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Abstract

The focus of this thesis is on index tracking that aims to replicate the movements

of an index of a specific financial market. It is a form of passive portfolio (fund)

management that attempts to mirror the performance of a specific index and generate

returns that are equal to those of the index, but without purchasing all of the stocks

that make up the index.

Additionally, we consider the problem of out-performing the index - Enhanced

Indexation. It attempts to generate modest excess returns compared to the index.

Enhanced indexation is related to index tracking in that it is a relative return strategy.

One seeks a portfolio that will achieve more than the return given by the index (excess

return).

In the first approach, we propose two models for the objective function

associated with choice of a tracking portfolio, namely; minimise the maximum

absolute difference between the tracking portfolio return and index return and

minimise the average of the absolute differences between tracking portfolio return

and index return. We illustrate and investigate the performance of our models from

two perspectives; namely, under the exclusion and inclusion of fixed and variable costs

associated with buying or selling each stock.

The second approach studied is that of using Quantile regression for both index

tracking and enhanced indexation. We present a mixed-integer linear programming

of these problems based on quantile regression.

The third approach considered is on quantifying the level of uncertainty

associated with the portfolio selected. The quantification of uncertainty is of

importance as this provides investors with an indication of the degree of risk that

can be expected as a result of holding the selected portfolio over the holding period.

Here a bootstrap approach is employed to quantify the uncertainty of the portfolio

selected from our quantile regression model.
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Chapter 1

Introduction

1.1 Research definition

In recent years passive fund investment strategies have become very popular,

especially amongst mutual fund managers and pension funds. These strategies are

often adopted by investors who believe that financial markets are efficient. Such

strategies involve building an investment portfolio designed to track a particular

benchmark stock/equity index (such as the FTSE 100 in London or the S&P 500

in New York). Index tracking is often referred to as a passive investment strategy

and can be contrasted with active management, which typically involves frequent

trading in the hope of outperforming a relevant market benchmark.

When the objective is to track the index, a practical alternative for an investor

is to invest in an index fund, rather that the investor purchasing all of the individual

index stocks. This is a fund that attempts to mirror the performance of a specific

index and generate returns that are equal to those of the index. Since portfolio

decisions are automatically (algorithmically) made, and transactions are infrequent,

expenses tend to be lower than those of actively managed funds. Common criteria

imposed on tracking funds such as these are that they should achieve approximately

the same returns as a specified market index through investment in an appropriately

1



1.1. Research definition 2

selected set of stocks from the index.

The simplest case of passive management is the index fund that is designed to

exactly replicate a well defined stock index. If a fund invests in all of the stocks in the

index in such a way that its investment in each stock mirrors index composition (e.g.

if a stock makes up 10% of the index then it makes up 10% of the investment) then

the fund is said to be following a full (or complete) replication strategy. Although

exact replication is the simplest technique for constructing an index fund, many index

funds are not constructed in this way.

Full replication is possible for constructing an index fund, however, as the

number of stocks in the index grows it can be an expensive strategy in terms of

transaction cost (e.g. see Beasley et al. (2003)). This is because, stocks typically

enter and leave the index at regular intervals and as a consequence the entire fund

must be rebalanced as this occurs to mirror the index as it changes. Because of these

disadvantages, many passively managed funds, especially those that are tracking large

indices, hold fewer stocks than are included in the index they are tracking

In this thesis we do not adopt full replication, in essence we view the index

tracking problem as a decision problem, namely to decide the subset of

stocks to choose so as to mirror or reproduce the performance of the index

over time. We call the subset of stocks we choose a tracking portfolio.

Enhanced indexation (sometimes referred to as enhanced index tracking) is

related to index tracking in that it is a relative return strategy. One seeks a portfolio

that will achieve more than the return given by the index. Here the aim is often to

achieve returns that are only slightly above what the index itself returns. This is a

relative return strategy since if we want a return 2% above that of the index, and the

index falls by 10% in the year, then a portfolio that falls by only 8% is appropriate.

Note here how in such a relative return strategy we do not attempt to ensure that

we achieve a positive return. Constructing an enhanced indexation fund (portfolio),

can be accomplished using a mathematical model that is closely related to a model
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for index tracking.

The objective of this thesis is to contribute to the development of efficient and

effective portfolio selection algorithms. We present methods for solving problems

in financial portfolio construction, index tracking and enhanced indexation. Our

formulations are mixed-integer linear programs for index tracking and enhanced

indexation.

The formulations proposed include transaction costs, a constraint limiting the

number of stocks that can be in the portfolio and a limit on the total transaction

cost that can be incurred. Numerical results are presented for eight test problems

drawn from major world markets, where the largest of these test problems involves

over 2000 stocks.

1.2 Thesis Outline

The outline of the thesis is as follows. Chapter 2 presents a literature survey relating

to index tracking and enhanced indexation.

Chapter 3 presents our two mixed-integer formulations of the index tracking

problem. In particular we explicitly consider both fixed and variable transaction

costs (the fee associated with trading) and limit the total transaction cost that can

be incurred. In this chapter we propose two approaches for the objective function

associated with choice of a tracking portfolio, namely; minimise the maximum

absolute difference between the tracking portfolio return and index return and

minimise the average of the absolute differences between tracking portfolio return

and index return. Our formulations are based upon tracking an index by comparing

the returns from the index with the returns from the tracking portfolio.

Chapter 4 applies Quantile Regression to two problems in financial portfolio

construction, index tracking and enhanced indexation. Quantile regression differs

from traditional least-square regression in that one constructs regression lines for
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the quantiles of the dependent variable in terms of the independent variable. In this

approach we apply quantile regression, as first defined by Koenker and Bassett (1978).

Chapter 5 focuses on quantifying the level of uncertainty associated with

portfolio selection. In index tracking and enhanced indexation the quantification

of uncertainty is of importance as this provides investors with an indication of the

degree of risk that can be expected as a result of holding the portfolio selected over

the holding period. In this chapter a bootstrap approach is employed to quantify the

uncertainty of the portfolio selected from our quantile regression model.

Finally, Chapter 6 summarises the main results of the research, highlighting

the contribution to knowledge we have made as well as proposing recommendations

for possible future research directions.



Chapter 2

Literature review

Index tracking involves building an investment portfolio designed to track a particular

benchmark index. At its simplest, it requires holding all stocks in the index,

and weighting each stock-holding so each investment is held in proportion to its

contribution to the index being tracked. If this is done, the index fund is said to be

following a full replication strategy. Full replication is possible but as the number

of stocks in the index grows it can be an expensive strategy in terms of transaction

costs.

Then in essence we can view the index tracking as the problem of reproducing

the performance of a stock market index over time, but without purchasing all of the

stocks that make up the index. It is a decision problem, namely to decide the subset

of stocks to choose so as to (hopefully perfectly) mirror the performance of the index

over time.

Enhanced indexation deals with the situation where we want to both track

the index (so getting the market return), but also want to out-perform the index.

For example we might want a stock (equity) portfolio that exceeds the return on a

specified index by 2% per year. This can be accomplished using mathematical models

that are closely related to index tracking models.

5
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2.1 Introduction

Despite the increasing popularity of passive investment strategies, the attention given

in the academic literature to implementation and to algorithmic problems arising

in the process of index tracking and enhanced indexation is still relatively small

compared to the numerous articles dedicated to the classical problem of portfolio risk

and return optimisation. In our literature survey below we discuss papers relating to

index tracking and enhanced indexation.

In this chapter we first present investment preliminaries and the historical and

practical context behind financial portfolio optimisation. Then we discuss previous

studies in the literature relating to constructing portfolios for index tracking and

enhanced indexation. In general, algorithms for index tracking can often be extended

with only minor modifications to deal with enhanced indexation (or both). However,

for simplicity, we survey index tracking and enhanced indexation separately below.

We organize this chapter in the following way. Investment preliminaries are

examined in Section 2. Historical and practical context is considered in Section 3.

The literature survey for index tracking and enhanced indexation is presented in

Sections 4 and 5. The chapter concludes with a summary in Section 6.

2.2 Investment preliminaries

2.2.1 Market index

A market index shows the movement of a particular market as a whole, revealing if

the total value (i.e. the market capitalisation) of all companies listed has increased

or decreased. Indices are calculated on an entire market as well as being available for

a particular sector of a market. The FTSE 100 share index, for example is made up

of the 100 largest UK registered companies in terms of their market capitalisation.

Additionally, a market index is a series of pure numbers and is used for
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making comparison between different index numbers and for following the fortunes

of particular sample groups. Index numbers are constructed with a fixed base date

and base value.

The key point that we need to grasp is that returns are relative. As an example,

if we make an investment in a single stock and that stock goes up (increases in price)

by 5% over the year we might at first sight be happy. But suppose we then learn

that the market (say as represented by an equity index like the Dow Jones or S&P

500) has risen by 10% that year. Obviously the increase of 5% on the stock does not

appear as attractive as it did at first sight.

In a discrete time manner we can calculate return on an investment as:

return(%)=100(change in value)/(original value)

However, in quantitative finance we almost always use a different measure of return

calculated as:

return(%)=100* loge[(new value)/(original value)]

This is sometimes referred to as continuous time return. Under continuous time

return, if we are earning interest on an initial investment of A at fractional interest

rate of r for t years, we will have at the end of the period a sum equal to Aert.

Some indices are of fixed cardinality (number of stocks/companies in the

index fixed), some are not. For example the S&P500 is a fixed cardinality index

with precisely 500 stocks (companies) in the index, the Wilshire 5000 is not. The

composition of all indices changes over time (as the underlying companies change,

some cease to exist, others grow large enough to warrant inclusion in the index).

Consider the data shown in Table 2.1, the index value quoted, 6229.80 is

calculated as: sum over the companies in the index of number of shares issued

multiplied by current price = total worth of the company (total market capitalisation,

market cap) divided by a large constant value to turn the answer into a meaningful

number. Most equity indices are calculated in this way but not all.

To illustrate Table 2.1 index value is useful for investors to track changes in
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Table 2.1: Example of the FTSE 100 index values

Index Values

Index Value 6,229.80

Trade Time 4:36PM

Change 43.20 (0.70%)

Prev Close 6,186.60

Open 6,186.60

Day’s Range 6,186.60-6,229.80

market values over period of time. For this example, the FTSE 100 index is made

up of the 100 largest UK-based companies and is computed by combining 100 stocks

together into one index value. Investors can track changes in the index’s value over

time and use it as a benchmark against which to compare their own portfolio returns.

From the Table 2.1 we notice that the index opening value is 6,186.60 and is

equal to the previous day’s closing price. However, the index value at the trade time

finished higher than the open value. A measurement of change in the index value over

a period of time as in this example is 43.20, which increased by (0.70%) compared to

the index opening value. The Day’s range is the value range (low - high) in the latest

trading day. In other words it is the difference between the highest and the lowest

index value of a set time period.

2.2.2 Diversification

Portfolios with only a few assets may be subject to a high degree of risk, represented

by a relatively large variance in return. As a general rule, the variance of the return

of a portfolio can be reduced by including additional assets in the portfolio, a process

referred to as diversification. As an investor, we could invest our entire wealth in one

stock (i.e company). If we do so, we are exposed to both company-specific risk and

market risk. However, if we expand our portfolio to include other assets or stocks,

we are diversifying, and by doing so, we can reduce our exposure to company-specific

risk.
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For this purpose, when we make an investment in a single stock, we are exposed

to market risk, by choosing to invest in the market (such as the FTSE 100 in London

or the S&P 500 in New York) where the stock is traded; and stock risk, the individual

stock may do better or worse than the average, (e.g. the change in the market) as

represented by the change in the index. As a consequence the key concept in stock

investment is diversification (not putting all of your stock in one market). This helps

to reduce risk (by spreading, and hopefully reducing, your stock risk). However,

assuming we invest in just one market, (such as the FTSE 100 in London) we are still

exposed to market risk. If we choose to invest in more than one market (such as the

FTSE 100 in London or the S&P 500 in New York) we may reduce market risk.

Although we can reduce risk we do not know the future and irrespective of

how we choose our stock portfolio we are taking risk. What we hope is that by using

past data (for example in relation to stock prices) in a systematic and mathematical

fashion we can make better portfolio decisions.

2.2.3 Transaction cost

When we consider investing in stocks, also known as equities and shares, we will

have to pay a transaction cost associated with buying or selling stock. Transaction

costs are often given in basis points, one basis point (bp) is 1/100 of one percent.

As an example of a transaction cost we typically need to pay some commission to

an intermediary third party if we decide to buy (or sell) one unit of a stock. Such

transaction costs vary by stock, typically according to how liquid (easily bought/sold)

the stock is and by how much we wish to trade (e.g. number of units of the stock we

are buying (or selling)).

The portfolio construction problem has one common feature, the trade-off

between gaining a better position by rebalancing the position on one hand and the

occurrence of additional transaction costs as a consequence of such an action on the

other hand. The principle to decide on trading or not can be formulated as: trade
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only if the gain from trading pays the transaction costs.

2.3 Historical and practical context

Ever since the pioneering work of Markowitz (1952) optimisation has been at the

center of work concerned with decisions relating to deciding the composition of

financial portfolios. As such both practitioners and academic researchers have been

willing to tradeoff the disadvantages of optimisation (multiple optimal solutions,

solution sensitivity) for its advantages (clear modelling framework, computational

efficiency, algorithmic decision-making).

2.3.1 Historical context

Indexing was initially made available to institutional investors in 1971, individual

investors were able to easily invest in an index tracking fund when the Vanguard 500

index fund made its debut in 1976.

In the last three decades, index funds have gradually increased their share

of the overall market; not only for an individual investor’s saving but also for

institutional funds such as pension and insurance funds. In 2006, more than $120

billion of individual investor savings were invested in indexed mutual funds, and

institutional investors contributed several hundred billion more to institutional index

funds (Damodaran (2012)).

As a consequence as index funds have grown, the choices have also proliferated.

While the first few funds all indexed themselves to the S&P 500, we now see funds

indexed to almost every conceivable index. Most of these funds are sampled funds

rather than full replication funds and we call the sample of stocks we choose a

tracking portfolio.

The earliest approach to solving the portfolio problem is the so called mean-

variance approach. It was pioneered by H. Markowitz (see Markowitz (1952)) and
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is only suitable for one-period decision problems. It consists of a one-off decision at

the beginning of the period (t = 0) and no further actions until end of the period

(t = T ). It still has great importance in real-life applications and is widely applied in

risk management.

Prior to Markowitz’s work, investors focused on assessing the risks and

returns of individual stocks in constructing their portfolios. Markowitz proposed

that investors should focus on selecting portfolios based on their overall risk-

return characteristics instead of merely constructing portfolios from stocks that each

individually have attractive risk-return characteristics, in other words investors should

select portfolios not individual stocks.

Markowitz’s mean-variance portfolio optimisation model employs variance as

the measure of risk and the objective of the model is to find the weighting of the

stocks that minimise the variance of a portfolio and give a desired expected return.

To proceed with the explanation of Markowitz mean-variance portfolio optimisation

we need some notation, let:

N be the number of assets (e.g. stocks/equities) available for an investment

ui be the expected average return of asset i

ρij be the correlation between the return for asset i and j (−1 ≤ ρij ≤ +1)

si be the standard deviation in return for asset i

R be the desired expected return from the portfolio chosen

Then the decision variable are:

wi the proportion of the total investment associated with (invested in) asset i (0 ≤
wi ≤ 1)

Using the standard Markowitz mean-variance approach we have that the

portfolio optimisation problem is:
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minimise
N∑

i=1

N∑

j=1

wiwjρijsisj (2.1)

subject to

N∑

i=1

wiui = R (2.2)

N∑

i=1

wi = 1 (2.3)

(0 ≤ wi ≤ 1) i = 1, . . . , N (2.4)

Equation (2.1) minimises the total variance (risk) associated with the portfolio.

This equation is sometimes written as
∑N

i=1

∑N
j=1 wiwjσij , as it can be expressed

in terms of σij the covariance between the returns associated with assets (i) and (j)

since the covariance σij = ρijsisj .

Equation (2.2) is the expected rate of return of the portfolio; it is found by

taking the weighted sum of the individual rates of return. Equation (2.3) ensures that

the weight proportions add to one. Equation (2.4) is the non-negativity constraint.

This formulation (equations (2.1) - (2.4)) is a simple nonlinear programming problem.

As the objective is quadratic, computationally effective algorithms exist to calculate

the optimal solution for any particular data set. Note here that above we have, for

a given return, found the minimum risk portfolio. Logically we could have specified

the risk we were prepared to take and found the maximum return portfolio that had

this specified risk. Whilst this is a logical equivalent the way presented above is the

way we proceed in numeric practice. Numerically finding a minimum risk portfolio

that has a specified return is much easier than finding a maximum return portfolio

that has a specified risk.

Building on the work of Markowitz and to overcome the limitations and
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problems raised by modelling the portfolio in a discrete time setting; a continuous-

time approach for modelling the stock prices and the actions of the investors was

proposed by Merton (1971). It must be regarded as the real starting point of

continuous-time portfolio theory. By applying standard methods and results from

stochastic control theory to the portfolio problem he was able to obtain explicit

solutions for some special examples. However, the crucial point in his approach is

that the whole problem reduces to solving the Hamilton-Jacobi-Bellman equation

of dynamic programming. This typically leads to the problem of solving a highly

non-linear partial differential equation for which even a numerical solution may prove

elusive. Despite these limitations, the Merton (1971) approach is still popular in

finance.

With the growing application of stochastic approaches to finance in the early

1980’s Harrison and Kreps (1979), Harrison and Pliska (1981) and Karatzas (1989),

introduce the martingale approach to portfolio optimisation. It is based on results of

stochastic calculus and on convex optimisation.

The most significant improvements in continuous-time models have been the

introduction of additional constraints and of transaction costs to the portfolio

problem. The work on constraints can be divided into work concerning constraints

both on the trading strategies and on the wealth of an investor. Typical constraints on

the strategies include short selling and leverage constraints, bounds for the wealth held

in one asset or incomplete market constraints (see for example (Cox and Huang (1991),

Cvitani and Karatzas (1992) and Xu and Shreve (1992)). Moreover, as rebalancing

of the holdings is the essential action of an investor solving the portfolio problem,

transaction costs and their impact on the form of the optimal strategy cannot be

ignored. Magill and Constantinides (1976) was amongst the first papers dealing with

the process of rebalancing a portfolio taking into consideration transaction costs.

The risk and return model that has been in use the longest and is still the

standard in most real world analysis is the capital asset pricing model (CAPM).

The standard form of the equilibrium relationship for asset returns was developed
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independently by Sharpe (1964) who formalised the capital asset pricing model

(CAPM) and parallel work was also performed by Lintner (1965), which follows

logically from the Markowitz mean-variance portfolio theory as described above.

The capital asset pricing model (CAPM) was formulated to show how the

expected return on an asset could be related to its risk, while at the same time

providing a precise definition of the meaning of risk. What would be expected in

terms of risk is that a portfolio made up of one asset is likely to be more volatile

than a portfolio made up of a range of assets (a diversified portfolio). Investors

could therefore lower their risks, in particular company-specific risks, by purchasing a

diversified portfolio of assets. This approach may reduce company risk, but the overall

equity market risk still exits. Therefore, every asset is made up of two elements of

risk, one related to the market and the other related to the company.

As stated by CAPM, the expected return of an asset equals the risk-free rate

plus the assets’s beta multiplied by the expected excess return of the market portfolio.

Specifically, let Ri and Rm be random variables for the simple returns of the stock

and the market over some specified period. Let Rf be the known risk-free rate, also

expressed as a simple return, and we obtain the capital asset pricing model in the

form

E(Ri) = Rf + βi(E(Rm)−Rf ) (2.5)

This is the form in which it is most often written where:

E(Ri) is the expected return on the asset

βi (the beta) is the sensitivity of the expected excess asset returns to the expected

excess market returns, where βi = Cov(Ri, Rm)/V ar(Rm)

E(Rm) is the expected return of the market

E(Rm)−Rf is known as the market premium (the difference between the expected

market rate of return and the risk-free rate of return)
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Restated, in terms of risk premium, which states that the individual risk

premium equals the market premium times βi we find that:

E(Ri)−Rf = βi(E(Rm)−Rf ) (2.6)

The CAPM assumes that:

• There are no transaction costs and that everyone has access to the same

information. Making these assumptions allows investors to keep diversifying

without additional cost.

• An individual investor cannot affect the price of a stock by his buying or selling

action.

• Investors are expected to make decisions solely in terms of expected values and

standard deviations of the returns on their portfolios.

• One other assumption deals with homogeneity of expectation. First, investors

are assumed to be concerned with the mean and variance of returns (or prices

over a single period), and all investors are assumed to define the relevant period

in exactly the same manner. Second, all investors are assumed to have identical

expectations with respect to the necessary inputs to the portfolio decision.

To this end, many assumptions behind the capital asset pricing model may be

untenable.

2.3.2 Portfolio Management Strategies

Portfolio fund management strategies refer to the approaches that are applied in order

to generate the highest possible returns at lowest possible risks. Portfolio management

involves a series of decisions and actions that are made by the investor, whether

individual or institution. Portfolios must be managed whether investors follow a

passive approach to selecting and holding their financial assets, or an active approach.
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Active fund management strategy (also called active investing) refers to

a portfolio management strategy that involves making precise investments for

outperforming an investment benchmark index. The portfolio manager that follows

the active management strategy exploits market inefficiencies by buying undervalued

stocks or securities or by short selling overvalued securities. Any of these procedures

can be used alone or in combination.

This active approach to portfolio management involves managers observing the

market as a whole and deciding about the industries and sectors that are expected

to perform well in the ongoing economic cycle. After the decision is made on the

sectors, the specific stocks are selected on the basis of companies that are expected

to perform well in that particular sector.

Passive fund management (also called passive investing) is a financial strategy

in which an investor (or a fund manager) invests in accordance with a pre-determined

strategy that doesn’t entail any forecasting (e.g. any use of market timing or

stock picking would not qualify as passive management). The idea is to invest in

an index fund that replicates as closely as possible the performance of a specified

index benchmark. By tracking an index, an investment portfolio typically gets good

diversification, low turnover (good for keeping down transaction costs), and extremely

low management fees.

Active and passive fund management strategies have their respective advantages

and disadvantages.

• The primary advantage of active management is that it allows portfolio

managers to select a variety of investments rather than investing in the market

as a whole, this is usually not the case in passive management.

• Secondly, in order to generate profits, the investors consider that some market

segments are less efficient than others and also they manage the volatility or

risks of market by investing in less-risky and high-quality companies.

• In addition, investors may take additional risk for achieving higher-than-market
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returns and may follow a strategy for avoiding certain industries in comparison

to the market as a whole.

The drawback of active management is the chance that bad investment choices

are made by the fund manager. The costs related to active management are higher

in comparison to passive management. Higher transaction costs due to frequent

trading with active fund management strategies reduces the fund’s return. In active

management an investor is exposed to both market and company risk, whilst in

passive management an investor is exposed to market risk.

In recent years passive management has been receiving a higher profile as an

investment alternative. The simplest explanation for the difference in returns between

actively managed funds and index funds is trading costs. Index tracking funds are

inexpensive to create, to run and incur minimal transaction costs and management

fees. By contrast, the trading costs and fees of actively managed funds are higher.

In this thesis we focus on passive fund management. It is essentially an

algorithmic approach to investment decisions that are made in order to

systematically reproduce the performance of an index (i.e. index tracking)

or to generate excess return (i.e. enhanced indexation).

2.4 Index tracking survey

2.4.1 Index tracking model

Index tracking model involves building an investment portfolio designed to track a

particular benchmark index over time. If a fund invests in all of the stocks in the

index in such way that its investment in each stock mirrors index composition (e.g.

if a stock makes up 10% of the index then it makes up 10% of the investment) then

the fund is said to be following a full/complete replication strategy.

Full replication is possible, however as the number of stocks in the index grows
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it can be an expensive strategy in terms of transaction cost. This is because stock

typically enter/leave the index at regular intervals and so the entire fund must be

rebalanced as this occurs to mirror the index as it changes and any new money that

is invested in (or money taken out) the fund must be spread across all stocks to mirror

the index.

Then in essence we can view the index tracking problem as a decision problem,

namely to decide the subset of stocks to choose so as to (hopefully perfectly)

mirror/reproduce the performance of the index over time. We call the subset of

stocks we choose a tracking portfolio.

Suppose that we observe over time 0,1,2,. . . ,T the value of N stocks, as well as

the value of the index we want to track. Further suppose that we are interested in

deciding the best set of K stocks to hold (where K < N), as well as their appropriate

quantities. In index tracking we want to answer the question: ”what will be the best

set of K stocks to hold, as well as their appropriate quantities, so as to best track the

index in the future. Our approach in index tracking is a historical look-back approach.

To ask the historical question: ”what would have been the best set of K stocks to

have held, as well as their appropriate quantities, so as to have best tracked the index

in the past (i.e. over the time period [0,T])?” and then hold the stocks that answer

this question into the future. This idea forms the foundation of the methodology

presented in the following chapters as it extends to enhanced indexation model as

shall become apparent.

A significant number of papers relating to (equity) index tracking have been

discussed both by academics and practitioners. In this section we present our

literature review relating to the index tracking problem. Note also here that an

extensive discussion as to metaheuristics for the index tracking problem has recently

been given by di Tollo and Maringer (2009). Also Metaxiotis and Liagkouras (2012)

have recently given a review of multiobjective evolutionary algorithms in portfolio

optimisation and some of the papers they reference are concerned with index tracking.
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2.4.2 Heuristic algorithms

The term heuristics refers to techniques based on experience for various tasks such as

research, problem solving, discovery and learning. Heuristic methods enhance finding

a desirable solution in conditions where a comprehensive search is unfeasible.

Heuristic methods are attractive because, while being a robust method for large

practical portfolio problems, they are relatively independent of the objective function

and offer solutions in a reasonable time. In this section, we give a review of some

previous index tracking papers using heuristic methods namely: genetic algorithm,

tabu search and simulated annealing.

Beasley et al. (2003), considered the problem of index tracking when transaction

costs exist. In their formulation of the problem the total transaction cost and the

number of stocks in the tracking portfolio are limited. They presented a population

heuristic (PH) for the solution of the index tracking problem and used reduction tests

in order to reduce the size of the search space, hence enabling the PH to be more

effective. Computational results for the Hang Seng, DAX 100, FTSE 100, S&P 100

and Nikkei 225 indices were presented. Computation times varied between 1.7 and

285.4 minutes.

Maringer and Oyewumi (2007), presented a heuristic algorithm for index

tracking based upon differential evolution (see Storn and Price (1997)), where

the nonlinear objective relates to minimising the squared differences between

tracking portfolio return and index return. They do not consider transaction costs.

Computational results are given for tracking the Dow Jones Industrial Average index

(which contains 65 assets) over the period March 2000 to November 2006.

Maringer (2008), presented an approach where tracking portfolio deviations

above index return are treated differently from tracking portfolio deviations below

index return. He does not consider transaction costs and uses a heuristic based on

differential evolution (see Storn and Price (1997)). Computational results are given

for tracking the Dow Jones Industrial Average index (which contains 65 assets) over
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the period March 2000 to November 2006.

Krink et al. (2009) presented a model for index tracking where the nonlinear

objective relates to minimising the squared differences between tracking portfolio

return and index return. Although they do not consider transaction costs they do

introduce a constraint on the change in the proportion invested in each asset at a

rebalance. Their heuristic uses differential evolution (see Storn and Price (1997)),

albeit modified with a number of different algorithmic components. Computational

results are presented related to tracking the Nikkei 225 index (which contains 225

assets) over the period November 2005 to January 2007, as well as for the Dow Jones

Industrial Average index (which contains 65 assets) over the period April 2002 to

December 2003.

Li et al. (2011) presented a multi-objective model, where one objective relates to

the minimisation of tracking error and the other objective relates to the maximisation

of excess return (return over and above the index). Their model addresses both index

tracking and enhanced indexation. Transaction costs are included in their approach

and are explicitly limited. They solve their model using an immunity based heuristic,

albeit modified to deal with the constraints in their model. Computational results

are given for five publicly available test problems involving up to 225 assets.

Guastaroba and Speranza (2012) presented a model that includes fixed and

variable transaction costs, as well as a constraint upon the total transaction cost

incurred when rebalancing from an existing portfolio. They also constrain the

maximum number of assets that can be held in the tracking portfolio. In their

model they track an index by reference to the absolute deviation between a scaled

index value and the tracking portfolio value, rather than by tracking the return on

the index. An heuristic based upon kernel search (Angelelli et al., 2010, 2012) is

presented. Computational results are given for eight data sets involving up to 2151

assets.

Murray and Shek (2012) proposed a local relaxation algorithm that explores
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the inherent structure of the objective function. It solves a sequence of small,

local, quadratic-programs by first projecting asset returns onto a reduced metric

space, followed by clustering in this space to identify sub-groups of assets that best

accentuate a suitable measure of similarity amongst different assets. They used a

heuristic method such as the centroid of initial clusters. Computational results,

using two data sets consisting of 500 and 3,000 stocks in the US, spanning the

period between January 2002 and January 2010 for the first and between May 2005

and April 2010 for the second data set and with different cardinality constraints.

They compare the performance of their proposed algorithm against the commonly

used heuristic of successive truncation, followed by a more in depth comparison of

their algorithm against a leading commercial solver, CPLEX. They indicate that the

proposed algorithm can lead to a significant performance gain over popular branch-

and-cut methods and also the local relaxation heuristic method proposed is able to

obtain a better solution than CPLEX.

2.4.3 Genetic algorithm

A Genetic Algorithm (GA) is a search heuristic that mimics the process of natural

evolution. This heuristic is routinely used to generate useful solutions to optimisation

and search problems. Genetic algorithms belong to the larger class of evolutionary

algorithms (EA), which generate solutions to optimisation problems using techniques

inspired by natural evolution, such as inheritance, mutation, selection, and crossover.

Jeurissen and van den Berg (2005) presented an index tracking approach using

a hybrid genetic algorithm. They defined tracking error (the variance of the difference

between the returns of the tracking portfolio and the index) as a measure of fitness.

The weights associated with each stock in the tracking portfolio were decided by using

a genetic algorithm. Computational results for 25 stocks from the Dutch AEX index

were presented, however no computation times were reported.
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Jeurissen and van den Berg (2008) presented an index tracking model based on

minimising the variance of the difference between tracking portfolio return and index

return. Their model, which is a quadratic program, does not consider transaction

costs. They use a hybrid genetic algorithm and present computational results for

tracking the Dutch AEX index (which involves 25 assets) using just 10 assets over a

one year period from March 2004.

