EXISTENCE AND STABILITY OF A SPIKE IN THE CENTRAL COMPONENT FOR
A CONSUMER CHAIN MODEL
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ABSTRACT. We study a three-component consumer chain model whichsisdban Schnakenberg
type kinetics. In this model there is one consumer feedintherproducer and a second consumer
feeding on the first consumer. This means that the first coas(oantral component) plays a hybrid
role: it acts both as consumer and producer. The model ist@mg®rn of the Schnakenberg model
suggested in [12, 27] for which there is only one producer@arelconsumer. It is assumed that both
the producer and second consumer diffuse much faster tkearetitral component.

We construct single spike solutions on an interval for whtwod profile of the first consumer is
that of a spike. The profiles of the producer and the seconduroer only vary on a much larger
spatial scale due to faster diffusion of these componenfs.shown that there exist two different
single spike solutions if the feed rates are small enouglargetamplitude and a small-amplitude
spike.

We study the stability properties of these solutions in &imh the system parameters. We
use a rigorous analysis for the linearized operator aroinglesspike solutions based on nonlo-
cal eigenvalue problems. The following result is estalglishif the time-relaxation constants for
both producer and second consumer vanish, the large-amplipike solution is stable and the
small-amplitude spike solution is unstable. We also demsgeilts on the stability of solutions when
these two time-relaxation constants are small.

We show anew effectif the time-relaxation constant of the second consumeeiy gmall, the
large-amplitude spike solution becomes unstable. To teedf@ur knowledge this phenomenon has
not been observed before for the stability of spike pattdtrseems that this behavior is not possible
for two-component reaction-diffusion systems but thaeast three components are required.

Our main motivation to study this system is mathematicalesihe novel interaction of a spike in
the central component with two other components resultewtgipes of conditions for the existence
and stability of a spike.

This model is realistic if several assumptions are madeo@peration of consumers is prevalent
in the system, (ii) the producer and the second consumessgifinuch faster than the first consumer,
and (iii) there is practically an unlimited pool of producer

The first assumption has been proven to be correct in many typeonsumer groups or pop-
ulations, the second assumption occurs if the central comtchas a much smaller mobility than
the other two, the third assumption is realistic if the cansts do not feel the impact of the limited
amount of producer due to its large quantity.

This chain model plays a role in population biology, wherastomer and producer are often
called predator and prey. This system can also be used as @ food sequence of irreversible
autocatalytic reactions in a container which is in contaith & well-stirred reservoir.
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1. INTRODUCTION

We consider a reaction-diffusion system which serves agparative consumer chain model. It
takes into account the interaction of three componentspare producer, one pure consumer and
a central component which acts as both producer and consiinese three components supply
each other in a linear chain. This model is an extension oStteakenberg model introduced in
[12, 27] which possesses only one producer and one conslimiire model under investigation
we have a central component which plays a hybrid role: it cores the pure producer and it is
consumed by the second consumer. It is assumed that bothrddeger and second consumer
diffuse much faster than the central component.

The system can be written as follows:

( 0S

72— DIAS+1- DS, zeQ t >0,
ot €
duy _ 2 2
5 =€ Auy — ug + Suj — aguquy, € Q,t >0, (1.1)
0 1
Tlﬂ = DyAuy — ug + ~ugus, x €0, t>0,
\ ot €

whereS andu; denote the concentrations of the producer (food sourcel}tativo consumers,
respectively. Herd) < ¢2 < 1 and0 < D;, 0 < D, are three positive diffusion constants.
The constants,, as (positive) for the feed rates and m; (nonnegative) for the time relaxation
constants will be treated as parameters and their choidéslistinguish between stability and
instability of steady-state solutions.

We choose as domain the inter¢al= (—1, 1) and consider Neumann boundary conditions

dS . dS . du1 . du1 . dUQ o dUQ o
(1.2)
These type of boundary conditions are also called “reflettboundary conditions and model a

system which does not have exchange to the outside worldroygagion through the boundary.

Remark 1.1. Our choice of diffusion constants is essential for the typspike solutions under
consideration. We need to have a very small diffusion com$ta the central component to get a
spike and much larger diffusion constants for the other tarmgonents resulting in profiles on the
order unity scale only.

Remark 1.2. The choice of the coefficients™, 1, —a,, % of the nonlinear reaction terms in
(1.1) allows us to have spiky solutions for which all threenpenents have an amplitude of order
O(1) ase — 0. Other choices of parameters in the model are possible,Hmyt tvould result in
amplitudes which are not of ord€?(1). In that case, a rescaling of amplitudes is possible which
will lead to the scaling we used in (1.1) and amplitudes oeoid(1). For this reason we have
used the system in the form (1.1) as our starting point.

The interaction of a spike in the central component of a coreswchain model with two other
components, one preceding it and the other succeedingsiiltsan new types of conditions for
the existence and stability of a spike. This was the mainvabtn for us to study this problem in

detail.
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We first prove the existence of single spike solutions in &rval. It is shown that such a pattern
exists if the feed rates,;, a, are small enough. We prove that there are two such spikyisngjt
one with a large-amplitude spike and the other with a smalbléude spike.

We show that the large amplitude solution can be stable fer 0, whereas the small amplitude
solution is always unstable. However, fbk ¢ < 71 < 1 the large amplitude solution is unstable
due to an eigenvalue of ordé)((%l) which has a positive real part (see Corollary 2.1).

We expect that fof) < 77 < ¢ < 1 the system will be stable, i.e. the instability will vanigh i
the time-relaxation constant of the last component is very small compared to the squateofoo
the diffusion constant of the spike component.

This is anew effecwhich to the best of our knowledge has not been observedéé&orthe
stability of spike patterns. It seems that this behavionispossible for two-component reaction-
diffusion systems but that at least three components ateresl

We use a rigorous analysis for the linearized operator alf@usingle spike solution based on
nonlocal eigenvalue problems.

Models involving a chain of components play an importang riol biology, chemistry, social
sciences and many other fields. Well-known examples inctaadessumer chains, predator-prey
systems, food chains, genetic signaling pathways, awlyt@at chemical reactions and nuclear
chain reactions. For food chains it is commonly assumedttiexe is only limited supply of
resources which leads to a saturation effect and the sokitemain bounded for all times. On the
other hand, for autocatalytic chemical or nuclear chaintreas the interaction of the components
in the chain has a self-enforcing effect and the solutiomsgraw and become unbounded. In
our model the cooperation of consumers is accounted for pgrénear nonlinearities. In general
we do not know the exact shape of the nonlinearities, whidhdepend on more details of the
application considered, and so for simplicity we choosedgatzc nonlinearities. This choice can
be motivated for chemical reaction systems by the mass @@law in the case of binary reactions.
It can also be derived using mathematical principles by edpey a general nonlinearity for small
amplitudes around zero and will then play a role in undeditapsolutions with small amplitudes.

In this respect, it is interesting to consider the work oftBetourt and West [2] who collected
extensive empirical data on typical activities in citieslsas scientific publications, patents, GDP,
the number of educational institutions but also on crinedfitr congestion or certain diseases indi-
cating that they grow at a superlinear rate with populatin@.sThey established a universal growth
rate which applies to most of the activities in major citiedependent of geographic location, eth-
nicity of the population or cultural background which cqoeds to a power law with power of
around 1.15. Although this is less than the quadratic poaeiclonsidered in this paper we expect
that many of our results will not change qualitatively if veplace the quadratic law by this smaller
power growth. The general explanation behind this supeatigrowth in societies is that they are
able to attract those people which will be most suitable teract with the pre-existing population
successfully.

In our model we further assume that the limited amount ofuess is not felt which is realistic
if resources are plentiful or if consumption is practisedely to use the remaining supplies in a
sustainable way.

We refer to the recent work [18] in which the stability of foodains was analyzed under the
assumption that supply of resources is limited.

