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ABSTRACT. We study a three-component consumer chain model which is based on Schnakenberg
type kinetics. In this model there is one consumer feeding onthe producer and a second consumer
feeding on the first consumer. This means that the first consumer (central component) plays a hybrid
role: it acts both as consumer and producer. The model is an extension of the Schnakenberg model
suggested in [12, 27] for which there is only one producer andone consumer. It is assumed that both
the producer and second consumer diffuse much faster than the central component.

We construct single spike solutions on an interval for whichthe profile of the first consumer is
that of a spike. The profiles of the producer and the second consumer only vary on a much larger
spatial scale due to faster diffusion of these components. It is shown that there exist two different
single spike solutions if the feed rates are small enough: a large-amplitude and a small-amplitude
spike.

We study the stability properties of these solutions in terms of the system parameters. We
use a rigorous analysis for the linearized operator around single spike solutions based on nonlo-
cal eigenvalue problems. The following result is established: If the time-relaxation constants for
both producer and second consumer vanish, the large-amplitude spike solution is stable and the
small-amplitude spike solution is unstable. We also deriveresults on the stability of solutions when
these two time-relaxation constants are small.

We show anew effect: if the time-relaxation constant of the second consumer is very small, the
large-amplitude spike solution becomes unstable. To the best of our knowledge this phenomenon has
not been observed before for the stability of spike patterns. It seems that this behavior is not possible
for two-component reaction-diffusion systems but that at least three components are required.

Our main motivation to study this system is mathematical since the novel interaction of a spike in
the central component with two other components results in new types of conditions for the existence
and stability of a spike.

This model is realistic if several assumptions are made: (i)cooperation of consumers is prevalent
in the system, (ii) the producer and the second consumer diffuse much faster than the first consumer,
and (iii) there is practically an unlimited pool of producer.

The first assumption has been proven to be correct in many types of consumer groups or pop-
ulations, the second assumption occurs if the central component has a much smaller mobility than
the other two, the third assumption is realistic if the consumers do not feel the impact of the limited
amount of producer due to its large quantity.

This chain model plays a role in population biology, where consumer and producer are often
called predator and prey. This system can also be used as a model for a sequence of irreversible
autocatalytic reactions in a container which is in contact with a well-stirred reservoir.
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1. INTRODUCTION

We consider a reaction-diffusion system which serves as a cooperative consumer chain model. It
takes into account the interaction of three components, onepure producer, one pure consumer and
a central component which acts as both producer and consumer. These three components supply
each other in a linear chain. This model is an extension of theSchnakenberg model introduced in
[12, 27] which possesses only one producer and one consumer.In the model under investigation
we have a central component which plays a hybrid role: it consumes the pure producer and it is
consumed by the second consumer. It is assumed that both the producer and second consumer
diffuse much faster than the central component.

The system can be written as follows:






τ
∂S

∂t
= D1∆S + 1− a1

ǫ
Su21, x ∈ Ω, t > 0,

∂u1

∂t
= ǫ2∆u1 − u1 + Su21 − a2u1u

2
2, x ∈ Ω, t > 0,

τ1
∂u2

∂t
= D2∆u2 − u2 +

1

ǫ
u1u

2
2, x ∈ Ω, t > 0,

(1.1)

whereS andui denote the concentrations of the producer (food source) andthe two consumers,
respectively. Here0 < ǫ2 ≪ 1 and 0 < D1, 0 < D2 are three positive diffusion constants.
The constantsa1, a2 (positive) for the feed rates andτ, τ1 (nonnegative) for the time relaxation
constants will be treated as parameters and their choices will distinguish between stability and
instability of steady-state solutions.

We choose as domain the intervalΩ = (−1, 1) and consider Neumann boundary conditions

dS

dx
(−1, 0) =

dS

dx
(1, 0) = 0,

du1

dx
(−1, 0) =

du1

dx
(1, 0) = 0,

du2

dx
(−1, 0) =

du2

dx
(1, 0) = 0.

(1.2)
These type of boundary conditions are also called “reflective” boundary conditions and model a
system which does not have exchange to the outside world by permeation through the boundary.

Remark 1.1. Our choice of diffusion constants is essential for the type of spike solutions under
consideration. We need to have a very small diffusion constant for the central component to get a
spike and much larger diffusion constants for the other two components resulting in profiles on the
order unity scale only.

Remark 1.2. The choice of the coefficients−a1
ǫ
, 1, −a2, 1

ǫ
of the nonlinear reaction terms in

(1.1) allows us to have spiky solutions for which all three components have an amplitude of order
O(1) as ǫ → 0. Other choices of parameters in the model are possible, but they would result in
amplitudes which are not of orderO(1). In that case, a rescaling of amplitudes is possible which
will lead to the scaling we used in (1.1) and amplitudes of order O(1). For this reason we have
used the system in the form (1.1) as our starting point.

The interaction of a spike in the central component of a consumer chain model with two other
components, one preceding it and the other succeeding it, results in new types of conditions for
the existence and stability of a spike. This was the main motivation for us to study this problem in
detail.
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We first prove the existence of single spike solutions in an interval. It is shown that such a pattern
exists if the feed ratesa1, a2 are small enough. We prove that there are two such spiky solutions,
one with a large-amplitude spike and the other with a small-amplitude spike.

We show that the large amplitude solution can be stable forτ1 = 0, whereas the small amplitude
solution is always unstable. However, for0 < ǫ≪ τ1 ≪ 1 the large amplitude solution is unstable
due to an eigenvalue of orderO( 1

τ1
) which has a positive real part (see Corollary 2.1).

We expect that for0 < τ1 ≪ ǫ ≪ 1 the system will be stable, i.e. the instability will vanish if
the time-relaxation constantτ1 of the last component is very small compared to the square root of
the diffusion constant of the spike component.