Van Montfort et al. (2008) presented a model for index tracking that has a

quadratic objective based on minimising the squared differences between tracking

portfolio return and index return. To deal with the computational difficulties that

arise when they introduce binary decision variables into their model they present

several different heuristics. Transaction costs are included in their approach and are

explicitly limited. Computational results are presented for tracking the MSCI Europe

index for one year from July 2004.

Ruiz-Torrubiano and Suarez (2009) presented an approach for index tracking

based on using a genetic algorithm to decide the set of assets to be included in the

tracking portfolio, with quadratic programming being used to decide the proportion

invested in each of the chosen assets. They do not consider transaction costs.

Computational results are given for five publicly available data sets involving up

to 225 assets.

Liu et al. (2012) presented multi-period portfolio selection problems in a

fuzzy environment by considering return, transaction cost, risk and skewness of

portfolio to provide investors with additional choices. In their models, the return is

characterized by the possibilistic mean value and the risk is measured by possibilistic

variance. The skewness is quantified by the third order moment about the possibilistic

mean value of a return distribution. To solve their models, they first present a

TOPSIS-compromised programming approach to convert them into single objective

programming models. Then, they design a genetic algorithm with a penalty term

to solve their models. Computational results are given for four cases, using Chinese

Stock data for the weekly closing prices of four risky assets from January 2001 to
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January 2010.

Wang et al. (2012) presented a model for index tracking that minimises the

mean absolute difference between tracking portfolio return and index return. They

introduce a conditional value at risk constraint to control downside risk. Their model

is a mixed-integer linear program which they solve (for one small problem involving

31 assets) using Cplex. For a larger problem with 89 assets they use the genetic

algorithm of Ruiz-Torrubiano and Suarez (2009).

2.4.4 Markowitz models

Markowitz (1952) proposed the mean variance methodology for portfolio selection.

It has served as a basis for the development of modern financial theory. Konno

and Yamazaki (1991) used the mean absolute deviation risk function to replace the

risk function in Markowitz’s model to formulate a mean absolute deviation portfolio

optimization model. Roll (1992) used the sum of the squared deviations of returns on

a portfolio from the benchmark as the tracking error and proposed a mean variance

index tracking portfolio selection model. So, it is possible to apply the standard

Markowitz portfolio model to index tracking.

Rohweder (1998) presented a tracking error optimisation model which includes

a term relating to transaction costs in the objective function. He also introduced

an alternative technique to control the risk, portfolio segmentation, which does not

require the estimation of covariances. His technique controls tracking error risk

by dividing the portfolio into an active and a passive subportfolio. He presented

simulation results for 200 European stocks.

Yu et al. (2006) presented a Markowitz model for index tracking where their

approach assumes that index tracking relates to constraining the probability that

the return from the tracking portfolio falls below index return (downside risk); or to

higher order moments of downside risk. They assume that stock returns are jointly

normally distributed and that short selling is allowed. They presented a small numeric
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example using stocks from the Hang Seng index.

Garcia et al. (2011) presented a paper arguing for consideration of frontier

curvature when deciding an index tracking portfolio, where the frontier is the standard

Markowitz frontier based on mean-variance analysis. Their model does not consider

transaction costs. Although they present a solution algorithm (based on Tabata and

Takeda (1995)) no computational results are given.

2.4.5 Other research papers

Ghandar et al. (2010) presented an evolutionary approach to designing a fuzzy rule

based system for deciding tracking portfolio composition. Although transaction

costs are considered when rebalancing occurs there is no explicit constraint on the

transaction cost incurred. They comment that their rules can be combined with user

knowledge if so desired. Computational results are given over the time period 2003

to 2010 for the S&P ASX 200.

Chen and Kwon (2012) presented a model for index tracking, based upon

robust optimisation (e.g. see Ben-Tal and Nemirovski (1998)), that creates a tracking

portfolio based upon the similarity between the assets in the decided tracking portfolio

and the assets in the index. Transaction costs are not considered, although the number

of assets held in the tracking portfolio is constrained. Computational results are given

for tracking the S&P 100 using daily return data over the period January 2002 to

January 2007.

Zhang et al. (2012) presented mean-semivariance-entropy model for multi-

period portfolio selection by taking into account four criteria viz; return risk,

transaction cost and diversification degree of the portfolio. They propose a bi-

objective optimization model for multi-objective portfolio selection. They proposed

a hybrid algorithm for solving the multi-period portfolio selection. They express the

idea of their model and the effectiveness of the designed algorithm, with two examples

for simulating the real transaction. The first example is a multi-period portfolio
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selection problem with trapezoidal fuzzy returns, while the second one demonstrates

a multi-period portfolio decision-making with triangle fuzzy returns. All the assets

are from the Shanghai stock exchange which cover the period from January 2001 to

January 2010.

Clements et al. (2013) investigated the use of a stochastic approach in forming

a stock price index. First, they set out the basics of index-number theory and related

it to conventional indexes of stock prices. Second, they applied their stochastic

approach to share prices. Finally, they applied their framework to the issue of

portfolio tracking and investigated whether it is possible to ignore certain stocks

on the basis of their contribution to the index. They used daily data for 20 stocks

underlying the S&P/ASX20 index, for the period from January 2003 to December

2008.

2.5 Enhanced indexation survey

Enhanced indexation is concerned with finding portfolios that give additional return

with respect to an underlying index. The term enhanced indexation is used to

describe any strategy that is used in conjunction with index tracking for the purpose

of outperforming a specific index benchmark. Enhanced indexation is a relatively

unconsidered area in the scientific literature. All the work considered below was

published relatively recently. In general, algorithms developed for index tracking can

often be extended with only minor modifications to deal with enhanced indexation

(or both).

Ghandar et al. (2010) presented an evolutionary approach to designing a fuzzy

rule based system for deciding portfolio composition. Their approach addresses both

index tracking and enhanced indexation. Although transaction costs are considered

when rebalancing occurs there is no explicit constraint on the transaction cost

incurred. They comment that their rules can be combined with user knowledge if

so desired. Computational results are given over the time period 2003 to 2010 for the
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S&P ASX 200

Lejeune and Samatli-Pac (2010) formulated the enhanced indexation problem

as a mixed-integer nonlinear programming problem. They regard the problem as

one of constructing a portfolio whose variance is below a given limit with a desired

probability. They present two variants of an outer approximation algorithm for the

solution of this nonlinear problem. Asset returns are modeled using a factor model.

Computational results are given for forming portfolios containing up to 30 assets

(from a universe of up to 1000 assets with price data from 1997-2005) where the

market benchmark is the S&P 500.

Meade and Beasley (2011) presented a Sortino ratio portfolio selection strategy

designed to achieve returns in excess of the market index. Their strategy is designed

to identify and exploit momentum (the tendency of either high or poorly performing

stocks to continue to exhibit high or poor performance for a long period, i.e. of the

order of a year or longer). They use a genetic algorithm and present results for a

number of test problems involving up to 1200 assets.

Roman et al. (2011) used second-order stochastic dominance to construct an

enhanced indexation portfolio. In their approach, based on Fabian et al. (2011),

they construct a portfolio which stochastically dominates the index. Computational

results are given for three test problems involving up to 491 assets.

Guastaroba and Speranza (2012) presented a model that includes fixed and

variable transaction costs, as well as a constraint upon the total transaction cost

incurred when rebalancing from an existing portfolio. They also constrain the

maximum number of assets that can be held in the portfolio. In their model they

track an index by reference to the absolute deviation between a scaled index value

and the tracking portfolio value, rather than by tracking the return on the index.

They presented a modification of their model to deal with enhanced indexation. An

heuristic based upon kernel search is presented and computational results are given

for eight test problems involving up to 2151 assets.
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Lejeune (2012) formulated the enhanced indexation problem as a stochastic

game theoretic model which is reformulated as a convex second-order cone programming

problem. Computational results are given for forming enhanced indexation portfolios

(from a universe of 700 assets with price data from 1999-2004) to out-perform the

Dow Jones, Russell 2000 and S&P 500 indices over period 2005-2006.

Thomaidis (2012) presented a model for enhanced indexation based on the

application of cointegration technique. He extended the previous work of Alexander

and Dimitriu (2005) in designing a trading portfolio that outperforms a market

benchmark. He proposed a technique that consistently explores the space of feasible

portfolio configurations, taking into account constraints on the total number of assets

as well as on the trading position. Computational results were presented using data

sets involving 65 Dow Jones stocks and the time period spanned by his sample data is

from 20 June 2001 to 12 November 2008. He investigated the empirical performance

of this strategy taking into account transaction costs and other market frictions.

Thomaidis (2013) proposed an integrated and interactive procedure for designing

an enhanced indexation strategy with predetermined investment goals and risk

constraints. He considered restrictions on the total number of tradable assets and

non-standard investment objectives, focusing on the probability that the enhanced

strategy under-performs the market. In dealing with the inherent complexity of

the resulting cardinality-constraint formulations, he applies three nature-inspired

optimisation techniques: simulated annealing, genetic algorithms and particle swarm

optimisation. Computational results were benchmarked against the American Dow

Jones index.

2.6 Conclusion

In this chapter we first presented investment preliminaries where we considered a

broad range of investment philosophies from market indices, portfolio diversification

and the impact of the transaction costs in trading. We then presented the historical
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and practical context of portfolio optimisation. We also discussed the portfolio

management strategies where a portfolio must be managed whether investors follow a

passive approach or an active approach to selecting and holding their financial assets.

In addition, we considered recently published studies in the literature relating

to index tracking and enhanced indexation. We categorised index tracking literature

into four parts where we consider Heuristics models, Markowitz models, Genetic

models which is a part of Heuristic model and other research work. Additionally, we

discussed a review of the literature relating to enhanced indexation.

Overall we would summarise that the majority of the work reviewed does

neglect the impact of the transaction costs when constructing a portfolio. Also,

we can conclude that there is no single mathematical perspective for the problem of

index tracking and enhanced indexation. Furthermore, most authors adopted their

own model and typically use just data sets of their own, not publicly available data

used by others. As a consequence it is difficult to perform a systematic data driven

comparison of different approaches. Finally, computational results were sometimes

not detailed while computational times were missing for some work considered in our

review.



Chapter 3

Index Tracking with Fixed and

Variable Transaction Costs

3.1 Introduction

The focus of this chapter is on presenting two mixed-integer linear programming

formulations of the portfolio construction problem; index tracking. In particular we

explicitly consider both fixed and variable transaction costs. The performance of

the proposed formulations are investigated through computational studies and the

approaches are applied to five data sets.

In this chapter we investigate two different index tracking models that account

for fixed and variable transaction costs when constructing and/or rebalancing an

index tracking portfolio. Additionally, we consider constraints limiting the stocks

that can be bought/sold as well as limiting the total transaction cost that can be

incurred.

In the following sections, we first give our notation and define our decisions

variables. Then we present and discuss the constraints associated with index tracking

problem. Furthermore, we give the objectives considered and clarify our contribution

29
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in relationship to earlier work. We finalise the chapter by giving information on our

data sets and presenting computational results for our index tracking formulation.

3.2 Formulations

In this section we present our two mixed-integer linear programming formulations. We

first present our notation, then the constraints of the problem which are common to

both formulations. We then present our objectives which differ between formulations.

3.2.1 Notation

Suppose that we observe over time 0,1,2,. . . ,T the value of N assets, as well as the

value of the index we are tracking. Further, suppose that we are interested in deciding

the best set of K assets to hold (where K < N), as well as their appropriate quantities.

Building on the notation of Canakgoz and Beasley (2009) let:

εi be the minimum proportion of the tracking portfolio (henceforth TP) that must

be held in asset i if any of the asset is held

δi be the maximum proportion of the TP that can be held in asset i

Xi be the number of units of asset i in the current TP

Vit be the value (price) of one unit of asset i at time t

Ii be the value of the index at time t

Rt be the single period continuous time return for the index at time t, Rt =

loge(It/It−1)

rit be the single period continuous time return for asset i at time t, rit =

loge(Vit/Vit−1)
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C be the total value (≥ 0) of the current TP [Xi] at time T plus cash change (either

new cash to be invested or cash to be taken out) so, C =
∑N

i=1 ViT Xi + cash

change

f b
i be the fractional transaction cost associated with buying one unit of asset i at

time T , so that buying one unit of asset i at time T costs f b
i ViT

fs
i be the fractional transaction cost associated with selling one unit of asset i at

time T , so that selling one unit of asset i at time T costs f s
i ViT

F b
i be the fixed cost of buying any of asset i at time T

F s
i be the fixed cost of selling any of asset i at time T

M b
i be the maximum number of units of asset i that can be bought at time T

(assuming we choose to buy some of asset i)

M s
i be the maximum number of units of asset i that can be sold at time T (assuming

we choose to sell some of asset i)

γ be the limit (0 ≤ γ ≤ 1) on the proportion of C that can be consumed by

transaction cost

Then our decision variables are:

xi the number of units (≥ 0) of asset i that we choose to hold in the new TP

zi =1 if any of asset i is held in the new TP, =0 otherwise

αb
i =1 if any of asset i is bought, =0 otherwise

αs
i =1 if any of asset i is sold, =0 otherwise

yb
i the number of units (≥ 0) of asset i that are bought

ys
i the number of units (≥ 0) of asset i that are sold
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Without significant loss of generality (since the sums of money involved are

large) we allow [xi, y
b
i , y

s
i ] to take fractional values. Note also that as xi ≥ 0 we are

excluding short selling (shorting) from our model.

The formulations presented below deal with the general situation of rebalancing

of an existing TP [Xi i = 1, . . . , N ] to a new portfolio [xi i = 1, . . . , N ]. If we are

creating a new TP from cash then we simply set Xi = 0 i = 1, . . . , N .

3.2.2 Constraints

The constraints of the problem are:

N∑

i=1

zi = K (3.1)

εizi ≤ xiViT /C ≤ δizi i = 1, . . . , N (3.2)

xi = Xi + yb
i − ys

i i = 1, . . . , N (3.3)

αb
i + αs

i ≤ 1 i = 1, . . . , N (3.4)

yb
i ≤ M b

i αb
i i = 1, . . . , N (3.5)

ys
i ≤ min[M s

i , Xi]αs
i i = 1, . . . , N (3.6)

N∑

i=1

ViT xi = C −
N∑

i=1

[f b
i ViT yb

i + fs
i ViT ys

i + F b
i αb

i + F s
i αs

i ] (3.7)
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N∑

i=1

[f b
i ViT yb

i + fs
i ViT ys

i + F b
i αb

i + F s
i αs

i ] ≤ γC (3.8)

yb
i , y

s
i , xi ≥ 0 i = 1, . . . , N (3.9)

αb
i , α

s
i , zi ∈ [0, 1] i = 1, . . . , N (3.10)

Equation (3.1) ensures that there are exactly K assets in the new TP. Equation

(3.2) ensures that if an asset i is not in the new TP (zi = 0) then xi is also zero; it

also ensures that if the asset is chosen to be in the new TP (zi = 1) then the amount

of the asset held satisfies the proportion limits defined. Equation (3.3) defines the

number of units of asset i held after rebalancing (we currently hold Xi, we buy yb
i ,

we sell ys
i , so after trading we hold Xi + yb

i − ys
i and this must equal xi).

Equation (3.4) prevents simultaneously buying and selling of asset i; in other

words if we trade the asset, and equation (3.4) does not force us to, we can either buy

or sell, but not both. Equation (3.5) relates the number of units yb
i of asset i bought

to the zero-one variable αb
i . This equation forces yb

i to be zero if αb
i is zero, whilst

if αb
i is one it ensures that the number of units bought cannot exceed the maximum

M b
i allowed. Equation (3.6) is as equation (3.5) except that it relates to selling the

asset, where here we cannot sell more than min[M s
i , Xi] units of asset i.

Equation (3.7) is a balance constraint such that the total value of the new TP

at time T equals the value of the current TP at time T plus the cash change (i.e. C)

minus the total transaction cost. Equation (3.8) limits the total transaction cost

incurred appropriately. Equation (3.9) defines the continuous variables to be non-

negative and equation (3.10) is the integrality condition for the zero-one variables.
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3.2.3 Constraint discussion

We would comment here as to the role played in our constraints by the minimum

and maximum proportions (equation (3.2)). Clearly if these factors were not present

(equivalently εi = 0 and δi = 1) then the problem would be less constrained and

the value achieved by our objective function (considered below) could be improved.

The reason these factors are present, as indeed they are present in previous work

(Beasley et al., 2003; Canakgoz and Beasley, 2009; Guastaroba and Speranza, 2012),

in that they reflect practical considerations adopted when forming an index tracking

portfolio.

In practical applications although one optimises on in-sample data the underlying

issue is how the index tracking portfolio chosen performs on (unseen) out-of-sample

data. So, for example, if we use a model (of any kind) to decide an index tracking

portfolio today, when past asset returns are known, and buy and hold that index

tracking portfolio into the future (when asset returns are unknown) how will it

perform?

Decision-makers in such situations are concerned to avoid situations where

optimising using in-sample data leads to a portfolio with too much (or too little)

invested in an asset. If there is too much invested in an asset then the portfolio

is not diversified and the decision-maker is exposing themselves to risk associated

with returns from a single asset. This situation can be avoided by making use

of the maximum proportion factor (δi). If there is too little invested in an asset

then the issue essentially becomes one of administrative convenience, making a very

small investment in an asset when its effect on portfolio performance can hardly be

significant seems unnecessary. This situation can be avoided by making use of the

minimum proportion factor (εi).

Clearly in practice the actual values adopted for the minimum and maximum

proportions are a matter of judgment by the decision-maker. What is important

though is that any model for index tracking allows such factors to be considered.
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This is why they have been included in the formulation we have presented above.

More generically a number of the constraints in our formulation involve factors

designed to allow the decision-maker the opportunity to shape the index tracking

portfolio produced to reflect their own preferences. Constraints of this type include:

• Equation (3.1), where the factor K relates to the number of assets to hold in

the portfolio

• Equation (3.2), where (as discussed above) the factors εi and δi relate to the

minimum and maximum proportion of total portfolio value invested in any

asset

• Equations (3.5) and (3.6), where the factors M b
i and M s

i relate to the maximum

number of units of each asset that can be bought/sold

• Equation (3.8), where the factor γ relates to the maximum proportion of total

portfolio value that can be consumed by transaction cost

These factors (and their associated constraints) can essentially be seen as

internally derived, coming from the decision-maker. Some constraints though are

externally derived, that is they are imposed upon the decision-maker, either as a

matter of logic or as a matter of market structure.

An example of a constraint imposed upon the decision-maker as a matter of

logic is equation (3.3) which is a balance constraint for an asset relating the number

of units held after rebalancing to the number of units held before rebalancing and the

number of units bought/sold.

An example of a factor imposed upon the decision-maker as a matter of market

structure is the presence of fixed and variable transaction costs (as reflected in

equations (3.7) and (3.8). When trading an asset (for example via a third-party

broker) transaction costs will be incurred and almost always this transaction cost will

have a variable cost component (so the total transaction cost paid depends upon the

level of trade, i.e. the number of units bought/sold). For some assets there may also
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be a fixed cost component. The usual reason for a transaction fixed cost component

is that the asset is one that is less commonly traded (so the volume of trading in the

market is much less than for other assets). In such situations the fixed cost is imposed

by the third-party broker to discourage very small trades in the asset. Echoing a point

we made above what is important is that any model for index tracking allows factors

such as fixed and variable transaction costs to be considered. This is why they have

been considered in the formulation we have presented above.

3.2.4 Objectives

Above we have discussed the constraints we have presented and the reasoning behind

them. We now go on to give the objectives we considered.

We will adopt the same weight approximation for TP returns as in Canakgoz

and Beasley (2009) where the weight wi associated with asset i in the TP is given by:

wi = xiViT /(C − γC) i = 1, . . . , N (3.11)

and the return on the TP at time t is given by
∑N

i=1 wirit.

On a technical note here equation (3.11) is predicated on the limit (γ) on the

proportion of C consumed by transaction cost being small. If we have a problem in

which transaction cost is effectively unrestricted (so γ = 1) then we define wi using

wi = xiViT /C.

The objective in index tracking is to minimise the difference between the returns

obtained from the chosen portfolio and the index being tracked.

In this chapter we propose two approaches for the objective function associated

with choice of a TP, namely:

• minimise the maximum absolute difference between TP return and index
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return. This is:

minimise max{ |
N∑

i=1

wirit −Rt | t = 1, . . . , T} (3.12)

• minimise the average of the absolute differences between TP return and index

return. This is:

minimise
T∑

t=1

|
N∑

i=1

wirit −Rt |/T (3.13)

The objective adopted here equation (3.13) is effectively a goal programming

style objective where we are minimising an equally weighted sum of deviations

from the target return Rt.

Although both equations (3.12) and (3.13) are nonlinear we can linearise them in

a standard way. For equation (3.12) introduce a single variable d (≥ 0) and our

formulation, which we denote by MINIMAX , then is:

minimise d (3.14)

subject to equations (3.1)-(3.11) and:

d ≥
N∑

i=1

wirit −Rt t = 1, . . . , T (3.15)

d ≥ Rt −
N∑

i=1

wirit t = 1, . . . , T (3.16)

For equation (3.13) introduce variables dt (≥ 0, t = 1, . . . , T ) and our

formulation, which we denote by MINIAVERAGE , then is:

minimise
T∑

t=1

dt/T (3.17)
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subject to equations (3.1)-(3.11) and:

dt ≥
N∑

i=1

wirit −Rt t = 1, . . . , T (3.18)

dt ≥ Rt −
N∑

i=1

wirit t = 1, . . . , T (3.19)

Both MINIMAX and MINIAVERAGE are mixed-integer linear programs. In

terms of the size of these programs then, before any algebraic manipulation to

eliminate variables and/or constraints, MINIMAX involves 7N + 1 variables and

MINIAVERAGE involves 7N + T variables. Both MINIMAX and MINIAVERAGE

involve 6N + 2T + 3 constraints.

3.2.5 Contribution and relationship to earlier work

We should clarify here the contribution of this work and the relationship between the

formulations seen above and:

• our earlier work as in Beasley et al. (2003) and Canakgoz and Beasley (2009)

• the recently published work of Guastaroba and Speranza (2012), that also deals

with fixed and variable transaction costs

We would note that a number of constraints in our formulations are as seen in other

work (Beasley et al., 2003; Canakgoz and Beasley, 2009; Guastaroba and Speranza,

2012), as indeed they are seen in other papers by other authors. This is natural

since constraints for many optimisation problems are often expressed mathematically

exactly as in previous work in the literature. The differences between the formulations

presented in this contribution and previous work can be summarised as:

• we include fixed costs related to trade in an asset; these are not included

in Canakgoz and Beasley (2009). Fixed costs are included in Guastaroba and

Speranza (2012), but they do not distinguish between the type of trade (i.e. in
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their model a fixed cost is incurred if a trade occurs), whereas in this work we

have different fixed costs for buying or selling an asset.

• we model variable transaction costs in a different manner from that adopted

in (Beasley et al., 2003; Canakgoz and Beasley, 2009; Guastaroba and Speranza,

2012)

• in our model transaction costs detract from the value of the portfolio held after

trading, in the model of Guastaroba and Speranza (2012) transaction costs

do not (so they assume that any transaction costs incurred are paid out of a

separate fund)

• With respect to the objective adopted:

– Beasley et al. (2003) adopt a nonlinear objective and use a genetic

algorithm heuristic solution approach; we have linear objectives and will

adopt (as will become apparent below) optimal solution approaches based

on mixed-integer linear programming

– Canakgoz and Beasley (2009) adopt an approach based upon linear

regression; we do not use regression at all within our formulations

– Guastaroba and Speranza (2012) adopt an approach based upon minimising

the total absolute deviation between a scaled index value and the

tracking portfolio value; our approach is based upon tracking an index by

comparing the returns from the index with the returns from the tracking

portfolio

3.3 Computational results

3.3.1 Data

To test our formulation, we used the same data sets as in Beasley et al. (2003)

and Canakgoz and Beasley (2009), which are publicly available from OR-Library Beasley
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(1990), http://people.brunel.ac.uk/∼mastjjb/jeb/info.html. These test problems

contain weekly price data (for T = 290 weeks) for assets drawn from a number

of major world equity indices. Table 3.1 shows the test problems we considered.

Table 3.1: Test problems

Index Number of stocks N Number of selected stocks K
Hang Seng 31 10
DAX 100 85 10
FTSE 100 89 10
S&P 100 98 10
Nikkei 225 225 10

The computational results presented below are for our approach as coded in

AMPL and solved using ILOG Cplex (version 11.0) IBM ILOG Cplex Solver (2011) as

the mixed-integer optimiser. We used Cplex default parameter settings, except that

we changed the tolerance parameters so as to find the genuine optimal solution. The

reason for this is that Cplex, by default, finds a solution within a specified tolerance of

the genuine optimal and since we have real-valued MINIMAX and MINIAVERAGE

objective functions (equations (3.14) and (3.17) we wanted to avoid the situation

where we missed the genuine optimal solution. We used a Windows 2.4GHz, Core 2

Duo Pentium, pc with 4Gb memory. Unless otherwise stated we:

• used K = 10, so a tracking portfolio with ten stocks

• used an initial tracking portfolio of value 106 composed of the first K = 10

stocks in equal proportions, i.e. Xi = (106/K)/Vi0 i = 1, ...,K; Xi = 0 ∀i > K

• used εi = 0.01 and δi = 1 ∀i

• used f b
i = f s

i = 0.01 and F b
i = F s

i = 100 ∀i

• used M b
i = C/ViT and M s

i = Xi ∀i

• imposed a computational time limit of one hour (3600 seconds)
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3.3.2 Zero fixed transaction cost

To illustrate how our approaches perform in terms of index tracking we took the in-

sample time period [0,145] for each of our data sets and solved our two formulations

MINIMAX and MINIAVERAGE, but with fixed transaction costs of zero (in other

words only the variable transaction cost was incurred). Table 3.2 gives the results

obtained in terms of the optimal (minimal) in-sample objective function value and the

computation time (in seconds). We also give the value of the objective function when

computed out-of-sample (over the period [146,290]). Note here that the in-sample

values are as given in equations (3.14) and (3.17). The out-of-sample values are

computed directly from the tracking portfolio held. In other words the out-of-sample

value given for MINIMAX is computed using:

max{ | loge(
N∑

i=1

xiVit/
N∑

i=1

xiVit−1) −Rt | t = 146, . . . , 290} (3.20)

The out-of-sample value given for MINIAVERAGE is computed using:

290∑

t=146

| loge(
N∑

i=1

xiVit/
N∑

i=1

xiVit−1) −Rt | /145 (3.21)

Some problems in Table 3.2 reached the self-imposed computational time limit of 3600

seconds. These problems are indicated by the time being enclosed in brackets. In such

cases the solution values reported are those associated with the best mixed-integer

feasible solution found before the time limit was reached.

To illustrate Table 3.2 we have that for the S&P 100 with N = 98 assets

and γ = 0.0075, so a transaction cost limit of 0.75% of portfolio value, the minimal

MINIMAX objective function value is 0.01313 and this is found in 662.1 seconds.

Out-of-sample the tracking portfolio associated with this minimal solution has an

objective function (equation (3.20)) value of 0.03003.

For MINIAVERAGE the minimal objective function value is 0.00485 and

this is found in 1989.3 seconds. Out-of-sample the tracking portfolio associated
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with this minimal solution has an objective function (equation (3.21)) value of

0.00604.

Examining Table 3.2 we can see that, as we might expect, the time

required increases as we increase the transaction cost limit (γ) and as the size

of the problem (number of assets) increases. Comparing the objective function

values we have that the average value of (out-of-sample objective value/in-

sample objective value) is 2.26 for MINIMAX and 1.32 for MINIAVERAGE. In

other words out-of-sample we do see a degradation in performance as compared

to in-sample (as we would expect since in-sample we can directly optimise on

known data, but out-of-sample we hold the portfolio unchanged) but not too

high a degradation.

In order to provide a graphical illustration of the quality of results

Figure 3.1 shows the out-of-sample performance of the index and the tracking

portfolios chosen by MINIMAX and MINIAVERAGE for the Nikkei 225 with

γ = 0.01. Note here that we are tracking an index over a 145 week period (nearly

3 years) with a fixed portfolio containing just ten assets (when the index has 225

assets). In such circumstances it is hardly surprising that we fail to perfectly

track the index out-of-sample. However it is clear that (visually at least) we do

track the index well, sustained large deviations from the index only becoming

apparent from weeks 100 onward in Figure 3.1.

Table 3.3 shows the results when, out-of-sample, we perform a linear least

squares regression of the return from the tracking portfolio, i.e.

loge(
∑N

i=1 xiVit/
∑N

i=1 xiVit−1), against the return from the index Rt. In that

table we show the value of the regression intercept and slope. We also show the

value of the coefficient of determination R2 which is a measure of how good a

fit the regression line is. Whilst ideally we would like an intercept of zero and

a slope of one (with a value for R2 of one) it is clear that, recalling we are
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choosing a tracking portfolio with just K = 10 assets, we will not achieve

this ideal. For MINIMAX we can see from Table 3.3 that the intercept values

are very small, with a mean value of 0.00012, and that the slope values are close

to one, with a mean value of 0.91581.

For MINIAVERAGE the corresponding values are 0.00017 and 0.91964.

Both MINIMAX and MINIAVERAGE have similar average R2 values (of

approximately 0.77). For simple linear regression the coefficient of determination

is the square of the correlation coefficient so that we have an average correlation

(out-of-sample) between tracking portfolio return and index return of
√

0.77 =

0.88, which is statistically highly significant given the number of out-of-sample

observations.

3.3.3 Non-zero fixed transaction cost

Table 3.4 deals with the same problems as Table 3.2, but where now fixed costs

(as well as variable costs) are incurred when we trade an asset. Comparing

Table 3.4 and Table 3.2 it is clear that introducing fixed costs makes the

problem harder to solve for MINIAVERAGE. For MINIAVERAGE although

five test problems in Table 3.2 encounter the computational time limit there

are 13 problems that encounter the same time limit in Table 3.4. By contrast

MINIMAX has 4 problems that encounter the computational time limit in both

Table 3.2 and Table 3.4.