In biological populations consumer and producer are oftdled predator and prey. For more
background on predator-prey models we refer to [21]. Outesyan also be used as a model
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for a sequence of irreversible autocatalytic reactionsdardgainer which is in contact with a well-
stirred reservoir. Similar models have been suggested.ge€hapter 8 of [29] and the references
therein.

Our main results are generalizations of similar statemfartshe Schnakenberg model. Let
us briefly recall some related results: In [15, 30] the existéeand stability of spiky patterns on
bounded intervals is established. In [39] similar resutesshown for two-dimensional domains.
In [1] it is shown how the degeneracy of the Turing bifurcat[@8] can be lifted using spatially
varying diffusion coefficients. In [22, 23, 24] spikes arensmlered rigorously for the shadow
system.

For a closely related system, the Gray-Scott model intreduc [13, 14], some of the results
are the following: In [4, 5, 6, 7] the existence and stabibfyspike patterns on the real line is
proved. The two-dimensional case is studied in [32, 33, 3G, B [16, 17] different regimes for
the Gray-Scott system are considered and the existenceamlityg of spike patterns in an interval
is shown. In [25, 26] a skeleton structure and separatorth&Gray-Scott model are established.

Other “large” reaction diffusion systems (more than two poments) with spiky patterns in-
clude the hypercycle of Eigen and Schuster [8, 9, 10, 11, 3}, &hd Meinhardt and Gierer’s
model of mutual exclusion and segmentation [20, 40, 19].s€hesults have been summarized
and reviewedyv in [42].

The paper [41] is a companion to the current one. In that weeldiffusion constants are chosen
as follows: the diffusivity for the first component it is mulgrger than for the second, and for the
second it is much larger than for the third. Results on thsterce and stability of a spiky cluster
solution have been derived. That solution has a spike folatstecomponent which acts on a very
small scale, for the central component there are two paspitdes glued together acting on an
intermediate scale, and for the first component there is @g@mhich changes on the order unity
scale only. This spiky solution can be stable, but to achstability a fine balance is required
between the three components.

The structure of this paper is as follows:

In Section 2, we state and explain the main theorems on existand stability.

In Sections 3 and 4, we prove the main existence result, Ene@rl. In Section 3, we compute
the amplitudes of the spikes. In Section 4, we give a rigoistence proof.

In Sections 5 and 6, we prove the main stability results, Tém®o2.2 and Corollary 2.1. In
Section 5, we derive a nonlocal eigenvalue problem (NLER) determine the stability of the
O(1) eigenvalues. In Section 6, we study the stability ofédbig eigenvalues.

Throughout this paper, the lettérwill denote various generic constants which are indepeinden
of ¢, for e sufficiently small. The notationl ~ B means thatim.,o4 = 1 andA = O(B) is
defined asA| < C|B| for someC > 0.

2. MAIN RESULTS EXISTENCE AND STABILITY OF A SINGLE SPIKE SOLUTION

We now state the main results of this paper on existence abdist We first construct station-
ary spike solutions to (1.1), i.e. spike solutions to thdesys

DIAS+1—- D852 =0, z€Q,t>0,
€
EAuy —ug + Su% — agulug =0, z€Q,t>0, (2.1)
1
DoAug —ug + ~ujui =0, x€Q, t>0,
€

with the Neumann boundary conditions given in (1.2).
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We will construct solutions of (2.1) which are even:

S = S(lz]) € Hy (),

X
w = wi(lyl) € HY(Q), y="

uy = uy(|z]) € HY(Q),
where
H%(Q) = {v c H*(Q) : v (-1) =2 (1) = 0},

o = fue i o (D) 2w (D) o).

Before stating the main results, we introduce some negeas#ations and assumptions. Let
be the unique solution of the problem

{wyy—w+w2:0, w >0 InR, 2.2)
w(0) = maxyer w(y), w(y) — 0as|y| — +oo.
The ODE problem (2.2) can be solved explicitly andan be written as
w(y) = @ (2.3)
We now state the main existence result.
Theorem 2.1. Assume that
Dy =const, e<x1, D,=const. (2.4)
LetGp, andGp, be the Green’s functions defined in (7.1) and (7.18), respsgt Assume that
alay < %G%Q(O,O) — . (2.5)

(Expressed more precisely, (2.4) means thast small enough; (2.5) means the following: there
are positive number& ande, such that (2.5) is valid for akt with 0 < € < ¢.)
Then problem (2.1) admits two “single-spike” solutions
(52, uf ., us ) and (SL,uf ., ub ) with the following properties:
(i) all components are even functions.
(ii)
S (z) = LG, (,0) + O(e), (2.6)

,€

s,l
KR 1€+ Qe ) +0(e),

ure(z) = E5w ( 2.7)

u.e(x) = 5. Gp,(x,0) + O(e), (2.8)
wherew is the unique solution of (2.2),

192+ /190t — 4a2a:]012G52(0,0)
¢ 72a?

+ O(e), (2.9)

10 = /1) - 4a2a:] QG E(0,0)

+0(e), (2.10)
7243 (€)
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1+ Oé?l + O( ) sl V 1+ Of:’l
S R —— € C = —

sl ’ 2,€ s, 9
55 GDl(0,0) 655 GD2(07O)

wherea?! is given by (3.8).
(i) If € is small enough and

87l —_—
Cl,e -

O(e), (2.11)

a’a @GQ 0,0) + 0
1a2 > 1 D,(0,0) + do.

for somed, > 0 independent o (in the same sense as in (2.5)) then there are no single-spike
solutions which satisfy (i) — (ii).

Remark 2.1. We choose to keep the facté?| in the estimate (2.5) although of course in our
scaling we havéQ)| = 2.

Theorem 2.1 will be proved in Sections 3 and 4.
The second goal of this paper is to study the stability prigeiof the single-spike solution
constructed in Theorem 2.1. We now state our main resultsatmlisy.

Theorem 2.2. Assume that (2.4) and (2.5) are satisfied. Supposerthat; = 0.

Then we have the following:

(1) (Stability) The large-amplitude solutidi$?, u} ., u ) is linearly stable. There is a small
eigenvalue of exact orded(¢?) with negative real part which is given in (6.23).

(2) (Instability) The small-amplitude solutigs?, us ., u5 ) is linearly unstable. There is a large
eigenvalue of exact ordé? (1) with positive real part. There is also small eigenvalue @faorder
O(€?) with negative real part which is given in (6.23).

For the case of andr; positive and small we have the following result:

Corollary 2.1. Assume that (2.4) and (2.5) are satisfied.

(1) (Stability/Instability) There exists a constapt> 0 independent of such thatfol) < 7 < 7,
andr; = 0 the stability properties of the large-amplitude solutiesf, «} ., u} ) and the small-
amplitude solution(S?, uf ., u5 ) are the same as in the case= 7, = 0. There is also small
eigenvalue of exact ordé?(e?) with negative real part which is given in (6.23).

(2) (Instability) There exists a constant > 0 independent of such that for0 < r < 7, and
0 < e < 71 < 1 for both the large-amplitude solutioft!, v} ., 5 ,) and the small-amplitude
solution(S¢, ui ., u3 ) there is an eigenvalue

Po
= — 1
Ae - +0(1)
with corresponding eigenfunction
e = w+ O(7).

Thus both solution§S?, uf ., ub ) and (S?, u5 ., u3 ) are unstable. There is also small eigenvalue
of exact ordelO(¢?) with negative real part which is given in (6.23).

We would like to make a few remarks on the stability results.

Remark 2.2. This result can be interpreted as follows: to have this tyjp&piky solution, the feed
ratesa; anda,, in particular their combinatioru? a,, must be small enough. Otherwise the food
sourceS and the hybridu; will not be able to sustaim; and u,, respectively. Instead, among
others, one of the following three behaviors can happen:
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(i) The consumer, dies out resulting in the long-term limit,. = 0 and a spike for the
two-component Schnakenberg model remains for which oalgagmponents, andw; . are non-
vanishing. We get the same solution by setting= 0 in Theorem 2.1. This solution has been
analyzed if15].