This is anew effectwhich to the best of our knowledge has not been observed before for the
stability of spike patterns. It seems that this behavior is not possible for two-component reaction-
diffusion systems but that at least three components are required.

We use a rigorous analysis for the linearized operator around a single spike solution based on
nonlocal eigenvalue problems.

Models involving a chain of components play an important role in biology, chemistry, social
sciences and many other fields. Well-known examples includeconsumer chains, predator-prey
systems, food chains, genetic signaling pathways, autocatalytic chemical reactions and nuclear
chain reactions. For food chains it is commonly assumed thatthere is only limited supply of
resources which leads to a saturation effect and the solutions remain bounded for all times. On the
other hand, for autocatalytic chemical or nuclear chain reactions the interaction of the components
in the chain has a self-enforcing effect and the solutions can grow and become unbounded. In
our model the cooperation of consumers is accounted for by superlinear nonlinearities. In general
we do not know the exact shape of the nonlinearities, which will depend on more details of the
application considered, and so for simplicity we choose quadratic nonlinearities. This choice can
be motivated for chemical reaction systems by the mass balance law in the case of binary reactions.
It can also be derived using mathematical principles by expanding a general nonlinearity for small
amplitudes around zero and will then play a role in understanding solutions with small amplitudes.

In this respect, it is interesting to consider the work of Bettencourt and West [2] who collected
extensive empirical data on typical activities in cities such as scientific publications, patents, GDP,
the number of educational institutions but also on crime, traffic congestion or certain diseases indi-
cating that they grow at a superlinear rate with population size. They established a universal growth
rate which applies to most of the activities in major cities independent of geographic location, eth-
nicity of the population or cultural background which correponds to a power law with power of
around 1.15. Although this is less than the quadratic power law considered in this paper we expect
that many of our results will not change qualitatively if we replace the quadratic law by this smaller
power growth. The general explanation behind this superlinear growth in societies is that they are
able to attract those people which will be most suitable to interact with the pre-existing population
successfully.

In our model we further assume that the limited amount of resources is not felt which is realistic
if resources are plentiful or if consumption is practised wisely to use the remaining supplies in a
sustainable way.

We refer to the recent work [18] in which the stability of foodchains was analyzed under the
assumption that supply of resources is limited.

In biological populations consumer and producer are often called predator and prey. For more
background on predator-prey models we refer to [21]. Our system can also be used as a model
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for a sequence of irreversible autocatalytic reactions in acontainer which is in contact with a well-
stirred reservoir. Similar models have been suggested, seee.g. Chapter 8 of [29] and the references
therein.

Our main results are generalizations of similar statementsfor the Schnakenberg model. Let
us briefly recall some related results: In [15, 30] the existence and stability of spiky patterns on
bounded intervals is established. In [39] similar results are shown for two-dimensional domains.
In [1] it is shown how the degeneracy of the Turing bifurcation [28] can be lifted using spatially
varying diffusion coefficients. In [22, 23, 24] spikes are considered rigorously for the shadow
system.

For a closely related system, the Gray-Scott model introduced in [13, 14], some of the results
are the following: In [4, 5, 6, 7] the existence and stabilityof spike patterns on the real line is
proved. The two-dimensional case is studied in [32, 33, 36, 37]. In [16, 17] different regimes for
the Gray-Scott system are considered and the existence and stability of spike patterns in an interval
is shown. In [25, 26] a skeleton structure and separators forthe Gray-Scott model are established.

Other “large” reaction diffusion systems (more than two components) with spiky patterns in-
clude the hypercycle of Eigen and Schuster [8, 9, 10, 11, 34, 35], and Meinhardt and Gierer’s
model of mutual exclusion and segmentation [20, 40, 19]. These results have been summarized
and reviewedv in [42].

The paper [41] is a companion to the current one. In that work the diffusion constants are chosen
as follows: the diffusivity for the first component it is muchlarger than for the second, and for the
second it is much larger than for the third. Results on the existence and stability of a spiky cluster
solution have been derived. That solution has a spike for thelast component which acts on a very
small scale, for the central component there are two partialspikes glued together acting on an
intermediate scale, and for the first component there is a profile which changes on the order unity
scale only. This spiky solution can be stable, but to achievestability a fine balance is required
between the three components.

The structure of this paper is as follows:
In Section 2, we state and explain the main theorems on existence and stability.
In Sections 3 and 4, we prove the main existence result, Theorem 2.1. In Section 3, we compute

the amplitudes of the spikes. In Section 4, we give a rigorousexistence proof.
In Sections 5 and 6, we prove the main stability results, Theorem 2.2 and Corollary 2.1. In

Section 5, we derive a nonlocal eigenvalue problem (NLEP) and determine the stability of the
O(1) eigenvalues. In Section 6, we study the stability of theo(1) eigenvalues.

Throughout this paper, the letterC will denote various generic constants which are independent
of ǫ, for ǫ sufficiently small. The notationA ∼ B means thatlimǫ→0

A
B

= 1 andA = O(B) is
defined as|A| ≤ C|B| for someC > 0.

2. MAIN RESULTS: EXISTENCE AND STABILITY OF A SINGLE SPIKE SOLUTION

We now state the main results of this paper on existence and stability. We first construct station-
ary spike solutions to (1.1), i.e. spike solutions to the system







D1∆S + 1− a1

ǫ
Su21 = 0, x ∈ Ω, t > 0,

ǫ2∆u1 − u1 + Su21 − a2u1u
2
2 = 0, x ∈ Ω, t > 0,

D2∆u2 − u2 +
1

ǫ
u1u

2
2 = 0, x ∈ Ω, t > 0,

(2.1)

with the Neumann boundary conditions given in (1.2).
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We will construct solutions of (2.1) which are even:

S = S(|x|) ∈ H2
N (Ω),

u1 = u1(|y|) ∈ H2
N(Ωǫ), y =

x

ǫ

u2 = u2(|x|) ∈ H2
N(Ω),

where
H2

N(Ω) =
{
v ∈ H2(Ω) : v′ (−1) = v′ (1) = 0

}
,

Ωǫ =

(

−1

ǫ
,
1

ǫ

)

,

H2
N(Ωǫ) =

{

v ∈ H2(Ωǫ) : v′
(

−1

ǫ

)

= v′
(
1

ǫ

)

= 0

}

.

