-

axis and y-axis are 3 and10, whereas they are 12 and10 at the second view. Fig 
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6. 13 (b) shows the anaglyph results of (a)-(b) with better 3D depth perception. 

In Fig 6. 13(e)-(f) image plane is set on the foreground and results of the two 

views are presented in anaglyph in Fig 6. 13 (d). 

 

Fig 6. 13 : The rendered stereo 3D images from holoscopic 3D images with (a)-(b) focusing at 

background and (e)-(d) at foreground object. (c)-(d) are the results of both in anaglyph. 

After observing the results, the bigger image sensor offers better result 

compared to the result achieved in Fig 6. 9; because the depth perception is 

more visible in Fig 6. 13, as shown in 3D anaglyph presentation.  The quality of 

results achieved is satisfying both in 2D as well as in 3D in Fig 6. 13.  This comes 

to show that with bigger image sensor, as it may become the future in motion 

picture capturing, the future of stereoscopic 3D capturing may become the 

technique of the past with holoscopic 3D capturing [7]. This approach is very 

clearly focused at simple and efficient way of capturing real 3D content without 
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having to go through the complex dual camera calibration that is in stereoscopic 

production.  The rendered images or videos are successfully displayed on LG 3D 

TV to demonstrate the capabilities of holoscopic content in integrating the 

existing technologies as one system [7]. 

6.3 Autostereoscopic 3D Display  

Alioscopy developed a multiview 3D display that shows 3D content without 

glasses within 100-degree viewing angle and 30-degree viewing zone. The user 

can freely walk around the display within the 30-degree viewing zone 

undisturbed 3D content without jumping views; however, in 100-degree 

viewing angle the 3D content is visible but views are observed with jumping 

effect. The 3D display has its own 3D mixer player that requires 8 different 

perceptive views of the same scene in order to correctly display the content in 

3D. Furthermore, the viewers are not required to wear any special glasses to 

experience 3d depth. 

 

Fig 6. 14 : Display size 47inches multiview display from Alioscopy 
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As mentioned above, it is expensive to capture images even with dual camera. 

Now, taking it further to capture with 8 cameras will not only increase the cost 

widely, but also  involve complicated calibration of 8 cameras. Furthermore, the 

multi-camera setup is not very mobile in comparison to stereoscopic 

production, which makes it very difficult for content producers. Therefore, 

holoscopic capturing is proposed in generating 8 views for such systems 

without having the need of complex and expensive multi camera calibration to 

produce content. This approach will show the capability of delivering content 

on motion pictures for multiview display. Also, this experiment will be the first 

of its kind in attempting to generate multi views from holoscopic camera on 

video. Fig 6. 15 shows the workflow from capturing to display. 

 

Fig 6. 15 : The workflow graphically. (a) Scene capture with (b) holoscopic camera. (c) Frames are 

rendered in post-production and playing on 2D display (d). 

 

The capturing process described earlier in section 6.1.1 is used in generating 2D 

as well as 3D stereoscopic views from holoscopic 3D capturing. Hence, the same 

holoscopic 3D content is chosen to produce content for multiview display, in 
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order to show that a single exposure of the scene with holoscopic camera can 

deliver content for multiple display technologies out in the market.  

Note that the rendering process that takes the same steps in generating stereo 

view in section 6.2 but with more than two views are required in here. 

Therefore, different perception views from holoscopic 3D content are rendered 

using up-sampling, shift and integration approach and displayed on multiview 

screen using its player. Multiview 3D display used here does not necessarily 

requires the views to have large baseline; otherwise, it would have been 

difficult to produce content knowing that the baseline is limited at this stage.  

This is due to small image sensor size that limits the use of larger microlens 

with wide viewing angle. The rendering process is explained in example below 

where only 20 pixels are considered under each EIs for the sake of simplicity 

and also shown graphically in Fig 6.16. 

Example: element images (EIs) are of resolution 20 by 20 pixels and 6 views 

are extracted from each EI. Notice that the position of view one on x-axis (x1) 

and y-axis (y1) inside the element image are 3 and 10, respectively. On the 

other hand, the view two of y-axis (y2) stays constant as well as all that of the 

other views, which will avoid misalignment of views projection causing bad 3D 

effect when it is displayed. The x-axis position is different for each view, but 

have the same distance from each other as shown in Fig 6.16. The difference 

between view one pixel 1 to view two pixel 1 are two pixels, where it is the 

same with view two with view three and the others too. The positions of views 

are represented with different colors in Fig 6.16, each color presenting one view 

from different perceptive, using up-sampling, shift and integration process. 
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Fig 6.16 : Single EI with position of 6 views 
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6.3.1 Experimental Results and Observations 

Results of 8 views from holoscopic 3D image are shown in fig 6.17. Each view is 

kept at the same distance from each other during rendering. In pre-processing, 

each frame is processed with σ = 6, kernel = [10x10], then up-sampling, shift 

and integration process is carried out with SI=10 and 8x8 number of different 

views. Finally, post-processing is performed to remove any blur in the views 

and also noises with λ = 0.005. Also note here that parameters are set constant 

throughout as well as in the 8 extracted views from each frame. Differences 

between the views are 3 pixels as it is shown below in Fig 6. 17 with each views’ 

axis position under each EI. 
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Fig 6. 17 : Illustration of 8 extracted views from single holoscopic frame no 3. 

 

Finally, all the rendered frames of 8 views are replayed on the multiview 3D 

display from Alioscopy using their own players to process and display in 3D. 

The results are shown in Fig 6. 18 taking picture of the display from different 

viewing points to show motion parallax. Looking at the depth of the scene, it 

seems all the objects are inside the screen, feeling like looking outside through a 

window. This is because in the holoscopic camera the image plane of the main 

lens is in front of the micro-lens array, where each microlens is rotated by 180 

degrees on this centre axis. Therefore, the depth is observed inside the screen. 

The depth can be outside the screen with the image plane of the main lens in the 

capturing stages. During capturing, the image plane of the main lens needs to be 

behind microlens array, creating virtual image plane behind the micro-lens 

array. This is also tested here with Canon camera images while results are 

played on the display to observe the difference in depth. Result in Fig 6. 19 
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shows the scene depth as outside of screen giving more realistic 3D effect as the 

objects in scene move closer to the observer. 

 

Fig 6. 18 : Rendered multiview 3D content displayed on Alioscopy multiview screen. 

  



Post-Production of Holoscopic 3D Image 

 

Chapter 6  – Integration and Object Segmentation  Page 169 

 

 

 

Fig 6. 19a : Results are demonstrated on the multiview display when focusing on the background 

 

 

6.4 Object Extraction Based On Depth map 

Research on depth extraction from multi-view imaging systems has been 

extensive. However, the depth extraction from 3D holoscopic imaging systems 

is still in its infancy. Recent developments have been carried out in the past few 

years, where the number of depth extraction algorithms have been developed 

and compared to existing methods [1][2][3][4][8][9].  

One of the methods is based on energy minimisation problem that seeks a pixel 

disparity map between sub-images(SI). The minimisation is accomplished using 

the graph cuts approach. It enables one to extract small set of points for which 

the depth is estimated with high accuracy. This sets of points are used to pose 

constraints to the minimisation problem that lead to more accurate estimation 

Fig 6. 19b : demonstrates the output results of holoscopic content on multiview display with 

focusing digital set to foreground object. 



Post-Production of Holoscopic 3D Image 

 

Chapter 6  – Integration and Object Segmentation  Page 170 

 

of the overall depth[1][3]. However, this method requires binary mask that is 

manually created for each scene whose depth is accuratelly estimated. This 

approach may not be very practical in real life applications where for each 

image, a binary mask is necessary to be generated through depth map. 

In another method the depth is obtained by viewpoint image extraction and a 

hybrid algorithm combining both multi-baseline and neighborhood constraint 

and relaxation techniques with feature block pre-selection in disparity analysis. 

This method is based on the distribution of the sample variance in sub-dividing 

non-overlapping blocks [4]. This algorithm is very time consuming due to its 

complexity in calculating depth information from numerous viewpoints when 

compared to generating depth map from stereo. Depth map results from stereo 

are to acceptable standard with few flitter process, which then can be used for 

object extraction in post-production. 

6.5 Proposed holoscopic 3D object segmentation 

A new appraoch is proposed to extract object base on simple stereo geometry 

that requires  two views for disparity estimation. The two views are generated 

from holoscopic content with wider baseline as mentioned earlier in section 6.2. 

It involves pre-processing, up-sampling, shift and integration and finally the 

post-processing. Furthermore, the two views are used to calculate disparity that 

is required to extract the desired object from the scene. 

In order to extract a desired object from the holoscopic content, the right size of 

SI needs to be considered during the stereo rendering process; because the size 

of SI deterimens the image plane in the real world. Therefore, It is important to 

keep the desired object in-focused in stereo views, which leads to precise  

disparity estimation and also the extraction of that particular object being in-

focused on the final image.  

Firstly, two perceptive views are generated from holoscopic content. Then, 

disparity of the two views is calculated. For the sake of simplicity and 

effectiveness, a correlation-based block-matching method is used here[4]. The 

basic idea of the block-matching method is to locate a candidate block in the 

second view that can be the best match in the first target view. Two views, �O 
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and  �], are used; (x,y) are the coordinates of the point being analyzed. �O(x,y) 

denotes the intensity of the point (x,y), w denotes the local block size used in 

matching, d is the disparity and R is the search range in the second view 

associated with the target view. The correlation matching criteria used is sum of 

the square difference(SSD), as this is more effective compared with sum of 

absolute difference (SAD) and cross correlation (CC), used in [6]. The SSD 

function can be mathematically described as : 

11�
�
 = 	∑ [�O
x, y
 −	�]
x + R, y
7,C	∈K		 ]] eq( 6.1) 

In general, the algorithm can be mathematically described as finding out the 

best matching position (x+R,y) in the second image where SSD(R) function has 

minimum; 

¡ = arg	{min{11�
�
}}    eq (6.2) 

 

Fig 6. 20 :An Illustration of block matching methods 

 

Now, disparity d obtained from the above equations is acquired. Then an 

algorithm is formulated (see eq (6.3)) mathematically to describe the extraction 

of object O from the view �O image, where �5;. and �567 stand for E minimum 

disparity and E maximum disparity, respectively.  

	
7,C
 = �O
7,C
  �5;. ≤ ¡
7,C
 ≤ �567   eq (6.3) 
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Fig 6. 21 : Demonstration of extraction of object from V_1 based on disparity information. 

 

The values of �5;. and �567 are set according to the desired object that needs 

extracting, whereas it varies from one image to another in the scene. 

6.6 Experimental Results and Observations 

The experiment analyses the feasibility of the object extraction algorithm based 

on disparity from stereo 3D Images. The rendered stereo 3D views of section 

6.2 are used in this experiment, where the differences between the two views 

are to the largest baseline distance.   

Example1: EIs are at resolution of 80 by 80 pixels and 68 by 44 element images 

in total at resolution of 5466 x 3588 pixels with 250μm. View V_1 of x-axis (x1) 
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and y-axis (y1) inside the element image are 2 and 35, respectively, while view 

V_2 of y-axis y2 = y1 and x-axis (x2) = 42, and SI = 12. The disparity map result 

is shown in Fig 6. 22(b) with w = 15, R = 60 and SSD and object O is extracted 

from a given disparity range of E_min= 18 and E_max = 25 as show in Fig 6. 

