
Toward the estimation of bakground �utuationsunder newly-observed signals in partile physisFederio ColehiaBrunel University London, Kingston Lane, Uxbridge, Middlesex UB8 3PH, UNITEDKINGDOME-mail: federio.olehia�brunel.a.ukAbstrat. When the number of events assoiated with a signal proess is estimated in partilephysis, it is ommon pratie to extrapolate bakground distributions from ontrol regions to aprede�ned signal window. This allows aurate estimation of the expeted, or average, numberof bakground events under the signal. However, in general, the atual number of bakgroundevents an deviate from the average due to �utuations in the data. Suh a di�erene anbe sizable when ompared to the number of signal events in the early stages of data analysisfollowing the observation of a new partile, as well as in the analysis of rare deay hannels.We report on the development of a data-driven tehnique that aims to estimate the atual, asopposed to the expeted, number of bakground events in a prede�ned signal window. Wedisuss results on toy Monte Carlo data and provide a preliminary estimate of systematiunertainty.1. IntrodutionThe task of data analysis in partile physis often deals with data sets omprising ollision eventsthat ontain the signature of a sattering of interest as well as bakground events that orrespondto uninteresting proesses mimiking the signal. When estimating the number of signal events,bakground probability density funtions (PDFs) are often extrapolated from ontrol regionsto a prede�ned signal window and subsequently used in template �ts. However, this an onlyprovide an estimate of the expeted, or average, number of bakground events under the signal,and annot take into aount the e�et of �utuations. In pratie, when the number of signalevents, S, is muh higher than the size of the typial �utuations on the number of bakgroundevents, σB =
√

〈B〉, 〈B〉 being the expeted number of bakground events in the signal window,the disrepany between B and 〈B〉 an be negleted.Nonetheless, when the number of signal events is low enough, the di�erene an be sizable.This an our in the early stages of data analysis following the disovery of a new partile, orin the analysis of low-ross setion proesses. In suh ases, the expeted number of bakgroundevents in the signal window an be a biased estimate of the atual number.We report on the development of a data-driven tehnique that aims to estimate the atualnumber of bakground events under an observed signal, as opposed to the expeted number. Ouralgorithm makes it possible to deompose an input mixture of signal and bakground events, e.g.a olletion of events that pass all seletion riteria orresponding to the end-point of a givenanalysis. This allows the shape of the bakground PDF to be estimated from the data, therebytaking into aount the e�et of statistial �utuations. The development of this tehnique was



in�uened by a number of statistial methods, most notably the Gibbs Sampler [1℄ for mixturemodel deomposition, Expetation Maximisation [2℄, and Data Augmentation [3℄.2. The algorithmThe algorithm that we use to deompose the input mixture of signal and bakground eventsis related to a method that we have proposed with referene to a di�erent appliation to dataanalysis at high-luminosity hadron olliders [4, 5℄.The PDF of the underlying statistial model has the form F = α0f0(x) + α1f1(x), where α0and α1 are the frations of bakground and signal events in the input data set, respetively, with
α0 + α1 = 1, and where f0 (f1) is the bakground (signal) PDF. In the ontext of this study, thevariable x is interpreted as the invariant mass of a set of �nal state partiles.A notable feature of our approah, when ompared to lassial mixture models whereprede�ned subpopulation PDF shapes are typially enfored a priori, is the nonparametride�nition of the subpopulation PDFs, fj. At every iteration of the algorithm, individualevents are mapped to signal or bakground on a probabilisti basis, and the estimate ϕj ofthe subpopulation PDF fj at that iteration is obtained by means of spline interpolation1 ofthe histograms of x orresponding to those events that are mapped to signal or bakground atthat iteration. This allows the algorithm to estimate generi deviations of the PDF shapes fromthe orresponding ontrol sample templates due to �utuations in the data. The shapes of thesignal and bakground distributions in the data set analysed are ultimately estimated as splinedhistograms averaged over a prede�ned number of iterations.The pseudoode of the algorithm is given below, subsripts �sig� and �bkg� relating to signaland bakground, respetively. The value of quantity v at iteration t is denoted by v(t) throughout.(i) Initialization: Set αbkg = α
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. Both the nonparametri treatment ofthe PDFs and the use of ϕ
(0)
j instead of ϕ