Whereas in Table 3.2 the average value of (out-of-sample objective

value/in-sample objective value) is 2.26 for MINIMAX and 1.32 for MINIAVERAGE;

in Table 3.4 it is 2.27 for MINIMAX and 1.30 for MINIAVERAGE, so here the

presence of fixed costs seems to make little difference.

Figure 3.2 shows the same information as Figure 3.1, but for the case



3.3. Computational results 47

T
ab

le
3.

4:
R

es
ul

ts
w

it
h

no
n-

ze
ro

fix
ed

an
d

va
ri

ab
le

tr
an

sa
ct

io
n

co
st

s

In
de

x
N

um
be

r
T
ra

ns
ac

ti
on

M
IN

IM
A

X
M

IN
IA

V
E

R
A

G
E

of
co

st
lim

it
O

b
je

ct
iv

e
va

lu
e

T
im

e
O

b
je

ct
iv

e
va

lu
e

T
im

e
as

se
ts

(γ
)

In
-s

am
pl

e
O

ut
-o

f-
sa

m
pl

e
(s

ec
s)

In
-s

am
pl

e
O

ut
-o

f-
sa

m
pl

e
(s

ec
s)

H
an

g
Se

ng
31

0.
00

25
0.

03
20

6
0.

03
71

4
0.

5
0.

00
97

5
0.

00
90

8
0.

5
0.

00
5

0.
02

30
1

0.
03

15
8

1.
8

0.
00

68
7

0.
00

71
3

42
.4

0.
00

75
0.

01
72

2
0.

02
35

5
5.

7
0.

00
52

6
0.

00
54

5
(3

60
0)

0.
01

0.
01

19
0

0.
02

57
7

9.
7

0.
00

38
1

0.
00

38
0

32
.4

D
A

X
10

0
85

0.
00

25
0.

03
25

2
0.

07
46

2
0.

3
0.

01
05

4
0.

01
38

4
1.

5
0.

00
5

0.
02

42
4

0.
06

94
6

7.
9

0.
00

77
5

0.
01

19
9

18
.0

0.
00

75
0.

01
62

4
0.

07
43

8
20

.8
0.

00
61

9
0.

01
01

1
(3

60
0)

0.
01

0.
01

31
6

0.
06

39
3

41
6.

1
0.

00
47

0
0.

00
70

8
(3

60
0)

F
T

SE
10

0
89

0.
00

25
0.

02
56

3
0.

03
59

8
4.

6
0.

00
80

3
0.

00
83

6
11

9.
5

0.
00

5
0.

01
95

8
0.

03
37

9
10

.6
0.

00
66

2
0.

00
86

9
(3

60
0)

0.
00

75
0.

01
51

0
0.

02
75

3
17

2.
3

0.
00

55
2

0.
00

81
2

(3
60

0)
0.

01
0.

01
32

0
0.

03
00

2
(3

60
0)

0.
00

48
3

0.
00

73
1

(3
60

0)
S&

P
10

0
98

0.
00

25
0.

03
49

2
0.

03
35

6
0.

6
0.

00
77

3
0.

00
69

6
10

.6
0.

00
5

0.
01

86
4

0.
03

23
8

29
.0

0.
00

62
7

0.
00

71
9

(3
60

0)
0.

00
75

0.
01

40
3

0.
03

65
0

37
3.

3
0.

00
50

8
0.

00
60

5
(3

60
0)

0.
01

0.
01

11
9

0.
03

00
5

(3
60

0)
0.

00
43

8
0.

00
56

9
(3

60
0)

N
ik

ke
i
22

5
22

5
0.

00
25

0.
02

26
8

0.
02

92
6

18
.7

0.
00

57
4

0.
00

70
8

(3
60

0)
0.

00
5

0.
01

52
0

0.
03

29
9

45
7.

4
0.

00
48

4
0.

00
68

1
(3

60
0)

0.
00

75
0.

01
20

1
0.

03
52

5
(3

60
0)

0.
00

42
4

0.
00

81
1

(3
60

0)
0.

01
0.

01
10

6
0.

03
38

1
(3

60
0)

0.
00

40
3

0.
00

66
1

(3
60

0)



3.3. Computational results 48

F
ig

u
re

3.
2:

O
ut

-o
f-
sa

m
pl

e
pe

rf
or

m
an

ce
fo

r
th

e
N

ik
ke

i
22

5
w

it
h

γ
=

0.
01



3.3. Computational results 49

T
ab

le
3.

5:
O

ut
-o

f-
sa

m
pl

e
re

gr
es

si
on

re
su

lt
s

w
it

h
no

n-
ze

ro
fix

ed
an

d
va

ri
ab

le
tr

an
sa

ct
io

n
co

st
s

In
de

x
N

um
be

r
T
ra

ns
ac

ti
on

M
IN

IM
A

X
M

IN
IA

V
E

R
A

G
E

of
as

se
ts

co
st

lim
it

(γ
)

In
te

rc
ep

t
Sl

op
e

R
2

In
te

rc
ep

t
Sl

op
e

R
2

H
an

g
Se

ng
31

0.
00

25
-0

.0
00

89
0.

96
62

4
0.

85
47

2
-0

.0
00

70
0.

95
32

1
0.

85
15

4
0.

00
5

-0
.0

01
40

0.
96

60
8

0.
89

35
2

0.
00

04
7

0.
94

26
9

0.
89

42
5

0.
00

75
0.

00
01

0
0.

95
46

4
0.

92
57

8
0.

00
00

3
0.

95
02

9
0.

93
12

5
0.

01
0.

00
04

9
0.

99
90

8
0.

94
13

4
0.

00
03

0
0.

96
76

1
0.

96
23

1
D

A
X

10
0

85
0.

00
25

0.
00

13
8

0.
84

61
7

0.
41

01
0

0.
00

13
0

0.
86

51
8

0.
47

05
0

0.
00

5
0.

00
06

3
0.

81
42

0
0.

49
09

7
0.

00
10

8
0.

85
52

4
0.

52
67

1
0.

00
75

0.
00

09
0

0.
86

05
6

0.
60

01
1

0.
00

08
4

0.
87

57
7

0.
58

55
7

0.
01

0.
00

04
0

0.
85

01
0

0.
73

70
6

0.
00

02
9

0.
83

85
8

0.
71

31
0

F
T

SE
10

0
89

0.
00

25
0.

00
12

8
0.

79
48

1
0.

59
40

0
0.

00
12

0
0.

74
29

5
0.

54
22

7
0.

00
5

0.
00

09
1

0.
81

24
6

0.
66

59
9

0.
00

00
6

0.
74

18
7

0.
51

71
7

0.
00

75
0.

00
05

5
0.

80
14

6
0.

70
38

3
0.

00
03

3
0.

72
68

0
0.

56
70

4
0.

01
0.

00
04

7
0.

91
23

7
0.

74
07

3
-0

.0
00

51
0.

81
99

8
0.

64
21

3
S&

P
10

0
98

0.
00

25
-0

.0
00

04
0.

92
32

2
0.

72
00

6
0.

00
00

2
0.

94
61

3
0.

77
05

3
0.

00
5

-0
.0

00
49

0.
91

85
3

0.
75

27
4

-0
.0

00
73

0.
91

70
1

0.
74

76
3

0.
00

75
-0

.0
00

93
0.

92
97

6
0.

73
89

1
-0

.0
00

50
0.

97
05

0
0.

82
03

6
0.

01
-0

.0
00

64
0.

94
37

6
0.

81
42

6
-0

.0
00

66
0.

99
54

8
0.

83
83

5
N

ik
ke

i
22

5
22

5
0.

00
25

-0
.0

00
19

1.
03

55
9

0.
90

18
6

-0
.0

00
02

0.
99

55
4

0.
90

67
9

0.
00

5
-0

.0
00

40
1.

05
18

2
0.

87
51

5
-0

.0
00

20
1.

02
41

1
0.

91
58

6
0.

00
75

-0
.0

00
41

1.
06

77
4

0.
89

03
8

-0
.0

01
25

1.
01

80
4

0.
87

64
6

0.
01

0.
00

04
0

1.
03

39
3

0.
88

81
9

-0
.0

00
13

0.
94

99
6

0.
90

74
3



3.3. Computational results 50

where fixed costs are incurred. Visually tracking performance seems to

deteriorate after about 55 weeks out-of-sample, whereas in Figure 3.1 tracking

performance did not seem to deteriorate until about 100 weeks out-of-sample.

Note that one effect of fixed costs (which are present in Figure 3.2, unlike

Figure 3.1) is to limit flexibility in changing from the current tracking portfolio

(given a fixed transaction cost limit of γC, equation (3.8)) and so for that reason

alone we would expect tracking to be worse in the presence of fixed costs.

Table 3.5 shows the same information as Table 3.3, but for the case where

fixed costs are incurred. For MINIMAX the mean intercept value is 0.00011 and

the mean slope value is 0.92413. For MINIAVERAGE the corresponding values

are 0.00006 and 0.90485. Both MINIMAX and MINIAVERAGE have similar

average R2 values (of approximately 0.75) giving a correlation coefficient of
√

0.75 = 0.87, and this is again statistically highly significant given the number

of out-of-sample observations.

We would note here that we have (for computational reasons) considered

just one set of values for fixed costs. In practice, as discussed above, the fixed

costs associated with trade in an asset would be externally derived as a matter

of market structure. What is of importance in any practical application is that

any formulation/model adopted can deal with such fixed costs. Clearly our

formulations can deal with fixed costs (potentially different for buying/selling

and different for each asset). Computationally the results presented in Table 3.2

and Table 3.4 indicate that introducing fixed costs makes the problem harder

to solve for MINIAVERAGE, but not for MINIMAX.

3.3.4 Variation with K

To gain insight into how the results vary with the number of assets K chosen

to be in the portfolio we took one of our data sets (the DAX 100 with
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N = 85) and solved it for all values of the transaction cost limit γ; with

K = 10, 15, 20, 25, 50, 75; both with and without fixed costs. The results can be

seen in Table 3.6, which has the same format as Table 3.2 and Table 3.4. The

results for K = 10 in Table 3.6 are the same as those for K = 10 in Table 3.2

and Table 3.4, but are repeated in Table 3.6 for ease of comparison.

Considering the in-sample results it is clear that as K increases from its

initial value of 10 the in-sample objective function value falls. This is a reflection

of the fact that increasing K provides more flexibility in that we can hold more

assets in the portfolio chosen and hence allows a lower objective function value

to be achieved.

It is noticeable however that for K = 75 we often see an increase in the

in-sample objective function value over that seen for K = 50. For example for

MINIMAX with γ = 0.01 and fixed transaction costs of zero in Table 3.6 the in-

sample objective function value decreases from K = 10 to K = 50 (decreasing

from 0.01171 to 0.00179), but increases to 0.00543 at K = 75. This is a reflection

of the fact that since we are imposing a lower limit (minimum proportion) of

εi = 0.01 for each asset then, for K = 75, the flexibility to vary the investment

in each asset is more limited (since Kεi = 0.75, i.e. 75% of the total investment

is constrained to be in the assets chosen). Obviously if we were to remove the

minimum proportion constraint (equivalently set εi = 0) then we would have

more flexibility. However, since the results in Table 3.2 and Table 3.4 have been

produced with this minimum proportion constraint we have retained it here for

consistency of comparison.

With regard to out-of-sample objective function values we can see the

same effect as in-sample. Typically the objective function value falls as K

increases from its initial value of 10, but sometimes rises between K = 50 and

K = 75. Obviously out-of-sample the precise effect seen for any particular
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instance depends upon the portfolio chosen, since we are applying our (in-

sample) optimised portfolio to out-of-sample data.

In practice, as discussed above, the factor K relating to the number of

assets chosen to be in the portfolio is decided according to the preference of

the decision-maker. Utilising the formulations presented in this chapter it is

clear that the decision-maker can (by utilising historic asset data) gain numeric

insight into the effect on in-sample performance of differing values of K. This

enables them to make an informed decision as to the value of K to adopt.

3.4 Conclusions

we presented two mixed-integer linear programming formulations for index

tracking. In particular we explicitly considered both fixed and variable

transaction costs and limited the total transaction cost that could be incurred.

We proposed two approaches for the objective function associated with choice

of a tracking portfolio, namely; minimise the maximum absolute difference

between the tracking portfolio return and index return and minimise the average

of the absolute differences between tracking portfolio return and index return.

Our formulations are based upon tracking an index by comparing the returns

from the index with the returns from the tracking portfolio. The main results

of the chapter can be summarised as follows:

• Computational results indicated that good quality out-of-sample results

for tracking the indices considered could be achieved.

• The computational times taken for optimisation all the data sets considered

were low.



Chapter 4

Quantile Regression for Index

Tracking and Enhanced

Indexation

Quantile regression differs from traditional least-squares regression in that one

constructs regression lines for the quantiles of the dependent variable in terms

of the independent variable. In this Chapter we apply quantile regression to

two problems in financial portfolio construction, index tracking and enhanced

indexation.

We present a mixed-integer linear programming formulation of these

problems based on quantile regression and our formulation includes transaction

costs, a constraint limiting the number of stocks that can be in the portfolio and

a limit on the total transaction cost that can be incurred. Numerical results

are presented for eight test problems drawn from major world markets, where

the largest of these test data involves over 2000 stocks.

54
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4.1 Introduction

Any reader of this Chapter will probably be familiar with standard least-squares

regression. In graphical form that involves plotting a dependent variable (yi, i =

1, . . . , n) against an independent variable (xi, i = 1, . . . , n) and then fitting a

straight line, of the form y = α + βx, to the data. The regression coefficients

(α and β) are calculated so as to minimise the sum of squared differences of

the actual values from the estimated values, i.e. minimise
∑n

i=1 (yi − (α +

βxi))
2. Finding α and β is computationally simple since there exist closed-form

equations for their calculation

More technically a regression of this type assumes a distribution of

possible y-values at each xi (one realisation yi from the distribution that

exists at xi being observed) and the regression relationship captures the linear

relationship between the mean y-values at each xi. It is clear that one may be

interested in discerning the relationship between the quantiles of the distribution

of y-values at each xi.

Quantiles are values which divide the cumulative probability distribution.

So for example the 50% quantile corresponds to the median of a distribution.

The lower and upper quartiles of a distribution correspond to the 25% and 75%

quantiles respectively.

In quantile regression, as first defined by Koenker and Bassett (1978), a

linear equation relates how the quantiles of the dependent variable vary with the

independent variable. Computationally the coefficients in this linear equation

cannot be derived in a closed-form fashion, but instead are found as a result of

solving a linear program.

Since its inception quantile regression has been widely used. As

an indication of this the seminal paper by Koenker and Bassett (1978)
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has, at the time of writing, over 1500 citations in the Web of Knowledge

(http://wok.mimas.ac.uk) and over 4300 citations in Google Scholar

(http://scholar.google.com). However, the potential of quantile regression for

use in constructing index tracking and enhanced indexation portfolios seems

to have been overlooked. In this Chapter we apply the quantile regression

technique to two portfolio construction problems, index tracking and enhanced

indexation.

The remainder of this Chapter is organized as follows. In Section 2 we

give further insight into the quantile regression technique. Our mixed-integer

linear programming formulations for index tracking and enhanced indexation

based on quantile regression are examined in Section 3. Computational results

are presented in Section 4 and finally in Section 5 we present our conclusions.

4.2 Quantile regression

In order to provide insight into quantile regression we show, for a small example,

the quantile regression lines and indicate how they are calculated. Readers

interested in greater insight into quantile regression are referred to (Koenker

and Bassett, 1978; Koenker and Hallock, 2001; Yu et al., 2003; Hao and Naiman,

2007).

Let the dependent variable be (yi, i = 1, . . . , n), with the independent

variable being (xi, i = 1, . . . , n) and τ the quantile of interest (0 ≤ τ ≤ 1)

covering the whole distribution. In other words we are interested in the

regression line relating the τ ‘th quantile of y to x. Suppose that this line

is ατ + βτxi, where the regression intercept and slope are dependent on the

quantile of interest.

Unlike the ordinary least square approach, the unknown parameters
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ατ and βτ are estimated by minimising a non-differentiable loss function as

illustrated in Figure 4.1 . In particular one minimises the sum of residuals

n∑
i=1

ρτ (yi − ατ − βτxi) (4.1)

where

ρτ (u) = u(τ − I(u < 0)) =





τu, if u ≥ 0

(τ − 1)u, if u < 0

and for i = 1, 2, . . . , n, yi is the observed response corresponding to independent

variables xi.

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

ρτ(u)

 

u

Figure 4.1: Quantile regression check function at τ=0.90 (red line), τ=0.60 (blue
line), τ=0.50 (green line)

Define the residual ui = yi − (ατ + βτxi) then in quantile regression the
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values of ατ and βτ are those that:

minimise τ [
n∑

i=1, ui≥0

|ui|] + (1− τ)[
n∑

i=1, ui<0

|ui|] (4.2)

In Equation (4.2) the first summation term is the sum of the positive

residuals (so the observed value lies above the regression line) and the second

summation term is the sum of negative residuals (so the observed value lies

below the regression line). Here the positive residuals receive a weight of τ and

the negative residuals a weight of (1−τ). The effect of this is that as τ increases

(and we seek to minimise) there will be fewer positive residuals and/or they will

be closer to the regression line.

Consider the data shown in Table 4.1. This data is plotted in Figure 4.2

and the quantile regression lines for τ = 0.20, 0.50 and 0.80 are shown in

that figure. We also show there the standard least-squares (mean) regression

line. The corresponding values for the intercept and slope are shown in

Table 4.2. These quantile regression results were produced using the R

statistical programming language and the quantreg package (Koenker, R.

(2012)).

Table 4.1: Quantile regression example data

Dependent variable (y) Independent variable (x)
2.21 0.63
3.21 0.88
3.12 0.89
3.21 0.94
3.41 1.13
3.75 1.15
3.20 1.20
5.85 1.23
4.20 1.30

Considering this example we can see that as τ increases the quantile
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Figure 4.2: Quantile regression example plot

Table 4.2: Regression coefficients

Regression Intercept Slope
τ = 0.20 0.69800 2.40000
τ = 0.50 0.62500 2.75000
τ = 0.80 -0.31000 4.00000
mean 0.08372 3.35898

regression lines move upward (so fewer data points lie above the line, more

below) as we would expect. Note how the mean regression line and the 50%

quantile (median) regression line are different. Note also how both the intercepts

and slopes change as τ changes, in particular how the quantile regression lines

are not parallel to each other.
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Quantile regression has a number of features that the reader should be

aware of:

• Firstly, the values for intercept and slope are derived from the solution

to a minimisation problem, Equation (4.2). This contrasts with ordinary

least-squares (mean) regression where the values for intercept and slope

are given by closed-form equations.

• Secondly, as the values for intercept and slope are derived from the

solution to a minimisation problem, Equation (4.2), they are not uniquely

defined. In other words there may, for a particular value of τ , be two

or more sets of values for ατ and βτ that achieve the same optimal

minimal value for Equation (4.2). This contrasts with ordinary least-

squares (mean) regression where the values for intercept and slope are

uniquely defined.

• Thirdly, although often the values for intercept and slope are different for

different τ values (such as in Table 4.2) this need not be the case. For

the data shown in Table 4.1, for example, the quantile regression lines for

τ=0.90 and τ=0.95 are identical, each having intercept -1.61200 and slope

6.06667.

In terms of the procedure adopted to solve Equation (4.2) (which is

nonlinear) we can linearise it in a standard way. Introduce variables u+
i and

u−i , representing the absolute values of the positive and negative residuals

respectively, and then solve:

minimise τ [
n∑

i=1

u+
i ] + (1− τ)[

n∑
i=1

u−i ] (4.3)
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subject to

u+
i ≥ [yi − (ατ + βτxi)] i = 1, . . . , n (4.4)

u−i ≥ −[yi − (ατ + βτxi)] i = 1, . . . , n (4.5)

u+
i , u−i ≥ 0 i = 1, . . . , n (4.6)

This problem is a linear program and so easily solved computationally to

find values for ατ and βτ .

4.3 Formulation

In this section we present our mixed-integer linear programming formulation

for index tracking and enhanced indexation based upon quantile regression.

We first present our notation, then the constraints (note that our notation and

constraints are described in the same way as in Section (3.2) with more quantile

parameters in this Chapter) and finally the objective. We also highlight what

we believe to be the contribution of the work done here.

4.3.1 Notation

Suppose that we observe over time 0,1,2,. . . ,T the value of N assets, as well as

the value of the index. In our formulation we have a current portfolio [Xi, i =

1, . . . , N ] and we are interested in constructing a new portfolio (containing K

assets, where K < N) that will (hopefully) perform better than our existing

portfolio (either for index tracking or enhanced indexation depending upon our

interest). Our formulation can deal with both portfolio creation (where we

create a portfolio from cash, equivalently Xi = 0 i = 1, . . . , N) and portfolio

rebalancing (where we change from an existing portfolio to a new portfolio).
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Building on the notation of Canakgoz and Beasley (2009) let:

τ be the quantile of interest (e.g. τ = 0.50 for 50% quantile) where 0 ≤ τ ≤ 1

εi be the minimum proportion of the portfolio that must be held in asset i if

any of the asset is held

δi be the maximum proportion of the portfolio that can be held in asset i

Vit be the value (price) of one unit of asset i at time t

It be the value of the index at time t

Rt be the single period continuous time return for the index at time t, Rt =

loge(It/It−1)

rit be the single period continuous time return for asset i at time t, rit =

loge(Vit/Vit−1)

α̂iτ and β̂iτ be the τ quantile regression intercept and slope for asset i when

the returns rit from asset i are regressed against index returns Rt, i.e. the

regression equation is that the τ quantile for the return on asset i at time

t is given by α̂iτ + β̂iτRt

C be the total value (≥ 0) of the current portfolio [Xi] at time T plus cash

change (either new cash to be invested or cash to be taken out) so, C =
∑N

i=1 ViT Xi + cash change

f b
i be the fractional transaction cost associated with buying one unit of asset i

at time T , so that buying one unit of asset i at time T costs f b
i ViT

f s
i be the fractional transaction cost associated with selling one unit of asset i

at time T , so that selling one unit of asset i at time T costs f s
i ViT
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γ be the limit (0 ≤ γ ≤ 1) on the proportion of C that can be consumed by

transaction cost

Then our decision variables are:

xi the number of units (≥ 0) of asset i that we choose to hold in the new

portfolio

Gi the transaction cost (≥ 0) incurred in buying/selling asset i

zi =1 if any of asset i is held in the new portfolio, =0 otherwise

Without significant loss of generality (since the sums of money involved are

large) we allow [xi] to take fractional values. Note also that as xi ≥ 0 we are

excluding short selling (shorting) from our model.

4.3.2 Constraints

The constraints of the problem are:

N∑
i=1

zi = K (4.7)

εizi ≤ xiViT /C ≤ δizi i = 1, . . . , N (4.8)

Gi ≥ f s
i (Xi − xi)ViT i = 1, . . . , N (4.9)

Gi ≥ f b
i (xi −Xi)ViT i = 1, . . . , N (4.10)

N∑
i=1

Gi ≤ γC (4.11)

N∑
i=1

xiViT = C −
N∑

i=1

Gi (4.12)

xi, Gi ≥ 0 i = 1, . . . , N (4.13)
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zi ∈ {0, 1} i = 1, . . . , N (4.14)

Equation (4.7) ensures that there are exactly K assets in the portfolio.

Equation (4.8) ensures that if an asset i is not in the portfolio (zi = 0) then

xi is also zero; it also ensures that if the asset is chosen to be in the portfolio

(zi = 1) then the amount of the asset held satisfies the proportion limits defined.

Equations (4.9) and (4.10) define the transaction cost and equation (4.11) limits

the total transaction cost incurred. Equation (4.12) is a balance constraint such

that the total value of the new portfolio at time T equals the value of the current

portfolio at time T plus the cash change (i.e. C) minus the total transaction

cost. Equation (4.13) ensures that the continuous variables are non-negative

and equation (4.14) is the integrality condition for the zero-one variables.

Although not presented here note that it is a simple matter to extend

the formulation given above to represent common situations found in financial

portfolio optimisation. These include:

• imposing upper and/or lower limits on the proportion invested in sets of

assets (often called class or sector constraints)

• lot size constraints (minimum transaction units) which specify that the

holding (xi) in any asset i must be an integer multiplier of a known

constant and/or that the trade in asset i (in moving from Xi to xi) must

be an integer multiplier of a known constant

4.3.3 Objective

Recall that Rt is the single period continuous time return for the index at time

t, given by Rt = loge(It/It−1) for t = 1, . . . , T . Also rit is the single period

continuous time return for asset i at time t, given by rit = loge(Vit/Vit−1) for
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t = 1, . . . , T .

If we quantile regress the returns rit from asset i against the returns Rt

from the index we will have a (quantile) regression line with intercept α̂iτ and

slope β̂iτ . In other words the regression equation is that the τ quantile for the

return on asset i at time t is given by α̂iτ + β̂iτRt. As mentioned previously

above the values for α̂iτ and β̂iτ cannot be derived from closed-form equations,

but are instead derived from the solution to a linear programming problem.

This linear programming problem is solved for each asset i:

minimise τ [
T∑

t=1

u+
t ] + (1− τ)[

T∑
t=1

u−t ] (4.15)

subject to

u+
t ≥ [rit − (ατ + βτRt)] t = 1, . . . , T (4.16)

u−t ≥ −[rit − (ατ + βτRt)] t = 1, . . . , T (4.17)

u+
t , u−t ≥ 0 t = 1, . . . , T (4.18)

So here α̂iτ and β̂iτ are the optimal values for ατ and βτ when this linear

program is solved. Equations (4.15)-(4.18) are as Equations (4.3)-(4.6), but

particularised to the T observations of return for asset i, rit, t = 1, . . . , T , and

the T observations of index return, Rt, t = 1, . . . , T .

Now the weight wi associated with asset i in the portfolio is given by:

wi = xiViT /C i = 1, . . . , N (4.19)

and the return on the portfolio at time t is given by
∑N

i=1 wirit.

If we quantile regress the returns
∑N

i=1 wirit from the portfolio against

the returns Rt from the index we will have a (quantile) regression line with a



4.3. Formulation 66

particular intercept and slope. Here we shall assume that we can approximate

this quantile regression intercept and slope using the weighted sum of the

individual asset quantile regressions, i.e. that:

• the quantile regression intercept for the portfolio can be approximated by
∑N

i=1 wiα̂iτ

• the quantile regression slope for the portfolio can be approximated by
∑N

i=1 wiβ̂iτ

In Canakgoz and Beasley (2009) a number of objectives for use in

regression-based index tracking were suggested. In that work they used ordinary

least-squares (mean) regression. The objective adopted was a three-stage one:

where the first stage was to minimise the absolute difference between the

regression intercept and zero; the second stage was to minimise the absolute

difference between the regression slope and one; the third stage was to minimise

total transaction cost. The logic there for the first two stages was that ideally

at each time period we would have portfolio return equal to index return. If we

could achieve this ideal then the regression line would have intercept zero and

slope one. The logic for the third stage was to minimise transaction cost, whilst

retaining the values for intercept and slope achieved at the first two stages.

Here we shall adopt the same approach, the difference being that whereas

in Canakgoz and Beasley (2009) there was only one set of regression parameters

available (as they dealt with just mean regression), here we have many sets of

regression parameters (one set for each possible value of τ , where 0 ≤ τ ≤ 1).

A natural choice for index tracking is simply to use τ = 0.50, i.e. to

use a 50% (median) regression line. If we can find a portfolio for which the

median regression line has an intercept of zero and a slope of one (when portfolio

returns are quantile regressed against index returns) then this would seem a
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good candidate for an index tracking portfolio. Here the logic is that ideally at

each time period we would have portfolio return equal to index return. If we

could achieve this ideal then the regression line would have intercept zero and

slope one.

For enhanced indexation the value of τ to use is less clear cut. However

suppose (given a value for τ) we can find a portfolio for which the quantile

regression line has an intercept of zero and a slope of one (when portfolio

returns are quantile regressed against index returns). This quantile regression

line corresponds to the line where the portfolio return is equal to the index

return. Above this line the portfolio return exceeds the index return, below this

line the portfolio return is less than the index return. In enhanced indexation

we seek to out-perform the index, and so we would like to choose a portfolio

such that the majority of portfolio returns lie above this quantile regression line

(on which the portfolio return is equal to the index return). This implies that

the value of τ should be less than 0.50.

Given a value for τ < 0.50, for example τ = 0.45 for the purposes

of illustration, then a portfolio for which the quantile regression line has an

intercept of zero and a slope of one would have (in quantile terms) 55% of the

portfolio returns above the line (so with a return exceeding that of the index),

45% below the line (so with a return less than that of the index), and overall

that would seem a reasonable enhanced indexation portfolio.

In the light of the above discussion we can formulate a single approach

which will, depending upon the value of τ adopted, produce an index tracking,

or enhanced indexation, portfolio. This approach is:

• First, minimise | ∑N
i=1 wiα̂iτ −0 | subject to Equations (4.7)-(4.14),(4.19)

to find a portfolio with a quantile regressed intercept as close to zero

as possible. This objective is nonlinear, but can be linearised in the
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same manner as was done above (in going from Equation (4.2) to

Equations (4.3)-(4.6)). Introduce a variable D ≥ 0 and solve:

minimise D (4.20)

subject to

D ≥ [
N∑

i=1

wiα̂iτ ] (4.21)

D ≥ −[
N∑

i=1

wiα̂iτ ] (4.22)

and Equations (4.7)-(4.14),(4.19)

This problem is a mixed-integer linear program and so can be solved using

standard software, such as IBM ILOG Cplex IBM ILOG Cplex Solver

(2012) which we used. Let the optimal solution value be D∗.

• Second, minimise | ∑N
i=1 wiβ̂iτ−1 | subject to Equations (4.7)-(4.14),(4.19)-

(4.21),(4.22) and D = D∗ to find a portfolio with a quantile regressed

slope as close to one as possible, but which retains the minimal value

(D∗) achieved previously. Again this is nonlinear, but is easily linearised

by introducing a variable E ≥ 0 and solving

minimise E (4.23)

subject to

E ≥ [
N∑

i=1

wiβ̂iτ − 1] (4.24)

E ≥ −[
N∑

i=1

wiβ̂iτ − 1] (4.25)

D = D∗ (4.26)
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and Equations (4.7)-(4.14),(4.19),(4.21),(4.22)

Let the optimal solution value be E∗.