22(d). The final result is observed with small errors that do not belong to the 

object O. This is due to the accuracy obtained from correlation matching criteria 

used, namely sum of the square difference (SSD).  

Example2: SI=2 and EI at resolution of 29 by 29 pixels with 90μm. View V_1 

x1=3, y1=10 and view V_2 of x2 = 12 and y2 = 10. Both focused planes are 

presented, one focused at the foreground object and second focused at 

background. Disparity of both are calculated with the same parameters w= 9 

and R=25. Result of object O is presented in Fig 6. 23 with a given disparity 

range of E_min= 18 and E_max = 25. 

In Fig 6. 23a, result of disparity is not efficient to use in extracting the object due 

to numerous errors in the disparity map. Therefore, the image plane is digitally 

changed at object O, the result of which shows an improvement compared with 

Fig 6. 23a(c). The extraction of object O is more effective with disparity range of 

E_min= 6 and E_max = 12 in Fig 6. 23b. 
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Fig 6. 22 : (a) show stereo views, (b) is disparity result with w=15, R= 35. (c) illustrates object O 

overlaid with disparity d of (b) and (d) is the final result of object O 
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Fig 6. 23a: (a) and (b) is stereo views and (c) is the disparity result of the stereo view. 

 

 

  

Fig 6. 23b : Illustration of object extraction using disparity map. 
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Fig 6. 24 : The result of object O is within disparity ranging from E_min= 43 and E_max = 36 shown 

in (d). 
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Example3: SI=9 and EI at resolution of 74 by 74 pixels.  

V_1 (x1=3, y1=10), V_2(x2=12, y2 = 3), w=19, R=60. 

Disparity is used to extract object O in Fig 6. 24 with a given disparity range of 

E_min= 43 and E_max = 36.  

This method shows an effective way of extracting object. However, high 

resolution of EI and long baseline is preferred in disparity estimation, where 

high accuracy is achieved in extracting objects. Also it ignores poor SI from EI in 

generating the stereo views, which will increase the quality on the views and 

also accuracy in disparity estimation. As  object extraction algorithm is directly 

related to the accuracy of disparity, objects are extracted with minimum errors 

as can be seen in the experimental section. 
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6.7 Conclusions 

This chapter has presented the integration process of different display 

technologies by providing content to all cross platform displays from holoscopic 

3D content. This experiment is the first of its kind ever attempted on holoscopic 

3D videos whereas recent developments have been carried out on still images. 

Also, clear data flow chain is explained in an attempt to achieve content for each 

display technology. The above experiment proved that holoscopic technology 

did deliver 2D content for normal display but it can also fulfil the stereoscopic 

3D display. Therefore, this experiment will show how holoscopic content can 

meet the demands of existing 3D stereo technologies in the market.  

The resolutions achieved are reasonably acceptable; however, the depth on 

stereoscopic display is slightly small. This is due to the size limitation of the 

image sensor on the camera, as there is a trade off in increasing the baseline 

with the resolution of views.  Therefore, results with larger image sensor 

showed promising outcome in terms of resolution as well as in depth 

perception. Large image sensor in this experiment has made improvement both 

in 3D stereoscopic display as well as in multiview display.  

Single aperture camera is used to generate 3D content for different types of 

displays.  As this comes to show, cameras with a bigger image sensor may 

become the future in motion picture capturing; for which this 3D content 

capturing may become the future. This approach is very clearly focused on 

finding a simple and efficient way of capturing real 3D content without having 

to go through the complex dual or multi camera calibrations.  

Object extraction performance is analysed and shows that the disparity analysis 

is of great importance in achieving correct boundary of an object from the 

scene. The work in this chapter is mainly concerned with developing algorithms 

to show the simplest way of performing the object extraction from holoscopic 

content. A comprehensive experiment is carried out to prove the proposed 

approach in extracting objects using the MATLAB simulation environment. 
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7. Chapter Seven 

Conclusion and Further work 

This thesis presented and discussed number of holoscopic 3D post-production 

algorithms, which includes an improvement to digital refocusing for focus 

correction, depth map extraction, 3D stereoscopic and multiview content 

creating from holoscopic 3D images as well as 3D image segmentation. 
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7.1 Conclusion 

A detailed literature review on the existing 3D imaging technologies has been 

presented and it has been concluded that the simplest form of presenting the 

true-3D is holoscopic 3D imaging system.  In addition, this has opened up the 

possibilities such as changing the focus plane after capturing as well as 3D 

depth information. Holoscopic 3D imaging has demonstrated that it can deliver 

a rich viewing sensation that is eye fatigue free and without a need for any 

headgear glasses. 

State-of-the-art digital refocusing techniques remain with limitations such as 

unnatural artifacts. A novel approach was proposed in this research that 

effectively refocuses using low-resolution orthographic images to form a higher 

resolution image. In addition, new interpolation approach is incorporated to 

improve the visual quality of the final image using the VP approach. As a result 

the final image looks more like a natural photograph without unnatural 

artifacts. In addition, all-in-focus image and depth information algorithms have 

been proposed. An all-in-focus image is generated by analyzing the depth plane 

of each window of elemental image blocks using contrast estimation, where the 

highest contrast extracts the focused window from different depth planes. The 

computational experiments were illustrated and discussed on both UIIs and 

OIIs to show the enhancement using the VP method with interpolation. 

However, the achievable image quality did not yet satisfy the quality standard 

of commercial camera quality such as FHD or 4K. Further research was carried 

out to improve this revolutionary approach for solving the focus-plane 

challenge. As a result, a new method of refocusing based on high resolution 

views was proposed that uses the up-sampling, shift, and integration, which is 

achieved by sub pixel adjustment (SPA) method. This method extracts multiple 

pixels from each element image instant of one pixel when using VP refocusing 

approach. The resolution of each view is much higher, which results in a higher 

resolution of the final refocused image. A detailed experiment has been carried 

out that illustrated the effectiveness of the method. Consistency was maintained 

and a benchmark was established by using the same holoscopic 3D content 

throughout all experiments, to make comparisons of the results with other 
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methods more analogously. In addition, sets of different holoscopic 3D content 

were used to compare with the established benchmark. The resulting images 

and user testing confirms that the proposed method produced acceptable 

quality of resolution subjectively. Yet at this stage, artifacts on the final image 

still remained visible to some extent. 

As a result, further improvement on the SPA method was made in order to cut 

the artifacts down to its minimum, where a delta value was introduced in the 

equation in section 4.4 to work more effectively. This allows a controllable 

degree of light rays intersecting amongst VPs enabling an accurate integration 

of pixels from all the views. The SPA method blurs out the artifact regions of the 

final image with a given value of delta. The delta value controls the blurring on 

the final image. Experimental results have shown improvement on the final 

refocused images, which is achieved from using SPA method. Also, the seagull 

image from ‘Todor’ was used in this experiment, where the optical elements of 

the camera were modified to reduce the artifacts using rendering with blending 

algorithm. The seagull image with the proposed (SPA) rendering created all-in-

focus image with promising results, whereas the same parameters used with 

up-sampling, shift, and integration resulted in minor artifacts in the final 

rendered image. The resulting images achieved in both methods have shown an 

improvement in removing the artifacts but returned the final image with 

unwanted noise.  

The final rendered images still contained unwanted noise and blurring using 

SPA. This is due to recursive shift and integration of views. Therefore, a 

proposed smart filtering approach in this research was introduced for the 

prupose of removing unwanted noise and blurring effect. This is to further 

improve the SPA method. Pre-processing as well as post-processing techniques 

titled as ‘smart filters’ have been proposed to apply to both stages.  Both pre-

processing and post-processing stages are equally important in imaging 

systems as pre-processing allows to enhance visual data, whereas post-

processing allows to do various adjustements to the final image to improve the 

quailty and resolution.  
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Pre-processing played a very vital role at the beginning of the process that 

effectively removed any unnecessary noise in the holoscopic 3D content. This 

was done with a simple but effective process that suppresses the noise as well 

as keeping the details of the overall holoscopic 3D content by avoiding the effect 

of over sharpening. This process does not put too much emphasis on the edges, 

making it easier for the human eyes to pickup; however it is similar to 

unsharpened masking method. The results were observed with well-defined 

contrast bringing out every small detail, which appeared better compared with 

the original one. Therefore, this made prominent impact on refocused images, 

bringing out structural details on the focused regions of the image. Otherwise, 

small structural details would completely fade away with recursive or iterative 

shift and integration of different views. 

Post-processing with powerful smoothing method is incorporated as called 

“smoothing via mn gradient minimisation”. This smoothing mechanism 

effectively removed parts of the noise, unwanted details and even slight 

blurriness that was introduced in the refocusing stage. The final result clearly 

confirmed improvements in terms of image quality and resolution. Experiments 

have been carried out to clearly point out the right weighting value for lambda. 

With smart filters, the refocusing algorithm has achieved high quality refocused 

images without artifacts and noises. A comprehensive subjective assessment of 

image quality was conducted to evaluate the human perception. The four 

different test holoscopic 3D images used in the subjective assessment were 

rendered with four different refocusing algorithms for like-to-like comparison. 

This aimed to address quality of the resulting images rendered with the 

refocusing algorithms during the subjective test. The test results were analysed 

to demonstrate the most effective method amongst four algorithms to 

determine the best image quality. The results show that the output of the 

proposed methods correlate strongly with overall viewer perception of image 

quality.  

Content integration for different 3D display technologies has been presented by 

converting holoscopic 3D images to all cross-platform multiview 3D displays. 

This was the first time an attempt ever made to playback holoscopic 3D videos 
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on stereo and multiview 3D displays.  The recent developments were carried 

out on still images. Also, clear data flow chain was defined and discussed in an 

attempt to achieve content for each display technology. The resulting resolution 

was acceptable; however, the depth perception on stereoscopic 3D display was 

slightly small due to the size limitation of the image sensor on the camera, as 

there was trade-off in increasing the baseline with the resolution of views.  But, 

the results with larger image sensor showed a promising outcome in terms of 

resolution as well as in-depth perception. Large image sensor in the experiment 

showed improvement both in stereoscopic and multiview 3D displays. 

Single aperture camera was used to generate holoscopic 3D content for 

different types of 3D displays. The experiments suggest that cameras with 

bigger image sensor may become the future of motion picture capturing. In 

other words, the future of the present capturing may become the technology of 

the past with holoscopic 3D imaging. This approach is very clearly focused at 

simple and efficient way of capturing real 3D content without having to go 

through the complex dual or multi camera calibrations.  

Furthermore, object extraction performance has been analysed for disparity, 

which shows a significant importance in capturing the correct object from the 

scene. The proposed method was developed to show the simplest way of 

performing the object extraction from holoscopic 3D content. The results have 

proved a promising outcome with minor errors that need further improvement 

on disparity analysis stage.  
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7.2 Further work 

A number of techniques might be adopted to further improve the performance 

of the digital refocusing. Here are some examples: 

1. To remove the conventional demosaicing algorithm that is provided with 

camera, and to process the raw sensor values from camera with different 

commercial and non-commercial demosaicing algorithms to see the impact 

of the final results. 