(i) The component, dies out and.q, .S will both approach positive constants. It can easily be
seen that we have

(iif) The components approach a positive homogeneous gt&ate which solves

€ € €
S=—7, u%——u1+a26220, Uy = —.
ajuy aq U1

Remark 2.3. In the proof of Corollary 2.1 we expand the eigenvalue an@midignction further,
see (5.16) and (5.17).

Remark 2.4. We do not rigorously study the dynamics of this model. Iaktga analyze the

stability or instability of the steady states. Then the dwyita can be understood locally near
the equilibrium points by using the fact that the unstabggepfunctions will grow in amplitude,

whereas the stable eigenfunctions will decay to zero aspiogresses.

Next we plot the large-amplitude and small-amplitude sgib@tions.
Figure 1 shows the spatial profiles of the large-amplitudlees@, v} ., u} ), i.e. u, is large.

4 T T T 0.6 T T T 1
S — == ul

35 ]
05

25 —

u2

0.2

0.1
05 ]

0 1 1 1 0 1 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1. The spatial profiles of the large-spike steady stafe u! ., u ) for parameterd, =
10, € =0.01, Dy =1, a; = 1, a, = 0.04.
Figure 2 shows the spatial profiles of the small-amplitudieesg S¢, uj , u3 ), i.€.u; is small.
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Figure 2. The spatial profiles of the small-spike steady stag uj ., us ) for parameters
D1 = ]_0, 62 = 001, D2 = ]_, ap = ]_, a9 = 0.04.

Here by the choice of parameters the amplitudes of the tlmegonents are very different.

We will rigorously derive the existence result Theorem 2 XSections 3 and 4. The stability
results Theorem 2.2 and Corollary 2.1 will be proved in Sei5 and 6.

3. EXISTENCE I: COMPUTATION OF THE AMPLITUDES IN LEADING ORDER

In this section and the next, we will show the existence okesggiolutions to (2.1) and prove
Theorem 2.1. We begin by computing the amplitudes in leadiagr and will give a rigorous
existence proof in the next section.

Proof of Theorem 2.1: We will show the existence of spike solutions to (2.1) whictheading

o
S

order are given by (2.6) — (2.8). More precisely, we choosestttond component of the approxi-

mate solution as follows:
Uy e(z) = () (3.1)

for some positive constangs anda.. Herey is a smooth cutoff function which satisfies

£ w <|x|\/1 +a€)
€ c X

XECE(-L1), x(x)=orla| <2, x(r) =0for|s] > °. (32)

The main reason for using the cut-off function (3.2) in theatn (3.1) is that Neumann boundary

conditions are satisfied exactly.

We set
X
y )
€
and consider the limit
e — 0.

We substitute (2.7) into the second equation of (2.1) andgy®.2), we note that (y\/l + 046)
satisfies

wyy — (1 + a)w + (1 + a)w? = 0. (3.3)
Comparing coefficients between the second equation anpgi®ss
o = agu;e(O) + O(e), (3.4)
1+ e
£ = Tac O(e). (3.5)

Se(0)
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We remark that in leading ordef.u . agrees withS.(0)u} . sinceu, . decays rapidly away from
0.
Substituting (2.7) into the third equation of (2.1) and g<ig.2), we get

2(0) = Gy .00.0) <2 [ i) dy-+ 0(0),
whereGp, has been defined in (7.18). This implies
B V14 o
w0 = G 06 Ty T 59
wn () = Spl@ Ovitac 0, (3.7)

G5,(0,0)& [w(y) dy

In the next step, we will derive two conditions, by substitgt(3.1), (3.6) with (3.4), (3.5) in
(2.1). Then we will solve these two conditions to determin@and,.

Integrating the first equation in (2.1), using the Neumanmnoiary condition and balancing the
last two terms, we get the first condition

52
\/14‘0[6 R

Q] = a15.(0) w?(y) dy + O(e).

From (3.4), we compute

B as(1+ a)

- E2GD,(0,0)( [y w(y) dy)?
Summarizing these resultgy,, ) solve the system

Qe

+ O(e).

= B, 0.0 uw() gt —ar T O (3.8)
0 = alfe/ w’(y) dyv1+ ac+ O(e). (3.9)

Using
/w(y)Zdy Z/w(y) dy =6,
R R
the system (3.8), (3.9) can be rewritten as a quadratic eoiats?
36%a}Gp, (0,0)%¢! — 36G p,(0,0)%€21Q* + as|Q* = O(e)
which has the two solutions
(e31)2 = 9> + /1Q* — 4a3a,|QPG p, (0,0)2

72a3
under the condition

+0(e) (3.10)

0 2

B, 0.0

The last condition states that, all other constants beinglethe combination?a, must be small
enough.

This implies that under the condition

2

0 2
%GDQ(O, 0)> — 9, for somed, > 0
there are two solutions fgg which satisfy

2

| |2 < fl
7202 '

€

0<¢<
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On the other hand, if

O 2
al ag > %GM(O,O)2 + 6o for somed, > 0,

then there are no such solutions.

Resulting from the two solutiong and¢! there are also two solutions faf anda! which are
computed from (3.8).

Now we show that

ol < lando? > 1. (3.11)
Substituting (2.10) and (2.9) in (3.8), we get
2a2ay

192G p,(0,0)2 £ /|Q*Gp,(0,0)* — 4a3ay|Q2Gp,(0,0)2 — 2aay
Thus it remains to show that

Q12 Gp,(0,0)? — dadaz < \/|QJ1Gp, (0,0)* — 4a%as| Q2 G, (0, 0)2

which follows easily after taking squares on both sides.
Finally, this results in the two single-spike solutioi, v ., u3.) and(S!, u ., u} ) of (2.1).
In the next section we will rigorously prove the existencéhafse two solutions.

Qe =

4. EXISTENCE Il: RIGOROUS PROOFS

In this section we show the existence of solutions of (2.tbich the central component has
a spike. As we have shown in the previous section, there avestwh solutionsS?, uf ., u3 )
and (S, u} ., u ) which differ by the size of the amplitude. The existence papplies to both
of them. Therefore we will not write the superscrip@nd’ in this section.

The second component of the approximate spike solutioadntred in (3.1) is given by

i) = g (L2 )+ 00

where¢, anda, have been computed to leading order in (3.8), (3.10),@hds been introduced
in (3.2).

Further,S. andusy . solve a partial differential equation which dependsugp only. Therefore
we denotes, = T} [@y ] andag . = To[u, |, respectively. We insert this approximate spike solution
into (2.1) and compute its error.

The L.h.s. of the second equation in (2.1)Y &, @y ., tia.c) = (Ti[tr], 1., Toliiy]) is calcu-
lated as follows:

Al —u16+5'&%€ —CLQU16U2€
= Ay, — @iy + Se(0 Va3 — agiiy 43 (0)
+[Se = S(0))ai .
— 01,62z, — TUn,e(0))U2,(0) + O(€?)
= B\ + Ey + Es + O()
in L2(2), whereQ, = (—1,1).
We compute

E; = 0(e)
by the definition of, anda, in (3.4) and (3.5). Computinée(x), using the Green'’s functiof p,
defined in (7.1), we derive the following estimate:

Ey = [Sc(ey) — Sc(0)]@} (ey)
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1/e B
= —f (ey)ay /1/ [Gp,(ey, ez) — Gp(0,€2)]S.(2)a] [(2) dz (1 + O(e))

ul,e(€y> 2 1 1 2
=a 5‘6(0) e(1+ o) /]R (Q—Dl\y —z| — 2—Dl|20 w(zv1+ a.)dz(1+ O (e|ly]))

)3/2 ’11%76(63/)
S.(0)

= O(ely))ii...