• Third, minimise
∑N

i=1 Gi subject to Equations (4.7)-(4.14),(4.19),(4.21),(4.22)-

(4.24),(4.26) and E = E∗ to find a portfolio with as low a transaction cost

as possible but which retains the minimal values (D∗ and E∗) achieved

previously.

4.3.4 Contribution

A number of the constraints in our formulation are as seen in other work (Beasley

et al., 2003; Canakgoz and Beasley, 2009; Guastaroba and Speranza, 2012) , as

indeed they are seen in other papers by other authors. This is natural since

constraints for many optimisation problems are often expressed mathematically

exactly as in previous work in the literature. The contribution of this

Chapter lies not in the constraints presented, but rather in the

application of quantile regression to the problem of constructing

financial portfolios for index tracking and enhanced indexation . To

the best of our knowledge this is the first time that quantile regression has

been applied to these problems. Moreover the quantile concept means that we

can, within the same model/approach, easily capture both index tracking and

enhanced indexation objectives.
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4.4 Computational results

4.4.1 Test problems

To test our formulation we used the same test problems as in Chapter 3, Section

3.3.1 but added three more data sets for large capital market indices Table 4.3.

Table 4.3: Test problems

Index Number of stocks N Number of selected stocks K
Hang Seng 31 10
DAX 100 85 10
FTSE 100 89 10
S&P 100 98 10
Nikkei 225 225 10
S&P 500 457 40
Russell 2000 1318 90
Russell 3000 2151 70

The computational results presented below (Windows dual Xenon 3.06GHz

Pentium pc with 2Gb memory) are for our approach as coded in FORTRAN

and AMPL using ILOG Cplex (version 12.1) IBM ILOG Cplex Solver (2012)

as the mixed-integer optimiser. We used Cplex default parameter settings,

except that we changed the tolerance parameters so as to find the genuine

optimal solution. The reason for this is that Cplex, by default, finds a solution

within a specified tolerance of the genuine optimal and since we have real-

valued objective functions we wanted to avoid the situation where we missed

the genuine optimal solution. In detail we used the Cplex commands set mip

tol mip 0 and set mip tol abs 0 to set the tolerance parameters to zero to find

the genuine optimal solution. For those readers more familiar with Cplex these

correspond to setting both the Cplex parameters EpGap and EpAGap dealing

with relative and absolute mixed-integer tolerances to zero. Quantile regression

was performed using the R statistical programming language and the quantreg
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package Koenker, R. (2012). We:

• used an initial portfolio of value 106 composed of the first K stocks in

equal proportions, i.e. Xi = (106/K)/Vi0 i = 1, ..., K; Xi = 0 ∀i > K

• used εi = 0.01 and δi = 1 ∀i, i.e. a lower proportion limit for any asset

that appears in the decided portfolio of one percent

• used f b
i = f s

i = 0.01 ∀i, i.e. transaction cost was one percent of the value

of the assets bought/sold

4.4.2 Index tracking

To illustrate how our approach performs in terms of index tracking we took an

in-sample time period [0,145] for each of our test problems and, for a range of

values for the transaction cost limit γ, used the approach given above to decide

a tracking portfolio. We then calculated the quantile regression coefficients

(τ = 0.50) when the returns from this tracking portfolio were regressed against

the index out-of sample (in [146, 290]). Table 4.4 gives the results obtained. In

that Table we give:

• the optimal values D∗ and E∗ associated with intercept and slope

respectively

• the computation time taken in seconds (this includes both the time taken

to calculate the quantile regression coefficients as well as the time taken

by the Cplex optimiser to solve our mixed-integer programs to proven

optimality)

• the out-of-sample intercept and slope quantile regression coefficients
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Table 4.4: In-sample and out-of-sample tracking results

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope

Hang Seng 0.0025 0 0.00858 0.9 -0.00127 0.94676

(31,10) 0.0050 0 0 0.6 -0.00287 0.98818

0.0075 0 0 0.8 -0.00287 0.98818

0.01 0 0 0.7 -0.00287 0.98818

DAX 100 0.0025 0 0.26392 1.8 0.00227 0.93844

(85,10) 0.0050 0 0.11761 1.6 0.00213 1.12548

0.0075 0 0.01081 1.8 0.00017 1.15890

0.01 0 0 1.5 0.00045 1.15425

FTSE 100 0.0025 0.00067 0.09893 1.9 -0.00006 0.87620

(89,10) 0.0050 0 0 1.8 0.00087 0.81862

0.0075 0 0 2.0 0.00087 0.81862

0.01 0 0 2.4 0.00087 0.81862

S&P 100 0.0025 0 0 2.0 0.00079 0.86235

(98,10) 0.0050 0 0 2.0 0.00079 0.86235

0.0075 0 0 2.3 0.00079 0.86235

0.01 0 0 2.1 0.00079 0.86235

Nikkei 225 0.0025 0 0.05195 4.7 0.00054 0.98544

(225,10) 0.0050 0 0 5.0 -0.00023 1.03811

0.0075 0 0 8.6 -0.00023 1.03811

0.01 0 0 5.1 -0.00023 1.03811

S&P 500 0.0025 0.00014 0.17560 15.0 0.00200 1.21864

(457,40) 0.0050 0 0 10.9 0.00204 1.25729

0.0075 0 0 14.0 0.00204 1.25729

0.01 0 0 10.7 0.00204 1.25729

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0 0 56.0 0.00188 1.22387

0.0075 0 0 31.9 0.00188 1.22387

0.01 0 0 31.1 0.00188 1.22387

Russell 3000 0.0025 0 0 62.1 0.00343 1.10307

(2151,70) 0.0050 0 0 67.3 0.00343 1.10307

0.0075 0 0 71.4 0.00328 1.10784

0.01 0 0 75.5 0.00328 1.10784

Average 0.00003 0.02346 16.0 0.00090 1.04044

To illustrate Table 4.4 consider the Nikkei 225 with N = 225 assets and

K = 10 assets in the tracking portfolio. When γ = 0.0025, so a transaction cost
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limit of 0.25% of portfolio value, the minimal D∗ value is zero and the minimal

E∗ value is 0.05195 with the total computation time being 4.7 seconds. Out-of-

sample the quantile regression intercept is 0.00054 and the quantile regression

slope is 0.98544. As we are considering index tracking here we are using τ =

0.50.

One of the problems (Russell 2000 with γ = 0.0025) in Table 4.4 is

infeasible, indicating that it is not possible to trade from the initial portfolio

to a portfolio with K = 90 assets that satisfies the lower proportion constraint

(εi = 0.01 ∀i) within the transaction cost limit.

One feature of the results in Table 4.4 is that in some cases the out-of-

sample results are identical for different transaction cost limit (γ) values. This

is a direct consequence of the approach we have used, in that if it is possible

to achieve minimal values of D∗ = E∗ = 0 at one transaction cost level then it

is possible to achieve the same minimal zero values at higher transaction cost

limit values (since the last step in our solution approach minimises transaction

cost incurred, whilst preserving the minimal values of D∗ and E∗ achieved).

Hence, once D∗ = E∗ = 0 has been achieved at one transaction cost limit, all

higher transaction cost limits can potentially give the same tracking portfolio

(any difference being due to multiple optimal solutions, i.e. different portfolios

each with D∗ = E∗ = 0 and the same transaction cost associated with trading

from the initial portfolio to the decided portfolio). Multiple optimal solutions

can occur, for example for the Russell 3000 with γ = 0.0050 and γ = 0.0075

we have identical minimal values of zero for both D∗ and E∗, but different out-

of-sample values, implying the decided portfolios for these two cases must have

been different.

Considering the averages at the foot of Table 4.4 we can observe that

computation times are very reasonable, an average of 16 seconds with no
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problem taking more than 76 seconds. In-sample the average value of D∗ is

very close to zero and the average value of E∗ is also close to zero. Out-of-

sample (over the time period [146,290], so over nearly three years of weekly

observations), the average quantile regression intercept is very close to zero

with the average quantile regression slope differing from one by only 0.04.

With regard to the absolute difference between the out-of-sample intercept

and zero, and the absolute difference between the out-of-sample slope and one,

then for Table 4.4 these values are 0.00159 and 0.12969 respectively (averaged

over all cases in Table 4.4). The maximum values for absolute difference between

the out-of-sample intercept and zero, and absolute difference between the out-

of-sample slope and one, in Table 4.4 are 0.00343 and 0.25729 respectively.

Clearly it is a matter of judgment, but given that we have a fixed value for the

number of assets (K) in the portfolio much smaller than the number of assets

(N) in the index, and given that these values are over nearly three years of

weekly observations, they do not appear too unreasonable.

The index tracking test problems shown in Table 4.4 were also considered

in Beasley et al. (2003) and Canakgoz and Beasley (2009). With respect

to Beasley et al. (2003) a direct comparison is difficult as they adopt a nonlinear

objective. With respect to Canakgoz and Beasley (2009) then, as they also used

regression (albeit mean, least-squares, regression), a comparison can be made.

In Canakgoz and Beasley (2009) there are 27 zero D∗ values and four non-

zero D∗ values (0.00076, 0.00053, 0.00077 and 0.00209 in Table 2 of Canakgoz

and Beasley (2009)). Hence the average D∗ value is (0.00076 + 0.00053 +

0.00077+0.00209)/31 = 0.00013. There are 25 zero E∗ values and six E∗ values

that are different from zero (|0.94513−1|, |0.68501−1|, |0.82413−1|, |0.96548−
1|, |1.00937− 1| and |1.15789− 1| in Table 2 of Canakgoz and Beasley (2009)).

Hence the average E∗ value is (|0.94513 − 1| + |0.68501 − 1| + |0.82413 − 1| +
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|0.96548− 1|+ |1.00937− 1|+ |1.15789− 1|)/31 = 0.02411.

Both of these values (0.00013 and 0.02411 respectively), associated with

mean regression, are higher than the same values seen at the foot of Table 4.4

associated with median quantile regression. Hence with respect to in-sample

statistics, at least for the test problems considered, it seems that (on average)

median regression is better than mean (least-squares) regression.

Out-of-sample the picture is more mixed. In Canakgoz and Beasley (2009)

the average out-of-sample intercept is 0.00106, worse than the corresponding

(median) intercept of 0.00090 seen at the foot of Table 4.4. However in Canakgoz

and Beasley (2009) the average out-of-sample slope is 0.99725, which is closer

to one than the corresponding (median) slope of 1.04044 seen at the foot of

Table 4.4.

4.4.3 Enhanced indexation

Tables 4.5 and 4.6 deal with the same problems as Table 4.4, but for enhanced

indexation. In Table 4.5 we present results for τ = 0.45 and in Table 4.6 we

present results for τ = 0.40. These tables have the same format as Table 4.4,

but include an additional column relating to the average excess return (AER).

Here AER is defined as the average yearly out-of-sample (percentage) excess

return, return over and above index return in the same period, as computed

directly from portfolio returns in the out-of-sample period. Here as we are

seeking an enhanced indexation portfolio we are seeking excess return, return

over and above the index.

Recalling that we are dealing with weekly data, average yearly out-of-
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sample (percentage) excess return (AER), is defined as:

[5200/145]
290∑

t=146

[loge(
N∑

i=1

Xopt
i Vit/

N∑
i=1

Xopt
i Vit−1) −Rt] (4.27)

where Xopt
i is the number of units of asset i held in the portfolio as given by

the optimisation process (after minimisation of transaction cost).

Comparing Tables 4.5 and 4.6 we can see that, whereas in-sample in

Table 4.5 we have a significant number of zero values for D∗ and/or E∗, in

Table 4.6 we have no such values. This indicates that in moving from quantile

regression with τ = 0.45 to quantile regression with τ = 0.40 it is much harder

to find a regression line with the desired intercept and slope.

Here the desired intercept is zero, equivalently D∗ = 0, the desired slope

is one, equivalently E∗ = 0.

Considering the averages at the feet of Tables 4.5 and 4.6 we can observe

that computation times are very reasonable, across both tables an average of

no more than 18 seconds with no problem taking more than 129 seconds. In-

sample the average value of D∗ is very close to zero in both Tables 4.5 and 4.6,

but it is clear that there is a significant difference in the average values of

E∗ between these tables (0.12825 in Table 4.5 associated with τ = 0.45, but

0.30663 in Table 4.6 associated with τ = 0.40). Out-of-sample (over the time

period [145,290], so over nearly three years of weekly observations), in Tables 4.5

and 4.6 the average quantile regression intercept is very close to zero with the

average quantile regression slope much closer to one for τ = 0.45 than for τ =

0.40. With regard to the absolute difference between the out-of-sample intercept

and zero, and the absolute difference between the out-of-sample slope and one,

then for Table 4.5 these values are 0.00135 and 0.12063 respectively (averaged

over all cases in Table 4.5), whilst the corresponding values for Table 4.6 are
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Table 4.5: In-sample and out-of-sample enhanced indexation results, τ = 0.45

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00243 0.13725 0.8 -0.00216 0.88354 -5.03

(31,10) 0.0050 0.00137 0.19561 0.7 -0.00312 0.85191 -8.35

0.0075 0.00039 0.25405 0.7 -0.00299 0.84681 -9.72

0.01 0 0.20148 0.8 -0.00338 0.84604 -9.79

DAX 100 0.0025 0.00157 0.43969 2.1 0.00041 0.94156 10.85

(85,10) 0.0050 0.00049 0.48290 1.8 0.00130 0.96133 11.01

0.0075 0 0.36638 1.6 -0.00032 1.00280 11.74

0.01 0 0.09469 1.7 -0.00163 1.26620 16.13

FTSE 100 0.0025 0 0.15674 1.8 0.00096 0.83021 3.01

(89,10) 0.0050 0 0.04185 1.8 0.00188 0.90412 6.00

0.0075 0 0 1.8 0.00246 0.87509 7.13

0.01 0 0 1.6 0.00246 0.87509 7.13

S&P 100 0.0025 0.00050 0.00959 2.0 -0.00052 1.13749 5.32

(98,10) 0.0050 0 0 1.9 -0.00071 1.17571 6.71

0.0075 0 0 2.0 -0.00071 1.17571 6.71

0.01 0 0 2.2 -0.00071 1.17571 6.71

Nikkei 225 0.0025 0.00263 0.14958 4.7 -0.00116 0.91166 3.19

(225,10) 0.0050 0.00145 0.19030 4.4 -0.00019 0.81163 7.11

0.0075 0.00051 0.18358 4.8 -0.00048 0.79613 9.90

0.01 0 0.01904 4.5 -0.00220 0.98295 1.73

S&P 500 0.0025 0.00122 0.31956 9.3 -0.00242 1.41017 0.63

(457,40) 0.0050 0 0.20342 10.5 -0.00097 1.16534 2.77

0.0075 0 0 10.5 -0.00219 0.93692 6.38

0.01 0 0 10.1 -0.00219 0.93692 6.38

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.00403 0.11128 61.2 0.00052 1.07666 7.09

0.0075 0.00120 0.13308 32.0 -0.00056 1.00869 5.03

0.01 0 0 30.2 -0.00036 0.98825 1.99

Russell 3000 0.0025 0.00589 0.07351 56.0 -0.00048 1.11735 16.25

(2151,70) 0.0050 0.00261 0.10108 49.9 -0.00080 1.01473 14.31

0.0075 0.00019 0.11094 47.2 -0.00024 1.01730 12.29

0.01 0 0 53.4 0.00124 1.17578 10.89

Average 0.00085 0.12825 13.4 -0.00062 1.00322 5.53

0.00318 and 0.22441. The maximum values for absolute difference between the

out-of-sample intercept and zero, and absolute difference between the out-of-
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Table 4.6: In-sample and out-of-sample enhanced indexation results, τ = 0.40

Index Transaction In-sample Time Out-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00693 0.14154 0.7 -0.00406 0.88816 -4.35

(31,10) 0.0050 0.00585 0.20572 0.7 -0.00466 0.84234 -6.38

0.0075 0.00483 0.26515 0.7 -0.00446 0.80993 -8.60

0.01 0.00383 0.31817 0.8 -0.00480 0.79307 -10.94

DAX 100 0.0025 0.00461 0.46180 2.1 -0.00214 0.99809 10.15

(85,10) 0.0050 0.00340 0.47403 2.1 -0.00239 0.95701 10.45

0.0075 0.00243 0.48319 1.7 -0.00181 0.95496 10.50

0.01 0.00177 0.50297 1.7 -0.00155 0.97142 11.43

FTSE 100 0.0025 0.00248 0.28769 1.9 -0.00248 0.76935 -0.59

(89,10) 0.0050 0.00171 0.38288 1.7 -0.00378 0.76222 -1.13

0.0075 0.00104 0.46112 1.7 -0.00415 0.70118 -0.35

0.01 0.00052 0.51713 1.8 -0.00348 0.65650 1.08

S&P 100 0.0025 0.00509 0.05129 2.0 -0.00272 1.10230 5.31

(98,10) 0.0050 0.00401 0.12515 2.1 -0.00246 1.26613 9.46

0.0075 0.00330 0.16287 2.0 -0.00236 1.25671 12.73

0.01 0.00272 0.29411 2.1 -0.00286 1.39590 16.93

Nikkei 225 0.0025 0.00507 0.15464 4.5 -0.00234 0.88336 -1.22

(225,10) 0.0050 0.00411 0.21205 4.5 -0.00178 0.81851 -1.17

0.0075 0.00336 0.21987 4.2 -0.00337 0.77910 -3.65

0.01 0.00266 0.25214 4.2 -0.00458 0.73670 -7.00

S&P 500 0.0025 0.00630 0.22979 10.1 -0.00349 1.37734 -0.36

(457,40) 0.0050 0.00459 0.25440 9.1 -0.00548 1.33654 -2.40

0.0075 0.00340 0.28019 8.6 -0.00773 1.43651 -6.94

0.01 0.00257 0.29523 8.9 -0.01144 1.61619 -9.63

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01011 0.31803 67.4 0.00063 0.96141 11.53

0.0075 0.00675 0.42647 73.3 -0.00131 0.80416 9.44

0.01 0.00480 0.48769 30.7 -0.00132 0.63131 7.45

Russell 3000 0.0025 0.01235 0.13736 128.1 -0.00203 1.02016 19.22

(2151,70) 0.0050 0.00874 0.29088 47.0 -0.00110 0.76174 21.88

0.0075 0.00609 0.36847 45.7 0.00106 0.70167 20.02

0.01 0.00405 0.44342 83.0 0.00085 0.66881 18.86

Average 0.00450 0.30663 17.9 -0.00302 0.95673 4.25
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sample slope and one, in Table 4.5 are 0.00338 and 0.41017 respectively, whilst

the corresponding values for Table 4.6 are 0.01144 and 0.61619.

From the out-of-sample AER columns in Tables 4.5 and 4.6 we can see

that the average excess return (return over and above the index) is 5.53% per

year for τ = 0.45, but only 4.25% per year for τ = 0.40. Looking in greater detail

at the AER columns in Tables 4.5 and 4.6 we have much wider variability in

terms of AER as τ decreases from 0.45 to 0.40. In the AER column in Table 4.5

associated with τ = 0.45 we have only 4 values that are negative, the other 27

values are positive. By contrast in Table 4.6 associated with τ = 0.40 we have

15 values that are negative, 16 values that are positive.

Table 4.7 shows the average out-of-sample annual excess returns (AER)

values for a number of different τ values. These average values seen are the

averages over the four transaction cost limits considered. The values presented

in Table 4.7 for τ = 0.45 and τ = 0.40 can be deduced from Tables 4.5 and 4.6

respectively. For the other values of τ considered we have presented detailed

results in Appendix A.

In Table 4.7 we have, for the Hang Seng for example, that the average

out-of-sample annual excess return is -8.22% for τ = 0.45, implying that out-

of-sample the portfolios chosen do worse than the index (recall that this value

of -8.22% is an average over four different transaction cost limits γ). For the

Hang Seng for τ = 0.30, by contrast, the AER value is 3.52%, implying that out-

of-sample the portfolios chosen out-perform the index by an average of 3.52%

per year.

The final column in Table 4.7 gives the correlation between the nine values

of τ and the associated AER values seen. For the Hang Seng for example this

is -0.69, the minus sign here implying that (in general) as τ decreases the value

of AER increases. With nine observations then (utilising standard statistical
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Table 4.7: Out-of-sample enhanced indexation average AER

Index (N, K) Value of τ Correlation

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

Hang Seng (31,10) -8.22 -7.57 4.26 3.52 3.11 3.32 3.29 2.08 3.84 -0.69

DAX 100 (85,10) 12.43 10.63 12.70 13.85 14.22 14.06 12.29 10.78 3.14 0.50

FTSE 100 (89,10) 5.82 -0.25 -0.15 -0.20 -0.76 -0.71 -0.52 -4.31 2.49 0.45

S&P 100 (98,10) 6.36 11.11 -6.09 -7.76 -6.86 -2.33 -7.55 -8.64 -8.97 0.74

Nikkei 225 (225,10) 5.48 -3.26 -4.42 3.85 3.64 -1.56 4.42 7.62 8.07 -0.55

S&P 500 (457,40) 4.04 -4.83 -0.36 9.54 6.82 9.20 7.15 5.79 5.52 -0.52

Russell 2000 4.70 9.47 10.86 10.46 11.00 12.76 12.20 11.76 38.79 -0.69

Russell 3000 13.44 20.00 20.75 20.66 21.36 35.42 35.29 35.51 34.10 -0.91

tables) any correlation coefficient whose modulus is greater than 0.67 can be

said to be significantly different from zero at the 5% significance level, so here

four of the eight indices (Hang Seng, S&P 100, Russell 2000, Russell 3000)

display significant correlations.

Note here how in Table 4.7 the correlation coefficient splits the indices into

two sets. One set, containing the DAX 100, FTSE 100 and S&P 100, where

the correlation coefficient is positive, and hence AER decreases as τ decreases.

The other set containing the remaining five indices with a negative correlation,

so AER increases as τ decreases.

Considering Table 4.7 we can see that for three of the eight test problems

(DAX 100, Russell 2000, Russell 3000) we can consistently generate positive

AER values irrespective of the value of τ chosen. For the Hang Seng positive

AER values are not seen until τ is 0.35 or less. In general these results indicate

that the value of τ to adopt will be dependent on the index/market considered

and hence computational investigation is needed to decide an appropriate τ

value for any particular index/market at any particular time.
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Directly comparing the results in this work with the results in Canakgoz

and Beasley (2009) for each test problem is difficult as in Canakgoz and Beasley

(2009) a number of enhanced indexation results are presented based on desired

excess return, whereas in this work we generate enhanced indexation results

based on varying τ . However, across all test problems and all relevant results

presented, the average out-of-sample AER value in Canakgoz and Beasley

(2009) is 6.08%. Averaging the out-of-sample AER values seen in Table 4.7 we

obtain 7.05%. In terms of out-of-sample performance therefore we can conclude

that the results presented indicate that the quantile regression approach

presented in this chapter is (on average) competitive with the approach given

in Canakgoz and Beasley (2009).

4.4.4 Alternative approaches

As mentioned above our approach is based on that given in Canakgoz and

Beasley (2009). Conceptually we have three factors of interest, each of which

we wish to minimise:

• the absolute difference between the regression intercept and zero;

• the absolute difference between the regression slope and one;

• total transaction cost.

Above we have adopted a three-stage approach, where the first stage was to

minimise the absolute difference between the regression intercept and zero; the

second stage was to minimise the absolute difference between the regression

slope and one; the third stage was to minimise total transaction cost. In their

paper Canakgoz and Beasley (2009) do discuss how alternative approaches can

be formed based on these three factors, but do not give any computational
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results. In this chapter we do consider alternative approaches to the one

discussed above.

Clearly with three factors of interest there are a number of alternative

approaches, e.g.

1. first minimise the absolute difference between the regression slope and

one (minimise E); then minimise the absolute difference between the

regression intercept and zero (minimise D); then minimise total transaction

cost (minimise
∑N

i=1 Gi)

2. first minimise a weighted sum of the absolute difference between the

regression intercept and zero and the absolute difference between the

regression slope and one (minimise λ1D + λ2E); then minimise total

transaction cost (minimise
∑N

i=1 Gi); where λ1 and λ2 are the weighting

parameters

3. minimise a weighted sum of all three factors, so minimise a weighted

sum of the absolute difference between the regression intercept and zero,

the absolute difference between the regression slope and one and total

transaction cost (minimise λ1D + λ2E + λ3

∑N
i=1 Gi; where λ1, λ2 and λ3

are the weighting parameters)

In all of these minimisations we (in the same manner as presented above) retain

the optimal value from the previous minimisation at each stage.

In this section we will present computational results for the first two of

these approaches. The difficulty with the third approach is that it is not (in

our mind) clear how to set values for the weights (λ1, λ2, λ3) so as to weigh

together two factors which are absolute differences (both small, see the values

for D∗ and E∗ in the tables of computational results, Tables 4.4-4.6, presented
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above) and transaction cost, which is in monetary units and possibly large. For

that reason we have not explored the third approach computationally here.

First alternative approach

In this section we present results for the first alternative approach above, namely

first minimise the absolute difference between the regression slope and one

(minimise E); then minimise the absolute difference between the regression

intercept and zero (minimise D); then minimise total transaction cost (minimise
∑N

i=1 Gi).

Table 4.8 and Table 4.9 have the same format as Table 4.4 and Table 4.7,

but are for this first alternative approach. Detailed tables (first alternative

approach) of results for individual τ values (such as given in Table 4.5 and

Table 4.6) are given in the Appendix B.

Comparing Table 4.4 and Table 4.8, which are the index tracking results,

we see that (as we would expect) any cases in Table 4.4 where the values for

D∗ and E∗ are both zero also have both D∗ and E∗ zero in Table 4.8. It is

clear that since for 24 of the 31 cases seen there both D∗ and E∗ are zero it is

hard to draw any conclusions from the 7 cases where there are non-zero values.

On the limited evidence available in those tables it seems that either of the two

approaches produces good results for index tracking.

Comparing Table 4.7 and Table 4.9 we can see that some of the indices

have positive correlations between the value of τ and the average AER, some

negative. Except for the Nikkei 225 all of these correlations have the same sign

in Table 4.9 as in Table 4.7. These tables each contain average AER values for

8 indices and 9 different values of τ , so 72 cases in total. In only 21 of these

72 cases is the AER value in Table 4.9 better than (or equal to) the value in

Table 4.7. Over all 72 cases the average AER in Table 4.9 is 4.24%, as compared
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with 7.02% in Table 4.7.

Table 4.8: In-sample and out-of-sample tracking results, first alternative

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope

Hang Seng 0.0025 0.00011 0 0.8 -0.00289 0.97444

(31,10) 0.0050 0 0 0.7 -0.00287 0.98818

0.0075 0 0 0.7 -0.00287 0.98818

0.01 0 0 0.7 -0.00287 0.98818

DAX 100 0.0025 0.00047 0.25081 2.0 0.00377 1.01353

(85,10) 0.0050 0.00024 0.11533 1.7 0.00170 1.13299

0.0075 0.00037 0.00834 1.7 0.00088 1.14627

0.01 0 0 1.8 0.00045 1.15425

FTSE 100 0.0025 0.00193 0.05019 2.1 -0.00041 0.82096

(89,10) 0.0050 0 0 1.8 0.00087 0.81862

0.0075 0 0 1.8 0.00087 0.81862

0.01 0 0 2.0 0.00087 0.81862

S&P 100 0.0025 0 0 1.9 0.00079 0.86235

(98,10) 0.0050 0 0 3.0 0.00079 0.86235

0.0075 0 0 1.9 0.00079 0.86235

0.01 0 0 1.9 0.00079 0.86235

Nikkei 225 0.0025 0.00077 0 5.4 0.00059 1.00925

(225,10) 0.0050 0 0 5.0 -0.00023 1.03811

0.0075 0 0 4.7 -0.00023 1.03811

0.01 0 0 13.9 -0.00023 1.03811

S&P 500 0.0025 0.00155 0 15.4 0.00124 1.24486

(457,40) 0.0050 0 0 9.6 0.00204 1.25729

0.0075 0 0 10.7 0.00204 1.25729

0.01 0 0 9.7 0.00204 1.25729

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0 0 30.9 0.00188 1.22387

0.0075 0 0 30.3 0.00188 1.22387

0.01 0 0 29.3 0.00188 1.22387

Russell 3000 0.0025 0 0 63.7 0.00343 1.10307

(2151,70) 0.0050 0 0 55.4 0.00343 1.10307

0.0075 0 0 63.4 0.00328 1.10784

0.01 0 0 71.4 0.00328 1.10784

Average 0.00018 0.01370 14.4 0.00087 1.04342

It seems reasonable to conclude therefore that (on average) this alternative
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Table 4.9: Out-of-sample enhanced indexation average AER, first alternative

Index (N, K) Value of τ Correlation

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

Hang Seng (31,10) -5.27 -5.24 0.94 0.67 -0.58 -0.21 -0.68 0.45 3.57 -0.77

DAX 100 (85,10) 5.22 5.16 4.86 5.00 5.56 7.22 5.19 0.67 -0.63 0.62

FTSE 100 (89,10) 6.10 -1.10 1.42 1.73 5.89 3.62 -3.04 2.05 3.16 0.14

S&P 100 (98,10) 6.31 6.56 -2.48 1.66 -5.68 -4.83 -4.40 -5.89 -2.94 0.78

Nikkei 225 (225,10) 0.69 -2.14 -5.05 -6.52 -8.14 -4.08 -5.20 -4.52 -4.31 0.45

S&P 500 (457,40) 6.93 1.72 5.07 5.46 5.05 7.61 7.08 6.99 7.02 -0.56

Russell 2000 4.42 4.57 5.56 7.91 8.71 9.49 10.13 11.17 12.15 -0.99

Russell 3000 12.56 12.38 14.61 14.80 15.72 21.26 27.35 27.68 30.97 -0.95

approach, leading to the out-of-sample results shown in Table 4.9, is worse than

the approach given before which leads to the results shown in Table 4.7.

Second alternative approach

In this section we present results for the second alternative approach above,

namely first minimise a weighted sum of the absolute difference between the

regression intercept and zero and the absolute difference between the regression

slope and one (minimise λ1D + λ2E); then minimise total transaction cost

(minimise
∑N

i=1 Gi); where λ1 and λ2 are the weighting parameters.

Clearly there are a multiplicity of values that λ1 and λ2 can take but here

we shall just consider the case λ1 = λ2 = 1. This corresponds to first minimising

D + E, then minimising total transaction cost. The results for this alternative

are shown in Table 4.10 and Table 4.11.