2. After observing the impact on final image with different demosaicing 

algorithms, a new demosaicing algorithm specifically for holoscopic 3D 

content should be developed. This process is known as one of the important, 

yet challenging steps in reconstructing full RGB pixels from raw sensor 

values. The process may remove the antialiasing blur when resizing the 

image in a more efficient way than the existing conventional demosaicing 

methods do. 

3. To develop a single view extraction on camera chip to allow real-time 

viewing experience. This will help producers and camera operators in 

content capturing of holoscopic 3D content.  

4. To implement demosaicing algorithm on the camera chip combined with 

single view extraction to allow high quality resolution on camera viewing 

capability. 

5. To implement holoscopic 3D content rendering on GPU to increase the 

processing time in post-production.  

6. To improve the optical parameter of the camera, for example, through 

increasing the viewing angle of microlens array that will increase the 

baseline distance both in 3D multiview and 3D stereoscopic views from 

holoscopic 3D content. As a result, better depth perception may be 

pragmatic. 

7. Object extraction (also known as object segmentation) may be improved if 

improved views are generated with demosaicing algorithm. Also an 

improved cross-correlation matching such as multi baseline matching 

should be implemented to enhance the disparity map, which will reduce the 

errors on the final extracted object. Furthermore, growing in the region of 
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interest algorithm can also be implemented to help in effectively extracting 

the desired object with given disparity map information.  
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7.3 Appendix A 

7.4 Sample Questionnaire 

Gender  

        Male         Female 

 

Age:  

     18-to-25      26-to35      36-to-45      46-to55      56-to-65 

 

What is your knowledge of image quality?  

 Excellent Good Fair Don’t 

Know 

Bad 

Answer      

 

What is your knowledge of Holoscopic 3D? 

 Excellent Good Fair Don’t 

Know 

Bad 

Answer      

 

How important is image quality for you? 

 Very 

Important 

Important Less 

Important 

Don’t 

Know 

Not 

Important 

Answer      
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Section 1: Image A 

Algorithm 1: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 2: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 3: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

 Algorithm 4: Please rete 

 

Excellent  

Good  

Fair  

Don’t  

Bad  
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Section 2: Image B 

Algorithm 1: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 2: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 3: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 4: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  
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Section 3: Image C 

Algorithm 1: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 2: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 3: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 4: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  
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Section 4: Image D 

Algorithm 1: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 2: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 3: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

Algorithm 4: Please rate 

 

Excellent  

Good  

Fair  

Don’t  

Bad  

 

Thank you for your time and participation. Hope you’ve enjoyed it. 
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Appendix B: Developed GUI using Matlab application 

 

 

 

  

Representation of GUI A 

Representation of GUI B 
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Appendix C: Matlab Scripts for GUI A 

function varargout = ViewpointDisplay(varargin) 
% VIEWPOINTDISPLAY MATLAB code for ViewpointDisplay.fig 
%      VIEWPOINTDISPLAY, by itself, creates a new VIEWPOINTDISPLAY 

or raises the existing 
%      singleton*. 
% 
%      H = VIEWPOINTDISPLAY returns the handle to a new 

VIEWPOINTDISPLAY or the handle to 
%      the existing singleton*. 
% 
%      VIEWPOINTDISPLAY('CALLBACK',hObject,eventData,handles,...) 

calls the local 
%      function named CALLBACK in VIEWPOINTDISPLAY.M with the given 

input arguments. 
% 
%      VIEWPOINTDISPLAY('Property','Value',...) creates a new 

VIEWPOINTDISPLAY or raises the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before ViewpointDisplay_OpeningFcn gets 

called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to ViewpointDisplay_OpeningFcn 

via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help 

ViewpointDisplay 

  
% Last Modified by GUIDE v2.5 15-Jan-2013 18:16:28 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @ViewpointDisplay_OpeningFcn, 

... 
                   'gui_OutputFcn',  @ViewpointDisplay_OutputFcn, 

... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
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% --- Executes just before ViewpointDisplay is made visible. 
function ViewpointDisplay_OpeningFcn(hObject, eventdata, handles, 

varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to ViewpointDisplay (see 

VARARGIN) 

  
% Choose default command line output for ViewpointDisplay 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes ViewpointDisplay wait for user response (see 

UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = ViewpointDisplay_OutputFcn(hObject, eventdata, 

handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  
function NoVPin_Callback(hObject, eventdata, handles) 
% hObject    handle to NoVPin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of NoVPin as text 
%        str2double(get(hObject,'String')) returns contents of 

NoVPin as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function NoVPin_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to NoVPin (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
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end 

  

  

  
function PatchSize_Callback(hObject, eventdata, handles) 
% hObject    handle to PatchSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of PatchSize as text 
%        str2double(get(hObject,'String')) returns contents of 

PatchSize as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function PatchSize_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PatchSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function Yaxis_Callback(hObject, eventdata, handles) 
% hObject    handle to Yaxis (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Yaxis as text 
%        str2double(get(hObject,'String')) returns contents of Yaxis 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function Yaxis_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Yaxis (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function Xaxis_Callback(hObject, eventdata, handles) 
% hObject    handle to Xaxis (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Xaxis as text 
%        str2double(get(hObject,'String')) returns contents of Xaxis 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function Xaxis_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Xaxis (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in LoadImage. 
function LoadImage_Callback(hObject, eventdata, handles) 
% hObject    handle to LoadImage (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[filename,pathname]=uigetfile('*.jpg','Select an image File'); 
%image=VideoReader(fullfile(pathname,filename)); 
image=imread(fullfile(pathname,filename)); 
handles.pathname=pathname; 
handles.filename=filename; 
handles.image=image; 
guidata(hObject,handles); 

  

  
% --- Executes on button press in ExtractVP. 
function ExtractVP_Callback(hObject, eventdata, handles) 
% hObject    handle to ExtractVP (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
integralImage=handles.image; 
NoVP=str2num(get(handles.NoVP1,'String')); 
PatchSize=str2num(get(handles.PatchSize,'String')); 

  
Yaxis=str2num(get(handles.Yaxis,'String')); 
Xaxis=str2num(get(handles.Xaxis,'String')); 

  
YMove=str2num(get(handles.YMove,'String')); 
XMove=str2num(get(handles.XMove,'String')); 

  

  
 NoVPin= str2num(get(handles.NoVPin,'String')); 

  
 if NoVPin==0 
     NoVPin=floor((((NoVP/PatchSize)-1)/2)*PatchSize); 
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 else 
      NoVPin= str2num(get(handles.NoVPin,'String')); 
 end 

  

  
 NoShift= str2num(get(handles.shift,'String')); 

  
 if NoShift==0 
     NoShift=floor(((NoVP/PatchSize)-1)/2); 
     t=1:NoShift:NoVPin; 
     balance=(size(t,2)); 
 elseif NoShift==1 
     NoShift=0; 
     balance=NoVPin; 
 else 
     NoShift= str2num(get(handles.shift,'String')); 
     t=1:NoShift:NoVPin; 
     balance=(size(t,2)); 
%      balance=NoVPin; 
 end 

  
%  if str2num(get(handles.shift,'String'))==0 && 

str2num(get(handles.NoVPin,'String'))==0 
%      NoVPin= floor(NoVPin/NoShift); 
%  end 
ext = get(handles.ext,'String'); 
OutName= get(handles.OutName,'String'); 

  
%[VP1]= HD2image_new2_sharp(integralImage,NoVP,PatchSize, 

Yaxis,Xaxis,NoVPin,YMove,XMove,NoShift,balance); 

  
[VP1]= HD2image_new2(integralImage,NoVP,PatchSize, 

Yaxis,Xaxis,NoVPin,YMove,XMove,NoShift,balance); 

  
if NoShift==0 
    pia=1; 
else 
    pia=NoShift; 
end 
pic=floor(NoVPin/pia); 
pic=floor(pic*pia); 
  VP1=VP1(pic:size(VP1,1)-((pic*2)+pia),pic:size(VP1,2)-

((pic*2)+pia),:); 
 %VP1=imresize(VP1,[882 1330], 'bicubic'); 
  %H = fspecial('disk',3);1920x1080 
  %VP1 = imfilter(VP1,H,'replicate'); 
%   H = fspecial('unsharp'); 
%   %VP1(:,:,1) = imfilter(VP1(:,:,1),H,'replicate'); 
%   %VP1(:,:,2) = imfilter(VP1(:,:,2),H,'replicate'); 
%   VP1(:,:,3) = imfilter(VP1(:,:,3),H,'replicate'); 
% %   H = fspecial('disk',2); 
% %   VP1(:,:,3) = imfilter(VP1(:,:,3),H,'replicate'); 
% %  %VP1(:,:,1) = imfilter(VP1(:,:,1),H,'replicate'); 
%   h = fspecial('gaussian', [50 50]); 
%   VP1 = imfilter(VP1,h,'replicate'); 

   
imwrite(VP1, [OutName ext],'tiff','Compression','none'); 
%imwrite(VP1, [OutName ext]); 
figure(331);imshow(VP1); 
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function YMove_Callback(hObject, eventdata, handles) 
% hObject    handle to YMove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of YMove as text 
%        str2double(get(hObject,'String')) returns contents of YMove 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function YMove_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to YMove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function XMove_Callback(hObject, eventdata, handles) 
% hObject    handle to XMove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of XMove as text 
%        str2double(get(hObject,'String')) returns contents of XMove 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function XMove_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to XMove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Analyse. 
function Analyse_Callback(hObject, eventdata, handles) 
% hObject    handle to Analyse (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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integralImage=handles.image; 
NoVP=str2num(get(handles.NoVP1,'String')); 
PatchSize=str2num(get(handles.PatchSize,'String')); 

  
Yaxis=str2num(get(handles.Yaxis,'String')); 
Xaxis=str2num(get(handles.Xaxis,'String')); 

  
YMove=str2num(get(handles.YMove,'String')); 
XMove=str2num(get(handles.XMove,'String')); 

  
% NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
% NoShift= str2num(get(handles.text33,'String')); 
% ext = get(handles.ext,'String'); 
% OutName= get(handles.OutName,'String'); 

  
[Image]=Analyse(integralImage,NoVP,YMove,XMove,Yaxis,Xaxis); 

  
figure(1);imshow(Image); 

  

  
function OutName_Callback(hObject, eventdata, handles) 
% hObject    handle to OutName (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of OutName as text 
%        str2double(get(hObject,'String')) returns contents of 

OutName as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function OutName_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to OutName (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function ext_Callback(hObject, eventdata, handles) 
% hObject    handle to ext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of ext as text 
%        str2double(get(hObject,'String')) returns contents of ext 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
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function ext_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ext (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function shift_Callback(hObject, eventdata, handles) 
% hObject    handle to shift (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of shift as text 
%        str2double(get(hObject,'String')) returns contents of shift 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function shift_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to shift (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function NoVP1_Callback(hObject, eventdata, handles) 
% hObject    handle to NoVP1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of NoVP1 as text 
%        str2double(get(hObject,'String')) returns contents of NoVP1 

as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function NoVP1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to NoVP1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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Appendix D: Matlab code for SPA 

function [VP1]= HD2image_new(integralImage,MicroImageSize,combineVP, 

ss,ii,NoOfVP,YMove,XMove,shift,balance) 

  
%name=integralImage; 