Before stating the main results, we introduce some necessary notations and assumptions. Letw
be the unique solution of the problem

{
wyy − w + w2 = 0, w > 0 in R,

w(0) = maxy∈R w(y), w(y) → 0 as|y| → +∞.
(2.2)

The ODE problem (2.2) can be solved explicitly andw can be written as

w(y) =
3

2 cosh2 y
2

. (2.3)

We now state the main existence result.

Theorem 2.1. Assume that

D1 = const., ǫ≪ 1, D2 = const. (2.4)

LetGD1
andGD2

be the Green’s functions defined in (7.1) and (7.18), respectively. Assume that

a21a2 <
|Ω|2
4
G2

D2
(0, 0)− δ0. (2.5)

(Expressed more precisely, (2.4) means thatǫ is small enough; (2.5) means the following: there
are positive numbersδ0 andǫ0 such that (2.5) is valid for allǫ with 0 < ǫ < ǫ0.)

Then problem (2.1) admits two “single-spike” solutions
(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) and (S

l
ǫ, u

l
1,ǫ, u

l
2,ǫ) with the following properties:

(i) all components are even functions.
(ii)

Ss,l
ǫ (x) = c

s,l
1,ǫGD1

(x, 0) +O(ǫ), (2.6)

u1,ǫ(x) = ξs,lǫ w

(

|x|
√

1 + α
s,l
ǫ

ǫ

)

+O(ǫ), (2.7)

u2,ǫ(x) = c
s,l
2,ǫGD2

(x, 0) +O(ǫ), (2.8)

wherew is the unique solution of (2.2),

(ξlǫ)
2 =

|Ω|2 +
√

|Ω|4 − 4a21a2|Ω|2G−2
D2
(0, 0)

72a21
+O(ǫ), (2.9)

(ξsǫ )
2 =

|Ω|2 −
√

|Ω|4 − 4a21a2|Ω|2G−2
D2
(0, 0)

72a21
+O(ǫ), (2.10)
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c
s,l
1,ǫ =

1 + αs,l
ǫ

ξ
s,l
ǫ GD1

(0, 0)
+O(ǫ), c

s,l
2,ǫ =

√

1 + α
s,l
ǫ

6ξs,lǫ G2
D2
(0, 0)

+O(ǫ), (2.11)

whereαs,l
ǫ is given by (3.8).

(iii) If ǫ is small enough and

a21a2 >
|Ω|2
4
G2

D2
(0, 0) + δ0.

for someδ0 > 0 independent ofǫ (in the same sense as in (2.5)) then there are no single-spike
solutions which satisfy (i) – (ii).

Remark 2.1. We choose to keep the factor|Ω| in the estimate (2.5) although of course in our
scaling we have|Ω| = 2.

Theorem 2.1 will be proved in Sections 3 and 4.
The second goal of this paper is to study the stability properties of the single-spike solution

constructed in Theorem 2.1. We now state our main results on stability.

Theorem 2.2. Assume that (2.4) and (2.5) are satisfied. Suppose thatτ = τ1 = 0.
Then we have the following:
(1) (Stability) The large-amplitude solution(Sl

ǫ, u
l
1,ǫ, u

l
2,ǫ) is linearly stable. There is a small

eigenvalue of exact orderO(ǫ2) with negative real part which is given in (6.23).
(2) (Instability) The small-amplitude solution(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) is linearly unstable. There is a large

eigenvalue of exact orderO(1)with positive real part. There is also small eigenvalue of exact order
O(ǫ2) with negative real part which is given in (6.23).

For the case ofτ andτ1 positive and small we have the following result:

Corollary 2.1. Assume that (2.4) and (2.5) are satisfied.
(1) (Stability/Instability) There exists a constantτ0 > 0 independent ofǫ such that for0 ≤ τ ≤ τ0

and τ1 = 0 the stability properties of the large-amplitude solution(Sl
ǫ, u

l
1,ǫ, u

l
2,ǫ) and the small-

amplitude solution(Ss
ǫ , u

s
1,ǫ, u

s
2,ǫ) are the same as in the caseτ = τ1 = 0. There is also small

eigenvalue of exact orderO(ǫ2) with negative real part which is given in (6.23).
(2) (Instability) There exists a constantτ0 > 0 independent ofǫ such that for0 ≤ τ ≤ τ0 and

0 < ǫ ≪ τ1 ≪ 1 for both the large-amplitude solution(Sl
ǫ, u

l
1,ǫ, u

l
2,ǫ) and the small-amplitude

solution(Ss
ǫ , u

s
1,ǫ, u

s
2,ǫ) there is an eigenvalue

λǫ =
ρ0

τ1
+O(1)

with corresponding eigenfunction

φǫ = w +O(τ1).

Thus both solutions(Sl
ǫ, u

l
1,ǫ, u

l
2,ǫ) and(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) are unstable. There is also small eigenvalue

of exact orderO(ǫ2) with negative real part which is given in (6.23).

We would like to make a few remarks on the stability results.

Remark 2.2. This result can be interpreted as follows: to have this type of spiky solution, the feed
ratesa1 anda2, in particular their combinationa21 a2, must be small enough. Otherwise the food
sourceS and the hybridu1 will not be able to sustainu1 andu2, respectively. Instead, among
others, one of the following three behaviors can happen:
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(i) The consumeru2 dies out resulting in the long-term limitu2,ǫ = 0 and a spike for the
two-component Schnakenberg model remains for which only the componentsSǫ andu1,ǫ are non-
vanishing. We get the same solution by settingαǫ = 0 in Theorem 2.1. This solution has been
analyzed in[15].