Comparing Table 4.8 and Table 4.10 we can see that this second

alternative is (for index tracking at least) effectively identical to the first
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alternative examined above. In-sample the results for D∗ and E∗ are identical,

Table 4.10: In-sample and out-of-sample tracking results, second alternative

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope

Hang Seng 0.0025 0.00011 0 0.8 -0.00289 0.97445

(31,10) 0.0050 0 0 0.6 -0.00287 0.98818

0.0075 0 0 0.6 -0.00287 0.98818

0.01 0 0 0.6 -0.00287 0.98818

DAX 100 0.0025 0.00047 0.25081 1.9 0.00377 1.01353

(85,10) 0.0050 0.00024 0.11533 1.5 0.00170 1.13299

0.0075 0.00037 0.00834 1.5 0.00088 1.14627

0.01 0 0 1.5 0.00045 1.15425

FTSE 100 0.0025 0.00193 0.05019 2.2 -0.00041 0.82096

(89,10) 0.0050 0 0 2.0 0.00087 0.81862

0.0075 0 0 2.0 0.00087 0.81862

0.01 0 0 1.8 0.00087 0.81862

S&P 100 0.0025 0 0 2.1 0.00079 0.86234

(98,10) 0.0050 0 0 1.9 0.00079 0.86234

0.0075 0 0 1.9 0.00079 0.86234

0.01 0 0 2.2 0.00079 0.86234

Nikkei 225 0.0025 0.00077 0 5.3 0.00059 1.00925

(225,10) 0.0050 0 0 5.3 -0.00022 1.03811

0.0075 0 0 4.8 -0.00022 1.03811

0.01 0 0 5.2 -0.00022 1.03811

S&P 500 0.0025 0.00155 0 13.4 0.00124 1.24485

(457,40) 0.0050 0 0 9.4 0.00204 1.25729

0.0075 0 0 11.4 0.00204 1.25729

0.01 0 0 10.3 0.00204 1.25729

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0 0 29.3 0.00188 1.22387

0.0075 0 0 30.2 0.00188 1.22387

0.01 0 0 29.7 0.00188 1.22387

Russell 3000 0.0025 0 0 89.7 0.00343 1.10307

(2151,70) 0.0050 0 0 52.1 0.00343 1.10307

0.0075 0 0 50.9 0.00343 1.10307

0.01 0 0 65.5 0.00343 1.10307

Average 0.00018 0.0137 14.1 0.00088 1.04311
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Table 4.11: Out-of-sample enhanced indexation average AER, second alternative

Index (N, K) Value of τ Correlation

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

Hang Seng (31,10) -5.27 -5.24 0.94 0.67 -0.58 -0.21 -0.68 0.45 3.57 -0.77

DAX 100 (85,10) 6.72 5.16 4.86 5.00 5.56 7.22 5.19 0.67 -0.63 0.69

FTSE 100 (89,10) 6.10 -1.10 1.42 1.73 5.89 3.62 -3.04 2.05 3.16 0.14

S&P 100 (98,10) 6.31 6.56 -2.48 1.67 -5.68 -4.83 -4.40 -5.89 -2.94 0.78

Nikkei 225 (225,10) 0.69 -2.14 -5.05 -6.52 -8.14 -3.68 -5.20 -4.52 -4.31 0.44

S&P 500 (457,40) 6.93 1.72 5.07 5.46 5.05 7.61 7.08 6.99 7.00 -0.55

Russell 2000 4.42 4.57 5.56 7.91 8.66 9.49 10.13 11.17 12.15 -0.99

Russell 3000 12.56 12.38 14.61 14.80 15.72 21.25 27.35 27.68 30.97 -0.95

although we see some slight differences in terms of computation time and

out-of-sample intercept/slope values.

Comparing Table 4.9 and Table 4.11 we can again see some slight

differences (e.g. for τ = 0.45, 0.30, 0.25, 0.20 and for the correlation) but

otherwise the results are identical. Detailed tables (second alternative approach)

of results for individual τ values (such as given in Table 4.5 and Table 4.6) are

given in the Appendix C.

Hence, at least for the instances examined (and for λ1 = λ2 = 1), there

appears little to choose between this second and first alternative. However we

would note here that (taking index tracking and enhanced indexation together)

both of these two alternatives are worse than the approach given before which

leads to the results shown in Table 4.4 and Table 4.7.

4.4.5 Robustness

Our approach to deciding an index tracking, or an enhanced indexation,

portfolio is based on optimisation. Clearly with any optimisation model there
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are issues related to robustness, especially:

• Discovering, and choosing between, multiple optimal solutions (if they

exist).

• Would a very small change to an input parameter make a large change to

the portfolio found as a result of optimisation?

• Would allowing a very small change in the optimised solution value (so

allowing solutions whose values lie in a very small neighborhood around

the optimal solution value) allow large changes in the portfolios found?

In our quantile regression approach this issue of robustness is especially

relevant since some of the input parameters (the quantile regression intercept

and slope parameters α̂iτ and β̂iτ ) may not be uniquely defined (as mentioned

above).

It would be beyond the scope of this chapter to directly address these

issues. However we would make the following points with regard to robustness

and our quantile regression approach:

• Ever since the pioneering work of Markowitz (1952) optimisation has

been at the centre of work concerned with decisions relating to deciding

the composition of financial portfolios. As such both practitioners and

academic researchers have been willing to tradeoff the disadvantages

of optimisation (multiple optimal solutions, solution sensitivity) for

its advantages (clear modelling framework, computational efficiency,

algorithmic decision-making). Whether practitioners and academic

researchers in finance will be willing to forgive the disadvantages of

quantile regression (non-uniquely defined quantile regression derived input

parameters) when solving portfolio decision problems remains to be seen.
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However we would note here that the citation statistics mentioned above

for the seminal paper by Koenker and Bassett (1978) indicate that many

other areas of science do not appear to regard non-uniquely defined

quantile regression parameters as a bar to using the technique.

• The specific optimisation objectives we have adopted (Equation (4.20)

and Equation (4.23)) have associated optimal solution values that may

be small (e.g. see the values for D∗ and E∗ in Table 4.5 and Table 4.6).

Since, especially for practitioners, a small variation in what is already

a relatively small solution value may be of little consequence this does

imply that there may be an acceptable neighborhood around the optimal

solution value within which different portfolios could exist.

4.5 Conclusions

In this Chapter we considered two problems in financial portfolio construction,

index tracking and enhanced indexation. We presented a mixed-integer linear

programming formulation of these problems based on quantile regression.

Computational results were presented for eight data sets drawn from major

world markets which indicated that good quality out-of-sample results for

tracking the indices considered could be achieved. With respect to enhanced

indexation the computational results presented indicated that excess returns

(returns in excess of index return) could be achieved out-of-sample and that

the average out-of-sample return was competitive with that associated with

previous work presented in the literature.



Chapter 5

Bootstrap Approach to

Quantifying Uncertainty in

Index Tracking and Enhanced

Indexation

The focus of this chapter is on demonstrating the creation of portfolio

uncertainty bands using a bootstrapped procedure. We restrict attention to

the model presented in Chapter 4 and use re-sampling statistical techniques to

build in-sample portfolio uncertainty bands. Further, we propose a number

of ways in which the in-sample bootstrapped portfolios, which collectively

form an uncertainty band, can be employed to improve out-of-sample portfolio

performance for both index tracking and enhanced indexation.

90



5.1. Introduction 91

5.1 Introduction

While a great deal of attention has been directed towards formulating models

little effort has been invested in quantifying the level of uncertainty associated

with the portfolio selected by these models. In index tracking and enhanced

indexation the quantification of uncertainty is of importance as this provides

investors with an indication of the degree of risk that can be expected as a

result of holding the selected portfolio over the holding period.

The employment of past historical data to feed into the optimisation

implicitly implies that the past is an accurate representation of the future.

While this may be the case over a relatively near future, one would expect

that as the holding time period increases the performance of the portfolio will

deteriorate as, from a passive investment perspective, there is no mechanism

to dynamically update the portfolio without incurring additional transaction

costs.

In this chapter, we extend the work of Mezali and Beasley (2012) presented

in Chapter 4 and demonstrate how to construct uncertainty bands for portfolios

selected by this model. While the focus is on this model which encompasses

both index tracking and enhanced indexation the methodology presented here

can be extended to any model that is formulated with regression components,

such as that of Canakgoz and Beasley (2009).

The objective of the work presented in this chapter is to illustrate how,

under some assumptions, one can construct uncertainty bands for portfolios

selected at a specific point in time and held for a given period. The uncertainty

bands give an indication of the likely outcome that a portfolio may experience

and thus provide a quantifiable measure of the monetary values that can be

achieved as result of holding portfolios. In order to accomplish this goal we
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shall combine optimisation and statistical techniques, where for the latter we

employ the bootstrapping re-sampling technique.

The remainder of the chapter is organised as follows. In Section 2 we give

further insight into the bootstrapping technique. In Section 3 we introduce our

formulation for the proposed method. Computational results are presented in

Section 4 and finally in Section 5 we summarise and give concluding remarks.

5.2 Bootstrappping Procedure

Bootstrapping is a common statistical tool for generating an approximate

sampling distribution of a statistic from one sample, in order to estimate a

parameter. The idea was first introduced by the seminal work of Efron (1979)

and has since become very popular due to its intuitiveness and the fact that

no stringent conditions are attached to its application. More recently the

popularity of this computationally intensive approach has increased due to

technological advancements and availability of relatively cheap, powerful and

efficient computers.

In this section we present the idea of the bootstrap approach from an

application perspective by way of an example. Theoretical treatment of the

subject can be found in Efron and Tibshirani (1993); Shao and Tu (1995) and

Davison and Hinkley (1997).

Suppose that one is interested in the average height of some population

of interest. However, due to some constraints, such as financial and time,

only a fraction (n) of the entire population (m) is sampled with realisations

x = {x1, x2, ..., xn} and where n < m. From this realisation one can calculate

a sample mean x = (
∑n

i=1 xi)/n. In order to make inference for the whole

population, rather than just the realised sample, one would need to obtain a
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distribution of likely values for the unobserved population mean, µ, and given

this information a probabilistic statement can be formulated on the likely range

of µ with a given degree of confidence. For instance,

Pr[µ̂L < µ < µ̂U ] = 0.95 (5.1)

to indicate a 95% confidence that the true unknown mean µ would lie between

µ̂L and µ̂U , where the subscript L and U denote lower and upper bounds

respectively and in the content of the example they represent 2.5 and 97.5

percentiles.

From the theory of statistics, the calculation of the lower and upper

bounds depends on the assumption attached to the data. The most common

of these assumptions are the data are identically distributed from a normal

distribution with unknown mean µ and standard deviation σ, N(µ, σ). If

the sample size n is large (n ≥ 30) then µ̂L and µ̂U forming a 100(1 − θ)%

confidence interval (θ ∈ (0, 1)) can be respectively calculated as x−z1−θ/2σ̂/
√

n

and x + z1−θ/2σ̂/
√

n where zθ denotes the inverse cumulative distribution of a

Normal distribution at level θ and σ̂2 = 1
n−1

∑n
i=1(xi− x)2 is an estimate of the

true but unknown σ2. Where the sample is small (n < 30) z1−θ/2 is replaced by

student-t distribution with n− 1 degrees of freedom, t1−θ/2,n−1.

In order to obtain the limits µ̂L and µ̂U using the re-sampling technique,

the idea of a non-parametric bootstrap involves sampling with replacement

a large number of times from the original sample, x. More specifically,

one samples directly from x and obtains x∗ = {x∗1, x∗2, ..., x∗n} followed by a

recalculation of x∗. By repeating this process a large number of times, say

1000, one is able to map out the distribution of x and from this the lower and

upper bounds for a given confidence level can be calculated. That is, once
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the bootstrapped samples {x1∗, x2∗, ..., x1000∗} are obtained they are sorted in

ascending order and the lower and upper limits µ̂L and µ̂U are respectively given

by the [n(θ/2)] and [n(1− θ/2)] data points, where [a] denotes an integer part

of a.

This idea forms the foundation of the methodology presented in the

following discussion as it extends to constructing confidence intervals for

unknown regression parameters as shall become apparent.

5.2.1 Portfolio selection using the bootstrapping technique

Liang et al. (1996) offered bootstrap simulation as a tool for quantifying

the uncertainty in the composition of portfolios. They used this bootstrap

simulation in an attempt to estimate the amount of real estate investors should

hold to achieve optimum portfolio performance. The bootstrap method has

shown itself to be useful in situations where the number of available data points

is relatively small and the assumptions of parametric techniques do not hold.

However, the confidence intervals produced were large.

Hatemi and Roca (2006) examined the simple case of international

portfolio diversification involving the three largest stock markets in the world

US, UK and Japan. Based on standard portfolio analysis, they first examined

whether or not using diversification by US investors into the UK and Japanese

markets would have been beneficial. They compared the risk-adjusted returns

in the US market and that of the tangency portfolio consisting of the US, UK

and Japanese markets. Then they undertook an analysis of the three markets

based on a bootstrapping approach. They considered that the results of this

study can be expanded to accommodate more markets and can also be done

from the point of view of investors from the other markets. It can also be

replicated on disaggregated scales.
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Bartlmae (2009) introduced a framework for constructing portfolios,

addressing two of the major problems of classical mean-variance optimization

in practice: low diversification and sensitivity to information ambiguity. In

order to address these issues, he used a bootstrapping method to incorporate

the effects of input parameter variation. He investigated these methods by

the use of Monte Carlo sampling. Firstly in order to overcome the problem of

non-intuitive and undiversified portfolios, he introduced a method to construct

portfolios that show a higher degree of diversification. He did this by introducing

a diversification on the portfolio weights. In a second step, he applied

bootstrapping to assess the input parameter ambiguity. By this method, more

robust portfolios can be found. He incorporated these methods into a portfolio

construction procedure.

Chen et al. (2012) applied the bootstrapping technique proposed by

Kosowski et al. (2006) to examine whether the performance of enhanced-return

index funds are based on luck or superior enhancing skills. They showed the

advantages of using the bootstrap to rank fund performance. Their results show

evidence of enhanced-return index funds with positive and significant alphas

after controlling for luck and sampling variability.

Kopa (2012) considered robustness and bootstrap techniques in portfolio

efficiency testing with respect to second-order stochastic dominance (SSD). He

applied a computational method to test whether a US market portfolio, is (SSD)

efficient with respect to 48 US industry representative portfolios. Moreover,

he presented a robust version of a (SSD) portfolio efficiency test that allows

for small errors in data and he analysed their impact on the market portfolio

(SSD) efficiency. He improved his results, by applying the bootstrap technique

to estimate the p-value of market portfolio (SSD) efficiency.
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5.3 Bootstrap Uncertainty Bands

In this section we demonstrate how one can construct bootstrapped uncertainty

bands for a portfolio selected through optimising a quantile regression-based

model. More specifically, once we have optimised the mixed-integer program

presented in chapter 4 and have obtained values for our decision variables Gi,

xi and zi the question we wish to address is: what is the range of values we can

expect the portfolio to realise over the in-sample period. In the first instance the

aim is to construct uncertainty bands for the in-sample period and thereafter

we present practical ways in which these bands will be employed in real life

application.

In order to quantify a degree of uncertainty associated with a portfolio we

exploit the fact that in formulating the objective functions for index tracking

(τ = 0.50) and enhanced indexation (τ = 0.45) it is assumed that, for a given

quantile of interest τ , the quantile regression intercept and slope for the portfolio

can be approximated by the weighted sum of individual asset regressions. That

is,

α̂τ =
N∑

i=1

wiα̂iτ (5.2)

and

β̂τ =
N∑

i=1

wiβ̂iτ (5.3)

where

rit = αiτ + βiτRt (5.4)

with α̂iτ and β̂iτ denoting the respective quantile-specific estimates of intercept

and slope obtained from quantile regressing the returns of asset i against the

returns of the index Rt. Since, according to the theory of statistics, the

individual intercepts α̂iτ and slopes β̂iτ are estimates of true yet unknown
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parameters αiτ and βiτ and thus, the theory implies, there is uncertainty

associated with these coefficients. In order to quantify the uncertainty on an

estimated parameter a probabilistic statement with an associated confidence

level is attached to it, with the most common of these being the 95% confidence

interval. For instance, to calculate 95% confidence interval for the slope

parameter from equation (5.4) one would calculate the lower and upper bounds,

βL
iτ and βU

iτ such that

Pr[βL
iτ < βiτ < βU

iτ ] = 0.95 (5.5)

Equation (5.5) states that we are 95% confident that the true unknown

parameter βiτ will be enclosed within βL
iτ and βU

iτ . In order to be able to calculate

the lower and upper bounds one needs to approximate the distribution β̂iτ . In

the following discussion we demonstrate how these limits are calculated using

bootstrap.

5.3.1 Bootstrapping quantile regression parameters

In chapter 4 it was mentioned that in quantile regressing asset returns against

the returns of the index, as shown in equation (5.4), the slope and intercept

parameters are obtained from solving a linear program by minimising the

following objective function

min
T∑

t=1

ρτ (rit − (αiτ + βiτRt)), (5.6)

where

ρτ (u) = u(τ − I(u < 0)) =





τu, if u ≥ 0

(τ − 1)u, if u < 0
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In order to facilitate bootstrapping we make use of an equivalent definition

represented by Yu and Moyeed (2001). That is, through defining the quantile

regression model (5.4) as

rit = αiτ + βiτRt + σut (5.7)

where the error terms ut follow an Asymmetric Laplace Distribution (ALD)

with probability density function

f(u; µ, σ, τ) =
τ(1− τ)

σ





exp

(
(u−µ)(1−τ)

σ

)
, if u ≤ µ

exp

(
−(u−µ)τ

σ

)
, if u > µ,

with µ ∈ (−∞,∞) and σ > 0 as the location and scale parameters respectively.

Defining the quantile regression in the format of equation (5.7) implies

that the minimisation of (5.6) can equivalently be viewed as maximisation of

the likelihood function (see (Yu and Zhang (2005))

max

(
τ(1− τ)

σ

)T

exp

{
−

T∑
t=1

ρτ

(
rit − (αiτ + βiτRt)

σ

)}
. (5.8)

Yu and Moyeed (2001) noted that for a specific quantile of interest τ the

ALD errors, ut, can be represented by a combination of two exponential random

variables (numbers) such that

ut =

(
e1

τ
− e2

1− τ

)
(5.9)
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where e1 and e2 are independent standard exponentially distributed random

variables with mean 1, λ(1). The scale parameter σ is estimated by

σ̂ =
1

T

T∑
t=1

ρτ (rit − (α̂iτ + β̂iτRt)). (5.10)

This formulation of quantile regression presentation is very useful as it

facilitates an easy to implement bootstrap procedure and, as a consequence,

confidence intervals to reflect the uncertainty associated with parameters. The

procedure to build uncertainty bands for quantile regression parameters αiτ and

βiτ is as follows:

1. Minimise equation (5.6) through linear programming and obtain estimated

parameters α̂iτ and β̂iτ

2. Calculate the scale parameter σ̂ from equation (5.10)

3. Generate T independent standard exponential random numbers {e1}T
t=1

and {e2}T
t=1 and calculate ut from equation (5.9)

4. Define r∗it = rit − σ̂ut

5. Re-fit model r∗it = αiτ + βiτRt and obtain new parameters α̂∗iτ and β̂∗iτ

6. Repeat steps 3 to 5 a large number of times M

After carrying out the procedures outlined above one would obtain M

bootstrapped values for the intercept, {α̂∗1iτ , α̂∗2iτ , ..., α̂∗Miτ }, and slope, {β̂∗1iτ , β̂∗2iτ , ...,

β̂∗Miτ }. Let [a] be an integer value of a and θ ∈ (0, 1) then to calculate the

lower and upper bounds of the 100(1 − θ)% confidence interval one will order

the bootstrapped values in ascending order and from these ordered values the

[Mθ/2]-th and [M(1− θ/2)]-th data are the lower and upper limits forming the

interval for a parameter of interest at a given quantile τ .
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Figure 5.1: Bootstrapped confidence interval for the median (τ = 0.50) intercept
and slope parameters based on the data presented in Table 4.1 in chapter 4.

To illustrate we go back to an example presented in chapter 4 with

fitted coefficients presented in Table 4.2. In applying the bootstrap procedure

outlined previously, for the median (τ = 0.50) and M = 1000, one obtains

the distributions of the intercept and slope as showed in Figure 5.1. In this

particular example the fitted intercept and slope are 0.625 and 2.75 respectively

and as can be observed from Figure 5.1 these values are enveloped within their

respective distributions. 95% confidence intervals for the intercept and slope

parameters are [-1.433, 2.919] and [0.5045, 4.682] respectively. It takes only 3.4

seconds to implement 1000 bootstrap replications of quantile regression.

5.3.2 Bootstrapping portfolio value

Our next step is to link the bootstrapped quantile regression coefficients and

the construction of uncertainty bands of a selected portfolio. It is noteworthy

to emphasise that the creation of bootstrapped uncertainty bands is carried out

post-optimisation. That is, for a given τ (eg, 0.45 or 0.50) the original model

presented in chapter 4 is optimised and K assets to make up the portfolio are

selected, {k1, k2, ..., kK} ⊂ {1, 2, ..., N} together with their associated quantity
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of units Xopt
i and weights wopt

i for the bootstrap application, and thus the

remainder of this chapter, we restrict our attention only on these and will

henceforth use a k index rather than i. Further, since our attention in this

chapter is on describing our proposed method (for convenience) we ignore

uncertainty in the intercept parameters αkτ and focus attention purely on the

slope βkτ .

For a given τ , τ = 0.50 for indexation and τ = 0.45 for enhanced

indexation, let Z be a matrix whose columns are populated with M bootstrapped

slope parameters for each of the K selected assets from a particular index.

Explicitly,

Z =




β̂∗1k1τ β̂∗1k2τ · · · β̂∗1kKτ

β̂∗2k1τ β̂∗2k2τ · · · β̂∗2kKτ

...
... · · · ...

β̂∗Mk1τ β̂∗Mk2τ · · · β̂∗MkKτ




where, for instance, the first column contains M bootstrapped slope coefficients

for the first of the K selected assets. Given the matrix Z we proceed by

optimising the following objective function

minimise | β̂τ −
kK∑

k=k1

w∗
kβ̂

∗
kτ | (5.11)

subject to
kK∑

k=k1

w∗
k = 1 (5.12)

εk ≤ w∗
k ≤ δk k = k1, . . . , kK (5.13)

where β̂τ =
∑K

k=1 wopt
k β̂kτ with the weights, wopt

k , are as obtained from the initial

optimisation. Note that, β̂∗kτ correspond to each row of the matrix Z and thus
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the objective function given by Equation (5.11) is optimised M times with each

optimisation producing different weights, {w ∗
m = {w∗

k1
, w∗

k2
, ..., w∗

kK
}}M

m=1. The

optimisation are conducted using a variant of Genetic Algorithm available in

MATLAB in the form of simulannealbnd function.

Equipped with bootstrapped weights w∗
k one can obtain the associated

number of units of assets from equation (4.19)

X∗
k = w∗

kC/VkT k = k1, . . . , kK (5.14)

In summary, the step by step procedure taken to obtain the bootstrap

uncertainty bands are as follows:

1. Optimisation of the objective function given by (5.11) to obtain w∗
k

2. Calculate number of units of each selected asset from 5.14

3. Calculate the value of bootstrapped portfolio at each time step t =

1, 2, ..., T by
∑T

t=1 X∗
kVkt where Vkt is the price of asset k at time t

4. Repeat steps 1 to 3 M = 1000 times

5.4 Computational results and discussion

To provide a graphical illustration of the quality of results, figures 5.2 and 5.3

respectively show the evolution of the in-sample value of portfolios (shown in

red) for the median and quantile (τ = 0.45) regression-based models together

with bootstrapped uncertainty bands (blue region). Note that the value of

the original portfolio is calculated by
∑T=145

t=1 Xopt
k Vkt and value of each M

bootstrapped portfolios are given by
∑T=145

t=1 X∗
kVkt. Figures 5.4 and 5.5 show

out-of-sample value of portfolios for all 8 test problems described in chapter 4
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Figure 5.2: Quantile regression model (Chapter 4) in-sample uncertainty bands for
τ = 0.5. Test problems 1, 3, 5, 7 and Test problems 2, 4, 6, 8 are on the left and
right panels respectively.
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Figure 5.3: Quantile regression model (Chapter 4) in-sample uncertainty bands for
τ = 0.45. Test problems 1, 3, 5, 7 and Test problems 2, 4, 6, 8 are on the left and
right panels respectively.
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table 4.3. The values of the portfolios are calculated as was done for the in-

sample results with time t ranging from t = 146 to T = 290 with associated

prices within the out-of-sample period.

From a statistical point of view, an important property of uncertainty

bands is to be able to fully encapsulate the variable of interest, in this case the

value of portfolios. From Figures 5.2 and 5.3 it can be seen that the portfolios,

for both quantiles, clearly envelope the original portfolios shown in red. Further,

if the model is optimised at time T one does not have visibility of future prices

(from t > T ) however Figures 5.4 and 5.5 are included for illustration. As it

can be observed from 5.4 and 5.5 for both indexation τ = 0.5 and enhanced

indexation τ = 0.45 in applying the bootstrapped weights w∗
k, or equivalently,

number of unit of assets x∗k, obtained from the in-sample period one is in a sense

also capturing the evolution of the value of the out-of-sample portfolio for all

test problems.

For both indexation and enhanced indexation models it appears that

for those test problems such as Russell 2000 and Russell 3000, in which the

number of assets selected (K) is relatively large the value of the original

portfolio is shown to be on the boundary of the uncertainty bands. This

could be a result of the fact for K relatively large the weights of the original

portfolio wopt
k are approaching the proportion lower limit of ε ≥ 0.01 and thus

in optimising to calculate the boostrapped weights the optimiser is restricted

within a narrower search space which becomes visible in the plots in the form

of narrower uncertainty bands.

In what follows we present a number of ways in which the uncertainty

bands constructed for the in-sample period can be interpreted. The objective

and emphasis here is to demonstrate how these uncertainty bands can be

implemented in real applications.
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Figure 5.4: Quantile regression model (Chapter 4) out-of-sample uncertainty bands
for τ = 0.5. Test problems 1, 3, 5, 7 and Test problems 2, 4, 6, 8 are on the left and
right panels respectively.
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Figure 5.5: Quantile regression model (Chapter 4) out-of-sample uncertainty bands
for τ = 0.45. Test problems 1, 3, 5, 7 and Test problems 2, 4, 6, 8 are on the left and
right panels respectively.
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5.4.1 Improving portfolio returns for enhanced indexation

Once the in-sample uncertainty bands are constructed for a specific portfolio the

M individual bootstrapped portfolios, which collectively form the uncertainty

bands, can be used in conjunction with a user-defined measure of performance

to provide an indication of the distribution or variability of the chosen measure

of performance. The resultant distribution calculated over the entire in-sample

period can be used to quantify in-sample confidence intervals in respect of the

chosen measure of performance.

To be consistent with chapter 4 here we use the AER to assess the

performance of selected portfolio:

AERin =
5200

145

145∑
t=1

[
loge

( ∑N
k=1 Xopt

k Vkt∑K
k=1 Xopt

k Vkt−1

)
−Rt

]
(5.15)

where, as before, Xopt
k denote the optimal number of units of asset k to be held in

the portfolio with k identifying only those assets that have been selected from

the original optimisation. To differentiate from the bootstrapped portfolios,

when we refer to the original portfolio we mean the one from which the original

number of units Xopt was obtained. In the following discussion whenever an

asterisk is used it implies that a bootstrapped portfolio is referred to, otherwise

it is the original portfolio.

Recall that each replication of the bootstrap procedure produces different

weights w∗
k and corresponding X∗

k . By substituting X∗
k in equation (5.15) in

place of Xopt
k one obtains M values of the in-sample AER, {AERin∗

j }M
j=1, with

each j corresponding to a bootstrap replication.

While the magnitude of the AER provides a measure of performance of a

portfolio over a given time period in comparing alternative portfolios it is also

instructive to incorporate the frequency with which a given portfolio produces
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positive or negative returns. To this end, for each bootstrapped portfolio

observed through time, Xj∗
k Vkt, we calculate

J∗j =
145∑
t=1

L

[
loge

( ∑K
k=1 Xj∗

k Vkt∑K
k=1 Xj∗

k Vkt−1

)
< 0

]
j = 1, . . . , M (5.16)

where L(.) is an indication function taking a value of 1 if L(.) is true and zero

otherwise. Equation (5.16) calculates the number of negative returns over the

entire in-sample period for each of the M bootstrapped portfolios. By combining

the AER together with the frequency with which portfolio values decrease (5.16)

we define

AERfre∗
j =

AERin∗
j

J∗j
j = 1, . . . ,M (5.17)

The equation (5.17) centres on comparing alternative bootstrapped

portfolios, with different weights and number of units of assets, in addition

to the original portfolio. For instance, suppose on analysing the in-sample

performance of bootstrapped portfolios one finds that there are two portfolios

with the same AERin∗. Then the better of these two portfolios to be held into

the future would be the one with the highest AERfre∗
j value and thus greater

number of positive returns.

Figures 5.6 shows the distribution of AERfre∗
j for τ = 0.45. Note that,

this distribution is constructed based on all possible values of AERfre∗
j with the

x-axis showing the ranges for AERfre∗ values .

An implicit assumption in forming the original portfolio centres on the

idea that the weight wopt
k and corresponding number of units Xopt

k selected from

the original optimisation is the optimal selection given the constraints imposed.

If this assumption is tenable, then one would expect that the performance of

this portfolio would always be superior then any other portfolio as the objective

functions of the original portfolio was explicitly designed to out-perform and
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Figure 5.6: Distribution of bootstrapped in-sample AERfre∗ for enhanced
indexation τ = 0.45. Test problems 1, 3, 5, 7 and Test problems 2, 4, 6, 8 are
on the left and right panels respectively.
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track the index in the case of τ = 0.45 and τ = 0.5 respectively.

The availability of bootstrapped portfolios provide a platform on which

this assumption of optimality of the original portfolio can be tested. Since

the AERfre of the original portfolio is captured within the distribution of

the bootstrapped AERfre∗
j this implies that there is at least one bootstrapped

portfolio, with identifiable number of units X∗
k , that outperforms the optimal

portfolio, at least in the in-sample period. Further, by extrapolation, one would

also expect that the bootstrapped portfolio outperforming the original portfolio

in the in-sample period will also out-perform it in the out-of-sample period.