  
%integralImage=imread([integralImage  typeEx1]); 
% combineVP= str2num(get(handles.PatchSizeDisp,'String')); 
% ss= str2num(get(handles.DisplayViewpoint_Y,'String')); 
% ii= str2num(get(handles.DisplayViewpoint_X,'String')); 
% NoOfVP=str2num(get(handles.NoOfVPDisp,'String')); 
%  
% MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
%shift=0; 
%  %handles.image=Image;  
%  %guidata(hObject,handles); 
% %numViewPoint=str2num(get(handles.NumberOfVP,'String')); 
shift1=1; 
numViewPoint=MicroImageSize; 

  
NoOfVP=round(NoOfVP); 
shift=round(shift); 
if shift==0 
    shift=1; 
end 

  
%NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
%NoShift= str2num(get(handles.Shift,'String')); 
%type = get(handles.typeEx,'String'); 
%pathname1='D:\obaid\Database(Second)\Quadruped 

Mammals\DepthV\HDimages\'; 
%OutImageName= get(handles.OutputName,'String'); 
num_lens_x=floor(size(integralImage,2)/numViewPoint)*combineVP; 
num_lens_y=floor(size(integralImage,1)/numViewPoint)*combineVP; 

  
 %VP1= 

im2double(zeros(((num_lens_y+((shift+1)*NoOfVP))*NoOfVP),((num_lens_

x+((shift+1)*NoOfVP))*NoOfVP),3)); 
%VP1= 

im2uint16(zeros((num_lens_y+((shift1+1)*NoOfVP)),(num_lens_x+((shift

1+1)*NoOfVP)),3)); 
VP1= 

im2double(zeros((num_lens_y+((shift1+1)*(NoOfVP+2))),(num_lens_x+((s

hift1+1)*(NoOfVP+2))),3));  
num_elem_pixc=floor(size(integralImage,2)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
num_elem_pixr=floor(size(integralImage,1)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
for r = 1:1:NoOfVP 

  
    rowpoint=0; 
    yy=0; 
    brr=0; 
    for VPr =(r+(ss-1)):numViewPoint:num_elem_pixr-(numViewPoint) 
        yy=yy+1; 

         
        for rr=0:(combineVP-1) 
            rowpoint=rowpoint+1; 
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            y=(yy*(combineVP-1)+1)-rr+yy; 
            VPrr(rowpoint)=(VPr+floor(brr))+rr; 
            %VPrrr(y-1)=VPr+rr; 

             
        end 
        brr=brr+YMove; 
    end 
    %--------- 

     
%         VPrr=VPrr+((combineVP-1)*(r-1)); 

    
    %------ 
    for i = 1:1:NoOfVP 
        bcc=0; 
        colpoint=0; 
        xx=0; 
        for VPc=(i+(ii-1)):numViewPoint:num_elem_pixc-(numViewPoint) 
            xx=xx+1; 
            for cc=0:(combineVP-1) 
                colpoint=colpoint+1; 
                x=(xx*(combineVP-1)+1)-cc+xx; 
                VPcc(colpoint)=(VPc+floor(bcc))+cc; 
                %VPccc(x-1)=VPc+cc; 

             
            end 
            bcc=bcc+XMove; 
        end 
%         shift1=NoOfVP; 
        %------ 

         
%         VPcc1=VPcc+((combineVP-1)*(i-1));  

         
        %------ 

         

         
        VP=integralImage(VPrr,VPcc,:); 
%         VP=imresize(VP, [(size(VP,1)*NoOfVP) 

(size(VP,2)*NoOfVP)]); 
        cj=floor(size(VP,2));%Number of complete cylindrical 

microlenses with pixels 
        ri=floor(size(VP,1));%Number of complete cylindrical 

microlenses with pixels 
         %VPii = r:size(VP1,1); 
        % VPjj = i:size(VP1,2); 
        VPi = r+((r-1)*(shift1-1)):size(VP1,1); 
        VPj = i+((i-1)*(shift1-1)):size(VP1,2);       
        %VPN= (VP)/(balance*balance); 
        VPN= im2double(VP)/(NoOfVP*NoOfVP); 
        iii=1:ri;  
        jjj=1:cj;  
        VP1(VPi(iii),VPj(jjj),:)=(VP1(VPi(iii),VPj(jjj),:))+ 

(VPN(iii,jjj,:)); 

         

         
    end 
end 

  
end 
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Appendix E: Matlab code for GUI B 

function varargout = Stereo(varargin) 
% STEREO MATLAB code for Stereo.fig 
%      STEREO, by itself, creates a new STEREO or raises the 

existing 
%      singleton*. 
% 
%      H = STEREO returns the handle to a new STEREO or the handle 

to 
%      the existing singleton*. 
% 
%      STEREO('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in STEREO.M with the given input 

arguments. 
% 
%      STEREO('Property','Value',...) creates a new STEREO or raises 

the 
%      existing singleton*.  Starting from the left, property value 

pairs are 
%      applied to the GUI before Stereo_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 

application 
%      stop.  All inputs are passed to Stereo_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows 

only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help Stereo 

  
% Last Modified by GUIDE v2.5 05-Sep-2014 14:12:18 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Stereo_OpeningFcn, ... 
                   'gui_OutputFcn',  @Stereo_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
end 

  
% --- Executes just before Stereo is made visible. 
function Stereo_OpeningFcn(hObject, eventdata, handles, varargin) 
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% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Stereo (see VARARGIN) 

  
% Choose default command line output for Stereo 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes Stereo wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  
end 
% --- Outputs from this function are returned to the command line. 
function varargout = Stereo_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  
end 

  
function StartVPY_Callback(hObject, eventdata, handles) 
% hObject    handle to StartVPY (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StartVPY as text 
%        str2double(get(hObject,'String')) returns contents of 

StartVPY as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function StartVPY_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StartVPY (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function NumberOfVP_Callback(hObject, eventdata, handles) 
% hObject    handle to NumberOfVP (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of NumberOfVP as 

text 
%        str2double(get(hObject,'String')) returns contents of 

NumberOfVP as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function NumberOfVP_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to NumberOfVP (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function VPNoInRow_Callback(hObject, eventdata, handles) 
% hObject    handle to VPNoInRow (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of VPNoInRow as text 
%        str2double(get(hObject,'String')) returns contents of 

VPNoInRow as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function VPNoInRow_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to VPNoInRow (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function Shift_Callback(hObject, eventdata, handles) 
% hObject    handle to Shift (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Shift as text 
%        str2double(get(hObject,'String')) returns contents of Shift 

as a double 
end 
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% --- Executes during object creation, after setting all properties. 
function Shift_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Shift (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function OutputName_Callback(hObject, eventdata, handles) 
% hObject    handle to OutputName (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of OutputName as 

text 
%        str2double(get(hObject,'String')) returns contents of 

OutputName as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function OutputName_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to OutputName (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function typeEx_Callback(hObject, eventdata, handles) 
% hObject    handle to typeEx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of typeEx as text 
%        str2double(get(hObject,'String')) returns contents of 

typeEx as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function typeEx_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to typeEx (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 
% --- Executes on button press in LoadImage. 
function LoadImage_Callback(hObject, eventdata, handles) 
% hObject    handle to LoadImage (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[filename,pathname]=uigetfile('*.jpg','Select an image File'); 
image=VideoReader(fullfile(pathname,filename)); 
%image=imread(fullfile(pathname,filename)); 
handles.pathname=pathname; 
handles.filename=filename; 
handles.image=image; 
guidata(hObject,handles); 
end 

  

  

  

  
% --- Executes on button press in DifferentDepth. 
function DifferentDepth_Callback(hObject, eventdata, handles) 
% hObject    handle to DifferentDepth (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%integralImage=handles.image; 
%integralImage=handles.image; 
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
%l = floor(MicroImageSize/2); 
%Image = uint8(zeros(size(integralImage))); 
%    for i = l+1:MicroImageSize:size(integralImage,1)-l 
%        for j = l+1:MicroImageSize:size(integralImage,2)-l 
            %MicroBlock=flipud(img(i-l:i+l,j-l:j+l,:)); 
            %Image(i-l:i+l,j-l:j+l,:)=MicroBlock(:,:,:); 
%            MicroBlock=integralImage(i-l:i+l,j-l:j+l,:); 
%            block=uint8(zeros(size(MicroBlock))); 
%            block(:,:,1)=flipud(MicroBlock(:,:,1)); 
%            block(:,:,2)=flipud(MicroBlock(:,:,2)); 
%            block(:,:,3)=flipud(MicroBlock(:,:,3)); 
%            Image(i-l:i+l,j-l:j+l,:)=block(:,:,:); 
%        end 
%    end 
 %handles.image=Image;  
 %guidata(hObject,handles); 
%imwrite(Image, 'InvertedImage.jpg'); 
%integralImage=Image; 
%numViewPoint=str2num(get(handles.NumberOfVP,'String')); 

  
numViewPoint=MicroImageSize; 
StartVPnumbery=str2num(get(handles.StartVPY,'String')); 
StartVPnumberx=str2num(get(handles.StartVPX,'String')); 
NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
NoShift= str2num(get(handles.Shift,'String')); 
type = get(handles.typeEx,'String'); 
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OutImageName= get(handles.OutputName,'String'); 

  
subimages=handles.subimages; 

  
%----------- 
    for iii= 0:NoShift 

         
        numViewpoint1= 7; 

  
        cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 
        ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 
        %ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
        %VP=0; 
        %shift=6; 
        %shift=0; 
        VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * (iii+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-

1) * (iii+1)),3)); 

  
        for i = 1: NoViewpoint 
            %iii=(i-1)*shift; 
            VPi = i+((i-1)*iii):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                VPj = j+((j-1)*iii):size(VP,2); 
                VPN= 

im2double(imresize(subimages{i+StartVPnumbery,j+StartVPnumberx}, 

[ri,cj]))/(NoViewpoint*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=((VP(VPi(ii),VPj(jj),:))+ (VPN(ii,jj,:))); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  
        p=(NoViewpoint-1)*iii + ((NoViewpoint-iii)* (NoViewpoint-

1)/2); 
        %p=(NoViewpoint-1)*iii; 
        VP= VP(p: (size(VP,1)-p),p: (size(VP,2)-p),: ); 

         
        imwrite(VP,([OutImageName num2str(iii) type])); 
    end 

         

     

  

  
end 
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% --- Executes on button press in DisplayVP. 
function DisplayVP_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayVP (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
subimages=handles.subimages; 
%DisplayVPnum=0; 
DisplayVPnum_Y= str2num(get(handles.DisplayViewpoint_Y,'String')); 
DisplayVPnum_X= str2num(get(handles.DisplayViewpoint_X,'String')); 
figure(1);imagesc(subimages{DisplayVPnum_Y,DisplayVPnum_X}); 
figure(2);imshow(subimages{DisplayVPnum_Y,DisplayVPnum_X}); 

  

  
end 

  

  

  
function DisplayViewpoint_Y_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayViewpoint_Y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of 

DisplayViewpoint_Y as text 
%        str2double(get(hObject,'String')) returns contents of 

DisplayViewpoint_Y as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function DisplayViewpoint_Y_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to DisplayViewpoint_Y (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  

  

