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Abstract: 

 

This study presents experimental results performed on samples of Eutectic solder 

material (63 wt. % Sn 37 wt. % Pb). The tests were performed at high strain rates using 

Split Hopkinson’s Pressure Bar (SHPB). The strain rates were in the range of 400s
-1 

to 

1300s
-1

. Heating unit was added to conventional SHPB to vary initial sample temperature 

conditions. Tests were conducted at room temperature, 60°C and 120°C for the 

compressive mode, and at room temperature only for the tensile mode. The effects of 

temperature on the behavior of material were compared. Transient temperature changes 

during the dynamic loading conditions were calculated by an analytical approach using 

measured stress-strain data for plastic work. In addition, tests were performed in tension 

using Tensile Hopkinson’s bar (SHTB) under the same initial temperature condition as 

for the compression tests. Finally, the constitutive relationship based on the Johnson 

Cook model was developed. 
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Introduction 

Solder joints are used extensively in integrated circuits (IC) packages, performing 

functions as not only electric signal channels but also structural interconnections in 

electronic packaging. The mechanical problems of solder joints are of pivotal 

significance to the reliability of packaging structures at the solder-chip and package-to-

board interfaces during fabrication, shipment and operation of electrical devices. With the 

integration and miniaturization of portable electronic devices, interfaces are increasingly 

loaded at strain rates higher than those previously considered, for example, mobile 

phones and computers in drop impacts [1-2]. The reliability of solder joints under shock 

loading has become a crucial problem in electronic appliances [3-4]. Studies have been 

carried out to understand the processes which take place during these events, e.g. Wang 

et al. [5]. Measurements of the strength under strain rate loading up to 10
2
s

-1
 or even 10

3
s

-

1
 were reported using split Hopkinson’s pressure bar both in tension and compression 

modes. Constitutive relationships based on Cowper-Symonds model were obtained. 

However, combined influence of temperature and strain rate on the behavior of material 

has not been fully understood.  

 

During impact loading, plastic deformation in the material is rapidly developed and heat 

is generated during the process. The heat causes the raise of temperature in the material 

and is dissipated to surroundings through convection, conduction and emission. When the 

temperature of the material is raised, temperature-dependent properties will be directly 

affected. Here we are concerned with the flow stress which will be of lower values at 
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elevated temperatures, resulting in reduced strengths. Hence, the determination of the 

transient temperature rise is important for system reliability and safety.  

 

Various techniques have been applied to measure temperatures during plastic 

deformation. One of the methods is the embedded thermocouples (TCs) which can be 

used to obtain information during fast compression tests [6-8]. However, this technique 

has shortcomings for dynamic loading as the responding time of TCs is difficult to 

calibrate, and might be too slow to show real-time transient temperature increases. The 

second important technique often applied is the infrared thermography, which is based on 

the measurement of thermal radiation emitted from the surface of the specimen during the 

deformation [9-13]. The difficulty of this application lies in the emissivity of the material 

- the relative ability of its surface to emit energy by radiation, which is often an unknown 

priori, and could be changing during the deformation. In addition, the infrared technique 

measures the surface temperature which may not be the same inside the material.  

 

While the technical difficulties in measurement remain to be overcome, we adopted an 

analytical approach to estimate the temperature increment by assuming an adiabatic 

process for the dynamic event where all plastic work is assumed to be converted to heat 

for a uniform temperature rise in the tested sample material.  

 

In coupled thermo-mechanical problems, a relationship between strain and temperature is 

provided in the heat conduction equation [14]. For a given material under a uni-axial 

stress condition, the temperature balance can be expressed as 
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where ρ is the material density, Cp the specific heat capacity at constant pressure, T the 

temperature and T0 the initial sample temperature. α is the thermal expansion coefficient 

of the sample material and K the thermal diffusivity, σij the stress components,  e

kk  and 

p

ij   the elastic and plastic strain components, respectively, and β is the Taylor–Quinney 

coefficient [14] that represents the plastic work fraction converted to heat. In Hopkinson 

bar tests, the thermoelastic effect, 0
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 is considered negligible, and an 

adiabatic condition, i.e. 2K T=0 , is assumed. Thus Eq. (1) becomes, 
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The specific heat capacity, Cp, and the density, ρ, are considered as constants during the 

test. For simple calculation, the factor  is treated as a constant. From the true stress- 

strain relationship obtained from the dynamic tests, Eq. (2) can be integrated for thermal 

increment as a function of the plastic strain. It has been proved experimentally [11] that 

the whole work done can be assumed to convert to heat, i.e.  can be taken as 1. 