Since investors are interested in obtaining the highest returns we define the

maximum of AERfre∗
j

AERmax∗ = max

(
AERin∗

j

J∗j

)
j = 1, . . . ,M (5.18)

with Xmax∗
k as the number of units of asset k in a portfolio that is expected to

produce the greatest return in the out-of-sample period. To test this assumption

we evaluate the AER

AERout∗ =
5200

h

146+h∑
t=146

[
loge

( ∑K
k=1 Xmax∗

k Vkt∑K
k=1 Xmax∗

k Vkt−1

)
−Rt

]
(5.19)

for different duration h = 52, 104 and 145 weeks and compare the outcome with

that of the original portfolio with number of units Xopt
k .

Table 5.1 displays out-of-sample AER results based on equation (5.19)

together with the original portfolio (Xopt
k ) for enhanced indexation (τ = 0.45).

Table 5.1 shows that for three cases of holding time of 52, 104 and 145 weeks

the bootstrapped selected portfolio outperforms the original portfolio in most

of the eight test problems. Note that, in those cases where both original

and bootstrapped portfolios AER are negative the lesser of the two losses is
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considered to be superior. Table 5.1 also displays the average AER across all

eight indices. The average difference (AD = 0.125
∑8

`=1 AERout∗
` −AERout

` ) for

all holding time period h is positive and decreasing with h with values ranging

from approximately 6% for h = 52, 3% for h=104 and above 2% for h = 145

weeks.

5.4.2 Improving tracking performance

Building on the previous subsection in which an approach is presented for

improving out-of-sample returns based on in-sample bootstrapped portfolios

here we extend this idea for tracking portfolios. The objective is to use

the in-sample bootstrapped portfolios for τ = 0.5 to improve out-of-sample

tracking performance through examining regression parameters when the in-

sample bootstrapped portfolio returns are regressed against that of in-sample

index returns.

A selected portfolio will perfectly track the index if on quantile regressing

τ = 0.50 out-of-sample index returns against the selected portfolio one obtains

an intercept of zero and a slope of unity. That is, performing the following

regression

loge

(
Xopt

k Vkt

Xopt
k Vkt−1

)
= αout

τ=0.5 + βout
τ=0.5Rt, t = 146, . . . , T = 290 (5.20)

should ideally produce α̂out
τ=0.5 = 0 and β̂out

τ=0.5 = 1. However, since at time T

when the original model is optimised an analyst has no visibility of future prices

and thus, as before, we employ the additional information we have obtained from

the in-sample bootstrapped portfolios to compare and select a bootstrapped

portfolio that is expected to be superior than the original portfolio. The

criterion of selection is now α̂in
τ=0.5 = 0 and β̂in

τ=0.5 = 1 and thus for each of
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the 1000 bootstrapped replications we calculate the intercept from quantile

regressing (τ = 0.50) the bootstrapped portfolio returns against the index

loge

(
X∗j

k Vkt

X∗
kVkt−1

)
= αin∗j

τ=0.5 + βin∗j
τ=0.5Rt, t = 1, . . . , T = 145 j = 1, ..., M

(5.21)

Once the corresponding parameters {α̂in∗j
τ=0.5}M

j=1 and {β̂in∗j
τ=0.5}M

j=1 are obtained

we calculate the errors associated with these over the entire in-sample period

ξ∗j =
T∑

t=1

∣∣∣∣loge

(
X∗j

k Vkt

X∗
kVkt−1

)
− α̂in∗j

τ=0.5 − β̂in∗j
τ=0.5Rt

∣∣∣∣, j = 1, ...,M (5.22)

Finally, the bootstrapped portfolio with the lowest error min{ξ∗j}M
j=1 (with

associated number of units Xmin∗) is then compared with the original portfolio.

The intuition is that, since the bootstrapped portfolio is associated with the

lowest error it closely tracks the in-sample index and thus as a by-product it

is also expected that when this portfolio is held into the future it will also

closely mimic the index and thus produce better fits compared to the original

portfolio. To examine this assumption we quantile regress (τ = 0.50) the out-of-

sample returns of the selected bootstrapped portfolio against those of the index

(as shown in 5.20) by replacing Xopt
k with Xmin∗. Further, we also compare

the intercept and slope coefficients of the selected bootstrapped portfolio with

those obtained from the original portfolio.

Table 5.2 displays the coefficients for the slope and intercept for the

quantile regression and the bootstrapping models, for three different holding

time periods using transaction cost limit (γ)=0.01. As we are considering index

tracking here we are using τ = 0.50. It it can be observed that for the 52

weeks holding period, the out-of-sample average quantile regression intercept

and slope are [0.0021 and 1.1292]; and the average bootstrapping regression

intercept and slope are [0.0018 and 1.1072].



5.4. Computational results and discussion 115
T
ab

le
5.

2:
O

ut
-o

f-
sa

m
pl

e
in

de
x

tr
ac

ki
ng

re
su

lt
s

fo
r

ho
ld

in
g

ti
m

e
pe

ri
od

of
52

,
10

4,
an

d
14

5
w

ee
ks

,τ
=

0.
50

In
d
ex

Q
R

5
2

w
ee

k
s

B
o
o
ts

tr
a
p

5
2

w
ee

k
s

Q
R

1
0
4

w
ee

k
s

B
o
o
ts

tr
a
p

1
0
4

w
ee

k
s

Q
R

1
4
5

w
ee

k
s

B
o
o
ts

tr
a
p

1
4
5

w
ee

k
s

(N
,K

)
In

te
rc

ep
t

S
lo

p
e

In
te

rc
ep

t
S
lo

p
e

In
te

rc
ep

t
S
lo

p
e

In
te

rc
ep

t
S
lo

p
e

In
te

rc
ep

t
S
lo

p
e

In
te

rc
ep

t
S
lo

p
e

H
a
n
g

S
en

g
0
.0

0
1
7

1
.0

9
5
6

0
.0

0
1
6

1
.0

8
9
4

0
.0

0
0
6

1
.0

6
4
2

0
.0

0
0
1

1
.0

3
7
2

-0
.0

0
2
8

0
.9

8
8
1

-0
.0

0
0
4

1
.0

1
9
5

(3
1
,1

0
)

D
A

X
1
0
0

0
.0

0
3
7

1
.3

2
7
4

0
.0

0
2
8

1
.2

1
5
6

-0
.0

0
0
2

1
.0

0
2
0

0
.0

0
0
3

1
.0

0
9
7

0
.0

0
0
4

1
.1

5
4
2

0
.0

0
0
1

1
.0

7
7
9
0

(8
5
,1

0
)

F
T

S
E

1
0
0

0
.0

0
0
9

0
.9

5
8
2

0
.0

0
0
7

0
.9

9
7
7

0
.0

0
0
9

0
.9

4
5
6

0
.0

0
0
1

0
.9

4
9
0

0
.0

0
0
8

0
.8

1
8
6

0
.0

0
0
4

0
.8

4
8
2

(8
9
,1

0
)

S
&

P
1
0
0

-0
.0

0
0
3

1
.0

7
3
2

-0
.0

0
0
1

1
.0

5
2
7

-0
.0

0
0
5

1
.0

3
2
0

-0
.0

0
0
3

1
.0

1
9
3

0
.0

0
0
7

0
.8

6
2
3

0
.0

0
0
5

0
.9

6
4
4

(9
8
,1

0
)

N
ik

k
ei

2
2
5

-0
.0

0
0
1

1
.0

2
8
4

-0
.0

0
0
2

0
.9

9
9
6

0
.0

0
0
0

1
.0

3
5
5

0
.0

0
0
0

1
.0

2
6
1

-0
.0

0
0
2

1
.0

3
8
1

-0
.0

0
0
2

1
.0

2
5
2

(2
2
5
,1

0
)

S
&

P
5
0
0

0
.0

0
3
9

1
.2

2
0
3

0
.0

0
3
7

1
.2

2
1
7

0
.0

0
2
4

1
.2

1
2
3

0
.0

0
2
5

1
.2

0
5
4

0
.0

0
2

1
.2

5
7
2

0
.0

0
0
2

1
.2

1
3
1

(4
5
7
,4

0
)

R
u
ss

el
l
2
0
0
0

0
.0

0
2
3

1
.2

4
7
4

0
.0

0
2
1

1
.1

8
3
7

0
.0

0
1
2

1
.3

1
2
3

0
.0

0
1
5

1
.2

3
4
4

0
.0

0
1
8

1
.2

2
3
8

0
.0

0
0
7

1
.0

8
7
5

(1
3
1
8
,9

0
)

R
u
ss

el
l
3
0
0
0

0
.0

0
4
5

1
.0

8
2
9

0
.0

0
4
2

1
.0

9
6
9

0
.0

0
3
7

1
.1

7
6
8

0
.0

0
3
7

1
.1

8
2
5

0
.0

0
3
2

1
.1

0
7
8

0
.0

0
0
3

1
.0

9
0
2

(2
1
5
1
,7

0
)

A
v
er

a
g
e

0
.0

0
2
1

1
.1

2
9
2

0
.0

0
1
8

1
.1

0
7
2

0
.0

0
1

1
.0

9
7
6

0
.0

0
1

1
.0

8
3
0

0
.0

0
0
7

1
.0

5
6
3

0
.0

0
0
2

1
.0

2
9
3



5.4. Computational results and discussion 116

Out-of-sample (over the time periods [146,250] and [146,290] of weekly

observations, the average bootstrapping model intercept is close to zero with

the average bootstrapping model slope differing from one by only 0.08 and 0.02

respectively.

With regard to the absolute difference between the out-of-sample intercept

and zero, and the absolute difference between the out-of-sample slope and one,

then for Table 5.2 these values are 0.0013 and 0.0943 for quantile regression and

0.0010 and 0.0731 for the bootstrapping model respectively (averaged over all

cases in Table 5.2). Clearly it is a matter of judgment, that in most cases the

bootstrapping model increases the robustness of results in terms of intercept

close to zero and slope close to one.

5.4.3 Projecting prediction intervals

An implicit assumption employed in constructing an index tracking model

lies in the usage of historical data as a representative benchmark of future

market fluctuations such that a portfolio selected at a given point in time

using historical data would, in the optimised model under consideration, be

the optimal portfolio to be held into the future, at least in the not very distant

future.

Using this implicit assumption we propose that the bootstrapped

uncertainty bands constructed from a given model should also have the

characteristic of identifying a spectrum of possible realisations of the selected

portfolio extrapolated into the future. It is argued that this assumption of

extrapolating the interpretation of the confidence intervals into the future is

robust to the length of the holding horizon from the selection time point with

a shorter period such as 13 weeks producing more representative results as the

behaviour of the market more closely reflects the period for which the model
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was optimised. By extrapolative interpretation it is meant that the uncertainty

bands using the in-sample prices are used to characterise future uncertainty.

In terms of application this will involve an analyst choosing a cut-off time

of the most recent period for which the uncertainty bands will be used for

extrapolation. For instance, if the in-sample uncertainty bands of a portfolio

is built using 145 weeks then an analyst can choose, say, the recent 13 weeks

(weeks 132 to 145) to provide an indication of future uncertainty.

From a statistical point of view the assumption of extrapolative

interpretation of the portfolio uncertainty implies the distribution of the

portfolio returns does not change through the holding period. While in practical

applications, when one optimises a model in order to select a portfolio at a

specific point in time, one does not have visibility of future prices, however, a

proposition put forward here is that if the holding horizon is not very distant

from the selection time the distributions of in-sample and out-of-sample returns

should not be significantly different and thus make this interpretation tenable.

In order to test such an assumption on our data we apply the Kolmogorov-

Smirnov test for equality of in-sample and out-of-sample portfolio returns

distributions for different holding periods. To this end, we proceed by presenting

the mechanism of the Kolmogorov-Smirnov.

Let r in = {r1, r2, . . . , rT} and r out = {rT+1, rT+2, . . . , rT+h} respectively

denote the in-sample and out-of-sample returns obtained from a portfolio

selected by a specific model, where h is the holding horizon. Further, let Fin

and Fout denote the cumulative distributions of the in-sample and out-of-sample

returns respectively. The two sample Kolmogorov-Smirnov tests for equality of

the two return distributions with the hypothesis

H0 : Fin = Fout H1 : Fin 6= Fout (5.23)
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uses the test statistics KS = max | Fin − Fout |. For a given significance level

θ, where we will use 0.05, the test will detect if there is statistically significant

difference between the two distributions. For our implementation we employ the

kstest2 function in MATLAB and test four different horizons, h = 13, h = 26,

h = 52 and h = 145 weeks.

Table 5.3: Kolmogorov Smirnov test results of equality of in-sample and out-of-
sample distributions for QR model τ = 0.50 and τ = 0.45.

Index Holding time period (QR τ = 0.50) Holding time period (QR τ = 0.45)

13 26 52 145 13 26 52 145

Hang Seng 0.934 0.788 0.659 0.159 0.861 0.996 0.842 0.004∗

DAX 100 0.850 0.684 0.255 0.021∗ 0.702 0.111 0.060 0.012∗

FTSE 100 0.839 0.169 0.108 0.049∗ 0.928 0.613 0.278 0.175

S&P 100 0.151 0.019∗ 0.210 0.294 0.268 0.053 0.254 0.045∗

Nikkei 225 0.380 0.241 0.790 0.428 0.004∗ 0.018∗ 0.818 0.996

S&P 500 0.817 0.940 0.550 0.074 0.237 0.328 0.397 0.004∗

Russell 2000 0.868 0.444 0.092 0.059 0.408 0.064 0.012∗ 0.014∗

Russell 3000 0.943 0.100 0.025∗ 0.043∗ 0.299 0.281 0.069 0.013∗

Table 5.3 shows the statistic p values obtained from testing for the equality

of tracking portfolios in-sample and out-of-sample return distributions using

a two sample Kolmogorov-Sminorv test for different horizons. All tests are

conducted with a 5% significance level and thus a p value less than p < 0.05

(marked with ∗ in the table) indicates that the test of equality of distribution

is rejected and if p ≥ 0.05 there is no evidence to suggest that the distributions

of the in-sample and out-of-sample returns are statistically different. From the

table one can observe, in the case of quantile regression with τ = 0.50 model,

that when all the out-of-sample period are compared with the in-sample period

the test rejects the hypothesis of equality for index DAX 100, FTSE 100 and
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Russell 3000. However, when the out-of-sample is reduced to 13, 26 and 52

weeks, as is customary for real life applications, all but the S&P 100 and the

Russell 3000 distributions are classified to be statistically the same. Some minor

differences are apparent for results obtained from the quantile regression with

τ = 0.45 model where for shorter holding periods the distribution of the in-

sample and out-of-sample are not statistically different. These results indicate

that over short holding horizons the assumption of equality of in-sample and

out-of-sample portfolio return distributions is plausible and thus confirming the

validity of the methodology.

5.5 Conclusion

In this chapter we concentrated on increasing the robustness of results

given in association with chapter 4. We introduced a new approach that

demonstrated how one can construct bootstrapped uncertainty bands for a

portfolio selected through optimising a quantile regression-based model. We

focused in quantifying the level of the uncertainty associated with portfolio

selection in index tracking and enhanced indexation. We first showed how to

capture the uncertainty visually for the out-of-sample value of the portfolio for

the 8 test problems described in chapter 4 for index tracking and enhanced

indexation.

Moreover, we presented a number of numerical ways in which the

uncertainty bands can be implemented in real life applications. We first

presented how to improve the portfolio returns for enhanced indexation by

providing a measure of performance of a portfolio over a given time period.

This approach for improving out-of-sample returns was based on in-sample

bootstrapped portfolios. Secondly, we extended this idea for tracking portfolios
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and the objective was to use the in-sample bootstrapped portfolios to improve

out-of-sample tracking performance through examining regression parameters

(i.e. slope and intercept). Finally, we used the assumption of extrapolating

the interpretation of the confidence intervals into the future. We used the

Kolmogorov Smirnov test to extrapolate interpretation of the uncertainty bands

using the in-sample prices that are used to characterise future uncertainty. We

showed that from a statistical point of view the assumption of extrapolative

interpretation of portfolio uncertainty implies the distribution of the portfolio

returns does not change through the holding time period.



Chapter 6

Concluding Remarks

The objective of this thesis was to contribute to the development of efficient

and effective portfolio selection algorithms. We presented methods for solving

problems in financial portfolio construction, index tracking and enhanced

indexation. Our formulations were mixed-integer linear programs for index

tracking and enhanced indexation. In contrast to the majority of previous work,

our formulations for both index tracking and enhanced indexation presented in

this thesis include transaction costs, constrain the number of stocks that can

be held, and also constrain the total transaction cost that can be incurred.

6.1 Main Contributions

In chapter 3 we presented two mixed-integer linear programming formulations

for index tracking. In particular we explicitly considered both fixed and

variable transaction costs and limited the total transaction cost that could be

incurred. We proposed two approaches for the objective function associated

with choice of a tracking portfolio, namely; minimise the maximum absolute

difference between the tracking portfolio return and index return and minimise

121



6.1. Main Contributions 122

the average of the absolute differences between tracking portfolio return and

index return. Our formulations are based upon tracking an index by comparing

the returns from the index with the returns from the tracking portfolio. The

main results indicated that good quality out-of-sample results for tracking the

indices considered could be achieved. The computational times for all the data

sets considered were low. The work presented in this chapter has been published

in the Springer Optimization Letters journal (see Mezali and Beasley (2011)).

In chapter 4 we applied Quantile Regression to two problems in financial

portfolio construction, index tracking and enhanced indexation. The contribution

of this Chapter lies in the application of quantile regression to the problem of

constructing financial portfolios for index tracking and enhanced indexation.

According to our knowledge this is the first time that quantile regression has

been applied to these problems. Moreover by using the quantile regression

concept, we managed to capture within the same model/approach, both index

tracking and enhanced indexation objectives.

Computational results were presented for eight data sets drawn from

major world markets which indicated that good quality out-of-sample results for

tracking the indices considered could be achieved. With respect to enhanced

indexation the computational results presented indicated that excess returns

(returns in excess of index return) could be achieved out-of-sample and that

the average out-of-sample return was competitive with that associated with

previous work presented in the literature. The work presented in this chapter

has been published in the Journal of the Operational Research Society (JORS)

(see Mezali and Beasley (2012)).

In chapter 5 we focused on quantifying the level of uncertainty associated

with portfolio selection. In index tracking and enhanced indexation the

quantification of uncertainty is of importance as this provides investors with an
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indication of the degree of risk that can be expected as a result of holding the

selected portfolio over the holding period. We presented a bootstrap approach

to quantify the uncertainty of portfolio selected from regression models. We

proposed a number of ways in which the in-sample bootstrapped portfolios,

which collectively form an uncertainty band, can be employed to improve out-of-

sample portfolio performance for both index tracking and enhanced indexation.

6.2 Recommendations for Future Research

In this thesis we have presented and evaluated new methods for index tracking

and enhanced indexation. However, there are a number of extensions that could

be explored.

6.2.1 Using the concept of rebalancing over time

Given the evolution of prices of the stocks comprising a particular index the

goal of the models presented above is to select a number of stocks and their

appropriate quantities, which, when held over a period of time in the future,

will closely track the returns on the index (or exceed index return). However,

regardless of the immediate accuracy of the model in selecting the portfolio

of stocks tracking accuracy deteriorates over time. That is, when the same

portfolio is held for a very long time the difference between the returns of the

portfolio and that of index widen over time. In order to maintain the accuracy

of the model in tracking the index the chosen portfolio needs to be rebalanced

after some appropriately chosen time such that a balance is achieved between

the transaction costs and accuracy of the tracking model.

Using the in-sample information from time t = 0 to T the inputs are fed

into the model and we obtain a portfolio ([xi] [i = 1, . . . , N ] in terms of the
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number of units of stock i included in the portfolio) that will be held out of

sample into the future for a period of 13 weeks for example . At time T +13 the

value of the portfolio is C =
∑N

i=1 Vi(T+13)xi which is then rebalanced so that our

existing portfolio changes from Xi to xi. The rebalancing process is performed

sequentially in a moving window fashion such that at the first rebalance time,

T + 13, the in-sample period is t = 13 to T + 13 and for the k-th rebalance

(k ∈ Z) the in-sample period is from t = 13k to T + 13k. It is a rolling forward

approach to validating the proposed models or other exiting models through

out of sample testings.

6.2.2 Forecasting stocks prices

The employment of past historical data to feed into the optimisation implicitly

implies that the past is an accurate representation of the future. While this may

be the case over a relatively near future, one would expect that as the holding

time period increases the performance of the portfolio will deteriorate as, from

a passive investment perspective, there is no mechanism to dynamically update

the portfolio without incurring additional transaction costs.

We suggest that we forecast prices of stocks over a holding period and

using the forecasted prices with the in-sample data in fitting the existing models.

In this respect, this approach should incorporate more information about the

data and hopefully we can increase stability of the tracking performance out-of-

sample. This would involve using a time series model such as Autoregresive

moving average (arima) to forecast the prices of each stock making up a

particular index and incorporating these forecasts as if they were actual

observations. Testing this approach will be based on graphical judgment and

comparison with the results that have been already achieved in this thesis.



Appendix A

Remaining detailed tables of

results for individual τ (Quantile

regression for enhanced

indexation)

A.1 Enhanced indexation

This chapter provides the remaining details of tables of results for individual

τ values (such as given in Tables 4.5 and 4.6) quantile regression for enhanced

indexation approach, Chapter 4 Section 4.4.3
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Table A.1: In-sample and out-of-sample enhanced indexation results, τ = 0.35

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01041 0.09347 0.7 -0.00565 0.89724 -0.46

(31,10) 0.0050 0.00928 0.11083 0.7 -0.00382 0.87776 3.44

0.0075 0.00834 0.12779 0.7 -0.00321 0.93421 5.83

0.01 0.00745 0.14375 0.7 -0.00122 0.88565 8.23

DAX 100 0.0025 0.00741 0.4203 1.8 -0.00513 1.04072 11.22

(85,10) 0.0050 0.00598 0.39927 1.6 -0.00546 1.06007 12.01

0.0075 0.00487 0.39112 1.8 -0.00641 1.09891 13.17

0.01 0.00408 0.36427 2.4 -0.00554 1.10631 14.41

FTSE 100 0.0025 0.00618 0.3153 1.7 -0.00366 0.74588 -0.54

(89,10) 0.0050 0.00505 0.41192 2.0 -0.00549 0.82603 -0.90

0.0075 0.00408 0.49533 2.5 -0.00472 0.69927 0.21

0.01 0.00322 0.56961 2.1 -0.00536 0.64974 0.64

S&P 100 0.0025 0.00915 0.03503 2.0 -0.00260 0.79653 -1.16

(98,10) 0.0050 0.00797 0.02004 2.2 -0.00360 0.90712 -2.66

0.0075 0.00701 0.07209 2.2 -0.00414 0.87139 -7.23

0.01 0.00615 0.16284 2.1 -0.00494 0.82720 -13.31

Nikkei 225 0.0025 0.00866 0.18093 5.1 -0.00424 0.85363 -1.03

(225,10) 0.0050 0.00744 0.21585 4.8 -0.00459 0.83245 -3.23

0.0075 0.0063 0.24763 5.9 -0.00554 0.74315 -5.80

0.01 0.0053 0.29356 5.4 -0.00503 0.71532 -7.62

S&P 500 0.0025 0.01517 0.30641 10.6 -0.00578 1.22262 1.45

(457,40) 0.0050 0.01286 0.18618 11.0 -0.00638 1.25761 -0.21

0.0075 0.01056 0.05993 10.2 -0.00848 1.37167 -0.78

0.01 0.00834 0.0151 10.1 -0.01009 1.35275 -1.90

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01617 0.28073 50.2 -0.00157 0.88481 11.61

0.0075 0.01196 0.39745 81.5 -0.00255 0.72718 10.00

0.01 0.00928 0.5239 33.7 -0.00214 0.50074 10.98

Russell 3000 0.0025 0.01899 0.13972 153.9 -0.00457 1.07307 20.11

(2151,70) 0.0050 0.01459 0.27936 57.7 -0.00335 0.77638 21.06

0.0075 0.01124 0.41178 53.7 -0.00120 0.54531 21.55

0.01 0.00851 0.54258 51.4 -0.00148 0.49701 20.29

Average 0.00877 0.26497 18.5 -0.00445 0.88960 4.50
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Table A.2: In-sample and out-of-sample enhanced indexation results, τ = 0.30

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01469 0.10762 0.7 -0.00777 0.88037 -0.91

(31,10) 0.0050 0.01304 0.1146 0.7 -0.00570 0.92557 2.10

0.0075 0.01142 0.11729 0.7 -0.00296 0.92192 4.75

0.01 0.01002 0.13452 0.7 -0.00203 0.90525 8.15

DAX 100 0.0025 0.00998 0.41643 1.8 -0.00751 0.99196 11.49

(85,10) 0.0050 0.00838 0.40433 1.8 -0.00778 1.12381 13.11

0.0075 0.00714 0.38759 1.9 -0.00673 1.10229 14.78

0.01 0.00625 0.35765 1.8 -0.00588 1.08499 16.00

FTSE 100 0.0025 0.00926 0.30908 1.6 -0.00558 0.74435 -0.39

(89,10) 0.0050 0.00794 0.3968 1.7 -0.00737 0.81160 -0.92

0.0075 0.00681 0.47504 1.6 -0.00857 0.80856 -0.20

0.01 0.00591 0.5576 1.8 -0.00775 0.76398 0.72

S&P 100 0.0025 0.01271 0.02863 2.1 -0.00565 0.83769 -1.32

(98,10) 0.0050 0.01109 0.15429 1.9 -0.00434 0.85246 -6.82

0.0075 0.00967 0.19348 1.9 -0.00511 0.90300 -10.29

0.01 0.00842 0.21732 1.8 -0.00665 0.91144 -12.61

Nikkei 225 0.0025 0.01229 0.2222 5.1 -0.00551 0.89761 0.60

(225,10) 0.0050 0.0109 0.2432 4.8 -0.00585 0.84723 1.10

0.0075 0.00968 0.291 5.0 -0.00503 0.80809 5.35

0.01 0.00859 0.33681 5.0 -0.00532 0.73568 8.33

S&P 500 0.0025 0.01971 0.20327 10.8 -0.00661 1.07569 3.42

(457,40) 0.0050 0.01709 0.00521 10.4 -0.00605 0.88827 7.59

0.0075 0.01454 0.24245 10.3 -0.00668 0.67079 11.92

0.01 0.01203 0.4508 10.3 -0.00766 0.51652 15.24

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.02217 0.28588 66.7 -0.00420 0.87312 10.48

0.0075 0.01707 0.41799 59.8 -0.00214 0.70915 10.29

0.01 0.0136 0.53934 32.4 -0.00355 0.46032 10.62

Russell 3000 0.0025 0.02568 0.13521 230.1 -0.00791 1.00496 19.79

(2151,70) 0.0050 0.02008 0.29753 50.2 -0.00479 0.73536 21.08

0.0075 0.0158 0.45088 62.3 -0.00246 0.52566 21.04

0.01 0.01204 0.58557 52.1 -0.00356 0.50952 20.72

Average 0.01239 0.29289 20.6 -0.00564 0.83314 6.62
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Table A.3: In-sample and out-of-sample enhanced indexation results, τ = 0.25

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.0188 0.11887 0.7 -0.00795 0.88749 -1.26

(31,10) 0.0050 0.01644 0.11631 0.7 -0.00432 0.92869 1.62

0.0075 0.01419 0.12219 0.7 -0.00326 0.91400 4.65

0.01 0.0125 0.1216 0.7 -0.00309 0.91192 7.42

DAX 100 0.0025 0.0136 0.36268 1.6 -0.00966 1.04803 11.68

(85,10) 0.0050 0.01172 0.35407 1.6 -0.00804 1.12293 13.36

0.0075 0.01016 0.32693 1.6 -0.00733 1.08639 15.24

0.01 0.00896 0.2977 1.6 -0.00803 1.00600 16.61

FTSE 100 0.0025 0.01373 0.29718 1.5 -0.00671 0.71399 -0.82

(89,10) 0.0050 0.012 0.39956 1.8 -0.00778 0.72764 -1.02

0.0075 0.0105 0.48078 2.1 -0.00907 0.69944 -0.70

0.01 0.00913 0.56245 1.7 -0.01029 0.61600 -0.48

S&P 100 0.0025 0.01687 0.05458 1.9 -0.00608 0.85335 -1.07

(98,10) 0.0050 0.01478 0.01045 1.8 -0.00553 0.91534 -4.30

0.0075 0.01275 0.09541 2.1 -0.00707 0.92442 -9.42

0.01 0.01112 0.15001 1.9 -0.00824 0.89611 -12.63

Nikkei 225 0.0025 0.015 0.22734 5.1 -0.00644 0.88893 0.60

(225,10) 0.0050 0.01333 0.23961 4.2 -0.00640 0.84063 0.89

0.0075 0.01202 0.27642 4.8 -0.00689 0.80477 5.00

0.01 0.01092 0.32689 5.0 -0.00790 0.75876 8.08

S&P 500 0.0025 0.02608 0.16616 10.7 -0.00974 1.04439 3.00

(457,40) 0.0050 0.02268 0.04555 11.8 -0.00817 0.96508 5.57

0.0075 0.01928 0.29968 10.3 -0.00730 0.76735 8.49

0.01 0.01596 0.5006 11.4 -0.00934 0.56857 10.21

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.02894 0.2716 112.0 -0.00685 0.93855 12.20

0.0075 0.02263 0.4063 55.7 -0.00474 0.68038 10.74

0.01 0.01826 0.52005 31.5 -0.00417 0.46606 10.06

Russell 3000 0.0025 0.03294 0.11045 196.4 -0.00823 1.02174 21.09

(2151,70) 0.0050 0.02624 0.28261 52.8 -0.00565 0.75395 21.36

0.0075 0.02061 0.43949 54.5 -0.00444 0.56574 21.97

0.01 0.01605 0.55879 52.0 -0.00455 0.54109 21.02

Average 0.01639 0.27556 20.7 -0.00688 0.83412 6.42
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Table A.4: In-sample and out-of-sample enhanced indexation results, τ = 0.20

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02406 0.14055 0.6 -0.00930 0.89916 -1.26