+a1(1 + Qe GQQQHDL:M(OaO)G (1 +O(€|y|>)

Thus we have
Ey, =0(e) in L*(Q.).
Here we have used thaip, .(0,0) = 0 by (7.4).
Similarly, we compute

By = —agty ((ey)2(tac(cy) — t2,6(0))U2,(0)

2w (e 0) [ // Gouley, ) — Gol0, e2)fin.lez) dz (1 + O(e)
a1+ aﬁ>a1,6<ey>@§j(<00)> / (Kpa(ely — 21) = Kp,(elz]) wlzv/TT ) dz (1+ Ofelyl))
20V TF @ () 12,00 H,a(0.0) [ wily) (1Ol
— a1+ aeml,e(ey)ﬁgj((oo)) | ufely = 2D = Ky (€ll) w(vTT @) dz (1 -+ Olel)
—20V/1 + el (€y)iine (0)€°y® Hp, 22(0,0)6 (1 + O(ely]))

= O(ely|)tn,c.
Thus we have
E3=0(e) in LQ(Qe).

By definition, the first and third equations of (2.1) are sdlegactly and so do not contribute to
the error.
Writing the system (2.1) in the formR. (S, uq ., u2 ) = 0, we have now shown the estimate

||R5(T1 [ﬂl,e]a 22l,ea T2 [ﬂl,e])HLQ(QE) =0 (6) . (41)

Next, we investigate the linearized operafhraround the approximate squtiQﬁe, Ue 1, Uea)-
It is defined as follows:

Lo H(Q) x H3(Q) x HE(Q) — L*(Q) x L*(Q.) x L*(),
al ~ . a -
DlAwl,e - 2?1Seu1,e¢e - ?ld)l,euie

7vbl,e ~
Ee ( ¢6 = €2A¢e - gbe + 2Sea1,5¢5 + @Z)l,eﬂie - af2¢eﬂg7e - 2(12@176712751#275 . (42)
w2,e 1 - 2 ~ o~

DAty o — 1o + Z¢6U§,€ + Zul,eulewle
We will show this operator will lead to a uniformly invertébne fore small enough.

To study the kernel of., we first solve its first and third components. Therefore, \aeeh
V1e = Ti[ty o andepy o = Tty Jo., WhereT][u, | andT;[a, ] are linearized operators which
can be expressed by the Green'’s functiéhs andGp, defined in (7.1) and (7.18), respectively.
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Substituting these expressions irtg the first and third components vanish and it only remains to
consider the second component. We obtain the followingaiper

L. HY(Q) — Ly(Q), (4.3)

Ze((be) = Ay¢6 - ¢e + 2§eﬁ1,e¢e + (T1/ [al,e](be)ﬁie - a2¢eﬁg7e - 2&2’1117611276(712/ [a2,e]¢e>-
In order to introduce a uniformly invertible operator, wéide approximate kernel and co-kernel
as
Ke= Spar{ﬁll,e} - H]2\7<Qﬁ)7
C. = spar{i} } C L*(Q.).
Then the linear operatdi. is defined by
L. K-t (4.4)
L.=mo L)

wheret andC+ denote the orthogonal complement with the scalar produtt @, ) to . and
C., respectively, and is the L2-projection fromL?(2,) into C-.

We will show that this operator is uniformly invertible fersmall enough. In fact, we have the
following result:

Proposition 4.1. There exist positive constaris\ such that for alle € (0, €),
1Ledll o) = Mol  forall g e KI (4.5)
Further, the linear operatoL. is surjective.

Proof of Proposition 4.1:.We give an indirect proof. Suppose (4.5) is false. Then tlearst
sequencese; }, {¢*} with e, — 0, ¢* = ¢, k = 1,2,... such that

1Le, 0"l 12(0) — 0, ask — oo, (4.6)

16" | 200y = 1, E=1,2,.... (4.7)
By using the cut-off function defined in (3.2), we define thikdwing functions:

¢1,e(y) = ¢5(y)x(|x|), ) S Qe~ (48)

¢2,6(y> = ¢6<y) (1 - X(‘xD) ;Y€ Qe
At first the functionsy, ., ¢ . are only defined if2.. However, by a standard extension result,
¢1. and ¢, . can be extended & such that the norms af; . and¢, . in H%(R) are bounded by
a constant independent ofor all e small enough. In the following we shall study this extension
For simplicity, we use the same notation for the extensiomcesfor: = 1,2 each sequence
{¢F} :={¢i..} (k=1,2,...)is bounded inH? (R) it has a weak limit i _(R), and therefore
also a strong limitinZ? (R) andL{° (R). We call these limits;.

Taking the limite — 0in (4.4), then® = ( 1 ) satisfies

03
/ prwy, dy =0 (4.9)
R
and it solves the system
Lo =0, (4.10)
where the operatcf is defined by
fR w(bl dy 2 fR (bl dy

Lo =0Ayp1 — (14 a)pr +2(1 + )wpr — 2(1 + «) + 2

wazdy v wady

w.
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In Lemma 5.1 below we will show that the system (4.9), (4.143 anly the solutiow; = 0 in R.

Further, trivially,¢, = 0 in R.

By standard elliptic estimates we dgf;, || z2r) — 0 fori =1, 2 ask — oo.

This contradicts the assumption thiat"|| 2 (.) = 1.

To complete the proof of Proposition 4.1, we need to showtti@tdjoint operator of, (de-
noted byL?) is injective fromi.* to C.-. We first pass to the limit — 0 for the adjoint operator
L*. This limiting process follows along the same lines asdpand is therefore omitted. Then we
have to show that the limiting adjoint operaidt has only the trivial kernel. This will be done in
Lemma 5.2 below. O

Finally, we solve the system (2.1). It can be written as

Re(ge + wh /&/1,6 + (bu aQ,e + 1/}2) = Re(Ue + CI)) = 07 (411)

whereU, = (S, Uy e, Uae ), D = (Y1, ¢, 12) . SinceL, is uniformly invertible ife is small enough,
we can write (4.11) as

O =L 'R (U) — LIIN(®) =: M. (®), (4.12)
where£_ ! is the inverse of. and

Note that the operataY/, defined by (4.12) is a mapping froffi3,(2) x KX x HZ () into itself.
We are going to show that the operafdy is a contraction on

Be,é = {gb - H]2V(Q) X ]Cel X H]2V(Q) . ||¢||H2(Q)XH2(Q€)><H2(Q) < 5}

if 0 ande are suitably chosen. By (4.1) and Proposition 4.1, we have
ML) sy oy < A~ (||Ne<q>>Hm)xme)xm(m i ||R€<UE>||L2<Q>XL2<QE>XL2(Q))

<A 'Ch(e(8)6 + e),
where) > 0 is independent of > 0, ¢ > 0 andc(d) — 0 asd — 0. Similarly, we show
| Me(@1) — Me(@2) || mr2(0)x 20y xm2) < A7 Co(c(0)8)[| @1 — Poll m2i)x m2 (00 ) x H2(9)

wherec(§) — 0 asd — 0. Choosingd = C/e for \™'Cy < €} and takinge small enough, then
M. maps fromB, 5 into B, ;s and it is a contraction mapping i, ;. The existence of a fixed point
¢, € B.; now follows from the standard contraction mapping pringji@nd®, is a solution of
(4.12).

We have thus proved

Lemma 4.1. There existg > 0 such that for every with 0 < ¢ < € there is a uniqueb, €
HZ(Q) x Kt x H%(Q) satisfyingR (U, + ®.) = 0. Furthermore, we have the estimate

| Pell 2 () x 2 () x H2(0) < Ce. (4.14)

In this section we have constructed two exact spikes salatithe formU.+®, = (S, ue 1, e 2)-
We are now going to study their stability.
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5. STABILITY |: DERIVATION, RIGOROUS DEDUCTION AND ANALYSIS OF ANLEP

We study a small perturbation of a single-spike steady $fateu. 1, u. ) which could be either
the small-amplitude solutiof5?, 5 , u3 ) or the large-amplitude solutiofb?, u! ., u} ).