(ii) The componentu2 dies out andu1, S will both approach positive constants. It can easily be
seen that we have

S =
a1

ǫ
, u1 =

ǫ

a1
.

(iii) The components approach a positive homogeneous steady state which solves

S =
ǫ

a1u
2
1

, u21 −
ǫ

a1
u1 + a2ǫ

2 = 0, u2 =
ǫ

u1
.

Remark 2.3. In the proof of Corollary 2.1 we expand the eigenvalue and eigenfunction further,
see (5.16) and (5.17).

Remark 2.4. We do not rigorously study the dynamics of this model. Instead we analyze the
stability or instability of the steady states. Then the dynamics can be understood locally near
the equilibrium points by using the fact that the unstable eigenfunctions will grow in amplitude,
whereas the stable eigenfunctions will decay to zero as timeprogresses.

Next we plot the large-amplitude and small-amplitude spikesolutions.
Figure 1 shows the spatial profiles of the large-amplitude spike (Sl

ǫ, u
l
1,ǫ, u

l
2,ǫ), i.e.u1 is large.

 0
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Figure 1. The spatial profiles of the large-spike steady state(Sl
ǫ, u

l
1,ǫ, u

l
2,ǫ) for parametersD1 =

10, ǫ2 = 0.01, D2 = 1, a1 = 1, a2 = 0.04.

Figure 2 shows the spatial profiles of the small-amplitude spikes(Ss
ǫ , u

s
1,ǫ, u

s
2,ǫ), i.e.u1 is small.
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Figure 2. The spatial profiles of the small-spike steady state(Ss
ǫ , u

s
1,ǫ, u2,ǫ) for parameters

D1 = 10, ǫ2 = 0.01, D2 = 1, a1 = 1, a2 = 0.04.

Here by the choice of parameters the amplitudes of the three components are very different.
We will rigorously derive the existence result Theorem 2.1 in Sections 3 and 4. The stability

results Theorem 2.2 and Corollary 2.1 will be proved in Sections 5 and 6.

3. EXISTENCE I: COMPUTATION OF THE AMPLITUDES IN LEADING ORDER

In this section and the next, we will show the existence of spike solutions to (2.1) and prove
Theorem 2.1. We begin by computing the amplitudes in leadingorder and will give a rigorous
existence proof in the next section.

Proof of Theorem 2.1: We will show the existence of spike solutions to (2.1) which in leading
order are given by (2.6) – (2.8). More precisely, we choose the second component of the approxi-
mate solution as follows:

ũ1,ǫ(x) = ξǫw

( |x|
√
1 + αǫ

ǫ

)

χ(|x|) (3.1)

for some positive constantsξǫ andαǫ. Hereχ is a smooth cutoff function which satisfies

χ ∈ C∞
0 (−1, 1), χ(x) = 1 for |x| ≤ 5

8
, χ(x) = 0 for |x| ≥ 3

4
. (3.2)

The main reason for using the cut-off function (3.2) in the ansatz (3.1) is that Neumann boundary
conditions are satisfied exactly.

We set

y =
x

ǫ
,

and consider the limit

ǫ → 0.

We substitute (2.7) into the second equation of (2.1) and, using (2.2), we note thatw
(
y
√
1 + αǫ

)

satisfies

wyy − (1 + αǫ)w + (1 + αǫ)w
2 = 0. (3.3)

Comparing coefficients between the second equation and (3.3) gives

αǫ = a2u
2
2,ǫ(0) +O(ǫ), (3.4)

ξǫ =
1 + αǫ

Sǫ(0)
+O(ǫ). (3.5)
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We remark that in leading orderSǫu
2
1,ǫ agrees withSǫ(0)u

2
1,ǫ sinceu1,ǫ decays rapidly away from

0.
Substituting (2.7) into the third equation of (2.1) and using (2.2), we get

u2,ǫ(x) = GD2
(x, 0)u22,ǫ(0)

ξǫ√
1 + αǫ

ˆ

R

w(y) dy +O(ǫ),

whereGD2
has been defined in (7.18). This implies

u2,ǫ(0) =

√
1 + αǫ

GD2
(0, 0)ξǫ

´

w(y) dy
+O(ǫ), (3.6)

u2,ǫ(x) =
GD2

(x, 0)
√
1 + αǫ

G2
D2
(0, 0)ξǫ

´

w(y) dy
+O(ǫ). (3.7)

In the next step, we will derive two conditions, by substituting (3.1), (3.6) with (3.4), (3.5) in
(2.1). Then we will solve these two conditions to determineαǫ andξǫ.

Integrating the first equation in (2.1), using the Neumann boundary condition and balancing the
last two terms, we get the first condition

|Ω| = a1Sǫ(0)
ξ2ǫ√
1 + αǫ

ˆ

R

w2(y) dy +O(ǫ).

From (3.4), we compute

αǫ =
a2(1 + αǫ)

ξ2ǫG
2
D2
(0, 0)(

´

R
w(y) dy)2

+O(ǫ).

Summarizing these results,(αǫ, ξǫ) solve the system

αǫ =
a2

ξ2ǫG
2
D2
(0, 0)(

´

R
w(y) dy)2 − a2

+O(ǫ), (3.8)

|Ω| = a1ξǫ

ˆ

R

w2(y) dy
√
1 + αǫ +O(ǫ). (3.9)

Using
ˆ

R

w(y)2 dy =

ˆ

R

w(y) dy = 6,

the system (3.8), (3.9) can be rewritten as a quadratic equation in ξ2ǫ

362a21GD2
(0, 0)2ξ4ǫ − 36GD2

(0, 0)2ξ2ǫ |Ω|2 + a2|Ω|2 = O(ǫ)

which has the two solutions

(ξs,lǫ )2 =
|Ω|2 ±

√

|Ω|4 − 4a21a2|Ω|2GD2
(0, 0)−2

72a21
+O(ǫ) (3.10)

under the condition

a21a2 <
|Ω|2
4
GD2

(0, 0)2.