  
% --- Executes on button press in ExtractVPs. 
function ExtractVPs_Callback(hObject, eventdata, handles) 
% hObject    handle to ExtractVPs (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
integralImage=handles.image; 
FrameNo = str2num(get(handles.FrameNo,'String')); 
integralImage=read(integralImage,FrameNo); 
%integralImage=handles.image; 
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MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 

  
 %handles.image=Image;  
 %guidata(hObject,handles); 
%numViewPoint=str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
%StartVPnumber=str2num(get(handles.StartVPY1,'String')); 
%NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
%NoShift= str2num(get(handles.Shift,'String')); 
%type = get(handles.typeEx,'String'); 

  
%OutImageName= get(handles.OutputName,'String'); 

  
num_elem_pixc=floor(size(integralImage,2)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
num_elem_pixr=floor(size(integralImage,1)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
%ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
subimages=cell(numViewPoint,numViewPoint); 
%vpno=0; 
    for r = 1 : numViewPoint 
        %ImageOutName= ([OutImageName num2str(r) '-']); 
        %ImageOutName1= ([OutImageName num2str(r) '-']); 

  
        for i = 1 :numViewPoint 
            %vpno= vpno+1; 

  
            ViewPointPositionc = i:numViewPoint:num_elem_pixc; 
            ViewPointPositionr = r:numViewPoint:num_elem_pixr; 
            %extract the viewpoint from the integralImage and store 

it onto 
            %--eval(['VP_' num2str(i) 

'=integralImage(ViewPointPositionr,ViewPointPositionc,:);'])%extract  

the viewpoint i 
            %--VP = eval(['VP_' num2str(i)]); 
            %VP = imresize(VP,[540 960],'bilinear');         
            %%% enter the function of histogram equalisation 
            %VP=histeq(VP); 
            

VP=integralImage(ViewPointPositionr,ViewPointPositionc,:); 
            %imwrite(VP,([ImageOutName1 num2str(i) type])) ;% write 

the viewpoint image i 

  
            subimages{r,i}=VP;% also store the viewpoint i images 
            clear VP; 
        end 
    end 

     
handles.subimages=subimages; 
guidata(hObject,handles); 

  
end 

  

  

  
function DisplayViewpoint_X_Callback(hObject, eventdata, handles) 
% hObject    handle to DisplayViewpoint_X (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of 

DisplayViewpoint_X as text 
%        str2double(get(hObject,'String')) returns contents of 

DisplayViewpoint_X as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function DisplayViewpoint_X_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to DisplayViewpoint_X (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
% --- Executes on button press in Generate. 
function Generate_Callback(hObject, eventdata, handles) 
% hObject    handle to Generate (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
StartVPnumberY=str2num(get(handles.StatVPY1,'String')); 
StartVPnumberX=str2num(get(handles.StartVPX1,'String')); 
NoViewpoint= str2num(get(handles.VPNoInRow1,'String')); 
NoShift= str2num(get(handles.Shift1,'String')); 
type = get(handles.typeEx1,'String'); 
OutImageName= get(handles.OutputName1,'String'); 
%NoIntegratedImages = cell(NoViewpoint, 1); 
subimages=handles.subimages; 
cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 
ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 

  
%NoIntegratedImages = cell(NoViewpoint, 1); 
%NoIntegratedImagesF = cell(1,1); 

  

        

  
%------------------------- 

  

      

  

  
            %[NoIntegratedImagesR]= 

VPIntegrationR(subimages,StartVPnumberR,NoViewpoint,NoShift,Ri); 
           VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * 
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(NoShift+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-1) 

* (NoShift+1)),3)); 

  
        for i = 1: NoViewpoint 
            VPi = i+((i-1)*NoShift):size(VP,1); 
            upsamplei=0; 
            iup=0; 
            for ii=1:size(subimages{1,1},1) 
                iup=(NoViewpoint*(ii-1))+1; 
                for iiii=0:(NoViewpoint-1) 
                    upsamplei(iup+iiii)=ii; 
                end 
            end 
            %iii=(i-1)*shift; 
            %VPi = i+((i-1)*iii):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                upsamplej=0; 
                jup=0; 
                for jj=1:size(subimages{1,1},2) 
                    jup=(NoViewpoint*(jj-1))+1; 
                    for jjjj=0:(NoViewpoint-1) 
                        upsamplej(jup+jjjj)=jj; 
                    end 
                end 
                VPj = j+((j-1)*NoShift):size(VP,2); 
                %VPj = j+((j-1)*iii):size(VP,2); 
                VPN= 

im2double(subimages{i+StartVPnumberY,j+StartVPnumberX})/(NoViewpoint

*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=(VP(VPi(ii),VPj(jj),:))+ 

(VPN(upsamplei(ii),upsamplej(jj),:)); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  

  

  
    %NoIntegratedImages2{1}=NoIntegratedImagesC{1}; 
    imwrite(VP,([OutImageName 'newful' type])); 
    imwrite((imresize(VP,0.3)),([OutImageName 'new' type])); 

     

  

  

  

  

     
end 
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% --- Executes on button press in DepthMap. 
function DepthMap_Callback(hObject, eventdata, handles) 
% hObject    handle to DepthMap (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
BW=11;%window size 
l=floor(BW/2); 
NoShift= str2num(get(handles.Shift,'String')); 
type = get(handles.typeEx,'String'); 
OutImageName= get(handles.OutputName,'String'); 
NBN = 4;  
%NB=floor([size(subimages{1},1)/BW size(subimages{1},2)/BW]);%number 

of blocks line-columns 
%BlockValue =(size(InterpolatedVPNo,1),1); 
InterpolatedVPNo1 = cell(NoShift,1); 
InterpolatedVPNo1_col = cell(NoShift,1); 
for ii = 1: NoShift 
    InterpolatedVPNo1{ii}=rgb2gray((im2double(imread([OutImageName 

num2str(ii-1) type])))); 
    InterpolatedVPNo1_col{ii}=imread([OutImageName num2str(ii-1) 

type]); 
    InterpolatedVPNo1_col1{ii}=imread([OutImageName '1' num2str(ii-

1) type]); 

     

     
end 
HighResolution= zeros(size(InterpolatedVPNo1{1},1), 

size(InterpolatedVPNo1{1},2)); 
HighResolution_col= uint8(zeros(size(InterpolatedVPNo1{1},1), 

size(InterpolatedVPNo1{1},23),3)); 
HighResolution_col1= uint8(zeros(size(InterpolatedVPNo1{1},1), 

size(InterpolatedVPNo1{1},23),3)); 

   
for i=l+1:BW:size(InterpolatedVPNo1{1},1) -l 
    for j=l+1:BW:size(InterpolatedVPNo1{1},2)-l 
        for NoInterpolatedVP = 1 : 

NoShift%10%size(InterpolatedVPNo1,1) 

         
            Block= InterpolatedVPNo1{NoInterpolatedVP}(i-l:i+l,j-

l:j+l,:); 
%             I = double(Block); 
%             [y x] = size(I); 
%  
%             Hv = [1 1 1 1 1 1 1 1 1]/9; 
%             Hh = Hv'; 
%  
%             B_Ver = imfilter(I,Hv);%blur the input image in 

vertical direction 
%             B_Hor = imfilter(I,Hh);%blur the input image in 

horizontal direction 
%  
%             D_F_Ver = abs(I(:,1:x-1) - I(:,2:x));%variation of the 

input image (vertical direction) 
%             D_F_Hor = abs(I(1:y-1,:) - I(2:y,:));%variation of the 

input image (horizontal direction) 
%  
%             D_B_Ver = abs(B_Ver(:,1:x-1)-B_Ver(:,2:x));%variation 

of the blured image (vertical direction) 



Post-Production of Holoscopic 3D Image 

 

Appendix Page 202 

 

%             D_B_Hor = abs(B_Hor(1:y-1,:)-B_Hor(2:y,:));%variation 

of the blured image (horizontal direction) 
%  
%             T_Ver = D_F_Ver - D_B_Ver;%difference between two 

vertical variations of 2 image (input and blured) 
%             T_Hor = D_F_Hor - D_B_Hor;%difference between two 

horizontal variations of 2 image (input and blured) 
%  
%             V_Ver = max(0,T_Ver); 
%             V_Hor = max(0,T_Hor); 
%  
%             S_D_Ver = sum(sum(D_F_Ver(2:y-1,2:x-1))); 
%             S_D_Hor = sum(sum(D_F_Hor(2:y-1,2:x-1))); 
%  
%             S_V_Ver = sum(sum(V_Ver(2:y-1,2:x-1))); 
%             S_V_Hor = sum(sum(V_Hor(2:y-1,2:x-1))); 
%  
%             blur_F_Ver = (S_D_Ver-S_V_Ver)/S_D_Ver; 
%             blur_F_Hor = (S_D_Hor-S_V_Hor)/S_D_Hor; 
%  
%             BlockValue(NoInterpolatedVP) = 

max(blur_F_Ver,blur_F_Hor); 

             
            BlockMax = max(max(Block)); 
            BlockMin = min(min(Block)); 
            BlockValue(NoInterpolatedVP) = ((BlockMax - BlockMin)/ 

(BlockMax + BlockMin)); 
            neighbors=cell(NBN,1); 
            l=floor(BW/2); 
            siz = size(InterpolatedVPNo1{1,1}); 

  
            if i>BW+l 
            neighbors{1}=[i-BW,j]; 
            else 
                neighbors{1}=NaN; 
            end 
            if j<siz(2)-BW-l 
            neighbors{2}=[i,j+BW];  
            else 
                neighbors{2}=NaN; 
            end 

  
            if i<siz(1)-BW-l 
            neighbors{3}=[i+BW,j]; 
            else 
                neighbors{3}=NaN; 
            end 

  
            if j>BW+l 
            neighbors{4}=[i,j-BW]; 
            else 
                neighbors{4}=NaN; 
            end 

             

             
            if NBN>4 
            if i>BW+l&j>BW+l 
            neighbors{5}=[i-BW,j-BW]; 
            else 
                neighbors{5}=NaN; 
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            end 
            if i>BW+l&j<siz(2)-BW-l 
            neighbors{6}=[i-BW,j+BW];  
            else 
                neighbors{6}=NaN; 
            end 

  
            if i<siz(1)-BW-l&j<siz(2)-BW-l 
            neighbors{7}=[i+BW,j+BW]; 
            else 
                neighbors{7}=NaN; 
            end 

  
            if i<siz(1)-BW-l&j>BW+l 
            neighbors{8}=[i+BW,j-BW]; 
            else 
                neighbors{8}=NaN; 
            end 

  
            end 

  

  

  
            if NBN>8 
                if j>2*BW+l 
            neighbors{9}=[i,j-2*BW]; 
            else 
                neighbors{9}=NaN; 
            end 
            if i>2*BW+l 
            neighbors{10}=[i-2*BW,j];  
            else 
                neighbors{10}=NaN; 
            end 

  
            if j<siz(2)-2*BW-l 
            neighbors{11}=[i,j+2*BW]; 
            else 
                neighbors{11}=NaN; 
            end 

  
            if i<siz(1)-2*BW-l 
            neighbors{12}=[i+2*BW,j]; 
            else 
                neighbors{12}=NaN; 
            end 