We linearize (1.1) around the single-spike solution wewdemn leading orderS, + v, .e*!,
Ueq + dee™t, uc o + 1y M, where the three perturbatiogis,. € H2(Q), ¢. € HZ(Q) o, €
HZ(Q) are small in their respective norms Then the perturbationigading order satisfy the
eigenvalue problem

N Qﬁl,e T)\ed)l,e
Ee ¢5 = )‘5¢5 ) (51)
%,e T1 )\5@/)2,6

whereZ, denotes the linearized operator around the steady statdystéatg.S,, wu. 1, u.2) wWhich
has been defined in (4.4) and has the dont&i{{2) x H%(Q.) x H% (). Here we have\, € C,
the set of complex numbers.

We say that a spike solutionlisiear |y stableif the spectrunw (L,) of L. lies in a left half plane
{A e C: Re(\) < —¢y} for somecy, > 0. A spike solution is calledinearly unstable if there
exists an eigenvalug. of £, with Re(\.) > 0.

We first consider the case= 0 andr; = 0 and show stability. Then we study the stability for
7 > 0 small orr; > 0 small. We will show that for- > 0 small andr; = 0 we still have stability,
but for7 > 0 small and) < 7, < 1 the solution will be unstable.

Writing down £, explicitly and expressing; . = T/[u; ¢, i = 1,2, using Green’s functions
Gp, defined in (7.1) and (7.18), respectively, we can rewrité)(&s

€2¢5.wx - gbe + 255“1,5¢5 + (Tll [ul,e](be)uig - a2¢6u%75 - 2a2u1,eu2,e(T2/ [u2,5]¢e) = /\e(be (52)

Then, arguing as in the proof of Proposition 4.1, a subsempiefhthe sequencg converges to
a limit which we denote by. Next we derive an eigenvalue problem faor
Integrating the first equation of (5.1), we get

1 1
wlvg(O)/ uig dx = —255(0)/ Uy P dz + O(e)

1 -1
which implies
25.(0) Jp wo dy

wLE(O) == fe f]R w2 dy

(1+ 0(e)) (5.3)

This gives

_ 50 Jpwo dy
&e fR w? dy

fR wo dy

Jw?dy

using (3.5). We also derive from (2.11) that

B V14 o
~ Gp,(0,0)6¢

Ure(0)ui gew? (1+0(e))

— 21+ a) wP(1+0(0)  in HA(,),

uz,(0) + O(e)

and compute

2.00) = Gu(0.0) o (0) 7 [ oy + 200,002, (0= [way| (1+0(0)

— 5., (0)C, (0, 0) \/117& luz,e(()) /R b dy + 20, (0)E, /R wdy}
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which implies

. _u2,6(0) f]R ¢ dy c
vad0) = —=£ = (14 0(9).
Finally, we get
) L LY TH)) 5.4

Gp,(0,0)6¢2 wady
Therefore, we compute
— AUy, 2Usg WP c
= —aguy 2uz (0)Yh2(0) (1 + O(e))
£ctpac(0)

= -2 1
QW 2. (0) (1+0O(e))

fR ¢ dy T2

= 420, w(l4+ O(e in H=(€2,),
Fody 1L+0e) ()

using (3.4).
Putting all these expressions into (5.2) and taking thet kmb 0, we derive the NLEP
_ fR wo dy w? fR o dy o
LO=Ap—(1+a)p+2(1+a)wp—2(1+ )fR w?dy +2awadyw =Xp, (5.5)

wherea = lim,_,g a.
Although this derivation has been only made formally, we ggorously prove the following
separation of eigenvalues.

Theorem 5.1. Let\. be an eigenvalue of (5.2) for which Re) > —a, for some suitable constant
ag fixed independent ef

(1) Suppose that (for suitable sequenegs— 0) we havel., — Ao # 0. Then), is an
eigenvalue of the NLEP given in (5.5).

(2) Let \y # 0 be an eigenvalue of the NLEP given in (5.5). Then foraufficiently small,
there is an eigenvalug, of (5.2) with\. — \g ase — 0.

Remark. From Theorem 5.1 we see rigorously that the eigenvalue prol{b.2) is reduced to
the study of the NLEP (5.5).

Now we prove Theorem 5.1.
Proof of Theorem 5.1:

Part (1) follows by an asymptotic analysis combined withspagto the limit as — 0 which is
similar to the proof of Proposition 4.1.

Part (2) follows from a compactness argument by Dancerdnuized in Section 2 of [3]. It was
applied in [38] to a related situation, therefore we omitdietails.[]

The stability or instability of the large eigenvalues felt®from the following results:

Theorem 5.2. [31]: Consider the nonlocal eigenvalue problem

Jo w$
Jrw?

(1) If v < 1, then there is a positive eigenvalue to (5.6).
(2) If v > 1, then for any nonzero eigenvalueof (5.6), we have

RQ)\) < —co < 0.
(3) If v # 1 and A = 0, theng = cqu’ for some constant,.

¢" — ¢ +2wp — v

= ag. (5.6)
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In our applications to the case when> 0 or r; > 0, we need to handle the situation when the
coefficienty is a complex function of \. Let us suppose that

7(0) € R, |y(TA)| < C forAg >0, 7 >0, (5.7)
where(' is a generic constant independent-ok. Then we have

Theorem 5.3. (Theorem 3.2 dfi38].)
Consider the nonlocal eigenvalue problem

¢ — ¢+ 2wp — (1)) Ja ¢w2 = A\, (5.8)

o

wherev (7)) satisfies (5.7). Then there exists> 0 such that for all0 < 7 < 7,
(1) if v(0) < 1, then there is a positive eigenvalue to (5.8);
(2) if v(0) > 1, then for any nonzero eigenvalueof (5.8), we have

RQ)\) < —co < 0.
Now we consider the stability of the eigenvalue problem)5.5

Lemmab5.l. (1) If o < 1, the eigenvalue problem (5.5) has only stable eigenvaiuesfor any
nonzero eigenvalue of (5.5), we have
RQ)\) < —co < 0.
If « > 1, the eigenvalue problem (5.5) has an eigenvalue withARe 0.
(2) If « # 1 and X = 0, theng = cow’ for some constant,.

Proof of Lemma 5.1:
Proof of (1): Integrating (5.5), we derive

()\+1—oz)/Rgbdy:O.

Then for all the eigenvalues we haveXi} 1 — « = 0 or the corresponding eigenfunction satisfies
(i) Jp ¢ dy =0.

Let us first consider case (i). df < 1 then (i) implies that\ < 0 and this eigenvalug is stable
for (5.5). Ifa > 1, then we construct eigenfunction anvith eigenvalue\ = o« —1 > 0 as follows
and the eigenvalue problem (5.5) is unstable: first we set

p=(L+1—-a)! [cle + cow] (5.9)
where
L:K+—CH Lop:=A0Ap—(14+a)p+2(1+a)we,
K+ = {’U € H*(R) : /'Uwydy:(]}, Ct = {v € L*R) : /vady:O},

20+a) fywody 20 fyédy
9 2 — 7 4 -
Jrw?dy Jpwdy
Then we multiply (5.9) byw and 1, respectively, and integrating we get a linear system fer th
coefficients( [, we dy, [, ¢ dy) which has a unique nontrivial solution. Solving this systesing

the identities
1
L (La; wyw)

C1 =

Lw = (1 + a)w? = (14 a)w

we can eliminate in the definitions ot; andc,. We finally get

o = /w(L +1—a) twdy,
R
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3
02:—/w(L+1—a)_1w2dy+—.
R 11—«

Thus the eigenvalue problem is unstabledor

Next we consider case (ii). Rescaling the spatial varialleEP (5.5) reduces to the familiar
NLEP considered in Theorem 5.2 with= 2 which implies that the real parts of all eigenvalues
are strictly negative and we have stability.