The last condition states that, all other constants being equal, the combinationa21a2 must be small
enough.

This implies that under the condition

a21 a2 <
|Ω|2
4
GD2

(0, 0)2 − δ0 for someδ0 > 0

there are two solutions forξǫ which satisfy

0 < ξsǫ <
|Ω|2
72a21

< ξlǫ.
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On the other hand, if

a21 a2 >
|Ω|2
4
GD2

(0, 0)2 + δ0 for someδ0 > 0,

then there are no such solutions.
Resulting from the two solutionsξsǫ andξlǫ there are also two solutions forαs

ǫ andαl
ǫ which are

computed from (3.8).
Now we show that

αl
ǫ < 1 andαs

ǫ > 1. (3.11)

Substituting (2.10) and (2.9) in (3.8), we get

αǫ =
2a21a2

|Ω|2GD2
(0, 0)2 ±

√

|Ω|4GD2
(0, 0)4 − 4a21a2|Ω|2GD2

(0, 0)2 − 2a21a2

Thus it remains to show that

|Ω|2GD2
(0, 0)2 − 4a21a2 <

√

|Ω|4GD2
(0, 0)4 − 4a21a2|Ω|2GD2

(0, 0)2

which follows easily after taking squares on both sides.
Finally, this results in the two single-spike solutions(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) and(Sl

ǫ, u
l
1,ǫ, u

l
2,ǫ) of (2.1).

In the next section we will rigorously prove the existence ofthese two solutions.

4. EXISTENCE II: R IGOROUS PROOFS

In this section we show the existence of solutions of (2.1) for which the central component has
a spike. As we have shown in the previous section, there are two such solutions,(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ)

and(Sl
ǫ, u

l
1,ǫ, u

l
2,ǫ) which differ by the size of the amplitude. The existence proof applies to both

of them. Therefore we will not write the superscriptss andl in this section.
The second component of the approximate spike solution introduced in (3.1) is given by

ũ1,ǫ(x) = ξǫw

( |x|
√
1 + αǫ

ǫ

)

χ(|x|) +O(ǫ),

whereξǫ andαǫ have been computed to leading order in (3.8), (3.10), andχ has been introduced
in (3.2).

Further,S̃ǫ andũ2,ǫ solve a partial differential equation which depends onũ1,ǫ only. Therefore
we denotẽSǫ = T1[ũ1,ǫ] andũ2,ǫ = T2[ũ1,ǫ], respectively. We insert this approximate spike solution
into (2.1) and compute its error.

The l.h.s. of the second equation in (2.1) at(S̃ǫ, ũ1,ǫ, ũ2,ǫ) = (T1[ũ1,ǫ], ũ1,ǫ, T2[ũ1,ǫ]) is calcu-
lated as follows:

∆ũ1,ǫ − ũ1,ǫ + S̃ǫũ
2
1,ǫ − a2ũ1,ǫũ

2
2,ǫ

= ∆ũ1,ǫ − ũ1,ǫ + S̃ǫ(0)ũ
2
1,ǫ − a2ũ1,ǫũ

2
2,ǫ(0)

+[S̃ǫ − S̃ǫ(0)]ũ
2
1,ǫ

−a2ũ1,ǫ2(ũ2,ǫ − ũ2,ǫ(0))ũ2,ǫ(0) +O(ǫ2)

=: E1 + E2 + E3 +O(ǫ2)

in L2(Ωǫ), whereΩǫ =
(
−1

ǫ
, 1
ǫ

)
.

We compute
E1 = O(ǫ)

by the definition ofξǫ andαǫ in (3.4) and (3.5). Computing̃Sǫ(x), using the Green’s functionGD1

defined in (7.1), we derive the following estimate:

E2 = [S̃ǫ(ǫy)− S̃ǫ(0)]ũ
2
1,ǫ(ǫy)



EXISTENCE AND STABILITY OF A SPIKE IN THE CENTRAL COMPONENT 11

= −ũ21,ǫ(ǫy)a1
ˆ 1/ǫ

−1/ǫ

[GD1
(ǫy, ǫz)−GD(0, ǫz)]S̃ǫ(z)ũ

2
1,ǫ(z) dz (1 +O(ǫ))

= a1
ũ21,ǫ(ǫy)

S̃ǫ(0)
ǫ(1 + αǫ)

2

ˆ

R

(
1

2D1
|y − z| − 1

2D1
|z|
)

w2(z
√
1 + αǫ) dz (1 +O (ǫ|y|))

+a1(1 + αǫ)
3/2
ũ21,ǫ(ǫy)

S̃ǫ(0)
ǫ2y2HD1,xx(0, 0)6 (1 +O (ǫ|y|))

= O(ǫ|y|)ũ21,ǫ.
Thus we have

E2 = O(ǫ) in L2(Ωǫ).