 

Experiments 

 

To analyze the material behavior under different environmental temperatures, strain rate 

tests were performed in the compressive mode at ambient temperature (25°C), 60°C  and 

120° C which is approximately two-third of the melting temperature of the sample 
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material,  and in the tensile mode at ambient temperature. The values of the strain rate 

achieved were 400, 800 and 1300 s
-1

. Tests under each temperature were repeated five 

times for each strain rate and the average values were used for analysis.  

 

Compression SHPB: 

The conventional Split Hopkinson pressure bar system introduced by Kolsky [16] is 

consisted of an incident bar, a transmitted bar and a striker. The specimen is placed 

between the incident and transmission bars. When the striker hits the free end of the 

incident bar, a compressive stress wave is generated and propagates along the incident 

bar. When this wave reaches the interface of the incident bar and the specimen, part of 

the wave reflects back due to the impedance mismatch between the bar and the specimen, 

and the remaining part of the wave passes through the specimen and deforms it, then into 

the transmission bar. Strain gauges are used to measure the incident strain i, the reflected 

strain r, and the transmitted strain t. The strain rate, strain and stress in the specimen 

can then be calculated from the measured strains, often by using the one dimensional 

stress wave theory as given in Eqs. (3) to (5). 
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where


E
C  is the longitudinal wave speed of the bar, in which is the mass density of 

the bar. A and E are the cross-sectional area and Young’s modulus of the bars, 

respectively. Ls and As are the length and cross-sectional area of specimen.  

 

The SHPB used in this study consists of Maraging steel bars of diameter 12.7mm, and 

length 1220mm for the incident and transmission bars, and length 400mm for the striker. 

Copper made pulse shapers were used to ensure stress equilibrium in the specimen during 

loading. A schematic diagram of the setup is shown in Fig. 1. Tested samples were of 

diameter 5mm and length 5mm.  

 

Temperatures of the tests were controlled by a heating unit which is consisted of a 

heating furnace and a thermocouple attached to the surface of the specimen to measure 

the temperature. When the desired temperature is achieved as indicated by the 

thermocouple, it was kept for 5 minutes to ensure uniformity in the sample. An 

illustration of heating unit attachment is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 Fig.1 Schematic illustration of SHPB 
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Tensile SHB 

 

Dynamic testing in the tension mode using a tensile SHB was developed by Harding J. et. 

al. [17]. A schematic illustration of the tensile bar system used in this study is shown in 

Fig.3. A tubular projectile is driven to strike the anvil bar which is an integral part of the 

incident bar at its free end. A tensile stress wave is generated and propagates along the 

incident bar. The rest of the process is the same as that of a compression Split Hopkinson 

bar. The traces of three signals are recorded as the incident, reflected and transmitted 

strains. Specimens used in tensile tests are of a cylindrical dog bone shape with a gauge 

length of 12 mm and diameter of 5mm. 

 

 

Fig.2 Schematic illustration of heating unit attached with SHPB 
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Results 

Compression tests: 

The results of compression tests performed at various strain rates are shown in Figs. 4 to 

6, corresponding to the room temperature, 60°C and 120 °C, respectively. It can be 

observed that the overall material response is approximately bilinear, with clear signs of 

the strain rate hardening, and thermal softening by increased test temperature.  

 

 

Fig.3 Schematic illustration of tensile SHB 
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Tensile test results: 

Fig.4 Behavior of Sn/Pb 63/37 at room temperature  

Fig.5 Behavior of Sn/Pb 63/37 at 60°C  

Fig.6 Behavior of Sn/Pb 63/37 at 120°C  
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Figure 7 show the results of tensile SHB. Eight specimens were tested for each given 

strain rate. Tensile tests were performed only at the room temperature. The material 

shows a softening behavior after the yield point, and necking in later stages as seen in 

recovered samples. The starting point of necking needs to be identified as corrections for 

the value of the stress should be taken for the reduced cross-section area.  However, the 

main interest of this work was on the dynamic yield stress which is not affected by 

necking, thus no effort was taken to trace the occurrence of necking. Curves in Fig. 7 

were calculated based on an assumption of a constant cross-sectional area for the value of 

the dynamic yield stress. Care needs to be taken to interpret the later part with increased 

strains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussions 

 

Strain rate sensitivity: 

Fig.7 Behavior of Sn/Pb 63/37 using tensile SHB 
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The solder material shows a clear yield point under strain rate loading, and its overall 

behavior is bilinear for compressive tests. The material’s yield strength shows sensitivity 

in both the strain rate and the initial temperature. In Fig. 8, the trend of the compressive 

yield strength is plotted against strain rates at various initial temperatures. The behavior 

can be expressed approximately by a linear relationship shown in Eq. (6). 

0 0                                                (6)Y a b    

 

where Y is the yield stress,  a0 and b0 are constants and their values can be found by 

curve fitting, for instance, of 0.0167 and 60.03 at the room temperature. 