Proof of (2): Integrating (5.5), we derive

/Rqsdy:o.

Rescaling the spatial variable, NLEP (5.5) reduces to theli@ NLEP considered in Theorem
5.2 with~y = 2 and we deriveb = cqw’ for some constant,. [

Proof of Theorem 2.2:

By (3.11) we haver! < 1 anda? > 1. Then the theorem follows by combining the results of
Theorem 5.1 and Lemma 5.1

We also need to consider the adjoint operafgrto the linear operatol.. Expressingl!
explicitly, we can rewrite the adjoint eigenvalue problesrf@lows

(

1
DAy e + g(@ - alwl,e)uie = TAY1,c,
€2A¢e - gbe + 2Seu1,5(¢5 - a1¢1,e) + (wQ,e - af2¢e)ug7e = /\6¢67 (510)

2
DAy e — 1y + Eul,euze(wze — A2¢e) = T A2
\

We need to consider the kernel of this adjoint eigenvaludlpro. (In the proof of Proposi-
tion 4.1 we need the result that this kernel is trivial.) Takihe limite — 0 as in the proof of
Proposition 4.1, we derive the following nonlocal lineaeagor which is the adjoint operator of
(5.5):

Jew*ody o Jawddy _

/J*Qg:Aygb—(1+a)¢+2(1+a)w¢—2(1+a}f w2 dy + af wdy
R R

0. (5.11)

We are now going to show the following Lemma:
Lemma5.2. The kernel of the operator (5.11) is trivial.

Proof of Lemma 5.2:
Integrating (5.11), we derivg, w¢ dy = 0 since otherwise there is an unbounded term. Further,
we get the relation

/¢dy+2/w2gbdy:0. (5.12)
R R
Multiplying (5.11) byw and integrating, we derive

/w2¢ dy = 0. (5.13)
R

Then from (5.12) we gef, ¢ dy = 0. Finally, going back to (5.11), all the nonlocal terms véanis
and by Theorem 5.2 in the special case- 0 we derivep = cyw’ for some constanty. Thus the
kernel of £* is trivial. [

Now we extend the consideration of the stability problem tfog linearized operator to the
conditionsr > 0 or; > 0 and prove Corollary 2.1.

Proof of Corollary 2.1:
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To emphasize the possible different behaviors i# 0 or 7, > 0, we consider the three cases
separately:
Proof of (1): 0 < 7 < 7y for somer, > 0 andr, = 0.
We first compute, using (3.5), (7.8),
aq 1

wl,e(o) - — GD1,7'>\ [@Z)Leuie + QSeul,Egbe} dz
-1

€

1 1

_a_elGDl,T/\(O’ 0) [wl,e(O) /

-1

ui  dx 4 25.(0) /

-1

U1 Qe dx} (14 O(e))

2
= —(llGDhT)\(O,O) [¢176(0)¢% RUJQ dy + 2\/ 1+ Oze/Rw(bE dy} (1 + 0(6))

2a1Gp, +2(0,0)v/1 + a fR wo. dy
1 + alGDMA(O, O>\/%—as fR w2 dy
2(1 + o) Jpwoe dy

V14tae
a1Gp, A(00) & Jzw? dy

Putting everything together, we compute
201+ a.) [ woedy

@Z)760u25:— {’2 2(1+0
1 ( ) 1, alaﬁoo —|—£2wa2dy ( ())

2(1 + a) Jp woe dy

o V1tae 2
1 + 6(11GD1 T)\(OO &-2 fR d

2(1+ae wa¢5dy 2 i 2
- 14+0 A in H2(£2,),
oy Jurdy (L Olet 7)) (%)
wherecs . = V3(11+a€ > 0, using formula (7.9). In particular, the factor

162
—2(1+ a)

+ V14
6ay GDI ST (070)63

This implies

1/}1,6(0> = -

(1+ O(e)). (5.14)

w? (1+0(e))

is bounded if Ré\) > 0. Therefore, by Theorem 5.3, both the stability and instighésult extend
fromr = 0toarangé < 7 < 7, (for some constant, > 0).

Proof of (2): We prove this case in two stages. In the first stage we onlwalldo be nonzero,
i.e. we assume = 0and0 < 7, < 1.

Similar to the derivation of (5.14), we have

52400) = G r(0,0) i3 (0) [ budy + 205,012, 0

\/%/Rwdy} (1+0(e))
= uzve(O)GDQ,n)\(Oa O)

\/117& [u2,6<o> /R bedy + 20, (0)E, / wdy}
which implies

q/; (O) w_l) GDQ Tl)\(o O u2e fR¢e
e GDQ (070) GD2 (O O) fe wady

2 (1+0(e)).

Thus we have

wQVE(O) _ GDQ,le\(O7 O) V 1+ Qe fR (be dy

2GD2,71>\(07 0) - GDQ (Oa O) GD2 (Oa 0)6552 fR w dy

(1+O(e)). (5.15)
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Finally, we get
GDQJ'I/\(O7O) f]R (be dy
QGDQJ-I,\(O, O) — GD2 (O, O) fR w dy
It is now essential to study the asymptotic behavior of theefion
GDQ T1/\(O7 O)
2GD2 T1/\<O O) GDQ (O7 O)
1
Gp,(0,0)
GDQ,-rl)\(OvO)
1

V1+711 Acoth Oy ’
coth(f2v/14+71 )

using the formulas (7.19), (7.20), (7.24). Thus we have
f(O7D2>:17 f<p7D2>_>O aSp—>oo,
f(p, D2) = £o00  asp — Fpo,

w(14+0(e)) in H*(Q,).

_a2u1762u276w2,6 = 2a,

f(mA, Dy) =

2 —

wherep, is the unique positive solution of

V' 1+ pocoth by = 2coth(far/1+ po).

We expand the eigenvalue problem (5.1 ) with respeet for |\ — po| = O(7), Thus we get
the expansions

S
Lo — Tl)\

0 "—)\1—'—)\27'1 —|—O(7'1)

f(Tl)\) = +f2+0(’7'1),

A p

O = w + ¢17'1 +O(1}) in H*(Q.),

which satisfy
2

(1+a) w?
14 C3767')\
2(1+ad Jpwirdy ,
1+c3.7A fR w? dy
"‘2045 fl + fR ¢5 dy 2(1 + as) fR w¢1 dng

po — TI Jpw dy L+ egemh [pw?dy

”“(‘ﬁ +h)w+ﬂ+%m%—
Po — TIA

+A¢1 — (]. + OZ5)¢1 + 2(]_ + o@wgbl —

_ (i_lo n )\1) (w+7d) +0(2)  in HAQ),

Comparing powers of;, we get

Fr 0 ==L 52+ a0
the eigenvalue
A= % + M+ Aom + O(72), (5.16)
where 1
/\1:_26%1‘117 Ny = Al f2)\2+f3¢1dy/\17
Po 2a.f1 fi fRUde

and the eigenfunction

14+ o, 2 .
b = w + ~ <1 -1 03767'/\6) w?r +O(r8) in H*(,). (5.17)
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In conclusion, the eigenvalue problem (5.1) is always Wbisti®r0 < 7, small enough, although
it is stable forr; = 0.

This behavior stands in marked contrast (1), where in thiereq < 7 < 7, (for somer, > 0)
the stability behavior is the same as fo& 0.

In the second stage we allow bothand 7; to be nonzero. We assurie< 7 < 7, for some
7o > 0 small enough and < m < 1.

Combining the formulas in the proofs of (1) and (2), it follewhat now we have the same
behavior as in (2) since the leading terms in (2) which arexa{:lﬂ:orderT—l1 dominate those in (1)
which are of exact order 1.