Here we have used thatHD1,x(0, 0) = 0 by (7.4).
Similarly, we compute

E3 = −a2ũ1,ǫ(ǫy)2(ũ2,ǫ(ǫy)− ũ2,ǫ(0))ũ2,ǫ(0)

= 2a2ũ1,ǫ(ǫy)ũ
3
2,ǫ(0)

ˆ 1/ǫ

−1/ǫ

[GD2
(ǫy, ǫz)−GD(0, ǫz)]ũ1,ǫ(ǫz) dz (1 +O(ǫ))

= 2αǫ(1 + αǫ)ũ1,ǫ(ǫy)
ũ2,ǫ(0)

S̃ǫ(0)

ˆ

R

(KD2
(ǫ|y − z|)−KD2

(ǫ|z|)) w(z
√
1 + αǫ) dz (1 +O(ǫ|y|))

−2αǫ

√
1 + αǫũ1,ǫ(ǫy)ũ2,ǫ(0)ǫ

2y2HD2,xx(0, 0)

(
ˆ

R

w dy

)

(1 +O(ǫ|y|))

= −2αǫ(1 + αǫ)ũ1,ǫ(ǫy)
ũ2,ǫ(0)

S̃ǫ(0)

ˆ

R

(KD2
(ǫ|y − z|)−KD2

(ǫ|z|)) w(z
√
1 + αǫ) dz (1 +O(ǫ|y|))

−2αǫ

√
1 + αǫũ1,ǫ(ǫy)ũ2,ǫ(0)ǫ

2y2HD2,xx(0, 0)6 (1 + O(ǫ|y|))
= O(ǫ|y|)ũ1,ǫ.

Thus we have

E3 = O(ǫ) in L2(Ωǫ).

By definition, the first and third equations of (2.1) are solved exactly and so do not contribute to
the error.

Writing the system (2.1) in the formRǫ(Sǫ, u1,ǫ, u2,ǫ) = 0, we have now shown the estimate

||Rǫ(T1[ũ1,ǫ], ũ1,ǫ, T2[ũ1,ǫ])||L2(Ωǫ) = O (ǫ) . (4.1)

Next, we investigate the linearized operatorL̃ǫ around the approximate solution(S̃ǫ, ũǫ,1, ũǫ,2).
It is defined as follows:

L̃ǫ : H2
N(Ω)×H2

N(Ωǫ)×H2
N(Ω) → L2(Ω)× L2(Ωǫ)× L2(Ω),

L̃ǫ





ψ1,ǫ

φǫ

ψ2,ǫ



 =









D1∆ψ1,ǫ − 2
a1

ǫ
S̃ǫũ1,ǫφǫ −

a1

ǫ
ψ1,ǫũ

2
1,ǫ

ǫ2∆φǫ − φǫ + 2S̃ǫũ1,ǫφǫ + ψ1,ǫũ
2
1,ǫ − a2φǫũ

2
2,ǫ − 2a2ũ1,ǫũ2,ǫψ2,ǫ

D2∆ψ2,ǫ − ψ2,ǫ +
1

ǫ
φǫũ

2
2,ǫ +

2

ǫ
ũ1,ǫũ2,ǫψ2,ǫ









. (4.2)

We will show this operator will lead to a uniformly invertible one forǫ small enough.
To study the kernel of̃Lǫ, we first solve its first and third components. Therefore, we have

ψ1,ǫ = T ′
1[ũ1,ǫ]φǫ andψ2,ǫ = T ′

2[ũ1,ǫ]φǫ, whereT ′
1[ũ1,ǫ] andT ′

2[ũ1,ǫ] are linearized operators which
can be expressed by the Green’s functionsGD1

andGD2
defined in (7.1) and (7.18), respectively.
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Substituting these expressions intoL̃ǫ, the first and third components vanish and it only remains to
consider the second component. We obtain the following operator:

L̄ǫ : HN
2 (Ωǫ) → L2(Ωǫ), (4.3)

L̄ǫ(φǫ) = ∆yφǫ − φǫ + 2S̃ǫũ1,ǫφǫ + (T ′
1[ũ1,ǫ]φǫ)ũ

2
1,ǫ − a2φǫũ

2
2,ǫ − 2a2ũ1,ǫũ2,ǫ(T

′
2[ũ2,ǫ]φǫ).

In order to introduce a uniformly invertible operator, we define approximate kernel and co-kernel
as

Kǫ = span{ũ′1,ǫ} ⊂ H2
N(Ωǫ),

Cǫ = span{ũ′1,ǫ} ⊂ L2(Ωǫ).

Then the linear operatorLǫ is defined by

Lǫ : K⊥
ǫ → C⊥

ǫ , (4.4)

Lǫ = π ◦ L̄ǫ(φǫ)

whereK⊥
ǫ andC⊥

ǫ denote the orthogonal complement with the scalar product ofL2(Ωǫ) to Kǫ and
Cǫ, respectively, andπ is theL2-projection fromL2(Ωǫ) into C⊥

ǫ .
We will show that this operator is uniformly invertible forǫ small enough. In fact, we have the

following result:

Proposition 4.1. There exist positive constantsǭ, λ such that for allǫ ∈ (0, ǭ),

‖Lǫφ‖L2(Ωǫ) ≥ λ‖φ‖H2(Ωǫ) for all φ ∈ K⊥
ǫ . (4.5)

Further, the linear operatorLǫ is surjective.

Proof of Proposition 4.1:We give an indirect proof. Suppose (4.5) is false. Then thereexist
sequences{ǫk}, {φk} with ǫk → 0, φk = φǫk, k = 1, 2, . . . such that

‖Lǫkφ
k‖L2(Ωǫ) → 0, ask → ∞, (4.6)

‖φk‖H2(Ωǫ) = 1, k = 1, 2, . . . . (4.7)

By using the cut-off function defined in (3.2), we define the following functions:

φ1,ǫ(y) = φǫ(y)χ(|x|), y ∈ Ωǫ. (4.8)

φ2,ǫ(y) = φǫ(y) (1− χ(|x|)) , y ∈ Ωǫ.

At first the functionsφ1,ǫ, φ2,ǫ are only defined inΩǫ. However, by a standard extension result,
φ1,ǫ andφ2,ǫ can be extended toR such that the norms ofφ1,ǫ andφ2,ǫ in H2(R) are bounded by
a constant independent ofǫ for all ǫ small enough. In the following we shall study this extension.
For simplicity, we use the same notation for the extension. Since for i = 1, 2 each sequence
{φk

i } := {φi,ǫk} (k = 1, 2, . . .) is bounded inH2
loc(R) it has a weak limit inH2

loc(R), and therefore
also a strong limit inL2

loc(R) andL∞
loc(R). We call these limitsφi.