  

  
            end 

  

  
            if NBN>12 
            if i<siz(1)-l&j>2*BW+l 
            neighbors{13}=[i+BW,j-2*BW]; 
            else   
            neighbors{13}=NaN; 
            end   

  
            if i>BW+l&j>2*BW+l 
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            neighbors{14}=[i-BW,j-2*BW];  
            else   
                neighbors{14}=NaN; 
            end 

  
            if i>2*BW+l&j>BW+l 
            neighbors{15}=[i-2*BW,j-BW]; 
            else 
                neighbors{15}=NaN; 
            end 

  
            if i>2*BW+l&j<siz(2)-BW-l 
            neighbors{16}=[i-2*BW,j+BW]; 
            else 
                neighbors{16}=NaN; 
            end 

  
            if i>BW+l&j<siz(2)-2*BW-l 
            neighbors{17}=[i-BW,j+2*BW]; 
            else 
                neighbors{17}=NaN; 
            end 

  
            if i<siz(1)-BW-l&j<siz(2)-2*BW-l 
            neighbors{18}=[i+BW,j+2*BW];  
            else 
                neighbors{18}=NaN; 
            end 

  
            if i<siz(1)-2*BW-l&j<siz(2)-BW-l 
            neighbors{19}=[i+2*BW,j+BW]; 
            else 
                neighbors{19}=NaN; 
            end 

  
            if i<siz(1)-2*BW-l&j>BW+l 
            neighbors{20}=[i+2*BW,j-BW]; 
            else 
                neighbors{20}=NaN; 
            end 

  
            end 
            %--> 

  
            if NBN>20 

  
               if i<siz(1)-BW*2-l&j>BW*2+l 
                   neighbors{21}=[i+2*BW,j-2*BW]; 
               else 
                   neighbors{21}=NaN; 
               end 

  
               if i>BW*2+l&j>BW*2+l 
                   neighbors{22}=[i-2*BW,j-2*BW]; 
               else 
                   neighbors{22}=NaN; 
               end 

  
               if i>BW*2+l&j<siz(2)-BW*2-l 
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                   neighbors{23}=[i-2*BW,j+2*BW]; 
               else 
                   neighbors{23}=NaN; 
               end 

  
               if i<siz(1)-BW*2-l&j<siz(2)-BW*2-l 
                   neighbors{24}=[i+2*BW,j+2*BW]; 
               else 
                   neighbors{24}=NaN; 
               end  
            end 

             

             
            nBlockValue=0; 
            for n = 1: NBN 
                if isnan(neighbors{n}) 
                else 
                    ii= neighbors{n}(1,1); 
                    jj = neighbors{n}(1,2); 
                    nblock = InterpolatedVPNo1{NoInterpolatedVP}(ii-

l:ii+l,jj-l:jj+l,:); 
                    %enterblur 

function^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
%                     I = double(nblock); 
%                     [y x] = size(I); 
%  
%                     Hv = [1 1 1 1 1 1 1 1 1]/9; 
%                     Hh = Hv'; 
%  
%                     B_Ver = imfilter(I,Hv);%blur the input image 

in vertical direction 
%                     B_Hor = imfilter(I,Hh);%blur the input image 

in horizontal direction 
%  
%                     D_F_Ver = abs(I(:,1:x-1) - 

I(:,2:x));%variation of the input image (vertical direction) 
%                     D_F_Hor = abs(I(1:y-1,:) - 

I(2:y,:));%variation of the input image (horizontal direction) 
%  
%                     D_B_Ver = abs(B_Ver(:,1:x-1)-

B_Ver(:,2:x));%variation of the blured image (vertical direction) 
%                     D_B_Hor = abs(B_Hor(1:y-1,:)-

B_Hor(2:y,:));%variation of the blured image (horizontal direction) 
%  
%                     T_Ver = D_F_Ver - D_B_Ver;%difference between 

two vertical variations of 2 image (input and blured) 
%                     T_Hor = D_F_Hor - D_B_Hor;%difference between 

two horizontal variations of 2 image (input and blured) 
%  
%                     V_Ver = max(0,T_Ver); 
%                     V_Hor = max(0,T_Hor); 
%  
%                     S_D_Ver = sum(sum(D_F_Ver(2:y-1,2:x-1))); 
%                     S_D_Hor = sum(sum(D_F_Hor(2:y-1,2:x-1))); 
%  
%                     S_V_Ver = sum(sum(V_Ver(2:y-1,2:x-1))); 
%                     S_V_Hor = sum(sum(V_Hor(2:y-1,2:x-1))); 
%  
%                     blur_F_Ver = (S_D_Ver-S_V_Ver)/S_D_Ver; 
%                     blur_F_Hor = (S_D_Hor-S_V_Hor)/S_D_Hor; 
%  
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%                     nBlockValue = min(blur_F_Ver,blur_F_Hor); 
                    nblockMax = max(max(nblock)); 
                    nblockMin = min(min(nblock)); 
                    nBlockValue = ((nblockMax - nblockMin)/ 

(nblockMax + nblockMin)); 

                     
                end 
                Tblocks(n) = nBlockValue; 
            end 

         

         
        BlockValue(NoInterpolatedVP) = 

BlockValue(NoInterpolatedVP)+sum(sum(Tblocks)); 

         
        end 
        [value index]= max(BlockValue); 
        HighResolution(i-l:i+l,j-l:j+l,:)= 

InterpolatedVPNo1{index}(i-l:i+l,j-l:j+l,:); 
        HighResolution_col(i-l:i+l,j-l:j+l,:)= 

InterpolatedVPNo1_col{index}(i-l:i+l,j-l:j+l,:); 
        HighResolution_col1(i-l:i+l,j-l:j+l,:)= 

InterpolatedVPNo1_col1{index}(i-l:i+l,j-l:j+l,:); 
        depth(i,j)= index; 

         
    end 
end 

  
Z1=zeros(size(InterpolatedVPNo1{1},1),size(InterpolatedVPNo1{1},2)); 
for i=l+1:BW:size(InterpolatedVPNo1{1},1)-l 
    for j=l+1:BW:size(InterpolatedVPNo1{1},2)-l 

         
        %depthvalue=0; 
        %depthvalue=(2 * 29/10)/depth(i,j); 

        
            %Z1(i-l:i+l,j-l:j+l)=depthvalue; 
            Z1(i-l:i+l,j-l:j+l)=depth(i,j); 

        
    end 
end 
HighResolution_col(:,:,1)=medfilt2(HighResolution_col(:,:,1),[13 

13]); 
HighResolution_col(:,:,2)=medfilt2(HighResolution_col(:,:,2),[13 

13]); 
HighResolution_col(:,:,3)=medfilt2(HighResolution_col(:,:,3),[13 

13]); 

  
figure(6);imagesc(Z1); 
figure(7);imagesc(HighResolution); 
figure(11);imagesc(HighResolution_col); 
figure(111);imagesc(HighResolution_col1); 
save depthinformation 

  
end 

  

  
% --- Executes on button press in StereoDisparity. 
function StereoDisparity_Callback(hObject, eventdata, handles) 
% hObject    handle to StereoDisparity (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
%MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
%numViewPoint=MicroImageSize; 
method = 'SSD'; 
corrWindowSize=str2num(get(handles.WindowSize,'String')); 
dMax= str2num(get(handles.PixelSearch,'String')); 
dMin = 0; 
%NoShift= str2num(get(handles.Shift1,'String')); 
leftImage = get(handles.StereoImage2,'String'); 
rightImage= get(handles.StereoImage1,'String'); 

  
%NoIntegratedImages = cell(NoViewpoint, 1); 
%subimages=handles.subimages; 
% Grab the image information (metadata) of left image using the 

function imfinfo 
leftImageInfo=imfinfo(leftImage); 
% Grab the image information (metadata) of right image using the 

function imfinfo 
rightImageInfo=imfinfo(rightImage); 
% Since Dense Matching is applied on a grayscale image, determine if 

the 
% input left image is already in grayscale or color 
if(getfield(leftImageInfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space 

to 
% grayscale using rgb2gray function and assign it to variable 

leftImage 
    leftImage=rgb2gray(imread(leftImage)); 
else if(getfield(leftImageInfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it.         
        leftImage=imread(leftImage); 
    else 
        error('The Color Type of Left Image is not acceptable. 

Acceptable color types are truecolor or grayscale.'); 
    end 
end 
% Since Dense Matching is applied on a grayscale image, determine if 

the 
% input right image is already in grayscale or color 
if(getfield(rightImageInfo,'ColorType')=='truecolor') 
% Read an image using imread function, convert from RGB color space 

to 
% grayscale using rgb2gray function and assign it to variable 

rightImage 
    rightImage=rgb2gray(imread(rightImage)); 
else if(getfield(rightImageInfo,'ColorType')=='grayscale') 
% If the image is already in grayscale, then just read it.         
        rightImage=imread(rightImage); 
    else 
        error('The Color Type of Right Image is not acceptable. 

Acceptable color types are truecolor or grayscale.'); 
    end 
end 
% Find the size (columns and rows) of the left image and assign the 

rows to 
% variable nrLeft, and columns to variable ncLeft 
[nrLeft,ncLeft] = size(leftImage); 
% Find the size (columns and rows) of the right image and assign the 

rows to 
% variable nrRight, and columns to variable ncRight 
[nrRight,ncRight] = size(rightImage); 
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% Check to see if both the left and right images have same number of 

rows 
% and columns 
if(nrLeft==nrRight && ncLeft==ncRight) 
else 
    error('Both left and right images should have the same number of 

rows and columns'); 
end 
% Convert the left and right images from uint8 to double 
leftImage=im2double(leftImage); 
rightImage=im2double(rightImage); 
% Check the size of window to see if it is an odd number. 
if (mod(corrWindowSize,2)==0) 
    error('The window size must be an odd number.'); 
end 
% Check whether minimum disparity is less than the maximum 

disparity. 
if (dMin>dMax) 
    error('Minimum Disparity must be less than the Maximum 

disparity.'); 
end 
% Create an image of size nrLeft and ncLeft, fill it with zeros and 

assign 
% it to variable dispMap 
dispMap=zeros(nrLeft, ncLeft); 
% Find out how many rows and columns are to the left/right/up/down 

of the 
% central pixel based on the window size 
win=(corrWindowSize-1)/2; 
% The objective of CC, NCC and ZNCC is to maxmize the 
% correlation score, whereas other methods try to minimize 
% it. 
maximize = 0; 
if strcmp(method,'NCC') || strcmp(method,'ZNCC') 
    maximize = 1; 
end 
%tic; % Initialize the timer to calculate the time consumed. 
for(i=1+win:1:nrLeft-win) 
    % For every row in Left Image 
    for(j=1+win:1:ncLeft-win-dMax) 
        % For every column in Left Image 
        % Initialize the temporary variable to hold the previous 
        % correlation score 
        if(maximize) 
            prevcorrScore = 0.0; 
        else 
            prevcorrScore = 65532; 
        end 
        % Initialize the temporary variable to store the best 

matched 
        % disparity score 
        bestMatchSoFar = dMin; 
        for(d=dMin:dMax) 
            % For every disparity value in x-direction 
            % Construct a region with window around central/selected 

pixel in left image 
            regionLeft=leftImage(i-win : i+win, j-win : j+win); 
            % Construct a region with window around central/selected 

pixel in right image 
            regionRight=rightImage(i-win : i+win, j+d-win : 

j+d+win); 
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            % Calculate the local mean in left region 
            meanLeft = mean2(regionLeft); 
            % Calculate the local mean in right region 
            meanRight = mean2(regionRight); 
            % Initialize the variable to store temporarily the 

correlation 
            % scores 
            tempCorrScore = zeros(size(regionLeft)); 
            % Calculate the correlation score 
            if strcmp(method,'SAD') 
                tempCorrScore = abs(regionLeft - regionRight); 
            elseif strcmp(method,'ZSAD') 
                tempCorrScore = abs(regionLeft - meanLeft - 

regionRight + meanRight); 
            elseif strcmp(method,'LSAD') 
                tempCorrScore = abs(regionLeft - 

meanLeft/meanRight*regionRight); 
            elseif strcmp(method,'SSD') 
                tempCorrScore = (regionLeft - regionRight).^2; 
            elseif strcmp(method,'ZSSD') 
                tempCorrScore = (regionLeft - meanLeft - regionRight 