The analysis in the proof has been performed consideringrthitng eigenvalue problem for
e = 0 and then lettingy, — 0. The proof extends to the cafe< ¢ < 73 < 1in (5.1) by a
perturbation argument as in Theorem 3.1.

Remark 5.1. We expect that in the reginfe< m; < ¢ < 1and0 < 7 < 1, for somer, > 0 small
enough the system will be stable.

6. STABILITY |I: COMPUTATION OF THE SMALL EIGENVALUES

We now compute the small eigenvalues of the eigenvalue @nolfb.1), i.e. we assume that
A — 0ase — 0. We will prove that these eigenvalues satiafy= O(¢?). We emphasize that
the analysis in this section applies to b@8, u; ., u3,) and (S., vt ., ub ). Further, it includes
nonzero values for or 7, , i.e. we assume < 7 < 71y, wherery > 0 is a constant which is small
enough and may be chosen independert ahd0 < 7; < 1. Let us define

tn,e(z) = x(|2|)ue(2). (6.1)
Then it follows easily that
uy () = Uy (x) + e.st.  inH?* (). (6.2)

Taking the derivative of the system (2.1) w.yf.we compute

~ 11 ~/ ~/ /2 ~y 2 ~r
ay e — Uy + 28y Uy + eSiuy  — aglly uh  — 2€anuy U Uy = €.S.1. (6.3)

Here’ denotes derivative w.r.t. the variable of the correspogdimction, i.e. it means derivative
w.r.t. z for S, andus ., and w.r.t.y for u, .
Let us now decompose the eigenfunction ., ¢., 1») as follows:

G = atly + O (6.4)
wherea© is a complex number to be determined and

o LK. = span(i, } C H3 (—1, 1) |

€ €

We decompose the eigenfunctign,. as follows:

0 1
wl,s - aeng + ¢17e7
wherey) . satisfies
{ DlAw?,e - %w?,euie - 2%S€u176a/1,e = 7-)\61/}?,57 (6 5)

P (£1) =0
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andyy, is given by

DlAwig — %@bfeu%e - Q%Sgul,ggbi = T)\E@Z)ie,
) (6.6)
1{6 (£1) =0.
Similarly, we decompose the eigenfunctiog,. as follows:
g = aPy, + Py,
wherey)) . satisfies
D2A’l/}g7e - wg,e + %ul,eulﬁwgg _'_ %ﬂ/176u%75 = TlAﬁw(2)767
) (6.7)
U (£1) =0
andyy, is given by
DQszl,e - Q/JQL,E + %Ul,euzewzl,e + %@LU%G = Tl)\ewiga
) (6.8)
2{6 (£1) =0.

Note thaty; . and, . can be uniquely expressed in termsgofby solving the first and third
equation using the Green'’s functio@s), .. andGp, -, defined in (7.8) and (7.23), respectively,

wl,s = aew?,e + ¢ie - a’ETYl/,T/\6 [all,e] + TYl/,T/\6 [gbeL] (69)

w2,6 = aewg,ﬁ + 1/};:6 = aGTQI,Tlx\e [all,ﬁ] _'_ T2/,T1)\5 [(bi_] (610)
Using the Green’s functio&'p, defined in (7.1) we comput&/ near zero. We get

eS:(ey) — €5¢(0)

1/e
—aie [ (80— 2) = SG-) + Hpy (e e2) = Hi0.65)| e (e2)

1/e
+O(€[y|?)
y 1/e
= all; / SE(EZ)“%,G(GZ) dz + a1€29 HDl,zx(Oa O)SE(GZ)U%7€(€Z) dz + O(€3|y|2)
1 —1/e
_m(l+a) c / Y[ :
-2 50 D { 2)dz — 2)dz| +O(Ey)
ar(14 a.)? e [/ } 30,12
_— -\ TC dZ — 36 + O € ) 611
S0) D /s % ! b o

where sgn is the sign function (sgn = 1 if z > 0, sgn(0) = 0, sgn(z) = —1if x < 0.)
Similarly, we compute using the Green’s function, .. defined in (7.8) that

w?,e(ey) - ¢?,e(0)
1
= —a1€/ [GD177A5(€y7 62) - GDl,T)\e (0, 62)]236u176(2)€ﬂ,176(62) dz + O(€3|y|2)
Qe

eal —i— 046

/ e(ly — 2| — |2])zww' dz

2 Hp, ..(0,0) ey/zww’dz (14 0((r + M)\ + Olely]). (6.12)
—_——

R

=0
Note that from (6.5), we derive

U1 (0) = O(e + 7|Ad]). (6.13)
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Adding the contributions from (6.11) and (6.12), we get
d
dy [Se(ey) — Se(0)] — [¢h1,e(ey) — 11,¢(0)]

6@1(1 -+ 046)2

= € (Hp,.42(0,0) + Hp, 4:(0,0)) y (L+O(elyl + (T +71)[Ac])

Se(0)
__@3a(l+a)
=D, 50 VU FOEy+ T+ (6.14)
Similarly, we from (6.7) we get
¥3.(0) = O(e + 1| Ad]). (6.15)

UsingGp,, we compute that
d
& [uz,e(ey) — un,(0)] = [Y2.c(ey) — 12,(0)]
6us . (0)(1 + a)
Se(0)

= ¢ (Hpy,(0,0) + Hp, 2:(0,0)) y (14 O(ely[ + (7 + m)[A))

2 3(1 c
__< w uge(O) Os(coth Oy — tanh ;) y (1 + O(e|ly| + (7 + 71)|Ae])), (6.16)
D2 Se(0) ’
wheref; = \/_ 1=1,2.
Suppose thap. satisfies|¢c||2q.) = 1. Then|a| < C.

Substituting the decompositions©f ., ¢ andv, . into (5.2) and subtracting (6.3), we have
aeuie (V1,e — 652)
—a2a9uy (U (wg,g — 57/2,6)
HOD)" = O+ 2un, Sy + Ui Wi, — 200, s Wy — 2907 U — AP
= \a‘il} .. (6.17)
Let us first compute, using (6.13) and (6.14),
Iy = a‘ui (Y1, — €5))

= a0 (€ oyu(y)3 (14 OCelyl + -+ m)IA) 6.18)

Similarly, we compute from (6.15) and (6.16),

P € !
Iy == —a2axuy cus (wg,g — 5“2,6)

= (56) u3 . (0)6(coth 6 — tanh 6o)yw(y)3 (1 + O(ely| + (7 + 1) [Ac])) (6.19)
We now estlmate the orthogonal part of the eigenfunctiorctvts given by(T7 _, o, ¢, T5 ., 6F).
Expanding, we get
Lo = J1,e T g2,
where
lg1.ellz20.) = O(€* + €(7 + )| Ad])-
and
g2 L CEL.
By Proposition 4.1 we conclude that

162 lz2(0) = O(€* + € + ) A (6.20)
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This implies that
I3 2, 0 [l 2(2) = O(€* + e(7 + 1) [A]) (6.21)
and
15,75, 0c l2(0) = O(€* + €7+ 1)[A]) (6.22)
Multiplying the eigenvalue problem (5.2) hy and integrating, we get

|hS:/(]1+]2)w,dy
R

_ 2, ca1 (14 o)

5263 (L4 O+ (4 m)A) [ vu)u't) dy

R

2 €2a2

(&) U3,0(0)02(coth 6 — tanh 6)3 (1 + O(e + (T+Tl)|>\e|))/Ryw(y)w'(y) dy

_ _€2a5(§6>2 {7.2a1(1 + Cte)fe + 18@210%5( )Hz(cothez . tanh@z)] (1 + O(e))
Dy D,

Here we have used the elementary computations

9
—d dy = —24
/Ryw (g / v /8005h6y Y ’
Jorotonitas == [ 5 dn = [ ez ar=-3
w — - _3
Ry Ay = 8cosh4y 4

Further, the contributions to |.h.s. which coming from agbnal part of the eigenfunction can be
estimated byD (€3 + ¢(7 + 71)|\|), using (6.20), (6.21), (6.22).
Further, we compute

r.h.s.= \.a° /R(w')2 dy (1+ O(e))

=1.2aA\ (1 +0(1)).
Note that in the previous calculation
(T +711) || = O(e)
and thus the error terms involvingor 7; can be neglected. Therefore

6ai (1 + a.) 15a4 2
)\5 - - €

We summarize our result on the small eigenvalues in theviatig theorem.