(31,10) 0.0050 0.0214 0.14456 0.8 -0.00573 0.91736 1.62

0.0075 0.01893 0.1574 0.6 -0.00523 0.94197 4.65

0.01 0.01704 0.17898 0.6 -0.00432 0.89167 8.28

DAX 100 0.0025 0.01725 0.36213 1.8 -0.01397 1.08786 11.49

(85,10) 0.0050 0.01501 0.35427 1.7 -0.01182 1.06317 13.60

0.0075 0.01304 0.34215 1.7 -0.01086 1.02762 14.99

0.01 0.01158 0.31368 1.5 -0.01033 1.00397 16.17

FTSE 100 0.0025 0.01789 0.2532 1.8 -0.00833 0.63605 -0.83

(89,10) 0.0050 0.01583 0.35213 1.7 -0.00995 0.71242 -0.89

0.0075 0.01393 0.4496 1.8 -0.01184 0.58604 -0.68

0.01 0.0122 0.52236 1.6 -0.01289 0.63900 -0.45

S&P 100 0.0025 0.02127 0.0231 2.1 -0.00818 0.95350 0.78

(98,10) 0.0050 0.01849 0.15319 1.8 -0.00726 0.95845 -2.76

0.0075 0.01578 0.20008 1.9 -0.00805 0.95283 -3.63

0.01 0.01395 0.27239 1.7 -0.00986 0.99327 -3.71

Nikkei 225 0.0025 0.01854 0.21677 4.5 -0.00896 0.90353 -1.99

(225,10) 0.0050 0.01689 0.2253 4.1 -0.00872 0.88815 -3.35

0.0075 0.0154 0.25492 4.8 -0.00886 0.87689 -1.16

0.01 0.01408 0.29596 4.7 -0.00869 0.81664 0.27

S&P 500 0.0025 0.03346 0.21766 10.8 -0.01229 1.14165 3.71

(457,40) 0.0050 0.02897 0.04757 10.8 -0.00795 0.95528 7.93

0.0075 0.02448 0.3153 9.5 -0.00831 0.80542 11.69

0.01 0.0202 0.48135 9.2 -0.01013 0.58225 13.46

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.03722 0.26444 200.0 -0.00889 0.95563 12.36

0.0075 0.02948 0.42221 70.5 -0.00595 0.62955 10.64

0.01 0.02395 0.51641 31.7 -0.00786 0.50872 15.27

Russell 3000 0.0025 0.0414 0.10084 184.6 -0.01420 1.03464 20.70

(2151,70) 0.0050 0.03308 0.27864 55.7 -0.02044 0.73906 35.00

0.0075 0.02623 0.41874 50.8 -0.02162 0.56231 40.18

0.01 0.02054 0.55888 49.3 -0.02627 0.47262 45.79

Average 0.02102 0.28499 23.4 -0.01055 0.84312 8.64
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Table A.5: In-sample and out-of-sample enhanced indexation results, τ = 0.15

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02937 0.14869 0.7 -0.01203 0.93749 -1.26

(31,10) 0.0050 0.02626 0.14895 0.7 -0.00780 0.92982 1.62

0.0075 0.02333 0.15696 0.7 -0.00695 0.92908 4.65

0.01 0.02101 0.17669 0.8 -0.00661 0.90979 8.15

DAX 100 0.0025 0.02282 0.37496 1.9 -0.01573 1.16835 10.98

(85,10) 0.0050 0.02016 0.36449 2.1 -0.01508 1.14648 11.81

0.0075 0.01783 0.3248 1.9 -0.01511 1.19110 13.46

0.01 0.01601 0.27921 1.9 -0.01560 1.14943 12.90

FTSE 100 0.0025 0.02325 0.2549 1.9 -0.01000 0.71053 -0.68

(89,10) 0.0050 0.02111 0.32934 2.1 -0.01249 0.62642 -0.86

0.0075 0.01914 0.40548 2.0 -0.01421 0.54633 -0.55

0.01 0.01728 0.48137 2.0 -0.01786 0.69021 0.00

S&P 100 0.0025 0.02572 0.02382 2.4 -0.01146 0.95307 -1.26

(98,10) 0.0050 0.02253 0.07792 2.3 -0.00907 0.95414 -6.98

0.0075 0.01949 0.13272 2.3 -0.00981 0.92296 -9.63

0.01 0.01702 0.18451 2.3 -0.01363 0.94480 -12.33

Nikkei 225 0.0025 0.0233 0.25024 5.7 -0.00994 0.85763 0.60

(225,10) 0.0050 0.02173 0.29531 5.6 -0.01066 0.85111 3.46

0.0075 0.02038 0.32247 5.3 -0.01200 0.85580 4.99

0.01 0.01926 0.37949 5.0 -0.01318 0.80628 8.64

S&P 500 0.0025 0.04016 0.23238 9.9 -0.01435 1.08306 2.85

(457,40) 0.0050 0.035 0.03509 10.1 -0.01317 0.94769 5.94

0.0075 0.02983 0.30636 10.6 -0.01553 0.77764 8.83

0.01 0.02486 0.5045 10.6 -0.01825 0.60135 10.97

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.04659 0.26817 49.0 -0.01132 0.96118 10.68

0.0075 0.03736 0.42891 60.3 -0.00710 0.74760 11.16

0.01 0.03069 0.53383 40.1 -0.00967 0.51662 14.77

Russell 3000 0.0025 0.05121 0.10166 103.3 -0.01729 1.16101 20.53

(2151,70) 0.0050 0.04119 0.26426 57.8 -0.02358 0.79503 35.02

0.0075 0.03278 0.39708 50.3 -0.02818 0.74285 40.72

0.01 0.02592 0.54967 46.4 -0.03438 0.60756 44.89

Average 0.02654 0.28175 16.1 -0.01394 0.87169 8.20
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Table A.6: In-sample and out-of-sample enhanced indexation results, τ = 0.10

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.03598 0.10896 0.9 -0.01764 1.07625 -0.97

(31,10) 0.0050 0.03322 0.09906 0.8 -0.01409 0.99128 1.10

0.0075 0.03075 0.10112 0.8 -0.01421 0.95519 2.74

0.01 0.02907 0.11457 0.7 -0.01483 0.96885 5.46

DAX 100 0.0025 0.0287 0.34458 2.1 -0.02255 1.30118 11.97

(85,10) 0.0050 0.02541 0.34724 1.8 -0.02086 1.20970 13.26

0.0075 0.02284 0.33351 1.8 -0.01799 1.11728 12.12

0.01 0.02049 0.26189 1.9 -0.01569 0.88788 5.76

FTSE 100 0.0025 0.03174 0.24222 2.1 -0.01106 0.71158 -2.14

(89,10) 0.0050 0.02941 0.22159 2.0 -0.01168 0.77554 -3.34

0.0075 0.02765 0.20787 1.9 -0.01501 0.92157 -5.19

0.01 0.02629 0.22139 2.0 -0.01701 0.94304 -6.56

S&P 100 0.0025 0.03296 0.05437 2.1 -0.01080 0.97610 -3.90

(98,10) 0.0050 0.02865 0.14476 2.0 -0.01269 0.90645 -8.32

0.0075 0.02498 0.17132 2.1 -0.01536 0.93954 -9.79

0.01 0.02211 0.23391 2.2 -0.01663 0.92838 -12.54

Nikkei 225 0.0025 0.02906 0.26047 5.3 -0.01196 0.82883 2.16

(225,10) 0.0050 0.02701 0.32146 4.8 -0.01268 0.81515 6.19

0.0075 0.02533 0.37012 4.9 -0.01496 0.79549 8.98

0.01 0.02389 0.44739 4.8 -0.01773 0.74275 13.15

S&P 500 0.0025 0.05076 0.37049 10.3 -0.02090 1.21667 2.95

(457,40) 0.0050 0.04454 0.20621 9.1 -0.01740 1.10538 4.65

0.0075 0.03837 0.00884 9.0 -0.01591 1.02629 6.93

0.01 0.03237 0.15909 9.6 -0.02091 0.96395 8.61

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.06052 0.2388 72.6 -0.01472 0.95083 10.53

0.0075 0.04866 0.39709 40.3 -0.01187 0.81610 10.83

0.01 0.03999 0.49362 30.5 -0.01019 0.49481 13.91

Russell 3000 0.0025 0.06452 0.06201 100.2 -0.02337 1.20847 20.45

(2151,70) 0.0050 0.05218 0.23544 46.7 -0.03557 0.86162 35.15

0.0075 0.04189 0.38368 53.7 -0.04317 0.64566 41.12

0.01 0.0335 0.51042 49.6 -0.04816 0.52726 45.33

Average 0.03429 0.24753 15.4 -0.01831 0.92287 7.44
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Table A.7: In-sample and out-of-sample enhanced indexation results, τ = 0.05

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.04777 0.10489 0.7 -0.01932 0.98130 -0.14

(31,10) 0.0050 0.04521 0.10423 0.5 -0.01350 1.04456 2.65

0.0075 0.0427 0.07396 0.6 -0.01172 0.99555 5.37

0.01 0.04042 0.0853 0.6 -0.01402 0.99050 7.46

DAX 100 0.0025 0.04443 0.50662 1.7 -0.03161 1.35978 10.05

(85,10) 0.0050 0.03945 0.37343 1.7 -0.03101 0.96267 5.39

0.0075 0.03447 0.22039 1.6 -0.03106 0.48182 -2.16

0.01 0.02982 0.16664 1.7 -0.03056 0.48761 -0.73

FTSE 100 0.0025 0.04682 0.38367 1.7 -0.01412 0.87375 0.18

(89,10) 0.0050 0.04322 0.40395 1.6 -0.01288 0.73962 2.19

0.0075 0.03984 0.40331 1.7 -0.01364 0.72089 3.21

0.01 0.03683 0.39611 1.8 -0.01660 0.73428 4.37

S&P 100 0.0025 0.04581 0.15214 1.9 -0.01535 0.96305 -3.89

(98,10) 0.0050 0.03939 0.25464 1.7 -0.01803 0.99059 -8.08

0.0075 0.0343 0.27909 1.8 -0.01867 0.95502 -10.96

0.01 0.03 0.28862 1.8 -0.02030 0.84883 -12.96

Nikkei 225 0.0025 0.03884 0.31762 4.7 -0.01632 0.85139 2.18

(225,10) 0.0050 0.03584 0.37177 4.3 -0.02086 0.76476 5.80

0.0075 0.03305 0.44248 4.1 -0.01984 0.79125 10.94

0.01 0.03059 0.46666 4.4 -0.02287 0.70548 13.37

S&P 500 0.0025 0.06462 0.34865 8.8 -0.03026 1.13273 3.15

(457,40) 0.0050 0.05648 0.19173 9.9 -0.02777 1.03724 3.97

0.0075 0.04896 0.01303 9.9 -0.02211 1.10574 6.29

0.01 0.04145 0.15306 8.9 -0.03080 1.00246 8.67

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.07132 0.16588 48.6 -0.03611 1.07651 29.84

0.0075 0.05716 0.36319 47.7 -0.05077 0.69956 41.62

0.01 0.04553 0.47967 47.9 -0.06147 0.53086 44.92

Russell 3000 0.0025 0.08816 0.04412 109.4 -0.03213 0.99695 20.00

(2151,70) 0.0050 0.07132 0.16588 47.0 -0.03611 1.07651 29.84

0.0075 0.05716 0.36319 46.3 -0.05077 0.69956 41.62

0.01 0.04553 0.47967 44.4 -0.06147 0.53086 44.92

Average 0.04602 0.27624 15.1 -0.02684 0.87522 9.97



Appendix B

Detailed tables of results for

individual τ (first alternative

approach quantile regression for

index tracking and enhanced

indexation)

B.1 First alternative approach tables details

This chpater provides details of tables of results for individual τ values (such

as given in Tables 4.5 and 4.6) first alternative approach quantile regression for

index tracking and enhanced indexation, Chapter 4 Section 4.4.4.
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Table B.1: In-sample and out-of-sample enhanced indexation results, τ = 0.45

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00339 0 0.6 -0.00532 0.99664 -2.90

(31,10) 0.0050 0.00235 0 0.6 -0.00381 0.99220 -6.59

0.0075 0.00167 0 0.6 -0.00331 0.99258 -5.65

0.01 0.00111 0 0.6 -0.00279 0.99405 -5.95

DAX 100 0.0025 0.00287 0.2658 1.7 -0.00054 1.02493 9.84

(85,10) 0.0050 0.00318 0.12738 1.7 -0.00016 1.07664 3.02

0.0075 0.0032 0.00547 1.6 -0.00209 0.91740 -5.58

0.01 0.00074 0 1.6 0.00054 1.23131 13.59

FTSE 100 0.0025 0.00083 0.06543 1.8 0.00035 0.86437 4.46

(89,10) 0.0050 0.00032 0 2.0 0.00102 0.88119 5.69

0.0075 0 0 1.7 0.00246 0.87509 7.13

0.01 0 0 1.7 0.00246 0.87509 7.13

S&P 100 0.0025 0.00074 0 2.0 -0.00112 1.16614 5.10

(98,10) 0.0050 0 0 1.9 -0.00071 1.17571 6.71

0.0075 0 0 1.9 -0.00071 1.17571 6.71

0.01 0 0 2.3 -0.00071 1.17571 6.71

Nikkei 225 0.0025 0.00379 0 5.4 -0.00145 1.01651 0.26

(225,10) 0.0050 0.00211 0 4.1 -0.00151 1.04496 0.10

0.0075 0.00088 0 4.1 -0.00096 1.05242 1.71

0.01 0.00004 0 4.1 -0.00267 1.00974 0.68

S&P 500 0.0025 0.0039 0.03298 9.0 0.00174 1.08745 8.46

(457,40) 0.0050 0.00101 0 8.8 -0.00217 0.93213 6.51

0.0075 0 0 8.9 -0.00219 0.93692 6.38

0.01 0 0 8.6 -0.00219 0.93692 6.38

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.0045 0 64.2 0.00087 1.20617 8.08

0.0075 0.00139 0 28.8 -0.00021 1.12816 3.19

0.01 0 0 30.1 -0.00036 0.98825 1.99

Russell 3000 0.0025 0.00619 0 52.4 -0.00071 1.16259 15.49

(2151,70) 0.0050 0.00278 0 47.9 -0.00104 1.17817 12.81

0.0075 0.00038 0 47.4 0.00037 1.15754 11.03

0.01 0 0 66.9 0.00124 1.17578 10.89

Average 0.00153 0.01603 13.4 -0.00083 1.04608 4.63
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Table B.2: In-sample and out-of-sample enhanced indexation results, τ = 0.40

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00801 0 0.7 -0.00550 0.98053 -3.32

(31,10) 0.0050 0.00714 0 0.7 -0.00523 1.00211 -6.14

0.0075 0.00645 0 0.6 -0.00550 1.02867 -5.68

0.01 0.00579 0 0.5 -0.00528 1.06906 -5.82

DAX 100 0.0025 0.0058 0.29239 1.9 -0.00266 1.02849 9.84

(85,10) 0.0050 0.00639 0.14265 1.4 -0.00193 1.08721 3.00

0.0075 0.00644 0.01207 1.6 -0.00260 0.92899 -5.61

0.01 0.00364 0 1.6 -0.00138 1.21784 13.42

FTSE 100 0.0025 0.00432 0.06727 2.4 -0.00261 0.87471 1.24

(89,10) 0.0050 0.0034 0 2.5 -0.00107 0.87355 0.71

0.0075 0.00255 0 2.0 -0.00272 0.91935 -1.49

0.01 0.00177 0 1.9 -0.00467 0.85553 -4.87

S&P 100 0.0025 0.00517 0 2.2 -0.00254 1.01841 3.81

(98,10) 0.0050 0.00415 0 2.0 -0.00218 1.08597 5.21

0.0075 0.00348 0 2.1 -0.00162 1.17905 7.77

0.01 0.00303 0 2.1 -0.00115 1.12206 9.45

Nikkei 225 0.0025 0.00622 0 5.5 -0.00276 1.03135 -2.99

(225,10) 0.0050 0.005 0 5.8 -0.00291 1.04529 -2.28

0.0075 0.00428 0 5.0 -0.00256 1.08354 -0.72

0.01 0.00364 0 5.4 -0.00419 1.06781 -2.58

S&P 500 0.0025 0.00858 0 10.8 -0.00078 1.21788 4.67

(457,40) 0.0050 0.00525 0 11.0 -0.00204 0.99535 3.00

0.0075 0.00416 0 10.9 -0.00251 1.12352 0.80

0.01 0.00322 0 10.5 -0.00532 1.29344 -1.60

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01132 0 33.5 -0.00198 1.19462 7.47

0.0075 0.00799 0 46.8 -0.00145 1.04575 4.61

0.01 0.00632 0 46.0 -0.00327 1.04211 1.63

Russell 3000 0.0025 0.01273 0 50.7 -0.00203 1.10342 15.82

(2151,70) 0.0050 0.00933 0 61.4 -0.00201 1.02432 14.24

0.0075 0.0069 0 53.2 -0.00165 0.98493 10.56

0.01 0.00508 0 63.5 -0.00219 1.05542 8.91

Average 0.00573 0.01659 14.4 -0.00278 1.05098 2.68
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Table B.3: In-sample and out-of-sample enhanced indexation results, τ = 0.35

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01115 0 1.1 -0.00667 0.96085 -2.18

(31,10) 0.0050 0.01014 0 0.6 -0.00510 1.01051 -0.48

0.0075 0.00921 0 0.6 -0.00427 1.02722 2.33

0.01 0.00846 0 0.5 -0.00294 1.04302 4.08

DAX 100 0.0025 0.00863 0.28718 1.6 -0.00474 1.09767 9.84

(85,10) 0.0050 0.00902 0.13751 1.6 -0.00309 1.02789 3.00

0.0075 0.00899 0.00078 1.7 -0.00362 0.93321 -5.61

0.01 0.00577 0 1.6 -0.00317 1.23197 12.21

FTSE 100 0.0025 0.00884 0.07571 1.9 -0.00316 0.81863 1.47

(89,10) 0.0050 0.00759 0 1.7 -0.00319 0.89505 0.95

0.0075 0.0063 0 1.7 -0.00374 0.99899 1.57

0.01 0.0053 0 1.7 -0.00466 1.05635 1.67

S&P 100 0.0025 0.00933 0 2.3 -0.00352 0.92274 -0.98

(98,10) 0.0050 0.00803 0 1.8 -0.00295 0.86322 -1.26

0.0075 0.00717 0 1.8 -0.00337 0.88473 -3.88

0.01 0.0065 0 1.7 -0.00413 1.01475 -3.79

Nikkei 225 0.0025 0.01014 0 4.5 -0.00443 1.00957 -3.09

(225,10) 0.0050 0.00885 0 4.1 -0.00459 1.06873 -5.83

0.0075 0.00768 0 4.0 -0.00410 1.10284 -5.08

0.01 0.00662 0 4.1 -0.00514 1.14875 -6.20

S&P 500 0.0025 0.01662 0.06329 16.7 -0.00308 1.15695 10.01

(457,40) 0.0050 0.01299 0 8.7 -0.00261 0.90276 7.64

0.0075 0.01058 0 8.7 -0.00235 1.15198 4.71

0.01 0.00835 0 10.2 -0.01076 1.34091 -2.08

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01824 0 105.7 -0.00380 1.14312 5.02

0.0075 0.01438 0 31.0 -0.00433 1.02247 5.30

0.01 0.01217 0 27.4 -0.00330 0.92831 6.37

Russell 3000 0.0025 0.01959 0 151.3 -0.00535 1.11189 16.47

(2151,70) 0.0050 0.01554 0 69.0 -0.00239 1.00475 17.46

0.0075 0.01258 0 76.1 -0.00393 1.01429 13.88

0.01 0.01018 0 53.9 -0.00354 1.08363 10.62

Average 0.01016 0.01821 19.3 -0.00407 1.03154 3.04
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Table B.4: In-sample and out-of-sample enhanced indexation results, τ = 0.30

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01577 0 0.7 -0.00765 0.97765 -3.01

(31,10) 0.0050 0.01413 0 0.6 -0.00540 1.02418 -0.23

0.0075 0.01251 0 0.6 -0.00278 1.00043 2.55

0.01 0.01114 0 0.7 -0.00228 1.02826 3.36

DAX 100 0.0025 0.01183 0.28878 2.0 -0.00541 1.06561 10.99

(85,10) 0.0050 0.01216 0.13757 1.7 -0.00474 1.03534 2.84

0.0075 0.0121 0.00147 1.7 -0.00623 1.01366 -5.91

0.01 0.00828 0 1.7 -0.00585 1.27648 12.06

FTSE 100 0.0025 0.01244 0.07722 2.1 -0.00398 0.83968 1.47

(89,10) 0.0050 0.01127 0 1.8 -0.00435 0.88922 2.27

0.0075 0.00962 0 1.7 -0.00547 0.97103 1.41

0.01 0.00842 0 2.1 -0.00880 1.13569 1.76

S&P 100 0.0025 0.01281 0 2.4 -0.00487 0.88009 0.63

(98,10) 0.0050 0.01142 0 2.0 -0.00529 0.97864 -1.55

0.0075 0.01038 0 1.9 -0.00532 1.12618 2.98

0.01 0.00944 0 1.6 -0.00445 1.11890 4.59

Nikkei 225 0.0025 0.01525 0.018 4.4 -0.00455 1.01275 -0.85

(225,10) 0.0050 0.01321 0 4.6 -0.00554 1.11033 -5.17

0.0075 0.01176 0 4.0 -0.00636 1.13923 -9.61

0.01 0.01034 0 4.4 -0.00704 1.12395 -10.46

S&P 500 0.0025 0.02148 0.02945 10.6 -0.00407 1.16601 10.01

(457,40) 0.0050 0.0171 0 10.2 -0.00636 0.89036 7.54

0.0075 0.01484 0 10.2 -0.00665 1.06477 4.64

0.01 0.01264 0 9.3 -0.01356 1.32129 -0.35

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.02519 0 53.5 -0.00564 1.11580 7.68

0.0075 0.02084 0 53.1 -0.00616 1.02492 7.99

0.01 0.01825 0 31.0 -0.00530 0.91046 8.06

Russell 3000 0.0025 0.02646 0 104.2 -0.00712 1.11805 16.66

(2151,70) 0.0050 0.02167 0 54.6 -0.00441 0.99363 17.38

0.0075 0.01814 0 59.5 -0.00524 0.98520 14.51

0.01 0.01518 0 51.6 -0.00448 1.07915 10.63

Average 0.01439 0.01782 15.8 -0.00566 1.04571 3.71
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Table B.5: In-sample and out-of-sample enhanced indexation results, τ = 0.25

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02132 0 0.7 -0.01012 0.96928 -5.31

(31,10) 0.0050 0.01819 0 0.7 -0.00700 1.03320 -2.04

0.0075 0.01573 0 0.6 -0.00354 1.01322 2.01

0.01 0.01426 0 0.6 -0.00339 1.02416 3.04

DAX 100 0.0025 0.01529 0.25945 1.7 -0.01034 1.14765 9.84

(85,10) 0.0050 0.01552 0.11466 1.4 -0.00763 1.11945 3.00

0.0075 0.01461 0 1.9 -0.00715 0.98518 -2.18

0.01 0.01099 0 1.6 -0.00829 1.23031 11.57

FTSE 100 0.0025 0.01738 0.07411 1.8 -0.00483 0.83656 1.47

(89,10) 0.0050 0.01661 0 1.8 -0.00738 0.95412 5.25

0.0075 0.01503 0 1.6 -0.00582 1.05963 7.83

0.01 0.01383 0 1.5 -0.00758 1.10040 9.00

S&P 100 0.0025 0.01693 0 2.1 -0.00561 0.89756 -3.75

(98,10) 0.0050 0.01479 0 1.8 -0.00550 0.95445 -4.62

0.0075 0.01318 0 1.9 -0.00690 0.94036 -5.97

0.01 0.01199 0 2.0 -0.00748 0.96940 -8.38

Nikkei 225 0.0025 0.01809 0.02526 4.5 -0.00595 1.02407 -1.79

(225,10) 0.0050 0.01576 0 4.1 -0.00904 1.06141 -11.79

0.0075 0.01408 0 4.3 -0.00905 1.07110 -9.72

0.01 0.0125 0 4.2 -0.00862 1.13227 -9.26

S&P 500 0.0025 0.02831 0.01265 15.6 -0.01166 1.33331 4.81

(457,40) 0.0050 0.02269 0 8.7 -0.00725 0.96894 6.23

0.0075 0.01965 0 8.7 -0.00690 0.97748 5.77

0.01 0.01692 0 8.8 -0.00875 0.99284 3.37

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.03255 0 107.2 -0.00650 1.10071 7.55

0.0075 0.02755 0 29.9 -0.00663 0.96905 9.04

0.01 0.02453 0 39.5 -0.00636 0.86104 9.54

Russell 3000 0.0025 0.03376 0 110.3 -0.00943 1.11317 16.51

(2151,70) 0.0050 0.02792 0 47.6 -0.00798 0.94822 17.99

0.0075 0.02367 0 85.8 -0.00647 0.94424 16.33

0.01 0.02017 0 59.1 -0.00652 0.83142 12.06

Average 0.01883 0.01568 18.1 -0.00728 1.01820 3.14
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Table B.6: In-sample and out-of-sample enhanced indexation results, τ = 0.20

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02698 0.0008 0.6 -0.01304 0.94377 -5.47

(31,10) 0.0050 0.02333 0 0.8 -0.01053 1.01067 -5.75

0.0075 0.02096 0 0.6 -0.00589 1.04628 3.76

0.01 0.01943 0 0.6 -0.00691 1.06389 6.61

DAX 100 0.0025 0.0195 0.26665 1.6 -0.01286 1.10790 9.84

(85,10) 0.0050 0.01976 0.10209 1.7 -0.01146 1.14849 3.00

0.0075 0.0173 0 1.7 -0.01211 1.23227 3.27

0.01 0.01437 0 1.6 -0.01060 1.29995 12.78

FTSE 100 0.0025 0.02203 0.02556 1.8 -0.00609 0.84322 1.47

(89,10) 0.0050 0.01999 0 1.9 -0.00756 0.93974 2.34

0.0075 0.01881 0 1.8 -0.00910 0.90083 5.41

0.01 0.01793 0 1.6 -0.00811 0.85576 5.24

S&P 100 0.0025 0.02128 0 2.0 -0.00821 0.90168 -1.76

(98,10) 0.0050 0.0186 0 2.0 -0.00848 1.03058 -3.00

0.0075 0.01688 0 1.7 -0.00808 0.97843 -4.96

0.01 0.01535 0 1.9 -0.00764 0.90459 -9.59

Nikkei 225 0.0025 0.02386 0.02929 6.1 -0.00783 1.03690 -3.42

(225,10) 0.0050 0.02053 0 4.2 -0.00769 1.06147 -3.97

0.0075 0.01901 0 4.1 -0.00946 1.08858 -5.42

0.01 0.01763 0 4.3 -0.01269 0.96228 -3.52

S&P 500 0.0025 0.03488 0.061 10.2 -0.00754 1.17151 9.69

(457,40) 0.0050 0.029 0 10.3 -0.00913 0.96977 6.94

0.0075 0.02501 0 9.8 -0.01015 1.04751 6.95

0.01 0.02147 0 9.9 -0.01163 1.10464 6.87

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.04164 0 58.3 -0.00886 1.08910 8.01

0.0075 0.03551 0 229.5 -0.00773 0.84193 10.60

0.01 0.03141 0 100.0 -0.00636 0.77080 9.85

Russell 3000 0.0025 0.04213 0 112.9 -0.01215 1.13534 19.30

(2151,70) 0.0050 0.03542 0 49.8 -0.00996 0.96585 23.81

0.0075 0.03022 0 74.0 -0.00841 0.92803 23.25

0.01 0.02585 0 55.8 -0.00739 0.88077 18.66

Average 0.02407 0.01566 24.6 -0.00915 1.00847 4.86
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Table B.7: In-sample and out-of-sample enhanced indexation results, τ = 0.15

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.03283 0.00774 0.6 -0.01682 0.99701 -5.47

(31,10) 0.0050 0.02857 0 0.7 -0.00903 1.03040 -1.56

0.0075 0.02569 0 0.7 -0.00652 1.01514 0.63

0.01 0.02362 0 0.6 -0.00574 1.01532 3.69

DAX 100 0.0025 0.02873 0.25253 1.9 -0.01491 1.06956 11.00

(85,10) 0.0050 0.03212 0.06549 2.2 -0.01705 0.92861 2.87

0.0075 0.02134 0 1.9 -0.01456 1.19519 5.40

0.01 0.01828 0 1.7 -0.01179 1.19243 1.48

FTSE 100 0.0025 0.02854 0.03306 1.9 -0.00989 0.75842 0.35

(89,10) 0.0050 0.02507 0 1.7 -0.00912 0.91866 -0.39

0.0075 0.0231 0 1.7 -0.00955 0.71907 -4.68

0.01 0.02161 0 1.5 -0.01283 0.76487 -7.44

S&P 100 0.0025 0.02574 0 2.0 -0.00974 0.89670 -2.23

(98,10) 0.0050 0.02283 0 2.0 -0.01212 0.92175 -2.72

0.0075 0.02053 0 2.3 -0.01012 0.98313 -5.29

0.01 0.01858 0 2.1 -0.01133 0.96798 -7.35

Nikkei 225 0.0025 0.02841 0.03566 5.9 -0.01108 0.99765 -4.08

(225,10) 0.0050 0.02496 0 4.2 -0.01067 1.03675 -3.16

0.0075 0.02352 0 4.2 -0.01074 1.01159 -4.38

0.01 0.02216 0 4.1 -0.01494 1.03467 -9.19

S&P 500 0.0025 0.04223 0.0444 9.4 -0.01166 1.19068 8.16

(457,40) 0.0050 0.03502 0 9.8 -0.01267 0.98856 5.70

0.0075 0.03082 0 9.4 -0.01329 1.04395 6.50

0.01 0.02701 0 10.0 -0.01362 1.07905 7.95

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.05206 0 33.2 -0.01482 1.09715 8.36

0.0075 0.04462 0 27.9 -0.01033 0.89752 11.40

0.01 0.03962 0 28.5 -0.00990 0.78782 10.64

Russell 3000 0.0025 0.05194 0 170.0 -0.01759 1.25463 19.58

(2151,70) 0.0050 0.04363 0 52.0 -0.01614 1.10317 25.76

0.0075 0.03727 0 52.6 -0.01846 0.91581 31.50

0.01 0.03196 0 52.3 -0.02008 0.85628 32.54

Average 0.03008 0.01416 16.1 -0.01249 0.98934 4.37
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Table B.8: In-sample and out-of-sample enhanced indexation results, τ = 0.10