(t−1)
j to map individual events to signalor bakground distinguish this implementation from the lassial Gibbs sampler formixture models.(b) Set α

(t)
j =

∑N
i=1 z

(t−1)
ij /N , j = 0, 1.We used a total number of 6,000 iterations, and averaged the PDF estimates, ϕj , over thelast 4,000. These settings allowed the algorithm to reah onvergene in all runs performed inthis study, and no signi�ant di�erene in the results was observed by hanging them.A more detailed desription of this implementation of the algorithm an be found in [6℄. Theexeution time was ∼ 50 s per run on the data sets analysed using a 2 GHz Intel Proessor with1 GB RAM, whih we onsider reasonable for o�ine use.3. ResultsWe illustrate this tehnique on a toy Monte Carlo data set obtained superimposing a gaussiansignal with a �rst-order polyomial bakground. In the following, we will interpret the signaldistribution as an invariant mass distribution orresponding to the deay of a partile with mass

1 We have used the alglib C++ library [7℄ with this implementation of the algorithm.
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(d)Figure 1: (a) True bakground distribution (points) superimposed with the PDF obtained fromthe high-statistis ontrol sample (urve). (b) The same true bakground distribution (points)superimposed with the bakground PDF estimated from the data using the algorithm (urve). ()Ratio between the bakground PDF obtained from the ontrol sample and the true distribution.(d) Ratio between the bakground PDF estimated using the algorithm and the true distribution.
m = 125 GeV/2 and width 1 GeV/2. We superimposed S = 200 signal events to a totalof 4,200 bakground events in the region 115 GeV/2 < m < 135 GeV/ 2, orrespondingto an average of 〈B〉 = 1, 600 bakground events in the signal region, whih is de�ned by
120 GeV/2 < m < 130 GeV/2.Due to statistial �utuations in the data, di�erent samples orrespond to di�erent numbersof bakground events in the signal window. In this study, the standard deviation on the numberof bakground events with 120 GeV/2 < m < 130 GeV/2 is σB =

√

〈B〉 = 40 events, whihis sizable when ompared to the number of signal events generated, S = 200. This illustrativesenario is not dissimilar from the early stages of data analysis following the observation of aHiggs boson in the γγ �nal state at the Large Hadron Collider (LHC) at CERN [8, 9℄.High-statistis ontrol samples were generated orresponding to 30,000 signal and 30,000bakground events, and were used to obtain initial onditions on the signal and bakgroundPDF shapes. The funtion of the algorithm is essentially to iteratively re�ne those initialonditions based on the data, thereby taking into aount the e�et of statistial �utuations.As a onsisteny hek, the estimated fration of bakground events in the input data set, α̂0,was found to be in agreement with the true value within 2% in all runs used in this study.The performane of the algorithm in terms of estimating the shape of the bakground PDFin the data set analysed is illustrated in �gure 1. Figure 1 (a) displays the true bakgrounddistribution (points) superimposed with the PDF obtained from the high-statistis ontrol sample(urve). The disrepanies due to statistial �utuations in the data are apparent. The pointsin �gure 1 (b) show the same true bakground distribution as in �gure 1 (a), but in this ase the



superimposed urve is the PDF estimated from the data using the algorithm, averaged over thelast 4,000 iterations from a total of 6,000.The ratio between the bakground ontrol sample PDF and the true PDF is displayed in�gure 1 (), whih again highlights the e�et of �utuations. The orresponding ratio betweenestimated and true PDF is shown in �gure 1 (d), and shows a signi�antly-improved agreement.It is worth realling that, for the purpose of this study, what we are interested in is the shape ofthe bakground PDF. In fat, our objetive is to estimate the atual number of bakground eventsunder the signal as opposed to the expeted number. The signal-related plots orresponding to�gure 1 showed good agreement between the estimated and the true distribution, and were usedtogether with the estimated fration of bakground events in the data in order to hek theonsisteny of the results obtained using the algorithm.The plots in �gure 1 refer to a run of the algorithm on a data set with B = 1, 571 bakgroundevents in the signal region 120 GeV/2 < m < 130 GeV/2. The orresponding number of eventsestimated with that run of the algorithm was B̂ = 1586.5.The algorithm was also run on multiple toy Monte Carlo data sets, orresponding to di�erentnumbers of bakground events in the signal window. Our preliminary estimate of the unertaintyon B̂, i.e. on the estimated number of bakground events under the signal, is ∼ 50 events. Workis underway to redue this unertainty below the size of typial bakground �utuations in thedata, σB =
√