Taking the limitǫ→ 0 in (4.4), thenΦ =

(
φ1

φ2

)

satisfies

ˆ

R

φ1wy dy = 0 (4.9)

and it solves the system
Lφ1 = 0, (4.10)

where the operatorL is defined by

Lφ1 = ∆yφ1 − (1 + α)φ1 + 2(1 + α)wφ1 − 2(1 + α)

´

R
wφ1 dy
´

R
w2 dy

w2 + 2α

´

R
φ1 dy

´

R
w dy

w.



EXISTENCE AND STABILITY OF A SPIKE IN THE CENTRAL COMPONENT 13

In Lemma 5.1 below we will show that the system (4.9), (4.10) has only the solutionφ1 = 0 in R.
Further, trivially,φ2 = 0 in R.
By standard elliptic estimates we get‖φi,ǫk‖H2(R) → 0 for i = 1, 2 ask → ∞.
This contradicts the assumption that‖φk‖H2(Ωǫ) = 1.
To complete the proof of Proposition 4.1, we need to show thatthe adjoint operator ofLǫ (de-

noted byL∗
ǫ ) is injective fromKǫ

⊥ to Cǫ⊥. We first pass to the limitǫ → 0 for the adjoint operator
L∗

ǫ . This limiting process follows along the same lines as forLǫ and is therefore omitted. Then we
have to show that the limiting adjoint operatorL∗ has only the trivial kernel. This will be done in
Lemma 5.2 below. �

Finally, we solve the system (2.1). It can be written as

Rǫ(S̃ǫ + ψ1, ũ1,ǫ + φ, ũ2,ǫ + ψ2) = Rǫ(Uǫ + Φ) = 0, (4.11)

whereUǫ =
(

S̃ǫ, ũ1,ǫ, ũ2,ǫ

)

, Φ = (ψ1, φ, ψ2) . SinceLǫ is uniformly invertible ifǫ is small enough,

we can write (4.11) as

Φ = −L−1
ǫ Rǫ(Uǫ)− L−1

ǫ Nǫ(Φ) =:Mǫ(Φ), (4.12)

whereL−1
ǫ is the inverse ofL and

Nǫ(Φ) = Rǫ(Uǫ + Φ)−Rǫ(Uǫ)− R′
ǫ(Uǫ)Φ. (4.13)

Note that the operatorMǫ defined by (4.12) is a mapping fromH2
N(Ω)×K⊥

ǫ ×H2
N(Ω) into itself.

We are going to show that the operatorMǫ is a contraction on

Bǫ,δ ≡ {φ ∈ H2
N(Ω)×K⊥

ǫ ×H2
N(Ω) : ‖φ‖H2(Ω)×H2(Ωǫ)×H2(Ω) < δ}

if δ andǫ are suitably chosen. By (4.1) and Proposition 4.1, we have

‖Mǫ(Φ)‖H2(Ω)×H2(Ωǫ)×H2(Ω) ≤ λ−1

(

‖Nǫ(Φ)‖L2(Ω)×L2(Ωǫ)×L2(Ω) + ‖Rǫ(Uǫ)‖L2(Ω)×L2(Ωǫ)×L2(Ω)

)

≤ λ−1C0(c(δ)δ + ǫ),

whereλ > 0 is independent ofδ > 0, ǫ > 0 andc(δ) → 0 asδ → 0. Similarly, we show

‖Mǫ(Φ1)−Mǫ(Φ2)‖H2(Ω)×H2(Ωǫ)×H2(Ω) ≤ λ−1C0(c(δ)δ)‖Φ1 − Φ2‖H2(Ω)×H2(Ωǫ)×H2(Ω),

wherec(δ) → 0 asδ → 0. Choosingδ = C1ǫ for λ−1C0 < C1 and takingǫ small enough, then
Mǫ maps fromBǫ,δ intoBǫ,δ and it is a contraction mapping inBǫ,δ. The existence of a fixed point
Φǫ ∈ Bǫ,δ now follows from the standard contraction mapping principle, andΦǫ is a solution of
(4.12).

We have thus proved

Lemma 4.1. There existsǫ > 0 such that for everyǫ with 0 < ǫ < ǫ there is a uniqueΦǫ ∈
H2

N(Ω)×K⊥
ǫ ×H2

N(Ω) satisfyingRǫ(Uǫ + Φǫ) = 0. Furthermore, we have the estimate

‖Φǫ‖H2(Ω)×H2(Ωǫ)×H2(Ω) ≤ Cǫ. (4.14)

In this section we have constructed two exact spikes solution of the formUǫ+Φǫ = (Sǫ, uǫ,1, uǫ,2).
We are now going to study their stability.
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5. STABILITY I: DERIVATION , RIGOROUS DEDUCTION AND ANALYSIS OF ANLEP

We study a small perturbation of a single-spike steady state(Sǫ, uǫ,1, uǫ,2) which could be either
the small-amplitude solution(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) or the large-amplitude solution(Sl

ǫ, u
l
1,ǫ, u

l
2,ǫ).

We linearize (1.1) around the single-spike solution we derive in leading orderSǫ + ψ1,ǫe
λǫt,

uǫ,1 + φǫe
λǫt, uǫ,2 + ψ2,ǫe

λǫt, where the three perturbationsψ1,ǫ ∈ H2
N(Ω), φǫ ∈ H2

N(Ωǫ) ψ2,ǫ ∈
H2

N(Ω) are small in their respective norms Then the perturbations in leading order satisfy the
eigenvalue problem

L̃ǫ





ψ1,ǫ

φǫ

ψ2,ǫ



 =





τλǫψ1,ǫ

λǫφǫ

τ1λǫψ2,ǫ



 , (5.1)

whereL̃ǫ denotes the linearized operator around the steady state steady state(Sǫ, uǫ,1, uǫ,2) which
has been defined in (4.4) and has the domainH2

N(Ω)×H2
N (Ωǫ)×H2

N(Ω). Here we haveλǫ ∈ C,
the set of complex numbers.