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.03773 0 0.7 -0.01690 1.03068 -3.55

(31,10) 0.0050 0.0345 0 0.8 -0.01155 1.07424 -0.40

0.0075 0.03164 0 0.6 -0.00972 0.97837 1.12

0.01 0.0299 0 0.6 -0.01213 0.95739 4.61

DAX 100 0.0025 0.03774 0.20376 1.7 -0.02164 1.15915 6.86

(85,10) 0.0050 0.04435 0.01669 2.3 -0.02223 1.09512 -1.58

0.0075 0.02676 0 1.7 -0.01440 0.92357 0.74

0.01 0.02328 0 1.5 -0.01257 0.81882 -3.33

FTSE 100 0.0025 0.03668 0.05752 1.8 -0.01233 0.74833 0.79

(89,10) 0.0050 0.032 0 1.9 -0.01269 0.86932 4.12

0.0075 0.03025 0 1.6 -0.01146 0.85928 2.68

0.01 0.02872 0 1.7 -0.01252 0.89100 0.62

S&P 100 0.0025 0.03347 0 1.9 -0.01321 0.99955 -1.43

(98,10) 0.0050 0.03012 0 1.9 -0.01259 0.96345 -3.59

0.0075 0.0269 0 1.9 -0.01367 1.00850 -8.54

0.01 0.02443 0 1.8 -0.01344 1.00777 -10.00

Nikkei 225 0.0025 0.03545 0 5.8 -0.01338 0.97724 -3.83

(225,10) 0.0050 0.03031 0 4.6 -0.01427 1.04915 -2.82

0.0075 0.02865 0 4.1 -0.01230 1.00604 -3.97

0.01 0.02711 0 3.9 -0.01555 0.98084 -7.45

S&P 500 0.0025 0.05381 0.12091 9.3 -0.01559 1.21103 7.85

(457,40) 0.0050 0.0446 0 10.4 -0.01929 0.90635 6.18

0.0075 0.03838 0 9.1 -0.01550 1.02232 6.98

0.01 0.03349 0 9.3 -0.02221 1.03848 6.96

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.06615 0 46.2 -0.01839 1.00370 10.99

0.0075 0.05612 0 39.1 -0.01133 0.83181 11.95

0.01 0.04964 0 35.4 -0.01031 0.76752 10.56

Russell 3000 0.0025 0.065 0 100.0 -0.02395 1.20231 19.46

(2151,70) 0.0050 0.05443 0 50.4 -0.01993 1.06797 26.16

0.0075 0.04639 0 46.5 -0.02673 0.80276 30.64

0.01 0.03995 0 51.2 -0.03409 0.99098 34.47

Average 0.038 0.01287 14.5 -0.01600 0.97558 4.62
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Table B.9: In-sample and out-of-sample enhanced indexation results, τ = 0.05

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.0484 0 0.9 -0.01978 1.06866 -1.12

(31,10) 0.0050 0.04558 0 0.7 -0.01786 1.06947 2.61

0.0075 0.04301 0 0.7 -0.01155 0.98244 5.22

0.01 0.04081 0 0.8 -0.01091 0.94767 7.58

DAX 100 0.0025 0.05732 0.32524 2.5 -0.03562 1.11813 4.94

(85,10) 0.0050 0.06552 0.05636 2.4 -0.02883 1.04838 -1.58

0.0075 0.03917 0 2.1 -0.02717 0.94891 -1.65

0.01 0.03252 0 1.8 -0.01160 0.75638 -4.22

FTSE 100 0.0025 0.05126 0.11593 1.9 -0.01223 0.74775 4.07

(89,10) 0.0050 0.04923 0 1.7 -0.01348 0.86698 3.86

0.0075 0.04527 0 2.0 -0.01197 0.83102 3.11

0.01 0.04176 0 2.0 -0.01474 0.82007 1.59

S&P 100 0.0025 0.04745 0 2.7 -0.01888 1.02513 -0.68

(98,10) 0.0050 0.04232 0 1.9 -0.01766 0.99195 -1.90

0.0075 0.03782 0 1.8 -0.01952 0.90826 -3.91

0.01 0.03426 0 2.1 -0.02077 0.84411 -5.26

Nikkei 225 0.0025 0.0468 0 5.7 -0.02036 0.97802 -6.20

(225,10) 0.0050 0.04154 0 4.4 -0.02291 1.08786 -3.53

0.0075 0.03881 0 4.6 -0.01924 0.95357 -4.19

0.01 0.03657 0 4.7 -0.01764 0.90908 -3.33

S&P 500 0.0025 0.06965 0.10813 8.8 -0.02231 1.11203 7.78

(457,40) 0.0050 0.05739 0 9.8 -0.02944 0.71525 6.19

0.0075 0.04902 0 8.8 -0.02240 1.08548 6.32

0.01 0.04269 0 11.4 -0.02524 1.12116 7.80

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.08657 0 199.9 -0.02542 1.12434 11.27

0.0075 0.07206 0 32.1 -0.01997 1.08103 11.19

0.01 0.06273 0 38.0 -0.01672 0.89035 14.00

Russell 3000 0.0025 0.08866 0 127.0 -0.03471 1.06009 20.28

(2151,70) 0.0050 0.07268 0 83.6 -0.03892 1.19041 26.44

0.0075 0.06128 0 58.0 -0.03774 0.85580 33.28

0.01 0.05224 0 50.5 -0.06015 0.70276 43.89

Average 0.05163 0.01954 21.8 -0.02277 0.96266 5.93



Appendix C

Detailed tables of results for

individual τ (second alternative

approach quantile regression for

index tracking and enhanced

indexation)

C.1 Second alternative approach tables details

This chapter provides details of tables of results for individual τ values (such

as given in Tables 4.5 and 4.6) for the second alternative approach quantile

regression for index tracking and enhanced indexation, Chapter 4 Section 4.4.4.
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Table C.1: In-sample and out-of-sample enhanced indexation results, τ = 0.45

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00339 0 0.6 -0.00532 0.99665 -2.90

(31,10) 0.0050 0.00235 0 0.5 -0.00381 0.99220 -6.59

0.0075 0.00167 0 0.6 -0.00331 0.99258 -5.65

0.01 0.00111 0 0.6 -0.00279 0.99404 -5.95

DAX 100 0.0025 0.00287 0.2658 1.7 -0.00054 1.02493 9.84

(85,10) 0.0050 0.00304 0.12746 1.5 0.00033 1.10103 5.67

0.0075 0.00306 0.00555 1.6 -0.00150 0.96082 -2.24

0.01 0.00074 0 1.5 0.00054 1.23131 13.59

FTSE 100 0.0025 0.00083 0.06543 1.9 0.00035 0.86437 4.46

(89,10) 0.0050 0.00032 0 1.7 0.00102 0.88118 5.69

0.0075 0 0 1.6 0.00246 0.87509 7.13

0.01 0 0 1.8 0.00246 0.87509 7.13

S&P 100 0.0025 0.00074 0 2.0 -0.00112 1.16615 5.10

(98,10) 0.0050 0 0 1.8 -0.00071 1.17569 6.71

0.0075 0 0 2.1 -0.00071 1.17569 6.71

0.01 0 0 1.9 -0.00071 1.17569 6.71

Nikkei 225 0.0025 0.00379 0 4.5 -0.00145 1.01651 0.26

(225,10) 0.0050 0.00211 0 4.3 -0.00151 1.04497 0.10

0.0075 0.00088 0 4.6 -0.00096 1.05243 1.71

0.01 0.00004 0 4.1 -0.00267 1.00974 0.68

S&P 500 0.0025 0.0039 0.03298 9.4 0.00174 1.08745 8.46

(457,40) 0.0050 0.00101 0 8.6 -0.00217 0.93213 6.51

0.0075 0 0 8.9 -0.00219 0.93691 6.38

0.01 0 0 9.3 -0.00219 0.93691 6.38

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.0045 0 70.6 0.00087 1.20618 8.08

0.0075 0.00139 0 28.2 -0.00021 1.12817 3.19

0.01 0 0 27.9 -0.00036 0.98825 1.99

Russell 3000 0.0025 0.00619 0 53.7 -0.00071 1.16259 15.49

(2151,70) 0.0050 0.00278 0 49.0 -0.00104 1.17818 12.81

0.0075 0.00038 0 45.2 0.00037 1.15753 11.03

0.01 0 0 46.3 0.00124 1.17578 10.89

Average 0.00152 0.01604 12.8 -0.00079 1.04827 4.82
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Table C.2: In-sample and out-of-sample enhanced indexation results, τ = 0.40

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.00801 0 0.7 -0.00550 0.98053 -3.32

(31,10) 0.0050 0.00714 0 0.5 -0.00523 1.00211 -6.14

0.0075 0.00645 0 0.6 -0.00550 1.02867 -5.68

0.01 0.00579 0 0.6 -0.00528 1.06906 -5.82

DAX 100 0.0025 0.0058 0.29239 1.6 -0.00266 1.02849 9.84

(85,10) 0.0050 0.00639 0.14265 1.9 -0.00193 1.08721 3.00

0.0075 0.00644 0.01207 1.5 -0.00260 0.92899 -5.61

0.01 0.00364 0 1.9 -0.00138 1.21784 13.42

FTSE 100 0.0025 0.00432 0.06727 1.8 -0.00261 0.87471 1.24

(89,10) 0.0050 0.0034 0 1.6 -0.00107 0.87355 0.71

0.0075 0.00255 0 1.6 -0.00272 0.91936 -1.49

0.01 0.00177 0 1.6 -0.00467 0.85553 -4.87

S&P 100 0.0025 0.00517 0 1.9 -0.00254 1.01841 3.81

(98,10) 0.0050 0.00415 0 1.7 -0.00218 1.08597 5.21

0.0075 0.00348 0 1.9 -0.00162 1.17905 7.77

0.01 0.00303 0 1.8 -0.00115 1.12206 9.45

Nikkei 225 0.0025 0.00622 0 4.2 -0.00276 1.03135 -2.99

(225,10) 0.0050 0.005 0 4.0 -0.00291 1.04529 -2.28

0.0075 0.00428 0 4.1 -0.00256 1.08354 -0.72

0.01 0.00364 0 4.2 -0.00419 1.06781 -2.58

S&P 500 0.0025 0.00858 0 8.4 -0.00078 1.21789 4.67

(457,40) 0.0050 0.00525 0 8.3 -0.00204 0.99535 3.00

0.0075 0.00416 0 8.6 -0.00251 1.12351 0.80

0.01 0.00322 0 8.3 -0.00532 1.29344 -1.60

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01132 0 28.8 -0.00198 1.19462 7.47

0.0075 0.00799 0 193.6 -0.00145 1.04575 4.61

0.01 0.00632 0 41.7 -0.00327 1.04211 1.63

Russell 3000 0.0025 0.01273 0 52.8 -0.00203 1.10343 15.82

(2151,70) 0.0050 0.00933 0 58.6 -0.00201 1.02432 14.24

0.0075 0.0069 0 43.4 -0.00165 0.98492 10.56

0.01 0.00508 0 44.0 -0.00219 1.05542 8.91

Average 0.00573 0.01659 17.3 -0.00278 1.05098 2.68
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Table C.3: In-sample and out-of-sample enhanced indexation results, τ = 0.35

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01115 0 0.6 -0.00667 0.96085 -2.18

(31,10) 0.0050 0.01014 0 0.7 -0.00510 1.01054 -0.48

0.0075 0.00921 0 0.5 -0.00427 1.02722 2.33

0.01 0.00846 0 0.6 -0.00294 1.04302 4.08

DAX 100 0.0025 0.00863 0.28718 1.6 -0.00474 1.09767 9.84

(85,10) 0.0050 0.00902 0.13751 1.5 -0.00309 1.02789 3.00

0.0075 0.00899 0.00078 1.6 -0.00362 0.93321 -5.61

0.01 0.00577 0 1.7 -0.00317 1.23197 12.21

FTSE 100 0.0025 0.00884 0.07571 1.9 -0.00316 0.81863 1.47

(89,10) 0.0050 0.00759 0 1.8 -0.00319 0.89505 0.95

0.0075 0.0063 0 1.6 -0.00374 0.99899 1.57

0.01 0.0053 0 1.6 -0.00466 1.05636 1.67

S&P 100 0.0025 0.00933 0 2.2 -0.00352 0.92273 -0.98

(98,10) 0.0050 0.00803 0 1.8 -0.00295 0.86323 -1.26

0.0075 0.00717 0 2.0 -0.00337 0.88473 -3.88

0.01 0.0065 0 2.1 -0.00413 1.01475 -3.79

Nikkei 225 0.0025 0.01014 0 4.9 -0.00443 1.00957 -3.09

(225,10) 0.0050 0.00885 0 4.2 -0.00459 1.06873 -5.83

0.0075 0.00768 0 4.3 -0.00410 1.10284 -5.08

0.01 0.00662 0 4.1 -0.00514 1.14875 -6.20

S&P 500 0.0025 0.01662 0.06329 12.3 -0.00308 1.15695 10.01

(457,40) 0.0050 0.01299 0 8.8 -0.00261 0.90276 7.64

0.0075 0.01058 0 9.1 -0.00235 1.15198 4.71

0.01 0.00835 0 9.7 -0.01076 1.34091 -2.08

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.01824 0 60.9 -0.00380 1.14312 5.02

0.0075 0.01438 0 34.6 -0.00433 1.02247 5.30

0.01 0.01217 0 30.3 -0.00330 0.92831 6.37

Russell 3000 0.0025 0.01959 0 132.7 -0.00535 1.11190 16.47

(2151,70) 0.0050 0.01554 0 71.6 -0.00239 1.00475 17.46

0.0075 0.01258 0 66.6 -0.00393 1.01429 13.88

0.01 0.01018 0 42.7 -0.00354 1.08363 10.62

Average 0.01016 0.01821 16.8 -0.00407 1.03154 3.04
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Table C.4: In-sample and out-of-sample enhanced indexation results, τ = 0.30

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.01577 0 0.6 -0.00765 0.97765 -3.01

(31,10) 0.0050 0.01413 0 0.7 -0.00540 1.02418 -0.23

0.0075 0.01251 0 0.6 -0.00278 1.00043 2.55

0.01 0.01114 0 0.6 -0.00228 1.02826 3.36

DAX 100 0.0025 0.01183 0.28878 1.7 -0.00541 1.06561 10.99

(85,10) 0.0050 0.01216 0.13757 1.6 -0.00474 1.03534 2.84

0.0075 0.01211 0.00147 1.6 -0.00623 1.01366 -5.91

0.01 0.00828 0 1.6 -0.00585 1.27648 12.06

FTSE 100 0.0025 0.01244 0.07722 1.7 -0.00398 0.83968 1.47

(89,10) 0.0050 0.01127 0 1.8 -0.00435 0.88925 2.27

0.0075 0.00962 0 1.7 -0.00547 0.97103 1.41

0.01 0.00842 0 1.9 -0.00880 1.13570 1.76

S&P 100 0.0025 0.01281 0 2.2 -0.00487 0.88009 0.63

(98,10) 0.0050 0.01142 0 1.9 -0.00529 0.97864 -1.54

0.0075 0.01038 0 1.7 -0.00532 1.12619 2.98

0.01 0.00944 0 1.8 -0.00445 1.11890 4.59

Nikkei 225 0.0025 0.01525 0.018 4.2 -0.00455 1.01275 -0.85

(225,10) 0.0050 0.01321 0 4.0 -0.00554 1.11033 -5.17

0.0075 0.01176 0 4.1 -0.00636 1.13923 -9.61

0.01 0.01034 0 4.0 -0.00704 1.12395 -10.46

S&P 500 0.0025 0.02148 0.02945 9.3 -0.00407 1.16601 10.01

(457,40) 0.0050 0.0171 0 8.7 -0.00636 0.89036 7.54

0.0075 0.01484 0 8.8 -0.00665 1.06477 4.64

0.01 0.01264 0 8.5 -0.01356 1.32129 -0.35

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.02519 0 42.5 -0.00564 1.11580 7.68

0.0075 0.02084 0 65.3 -0.00616 1.02493 7.99

0.01 0.01825 0 28.7 -0.00530 0.91046 8.06

Russell 3000 0.0025 0.02646 0 95.1 -0.00712 1.11806 16.66

(2151,70) 0.0050 0.02167 0 42.9 -0.00441 0.99362 17.38

0.0075 0.01814 0 43.7 -0.00524 0.98521 14.51

0.01 0.01518 0 42.4 -0.00448 1.07915 10.63

Average 0.01439 0.01782 14.1 -0.00566 1.04571 3.71
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Table C.5: In-sample and out-of-sample enhanced indexation results, τ = 0.25

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02132 0 0.6 -0.01012 0.96928 -5.31

(31,10) 0.0050 0.01819 0 0.6 -0.00700 1.03321 -2.04

0.0075 0.01573 0 0.5 -0.00354 1.01322 2.01

0.01 0.01426 0 0.6 -0.00339 1.02417 3.04

DAX 100 0.0025 0.01529 0.25945 1.7 -0.01034 1.14765 9.84

(85,10) 0.0050 0.01552 0.11466 1.6 -0.00763 1.11945 3.00

0.0075 0.01461 0 1.6 -0.00715 0.98518 -2.18

0.01 0.01099 0 1.5 -0.00829 1.23030 11.57

FTSE 100 0.0025 0.01738 0.07411 1.7 -0.00483 0.83656 1.47

(89,10) 0.0050 0.01661 0 1.7 -0.00738 0.95413 5.25

0.0075 0.01503 0 1.7 -0.00582 1.05962 7.83

0.01 0.01383 0 1.6 -0.00758 1.10041 9.00

S&P 100 0.0025 0.01693 0 2.0 -0.00561 0.89756 -3.75

(98,10) 0.0050 0.01479 0 1.8 -0.00550 0.95445 -4.62

0.0075 0.01318 0 1.8 -0.00690 0.94036 -5.97

0.01 0.01199 0 1.9 -0.00748 0.96940 -8.38

Nikkei 225 0.0025 0.01809 0.02526 4.6 -0.00595 1.02407 -1.79

(225,10) 0.0050 0.01576 0 4.0 -0.00904 1.06141 -11.79

0.0075 0.01408 0 4.1 -0.00905 1.07110 -9.72

0.01 0.0125 0 4.1 -0.00862 1.13227 -9.26

S&P 500 0.0025 0.02831 0.01265 11.8 -0.01166 1.33331 4.81

(457,40) 0.0050 0.02269 0 8.4 -0.00725 0.96894 6.23

0.0075 0.01965 0 9.0 -0.00690 0.97747 5.77

0.01 0.01692 0 8.6 -0.00875 0.99284 3.37

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.03255 0 64.2 -0.00662 1.09111 7.41

0.0075 0.02755 0 28.4 -0.00662 0.96906 9.04

0.01 0.02453 0 35.9 -0.00636 0.86104 9.54

Russell 3000 0.0025 0.03376 0 131.3 -0.00943 1.11318 16.51

(2151,70) 0.0050 0.02792 0 43.2 -0.00798 0.94822 17.99

0.0075 0.02367 0 43.7 -0.00647 0.94424 16.33

0.01 0.02017 0 40.7 -0.00652 0.83142 12.06

Average 0.01883 0.01568 15.0 -0.00728 1.01789 3.14
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Table C.6: In-sample and out-of-sample enhanced indexation results, τ = 0.20

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.02698 0.0008 0.6 -0.01304 0.94377 -5.47

(31,10) 0.0050 0.02333 0 0.8 -0.01053 1.01067 -5.75

0.0075 0.02096 0 0.7 -0.00589 1.04628 3.76

0.01 0.01943 0 0.6 -0.00691 1.06389 6.61

DAX 100 0.0025 0.0195 0.26665 2.2 -0.01286 1.10790 9.84

(85,10) 0.0050 0.01976 0.10209 2.0 -0.01146 1.14849 3.00

0.0075 0.0173 0 1.9 -0.01211 1.23226 3.27

0.01 0.01437 0 1.6 -0.01060 1.29997 12.78

FTSE 100 0.0025 0.02203 0.02556 1.8 -0.00609 0.84322 1.47

(89,10) 0.0050 0.01999 0 2.0 -0.00756 0.93975 2.34

0.0075 0.01881 0 2.0 -0.00910 0.90083 5.41

0.01 0.01793 0 1.8 -0.00811 0.85577 5.24

S&P 100 0.0025 0.02128 0 2.0 -0.00821 0.90168 -1.76

(98,10) 0.0050 0.0186 0 2.0 -0.00848 1.03059 -3.00

0.0075 0.01688 0 1.7 -0.00808 0.97843 -4.96

0.01 0.01535 0 1.7 -0.00764 0.90459 -9.59

Nikkei 225 0.0025 0.0222 0.02936 5.1 -0.00703 0.99546 -1.79

(225,10) 0.0050 0.02053 0 4.4 -0.00769 1.06147 -3.97

0.0075 0.01901 0 4.2 -0.00946 1.08858 -5.42

0.01 0.01763 0 4.5 -0.01269 0.96228 -3.52

S&P 500 0.0025 0.03488 0.061 14.4 -0.00754 1.17151 9.69

(457,40) 0.0050 0.029 0 10.3 -0.00913 0.96977 6.94

0.0075 0.02501 0 10.0 -0.01015 1.04751 6.95

0.01 0.02147 0 10.5 -0.01163 1.10464 6.87

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.04164 0 69.0 -0.00886 1.08912 8.01

0.0075 0.03551 0 72.7 -0.00773 0.84193 10.60

0.01 0.03141 0 39.1 -0.00636 0.77080 9.85

Russell 3000 0.0025 0.04213 0 111.3 -0.01215 1.13534 19.29

(2151,70) 0.0050 0.03542 0 45.0 -0.00996 0.96581 23.81

0.0075 0.03022 0 44.0 -0.00841 0.92803 23.25

0.01 0.02585 0 44.8 -0.00739 0.88077 18.66

Average 0.02401 0.01566 16.6 -0.00912 1.00713 4.92
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Table C.7: In-sample and out-of-sample enhanced indexation results, τ = 0.15

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.03284 0.00774 0.6 -0.01682 0.99701 -5.47

(31,10) 0.0050 0.02857 0 0.7 -0.00903 1.03040 -1.56

0.0075 0.02569 0 0.6 -0.00652 1.01514 0.63

0.01 0.02362 0 0.6 -0.00574 1.01532 3.69

DAX 100 0.0025 0.02873 0.25253 2.2 -0.01491 1.06956 11.00

(85,10) 0.0050 0.03212 0.06549 1.7 -0.01705 0.92861 2.87

0.0075 0.02134 0 1.6 -0.01456 1.19519 5.40

0.01 0.01828 0 1.6 -0.01179 1.19244 1.48

FTSE 100 0.0025 0.02854 0.03306 1.9 -0.00989 0.75842 0.35

(89,10) 0.0050 0.02507 0 1.8 -0.00912 0.91866 -0.39

0.0075 0.0231 0 1.7 -0.00955 0.71907 -4.68

0.01 0.02161 0 1.8 -0.01283 0.76487 -7.44

S&P 100 0.0025 0.02574 0 1.8 -0.00974 0.89669 -2.23

(98,10) 0.0050 0.02283 0 2.0 -0.01212 0.92175 -2.72

0.0075 0.02053 0 1.9 -0.01012 0.98312 -5.29

0.01 0.01858 0 2.0 -0.01133 0.96797 -7.35

Nikkei 225 0.0025 0.02841 0.03566 4.9 -0.01108 0.99765 -4.08

(225,10) 0.0050 0.02496 0 4.3 -0.01067 1.03675 -3.16

0.0075 0.02352 0 4.4 -0.01074 1.01159 -4.38

0.01 0.02216 0 4.5 -0.01494 1.03467 -9.19

S&P 500 0.0025 0.04223 0.0444 9.0 -0.01166 1.19068 8.16

(457,40) 0.0050 0.03502 0 8.9 -0.01267 0.98856 5.70

0.0075 0.03082 0 9.0 -0.01329 1.04395 6.50

0.01 0.02701 0 8.9 -0.01362 1.07905 7.95

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.05206 0 39.3 -0.01482 1.09715 8.36

0.0075 0.04462 0 29.7 -0.01033 0.89752 11.40

0.01 0.03962 0 27.1 -0.00990 0.78780 10.64

Russell 3000 0.0025 0.05194 0 184.4 -0.01759 1.25463 19.58

(2151,70) 0.0050 0.04363 0 43.8 -0.01614 1.10317 25.76

0.0075 0.03727 0 44.3 -0.01846 0.91581 31.50

0.01 0.03196 0 42.4 -0.02008 0.85628 32.54

Average 0.03008 0.01416 15.8 -0.01249 0.98934 4.37
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Table C.8: In-sample and out-of-sample enhanced indexation results, τ = 0.10

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.03773 0 0.7 -0.01690 1.03069 -3.55

(31,10) 0.0050 0.0345 0 0.7 -0.01155 1.07424 -0.40

0.0075 0.03164 0 0.6 -0.00972 0.97837 1.12

0.01 0.0299 0 0.6 -0.01213 0.95739 4.61

DAX 100 0.0025 0.03774 0.20376 2.0 -0.02164 1.15915 6.86

(85,10) 0.0050 0.04435 0.01669 1.9 -0.02223 1.09512 -1.58

0.0075 0.02676 0 1.5 -0.01440 0.92357 0.74

0.01 0.02328 0 1.5 -0.01257 0.81881 -3.33

FTSE 100 0.0025 0.03668 0.05752 1.7 -0.01233 0.74833 0.79

(89,10) 0.0050 0.032 0 2.3 -0.01269 0.86933 4.12

0.0075 0.03025 0 1.6 -0.01146 0.85928 2.68

0.01 0.02872 0 1.6 -0.01252 0.89100 0.62

S&P 100 0.0025 0.03347 0 1.7 -0.01321 0.99955 -1.43

(98,10) 0.0050 0.03012 0 1.8 -0.01259 0.96345 -3.59

0.0075 0.0269 0 1.9 -0.01367 1.00849 -8.54

0.01 0.02443 0 1.8 -0.01344 1.00777 -10.00

Nikkei 225 0.0025 0.03545 0 5.3 -0.01338 0.97724 -3.83

(225,10) 0.0050 0.03031 0 4.2 -0.01427 1.04915 -2.82

0.0075 0.02865 0 4.1 -0.01230 1.00604 -3.97

0.01 0.02711 0 4.0 -0.01555 0.98084 -7.45

S&P 500 0.0025 0.05381 0.12091 12.3 -0.01559 1.21103 7.85

(457,40) 0.0050 0.0446 0 9.1 -0.01929 0.90635 6.18

0.0075 0.03838 0 8.4 -0.01550 1.02232 6.98

0.01 0.03349 0 8.3 -0.02221 1.03848 6.96

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.06615 0 44.7 -0.01839 1.00371 10.99

0.0075 0.05612 0 43.7 -0.01133 0.83181 11.95

0.01 0.04964 0 39.3 -0.01031 0.76752 10.56

Russell 3000 0.0025 0.065 0 87.8 -0.02395 1.20231 19.46

(2151,70) 0.0050 0.05443 0 43.8 -0.01993 1.06797 26.16

0.0075 0.04639 0 41.0 -0.02673 0.80276 30.64

0.01 0.03995 0 45.3 -0.03409 0.99097 34.47

Average 0.038 0.01287 13.7 -0.01600 0.97558 4.62
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Table C.9: In-sample and out-of-sample enhanced indexation results, τ = 0.05

Index Transaction In-sample Time Out-of-sample

(N, K) cost limit γ D∗ E∗ (secs) Intercept Slope AER

Hang Seng 0.0025 0.0484 0 0.8 -0.01978 1.06865 -1.12

(31,10) 0.0050 0.04558 0 0.5 -0.01786 1.06948 2.61

0.0075 0.04301 0 0.6 -0.01155 0.98244 5.22

0.01 0.04081 0 0.6 -0.01091 0.94767 7.58

DAX 100 0.0025 0.05732 0.32524 1.8 -0.03562 1.11813 4.94

(85,10) 0.0050 0.06552 0.05636 1.8 -0.02883 1.04838 -1.58

0.0075 0.03917 0 1.8 -0.02717 0.94890 -1.65

0.01 0.03252 0 1.6 -0.01160 0.75638 -4.22

FTSE 100 0.0025 0.05126 0.11593 1.8 -0.01223 0.74775 4.07

(89,10) 0.0050 0.04923 0 1.7 -0.01348 0.86697 3.86

0.0075 0.04527 0 1.7 -0.01197 0.83102 3.11

0.01 0.04176 0 1.6 -0.01474 0.82007 1.59

S&P 100 0.0025 0.04745 0 2.2 -0.01888 1.02513 -0.68

(98,10) 0.0050 0.04232 0 1.9 -0.01766 0.99195 -1.90

0.0075 0.03782 0 2.2 -0.01952 0.90826 -3.91

0.01 0.03426 0 1.8 -0.02077 0.84410 -5.26

Nikkei 225 0.0025 0.0468 0 4.5 -0.02036 0.97802 -6.20

(225,10) 0.0050 0.04154 0 4.3 -0.02291 1.08787 -3.53

0.0075 0.03881 0 4.1 -0.01924 0.95357 -4.19

0.01 0.03657 0 4.3 -0.01764 0.90908 -3.33

S&P 500 0.0025 0.06957 0.10817 9.4 -0.02241 1.11371 7.69

(457,40) 0.0050 0.05739 0 9.5 -0.02944 0.71525 6.19

0.0075 0.04902 0 9.2 -0.02240 1.08548 6.32

0.01 0.04269 0 9.2 -0.02524 1.12116 7.80

Russell 2000 0.0025 infeasible

(1318,90) 0.0050 0.08657 0 76.8 -0.02542 1.12434 11.27

0.0075 0.07206 0 33.9 -0.01997 1.08104 11.19

0.01 0.06273 0 36.4 -0.01672 0.89035 14.00

Russell 3000 0.0025 0.08866 0 145.3 -0.03471 1.06008 20.28

(2151,70) 0.0050 0.07268 0 62.1 -0.03892 1.19041 26.44

0.0075 0.06128 0 45.9 -0.03774 0.85580 33.28

0.01 0.05224 0 43.4 -0.06015 0.70276 43.89

Average 0.05162 0.01954 16.9 -0.02277 0.96272 5.93
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