〈B〉 = 40 events. Our studies suggest that the unertainty on B̂ is dominated bythe unertainty on the estimated fration of bakground events in the data set, α̂0. In fat, whenthe algorithm is run with α0 kept �xed at the orresponding true value, the unertainty on B̂drops from 50 to 12 events.The results obtained running the algorithm on the di�erent input data sets are summarisedin table 1, where Bgen denotes the true number of bakground events in the signal window atgeneration, B̂ is the orresponding number estimated using the algorithm, and ∆B = B̂ −Bgen.The quantities B̂∗ and ∆B∗ in the table have a similar meaning as B̂ and ∆B, but the valueswere obtained running the algorithm with α0 kept �xed at its true value. The average andstandard deviation of B̂ aross the runs are referred to as 〈B〉 ( 〈B〉∗) and σB (σ∗

B), respetively.4. Conlusions and outlookWe have reported on the development of a data-driven tehnique that aims to estimate theatual, as opposed to the expeted, number of bakground events under an observed signal inpartile physis. Established methods that rely on the extrapolation of bakground distributionsfrom ontrol regions to a prede�ned signal window allow a preise estimation of the expeted,or average, number of bakground events under the signal. However, the atual numberof bakground events in the signal window an deviate from the average due to statistial�utuations in the data. Although the disrepany is often negligible when ompared to thenumber of signal events, it is not neessarily so in the early stages of data analysis following thedisovery of a new partile, or more generally in the analysis of low-ross setion proesses.We have desribed an algorithm that uses the data to estimate the shape of the bakgrounddistribution in a prede�ned signal window, e.g. using the end-point of a given analysis i.e. aolletion of events that pass all seletion riteria. Control samples are used only to provideinitial onditions for the bakground PDF, but the PDF shape is otherwise estimated diretlyfrom the same data set that ontains the observed exess of signal events. We have disussedresults on toy Monte Carlo data, with referene to an illustrative senario that is not dissimilarfrom the early stages of data analysis following the disovery of a Higgs boson in the γγ hannel.We have provided a preliminary estimate of the unertainty assoiated with the estimatednumber of bakground events in the signal window at the level of 50 events, out of a totalaverage number 〈B〉 = 1, 600. Although we onsider these results enouraging, the unertaintyis still larger than the size of the typial bakground �utuations in the data, whih is given



Run Bgen B̂ ∆B B̂∗ ∆B∗1 1536 1618.2 82.2 1549.3 13.32 1569 1645.0 76.0 1592.3 23.33 1579 1615.2 36.2 1584.7 5.74 1625 1637.7 12.7 1630.2 5.25 1558 1579.7 21.7 1548.0 -10.06 1576 1602.5 26.5 1588.2 12.27 1571 1586.5 15.5 1579.1 8.18 1584 1628.6 44.6 1584.8 0.89 1597 1664.1 67.1 1604.4 7.410 1644 1621.9 -22.1 1640.4 -3.711 1631 1688.9 57.9 1636.6 5.612 1573 1661.4 88.4 1586.9 13.913 1626 1655.6 29.6 1616.3 -9.714 1583 1641.2 58.2 1592.8 9.815 1613 1663.2 50.2 1635.8 22.816 1593 1663.7 70.7 1606.1 13.117 1583 1604.9 21.9 1585.2 2.218 1603 1646.8 43.8 1586.8 -16.219 1624 1667.8 43.8 1630.4 6.420 1580 1604.5 24.5 1575.4 -4.6
〈∆B〉 = 42.5 σB = 27.3 〈∆B∗〉 = 5.3 σ∗

B = 10.4

Table 1: Results ob-tained running the al-gorithm on di�erenttoy Monte Carlo datasets. The quantities
Bgen and B̂ refer tothe true and to theestimated number ofbakground events inthe signal region, re-spetively, and ∆B =
B̂ −Bgen. The quanti-ties B̂∗ and ∆B∗ havea similar meaning as
B̂ and ∆B, but thevalues were obtainedkeeping α0 �xed at itstrue value. The aver-age and standard devi-ation of B̂ aross theruns are representedby 〈B〉 ( 〈B〉∗) and σB(σ∗

B), respetively.by σB =
√
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