(0)82(coth B, — tanh 92)} + o(€?).

Theorem 6.1. The eigenvalues of (5.1) with — 0 satisfy

1 1
Ae = —€262 {6a1(D+ 0‘6)56 + 15)@2 u3 (0)6(coth B, — tanh 92)} + o(€?). (6.23)
1 2

In particular these eigenvalues are stable.

This completes the proof of Theorem 2(2.
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7. APPENDIX. TWO GREEN'S FUNCTIONS

Let Gp, (z, z) be the Green’s function of the Laplace operator with Neunasumdary condi-
tions:
DlGDl,mm(:L‘yz) - %+5Z($) =0 in (—1,1),

/1 Gp,(z,2z)dx =0, (7.1)

1

Gp,+(—1,2) = Gp, »(1,2) = 0.

Hered, (x) denotes the Dirac delta distribution concentrated at thet po
We can decompos@p, (z, z) as follows

1
GD1<x7Z> :_Q—Q‘x_d —le(l',Z) (72)
whereHp, is the regular part of7 p, .
Written explicitly, we have
o _D%[%_(zzl)z_(l;z)z]’ —l<z<z<1, 73
D\, %) = ) 5 .
— 5 [%—@—%], —l<z<z<l
By simple computations, we have
1 1 22 22
H =—— |4+ =+ . 7.4
Forz £ z, we calculate
V.V.Gp,(z,z) = 0.
Further, we have
;—E, —l<z<z<l,
V.V.Gp,(z,2) =0, V.Gp,(x,z)= (7.5)
2l l<z<z<l
1
We further have
< vaD1 (xwz)‘x:z >= _vaD1 (33', Z>|x:z = Lv (76)
2D,
where< - > denotes the average of the limits from both sides.
Taking another derivative, we get
1
G Tx 07 0) = a7 )
D17 ( ) 2D1
Gp, 2:(0,0) = 0.
Note that in particular
1
Gp,.22(0,0) +Gp, 2.(0,0) = — > 0. (7.7)
’ 2D,
Next we define
{ D\Gp, rrzz(2,2) — TAGD, wr(2,2) + 6,(x) =0 in(—1,1),
(7.8)
GD1,T>\,:I?(_]-7 Z) = GDl,T)\,a:(la 2) = 0.

We calculate explicitly

GDLT)\(xa Z)



EXISTENCE AND STABILITY OF A SPIKE IN THE CENTRAL COMPONENT 2

4 0,
cosh|0; VTA(1 + z)] cosh|0; VTA(1 — 2)],
V7T A sinh(20,v/7)) B1VTA ) B1VTA )
—-l<z<z<,
— ) (7.9)
1
cosh[01VTA(1 — z)] cosh|0; VTA(1 + 2)],
Vrxsinh(2o, /oy OOV TAQL = o) coshlf VT + 2)
. —-l<z<z <1,
where )
0, = . 7.10
We can decompos@p, -\(z, z) as follows
1
Gp, iz, 2) = 2Dl|ac—z| Hp, (z, 2) (7.11)
whereHp, ,, is the re~gular part o7 p, ;.
Closely related, leGp, ,1(x, z) be the Green’s function given by
DléD17T,\7x(x, z) — T/\C?Dlj)\(x, z) — % +0,(z)=0 in(-1,1),
. _ (7.12)
GDl,’T)\,J?(_]—) Z) — GDl,T)\,ac(]-7 Z) =0.
We calculate explicitly
GDl,T)\(x’ 2)
0, 1
cosh|0;VTA(1 4+ x)|cosh|, VTA(1l — 2)] — —, —-1l<ax<z<1,
GETERGY 01V/7A(L + )] cosh[f VAL = 2)] = 5 <
1
1
cosh|0;VTA(1 — x)|cosh| VTA(1+ 2)] — —, —-1<z<zx<1,
Srahtag 7 O = )] coshlBn VAL + 2)) - <
) (7.13)
We can decompos@p, -\(z, z) as follows
~ 1 1
Gp,ra(z,2) = 2—D1 T —z| — x Hp, \(z, 2) (7.14)

whereHp, ;, is the regular part O@Dlﬂ. Then an elementary computation shows that

Hp,(z,2) — Hp, (2, 2) — | S ClTAl (7.15)
uniformly for all (z, z) € £ x Q. For the first two derivatives we have
|\V[Hp, (x,2) — Hp, A(z, 2)]| < C|TA| (7.16)
uniformly for all (z, z) € 2 x © and
|V?[Hp, (2, 2) = Hp, (7, 2)]| < C|7A| (7.17)

uniformly for all (z, z) € Q x 2, whereV in (7.16) and (7.17) can mean derivative w.r.tztor z.
Further, letGp,(x, z) be the following Green’s function:

DoGpyan(,2) = Gp,(,2) + 0.(x) =0 in(=1,1),
(7.18)
GDME(_L z) = GDz,z(la z) = 0.
We calculate
51nh(249 Sinh(202) cosh[fy(1 + )] cosh[fp(1 — 2)], —1<z<z<1,
Gpy(w,2) = (7.19)
sinh(292) cosh[fo(1 — x)] cosh[fy(1 + 2)], —-1<z<wz <1,
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where
1
0, = . 7.20
We set
0
Kp,(Jv = 2]) = e (7.21)

to be the singular part @' p, (z, ). Then we decompose
Gp,(z,2z) = Kp,(x,z) — Hp,(x,z), (x,z) € Qx Q.
Note thatG p, is C> for (z, z) € QxQ\{z = z} andHp, isC> for all (z, z) € Q2 x Q. Explicitly,
we calculate
03
Hp, ..(0,0) = —52 coth 6,

03
Hp,..(0,0) = Etanh 0.

Note that in particular

93
Hp, 22(0,0) + Hp, .-(0,0) = 52(— coth 6y + tanh 6) < 0. (7.22)

Closely related, le€p, -, 1(z, 2) be the Green’s function defined by
{ DyGpyrnee(,2) — (L + 1A Gpy ra(x,2) +6,(z) =0 in(—1,1),

GDQ,Tl)\,m(_la Z) = GDQ,’Tl)\,m(lv Z) = O
We calculate explicitly

( \/Hn)\smffwm/l”l)\) cosh[0av/1 + T A(1 4 z)] cosh[fa/1 + T A(1 — 2)],

—l<ax<z<l,

¢1+T1Asinf?(2292¢1+T1A) cosh[0av/1 + T A(1 — z)] cosh[fav/1 + T A(1 + 2)],

—-l<z<z <],

(7.23)

GDQJ'I)\(:C’ Z) =

\

(7.24)
We can decompos@&p, ., (z, z) as follows

Gpy,na(z,2) = Kp,(|Jx — 2|) = Hp, na(x, 2), (7.25)
whereHp, ,,» is the regular part ofp, ;,». Then an elementary computation shows that
|Hp, (7, 2) — Hp, ma(7, 2)| < Clmi Al (7.26)
uniformly for all (z, z) € 2 x © and
|V[Hp,(x, 2) — Hp, na(x, 2)]| < C|mA| (7.27)
uniformly for all (z, z) € Q x Q
IV2[Hp,(x,2) — Hp,ra(z, 2)]| < Clm| (7.28)

uniformly for all (z, z) € Q x 2, whereV in (7.27) and (7.28) can mean derivative w.r.tztor z.
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