+ meanRight).^2;           
            elseif strcmp(method,'LSSD') 
                tempCorrScore = (regionLeft - 

meanLeft/meanRight*regionRight).^2; 
            elseif strcmp(method,'NCC') 
                % Calculate the term in the denominator (var: den) 
                den = 

sqrt(sum(sum(regionLeft.^2))*sum(sum(regionRight.^2))); 
                tempCorrScore = regionLeft.*regionRight/den; 
            elseif strcmp(method,'ZNCC') 
                % Calculate the term in the denominator (var: den) 
                den = sqrt(sum(sum((regionLeft - 

meanLeft).^2))*sum(sum((regionRight - meanRight).^2))); 
                tempCorrScore = (regionLeft - 

meanLeft).*(regionRight - meanRight)/den; 
            end 
            % Compute the final score by summing the values in 

tempCorrScore, 
            % and store it in a temporary variable signifying the 

distance 
            % (var: corrScore) 
            corrScore=sum(sum(tempCorrScore)); 
            if(maximize) 
                if(corrScore>prevcorrScore) 
                    % If the current disparity value is greater than 
                    % previous one, then swap them 
                    prevcorrScore=corrScore; 
                    bestMatchSoFar=d; 
                end 
            else 
                if (prevcorrScore > corrScore) 
                    % If the current disparity value is less than 
                    % previous one, then swap them 
                    prevcorrScore = corrScore; 
                    bestMatchSoFar = d; 
                end 
            end 
        end 
        % Store the final matched value in variable dispMap 
        dispMap(i,j) = bestMatchSoFar; 
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    end 
end 
% Stop the timer to calculate the time consumed. 
%timeTaken=toc; 
figure(3);imagesc(dispMap); 
%figure(4); imshow(dispMap); 
figure(5); image(dispMap); 
save infodatacheck 

  
end 

  

  

  

  

  

  
function StartVP1_Callback(hObject, eventdata, handles) 
% hObject    handle to StartVPY1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StartVPY1 as text 
%        str2double(get(hObject,'String')) returns contents of 

StartVPY1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StartVP1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StartVPY1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function VPNoInRow1_Callback(hObject, eventdata, handles) 
% hObject    handle to VPNoInRow1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of VPNoInRow1 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

VPNoInRow1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function VPNoInRow1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to VPNoInRow1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
end 

  
function Shift1_Callback(hObject, eventdata, handles) 
% hObject    handle to Shift1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of Shift1 as text 
%        str2double(get(hObject,'String')) returns contents of 

Shift1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function Shift1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Shift1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function OutputName1_Callback(hObject, eventdata, handles) 
% hObject    handle to OutputName1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of OutputName1 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

OutputName1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function OutputName1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to OutputName1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function typeEx1_Callback(hObject, eventdata, handles) 
% hObject    handle to typeEx1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of typeEx1 as text 
%        str2double(get(hObject,'String')) returns contents of 

typeEx1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function typeEx1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to typeEx1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function WindowSize_Callback(hObject, eventdata, handles) 
% hObject    handle to WindowSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of WindowSize as 

text 
%        str2double(get(hObject,'String')) returns contents of 

WindowSize as a double 

  
end 

  
% --- Executes during object creation, after setting all properties. 
function WindowSize_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to WindowSize (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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end 

  

  
function PixelSearch_Callback(hObject, eventdata, handles) 
% hObject    handle to PixelSearch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of PixelSearch as 

text 
%        str2double(get(hObject,'String')) returns contents of 

PixelSearch as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function PixelSearch_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PixelSearch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function StereoImage1_Callback(hObject, eventdata, handles) 
% hObject    handle to StereoImage1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StereoImage1 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

StereoImage1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StereoImage1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StereoImage1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function StereoImage2_Callback(hObject, eventdata, handles) 
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% hObject    handle to StereoImage2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StereoImage2 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

StereoImage2 as a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function StereoImage2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StereoImage2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
% --- Executes on button press in MultiView. 
function MultiView_Callback(hObject, eventdata, handles) 
% hObject    handle to MultiView (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
StartVPnumber=13; 
NoViewpoint= 7; 
StartVPnumber1 = 18; 
NoShift= 4; 
H = str2num(get(handles.H,'String')); 
W = str2num(get(handles.W,'String')); 
type = get(handles.typeEx,'String'); 
OutImageName= get(handles.OutputName,'String'); 
Multi=9; 

  
subimages=handles.subimages; 
%----------- 
    for iii= 1:Multi 
%         if iii >= Multi 
         StartVPnumber= StartVPnumber + 1; 
%              
%         else 
%         StartVPnumber= (NoViewpoint*iii); 
%         end 

  
    %------------ 
    cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 
    ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 

  
        %ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
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        %VP=0; 
        %shift=6; 
        %shift=0; 
        VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * 

(NoShift+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-1) 

* (NoShift+1)),3)); 

  
        for i = 1: NoViewpoint 
            %iii=(i-1)*shift; 
            VPi = i+((i-1)*NoShift):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                VPj = j+((j-1)*NoShift):size(VP,2); 
                VPN= 

im2double(imresize(subimages{i+StartVPnumber1,j+StartVPnumber}, 

[ri,cj]))/(NoViewpoint*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=((VP(VPi(ii),VPj(jj),:))+ (VPN(ii,jj,:))); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  
        %----------- 

  
        %NoIntegratedImages2{1}=NoIntegratedImagesC{1}; 
        %p=(NoViewpoint-1)*iii + ((NoViewpoint-iii)* (NoViewpoint-

1)/2); 
        %NoIntegratedImages2{iii}= NoIntegratedImages2{iii}(p: 

(size(NoIntegratedImages2{iii},1)-p),p: 

(size(NoIntegratedImages2{iii},2)-p),: ); 
        VP=imresize(VP, [H W]); 
        imwrite(VP,([OutImageName 'multi' num2str(iii) type])); 

         

  
    end 

  
end 

  

  

  
function W_Callback(hObject, eventdata, handles) 
% hObject    handle to W (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of W as text 
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%        str2double(get(hObject,'String')) returns contents of W as 

a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function W_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to W (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function H_Callback(hObject, eventdata, handles) 
% hObject    handle to H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of H as text 
%        str2double(get(hObject,'String')) returns contents of H as 

a double 

  
end 
% --- Executes during object creation, after setting all properties. 
function H_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to H (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function StartVPX_Callback(hObject, eventdata, handles) 
% hObject    handle to StartVPX (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StartVPX as text 
%        str2double(get(hObject,'String')) returns contents of 

StartVPX as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StartVPX_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to StartVPX (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
% --- Executes on button press in NewDOF. 
function NewDOF_Callback(hObject, eventdata, handles) 
% hObject    handle to NewDOF (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
%l = floor(MicroImageSize/2); 
%Image = uint8(zeros(size(integralImage))); 
%    for i = l+1:MicroImageSize:size(integralImage,1)-l 
%        for j = l+1:MicroImageSize:size(integralImage,2)-l 
            %MicroBlock=flipud(img(i-l:i+l,j-l:j+l,:)); 
            %Image(i-l:i+l,j-l:j+l,:)=MicroBlock(:,:,:); 
%            MicroBlock=integralImage(i-l:i+l,j-l:j+l,:); 
%            block=uint8(zeros(size(MicroBlock))); 
%            block(:,:,1)=flipud(MicroBlock(:,:,1)); 
%            block(:,:,2)=flipud(MicroBlock(:,:,2)); 
%            block(:,:,3)=flipud(MicroBlock(:,:,3)); 
%            Image(i-l:i+l,j-l:j+l,:)=block(:,:,:); 
%        end 
%    end 
 %handles.image=Image;  
 %guidata(hObject,handles); 
%imwrite(Image, 'InvertedImage.jpg'); 
%integralImage=Image; 
%numViewPoint=str2num(get(handles.NumberOfVP,'String')); 

  
numViewPoint=MicroImageSize; 
StartVPnumbery=str2num(get(handles.StartVPY,'String')); 
StartVPnumberx=str2num(get(handles.StartVPX,'String')); 
NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
NoShift= str2num(get(handles.Shift,'String')); 
type = get(handles.typeEx,'String'); 
OutImageName= get(handles.OutputName,'String'); 
subimages=handles.subimages; 
cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 
ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 
%----------- 
    for iii= 0:NoShift 

         
        %numViewpoint1= 7; 

  

         
        %ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
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        %VP=0; 
        %shift=6; 
        %shift=0; 
        VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * (iii+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-

1) * (iii+1)),3)); 

  
        for i = 1: NoViewpoint 
            VPi = i+((i-1)*iii):size(VP,1); 
            upsamplei=0; 
            iup=0; 
            for ii=1:size(subimages{1,1},1) 
                iup=(NoViewpoint*(ii-1))+1; 
                for iiii=0:(NoViewpoint-1) 
                    upsamplei(iup+iiii)=ii; 
                end 
            end 
            %iii=(i-1)*shift; 
            %VPi = i+((i-1)*iii):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                upsamplej=0; 
                jup=0; 
                for jj=1:size(subimages{1,1},2) 
                    jup=(NoViewpoint*(jj-1))+1; 
                    for jjjj=0:(NoViewpoint-1) 
                        upsamplej(jup+jjjj)=jj; 
                    end 
                end 
                VPj = j+((j-1)*iii):size(VP,2); 
                %VPj = j+((j-1)*iii):size(VP,2); 
                VPN= 

im2double(subimages{i+StartVPnumbery,j+StartVPnumberx})/(NoViewpoint

*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=(VP(VPi(ii),VPj(jj),:))+ 

(VPN(upsamplei(ii),upsamplej(jj),:)); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  
        p=(NoViewpoint-1)*iii + ((NoViewpoint-iii)* (NoViewpoint-

1)/2); 
        %p=(NoViewpoint-1)*iii; 
        VP= VP(p: (size(VP,1)-p),p: (size(VP,2)-p),: ); 

         
        imwrite(VP,([OutImageName '1' num2str(iii) type])); 
    end 

  



Post-Production of Holoscopic 3D Image 

 

Appendix Page 219 

 

  

  
end 

  