 

Fig. 8 also shows clearly that the initial temperature affects the yield behavior of the 

material. The strength of the material at a low temperature is higher for both the yielding 

and post-yielding behaviour. 

 

The strain rate affect can also be observed in the tensile test results, where the yield 

strength of the material is 58, 64 and 78MPa, respectively, at the three strain rates. 

Following Eq. (6), we can obtain a0 and b0 as 0.025 and 47.25 for an approximate linear 

model for the tensile yield stress. 
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Transient temperature measurements: 

 

Integrating Eq. (2) leads to: 
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  is the work done during the plastic deformation and can be calculated by the area 

under the stress strain curves obtained from the tests.  

 

The calculated values of the final overall temperature increase Tf are given in Fig. 9. 

The overall behavior can be approximated as linear over the temperature range tested. It 

can be observed that Tf is larger at a higher strain rate under the same temperature 

condition. For instance, under the room temperature, the strain rate loading at 1300s
-1

 

leads to an overall temperature increase of almost 17
o
C. The loading at 400s

-1
 however 

yields in an increase of less than 4
o
C. There is also a clear trend of decrease in Tf in tests 

performed at a higher initial temperature condition. For the strain rate value at 1300s
-1

 

compared with a nearly 70% temperature rise at the room temperature, tests under 120
o
C 

yield in an overall rise of 12
o
C, about 10% increase only. 

Fig.8 Yield strength of material plotted against strain rate under various 

temperature conditions for compression tests 
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Fig. 9 Increase in sample temperature versus initial temperature for tests performed at 

various strain rates. 

 

 

 

Johnson-Cook Model [15] 

 

To consider the effect of both the strain rate and temperature, the semi-empirical 

Johnson-cook model (JC Model) is adopted, in which the flow stress is expressed as: 

 
* *[ ][1 ln ][1 ]                                               (9)n mA B C T       

 

where   is the flow stress, A is the yield stress at the reference strain rate, B is the 

coefficient of strain hardening, n the strain hardening exponent and  the plastic strain. C 

is the strain rate hardening coefficient, and *

0/   , a dimensionless strain rate, 

defined by the ratio of  , the strain rate at T, and 0 , the reference strain rate at Tref, the 

reference temperature. *mT  is the homologous temperature and is expressed as: 

* refm

m ref

T T
T

T T



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with Tm being the melting temperature of the material, m the coefficient of the thermal 

softening exponent, respectively. The JC model considers isotropic hardening, strain rate 

hardening and thermal softening as three independent phenomena, where these can be 

isolated from each other. The total effect of strain hardening, strain rate hardening and 

thermal softening on the flow stress can be calculated by multiplying these three terms 

together, as in Eq. (9). 

 

In the present study, the strain rate of 400s
-1

 at room temperature was taken as the 

reference strain rate. By comparing all data curves, the five parameters of JC model were 

identified by curve fitting and their values are shown in Table 1. The comparisons of the 

experimental stress-strain curves with those predicted by JC model are shown in Figs. 10 

to 12. 

 

Table 1:  JC-Model parameters based on the experimental results 

 

A (MPa) B(MPa)` n C m 

52 220 0.65 0.29 1.95 
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Fig.10 Experimental and predicted stress-strain curves under room  

temperature conditions 
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Fig.11 Experimental and predicted stress-strain curves at 60°C 
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Conclusions 

 

The present study obtained experimental results on eutectic solder samples of 63 wt.% Sn, 

37 wt.% Pb under various initial sample temperature conditions. Dynamic tests were 

carried out at various strain rates. The following conclusions can be drawn from the study. 

Fig.12 Experimental and predicted stress-strain curves at 120°C 
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1. The solder material shows sensitivity in strain rate at all temperatures tested. The 

initial temperature is found to have direct influence on the material’s yield 

behavior. At a higher initial temperature, the yield strength is of a lower value 

under the same strain rate. The sensitivity of yield strength to the temperature can 

be approximated as linear.  

2. Plastic deformation under the strain rate loading leads to an overall temperature 

increase, for which the magnitude of the increase shows a decreasing trend in 

terms of the initial sample temperature. The higher the initial temperature, the less 

the overall temperature rise (Fig. 9). 

3. Dynamic loading at a higher strain rate leads to a larger temperature rise under the 

same initial temperature condition (Fig. 8).  

4. A constitutive model based on the Johnson-Cook model has been developed, for 

potential use for design and analysis. 

5. In general, the transient temperature rise caused by the dynamic loading is 

moderate at the higher temperature range (relative to the melting temperature of 

the material) where a 10% temperature rise may be expected. It would be 

interesting to look at the initial condition just below half of the material’s melt 

temperature. Any temperature increase due to the dynamic loading may leads to 

glassification of the material, which may yield in changes in the mechanical 

properties. This remains for further study. 
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