  
% --- Executes on button press in Generate1. 
function Generate1_Callback(hObject, eventdata, handles) 
% hObject    handle to Generate1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
StartVPnumberY=str2num(get(handles.StatVPY1,'String')); 
StartVPnumberX=str2num(get(handles.StartVPX1,'String')); 
NoViewpoint= str2num(get(handles.VPNoInRow1,'String')); 
NoShift= str2num(get(handles.Shift1,'String')); 
type = get(handles.typeEx1,'String'); 
OutImageName= get(handles.OutputName1,'String'); 
%NoIntegratedImages = cell(NoViewpoint, 1); 
subimages=handles.subimages; 
cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 
ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of complete 

cylindrical microlenses with pixels 

  
        %ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
        %VP=0; 
        %shift=6; 
        %shift=0; 
        VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * 

(NoShift+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-1) 

* (NoShift+1)),3)); 

  
        for i = 1: NoViewpoint 
            %iii=(i-1)*shift; 
            VPi = i+((i-1)*NoShift):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                VPj = j+((j-1)*NoShift):size(VP,2); 
                VPN= 

im2double(imresize(subimages{i+StartVPnumberY,j+StartVPnumberX}, 

[ri,cj]))/(NoViewpoint*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=((VP(VPi(ii),VPj(jj),:))+ (VPN(ii,jj,:))); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  
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        imwrite(VP,([OutImageName 'ful' type])); 
        imwrite((imresize(VP,0.3)),([OutImageName type])); 

         

  
end 

  

  

  
function StartVPX1_Callback(hObject, eventdata, handles) 
% hObject    handle to StartVPX1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StartVPX1 as text 
%        str2double(get(hObject,'String')) returns contents of 

StartVPX1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StartVPX1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StartVPX1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
% --- Executes on button press in anaglyph. 
function anaglyph_Callback(hObject, eventdata, handles) 
% hObject    handle to anaglyph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
leftImage = get(handles.StereoImage2,'String'); 
rightImage= get(handles.StereoImage1,'String'); 

  

  
hIdtc = vision.ImageDataTypeConverter; 
hCsc = vision.ColorSpaceConverter('Conversion','RGB to intensity'); 
leftI3chan = step(hIdtc,imread(leftImage)); 
leftI = step(hCsc,leftI3chan); 
rightI3chan = step(hIdtc,imread(rightImage)); 
rightI = step(hCsc,rightI3chan); 

  
figure(177), clf; 
imshow(rightI3chan), title('Image'); 

  
figure(288), clf; 
imshow(cat(3,rightI,leftI,leftI)), axis image; 
title('anaglyph'); 
anaglyph=(cat(3,rightI,leftI,leftI)); 
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imwrite(anaglyph,'Anaglyph.jpg'); 
end 

  

  

  
function StatVPY1_Callback(hObject, eventdata, handles) 
% hObject    handle to StatVPY1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of StatVPY1 as text 
%        str2double(get(hObject,'String')) returns contents of 

StatVPY1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StatVPY1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StatVPY1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
% --- Executes on button press in VideoRendering. 
function VideoRendering_Callback(hObject, eventdata, handles) 
% hObject    handle to VideoRendering (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
StartVPnumberY=str2num(get(handles.StartVPY,'String')); 

  
StartVPnumberX=str2num(get(handles.xposition1,'String')); 
StartVPnumberX1=str2num(get(handles.xposition2,'String')); 

  
NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
NoShift= str2num(get(handles.Shift,'String')); 
type = get(handles.typeEx,'String'); 
OutImageName= get(handles.OutputName,'String'); 
writerObj = VideoWriter([OutImageName '1' type], ... 
                        'Uncompressed AVI'); 
writerObj1 = VideoWriter([OutImageName '2' type], ... 
                        'Uncompressed AVI'); 
open(writerObj1); 
open(writerObj); 

  
% pathname=handles.pathname; 
% filename=handles.filename; 
Image=handles.image; 
StartFrameNo = str2num(get(handles.StratFrame,'String')); 
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EndFrameNo = str2num(get(handles.EndFrame,'String')); 

  
%integralImage=read(integralImage,FrameNo); 
%integralImage=handles.image; 

  

  

  

  

  
for start = StartFrameNo : EndFrameNo 
integralImage=read(Image,start);     
% at the end writeVideo(writerObj,integralImage); 
num_elem_pixc=floor(size(integralImage,2)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
num_elem_pixr=floor(size(integralImage,1)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
subimages=cell(numViewPoint,numViewPoint); 
%vpno=0; 
    for r = 1 : numViewPoint 
        %ImageOutName= ([OutImageName num2str(r) '-']); 
        %ImageOutName1= ([OutImageName num2str(r) '-']); 

  
        for i = 1 :numViewPoint 
            %vpno= vpno+1; 

  
            ViewPointPositionc = i:numViewPoint:num_elem_pixc; 
            ViewPointPositionr = r:numViewPoint:num_elem_pixr; 
            %extract the viewpoint from the integralImage and store 

it onto 
            %--eval(['VP_' num2str(i) 

'=integralImage(ViewPointPositionr,ViewPointPositionc,:);'])%extract  

the viewpoint i 
            %--VP = eval(['VP_' num2str(i)]); 
            %VP = imresize(VP,[540 960],'bilinear');         
            %%% enter the function of histogram equalisation 
            %VP=histeq(VP); 
            

VP=integralImage(ViewPointPositionr,ViewPointPositionc,:); 
            %imwrite(VP,([ImageOutName1 num2str(i) type])) ;% write 

the viewpoint image i 

  
            subimages{r,i}=VP;% also store the viewpoint i images 
            clear VP; 
        end 
    end 
    % only viewpointpoint extraction; 

     
    cj=floor(size(subimages{1,1},2)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 
    ri=floor(size(subimages{1,1},1)* NoViewpoint);%Number of 

complete cylindrical microlenses with pixels 

  
        %ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
        %VP=0; 
        %shift=6; 
        %shift=0; 
        VP= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * 
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(NoShift+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-1) 

* (NoShift+1)),3)); 
        VP2= 

im2double(zeros((size(subimages{1,1},1)*(NoViewpoint))+((NoViewpoint

-1) * 

(NoShift+1)),(size(subimages{1,1},2)*(NoViewpoint))+((NoViewpoint-1) 

* (NoShift+1)),3)); 
        for i = 1: NoViewpoint 
            %iii=(i-1)*shift; 
            VPi = i+((i-1)*NoShift):size(VP,1); 
            %I = 1+(numViewpoint1 -i); 
            for j = 1:NoViewpoint 
                %jjj=(j-1)*shift; 
                %J = 1+(numViewpoint1 -j); 
                VPj = j+((j-1)*NoShift):size(VP,2); 
                VPN= 

im2double(imresize(subimages{i+StartVPnumberY,j+StartVPnumberX}, 

[ri,cj]))/(NoViewpoint*NoViewpoint) ; 
                VPN1= 

im2double(imresize(subimages{i+StartVPnumberY,j+StartVPnumberX1}, 

[ri,cj]))/(NoViewpoint*NoViewpoint) ; 
                ii=1:ri;  
                jj=1:cj; 

  

  

  
                        

VP(VPi(ii),VPj(jj),:)=((VP(VPi(ii),VPj(jj),:))+ (VPN(ii,jj,:))); 
                        

VP2(VPi(ii),VPj(jj),:)=((VP2(VPi(ii),VPj(jj),:))+ (VPN1(ii,jj,:))); 

  
                %VP(VPi,VPj,:)=subimages{i+19,j+19}; 

  

  
            end 
        end  

         
%         imwrite(VP,([OutImageName 'ful' type])); 
%         imwrite((imresize(VP,0.3)),([OutImageName type])); 
        writeVideo(writerObj,VP); 
        writeVideo(writerObj1,VP2); 

     

     

     

     

     
end 
close(writerObj); 
close(writerObj1); 

  
end 

  

  
function StratFrame_Callback(hObject, eventdata, handles) 
% hObject    handle to StratFrame (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of StratFrame as 

text 
%        str2double(get(hObject,'String')) returns contents of 

StratFrame as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function StratFrame_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to StratFrame (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function EndFrame_Callback(hObject, eventdata, handles) 
% hObject    handle to EndFrame (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of EndFrame as text 
%        str2double(get(hObject,'String')) returns contents of 

EndFrame as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function EndFrame_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to EndFrame (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function FrameNo_Callback(hObject, eventdata, handles) 
% hObject    handle to FrameNo (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of FrameNo as text 
%        str2double(get(hObject,'String')) returns contents of 

FrameNo as a double 
end 
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% --- Executes during object creation, after setting all properties. 
function FrameNo_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to FrameNo (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  

  
function xposition1_Callback(hObject, eventdata, handles) 
% hObject    handle to xposition1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of xposition1 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

xposition1 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function xposition1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to xposition1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 

  

  
function xposition2_Callback(hObject, eventdata, handles) 
% hObject    handle to xposition2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of xposition2 as 

text 
%        str2double(get(hObject,'String')) returns contents of 

xposition2 as a double 
end 

  
% --- Executes during object creation, after setting all properties. 
function xposition2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to xposition2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns 

called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
end 
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Appendix E: Matlab code for extracting VP 

% --- Executes on button press in ExtractVPs. 
function ExtractVPs_Callback(hObject, eventdata, handles) 
% hObject    handle to ExtractVPs (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
integralImage=handles.image; 
FrameNo = str2num(get(handles.FrameNo,'String')); 
integralImage=read(integralImage,FrameNo); 
%integralImage=handles.image; 
MicroImageSize = str2num(get(handles.NumberOfVP,'String')); 

  
 %handles.image=Image;  
 %guidata(hObject,handles); 
%numViewPoint=str2num(get(handles.NumberOfVP,'String')); 
numViewPoint=MicroImageSize; 
%StartVPnumber=str2num(get(handles.StartVPY1,'String')); 
%NoViewpoint= str2num(get(handles.VPNoInRow,'String')); 
%NoShift= str2num(get(handles.Shift,'String')); 
%type = get(handles.typeEx,'String'); 
%OutImageName= get(handles.OutputName,'String'); 
num_elem_pixc=floor(size(integralImage,2)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
num_elem_pixr=floor(size(integralImage,1)/numViewPoint)* 

numViewPoint;%Number of complete cylindrical microlenses with pixels 
%ImageOutName= ([OutImageName num2str(NumIntegral) '-']); 
subimages=cell(numViewPoint,numViewPoint); 
%vpno=0; 
    for r = 1 : numViewPoint 
        %ImageOutName= ([OutImageName num2str(r) '-']); 
        %ImageOutName1= ([OutImageName num2str(r) '-']); 
        for i = 1 :numViewPoint 
            %vpno= vpno+1; 
            ViewPointPositionc = i:numViewPoint:num_elem_pixc; 
            ViewPointPositionr = r:numViewPoint:num_elem_pixr; 
            %extract the viewpoint from the integralImage and store 

it onto 
            %--eval(['VP_' num2str(i) 

'=integralImage(ViewPointPositionr,ViewPointPositionc,:);'])%extract  

the viewpoint i 
            %--VP = eval(['VP_' num2str(i)]); 
            %VP = imresize(VP,[540 960],'bilinear');         
            %%% enter the function of histogram equalisation 
            %VP=histeq(VP); 
            

VP=integralImage(ViewPointPositionr,ViewPointPositionc,:); 
            %imwrite(VP,([ImageOutName1 num2str(i) type])) ;% write 

the viewpoint image i 

  
            subimages{r,i}=VP;% also store the viewpoint i images 
            clear VP; 
        end 
    end   
handles.subimages=subimages; 
guidata(hObject,handles); 
end 

 