We say that a spike solution islinearly stable if the spectrumσ(Lǫ) of Lǫ lies in a left half plane
{λ ∈ C : Re(λ) ≤ −c0} for somec0 > 0. A spike solution is calledlinearly unstable if there
exists an eigenvalueλǫ of Lǫ with Re(λǫ) > 0.

We first consider the caseτ = 0 andτ1 = 0 and show stability. Then we study the stability for
τ ≥ 0 small orτ1 ≥ 0 small. We will show that forτ ≥ 0 small andτ1 = 0 we still have stability,
but for τ ≥ 0 small and0 < τ1 ≪ 1 the solution will be unstable.

Writing down L̃ǫ explicitly and expressingψi,ǫ = T ′
i [ui,ǫ]φǫ, i = 1, 2, using Green’s functions

GDi
defined in (7.1) and (7.18), respectively, we can rewrite (5.1) as

ǫ2φǫ.xx − φǫ + 2Sǫu1,ǫφǫ + (T ′
1[u1,ǫ]φǫ)u

2
1,ǫ − a2φǫu

2
2,ǫ − 2a2u1,ǫu2,ǫ(T

′
2[u2,ǫ]φǫ) = λǫφǫ. (5.2)

Then, arguing as in the proof of Proposition 4.1, a subsequence of the sequenceφǫ converges to
a limit which we denote byφ. Next we derive an eigenvalue problem forφ.

Integrating the first equation of (5.1), we get

ψ1,ǫ(0)

ˆ 1

−1

u21,ǫ dx = −2Sǫ(0)

ˆ 1

−1

u1,ǫφǫ dx+O(ǫ)

which implies

ψ1,ǫ(0) = −2Sǫ(0)

ξǫ

´

R
wφ dy

´

R
w2 dy

(1 +O(ǫ)) (5.3)

This gives

ψ1,ǫ(0)u
2
1,ǫ = −2

Sǫ(0)

ξǫ

´

R
wφ dy

´

R
w2 dy

ξ2ǫw
2 (1 +O(ǫ))

= −2(1 + αǫ)

´

R
wφ dy

´

R
w2 dy

w2 (1 +O(ǫ)) in H2(Ωǫ),

using (3.5). We also derive from (2.11) that

u2,ǫ(0) =

√
1 + αǫ

GD2
(0, 0)6ξǫ

+O(ǫ)

and compute

ψ2,ǫ(0) = GD2
(0, 0)

[

u22,ǫ(0)
1√

1 + αǫ

ˆ

R

φ dy + 2ψ2,ǫ(0)u2,ǫ(0)
ξǫ√

1 + αǫ

ˆ

R

w dy

]

(1 +O(ǫ))

= u2,ǫ(0)GD2
(0, 0)

1√
1 + αǫ

[

u2,ǫ(0)

ˆ

R

φ dy + 2ψ2,ǫ(0)ξǫ

ˆ

R

w dy

]
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which implies

ψ2,ǫ(0) = −u2,ǫ(0)
ξǫ

´

R
φ dy

´

R
w dy

(1 +O(ǫ)).

Finally, we get

ψ2,ǫ(0) = −
√
1 + αǫ

GD2
(0, 0)6ξ2ǫ

´

R
φ dy

´

R
w dy

(1 +O(ǫ)). (5.4)

Therefore, we compute
−a2u1,ǫ2u2,ǫψ2,ǫ

= −a2u1,ǫ2u2,ǫ(0)ψ2,ǫ(0) (1 +O(ǫ))

= −2αǫw
ξǫψ2,ǫ(0)

u2,ǫ(0)
(1 +O(ǫ))

= +2αǫ

´

R
φ dy

´

R
w dy

w (1 +O(ǫ)) in H2(Ωǫ),

using (3.4).
Putting all these expressions into (5.2) and taking the limit ǫ→ 0, we derive the NLEP

Lφ = ∆yφ− (1 + α)φ+ 2(1 + α)wφ− 2(1 + α)

´

R
wφ dy

´

R
w2 dy

w2 + 2α

´

R
φ dy

´

R
w dy

w = λφ, (5.5)

whereα = limǫ→0 αǫ.
Although this derivation has been only made formally, we canrigorously prove the following

separation of eigenvalues.

Theorem 5.1. Letλǫ be an eigenvalue of (5.2) for which Re(λǫ) > −a0 for some suitable constant
a0 fixed independent ofǫ.

(1) Suppose that (for suitable sequencesǫn → 0) we haveλǫn → λ0 6= 0. Thenλ0 is an
eigenvalue of the NLEP given in (5.5).

(2) Letλ0 6= 0 be an eigenvalue of the NLEP given in (5.5). Then for allǫ sufficiently small,
there is an eigenvalueλǫ of (5.2) withλǫ → λ0 asǫ → 0.

Remark. From Theorem 5.1 we see rigorously that the eigenvalue problem (5.2) is reduced to
the study of the NLEP (5.5).

Now we prove Theorem 5.1.
Proof of Theorem 5.1:

Part (1) follows by an asymptotic analysis combined with passing to the limit asǫ → 0 which is
similar to the proof of Proposition 4.1.

Part (2) follows from a compactness argument by Dancer introduced in Section 2 of [3]. It was
applied in [38] to a related situation, therefore we omit thedetails.�

The stability or instability of the large eigenvalues follows from the following results:

Theorem 5.2. [31]: Consider the nonlocal eigenvalue problem

φ′′ − φ+ 2wφ− γ

´

R
wφ

´

R
w2

w2 = αφ. (5.6)

(1) If γ < 1, then there is a positive eigenvalue to (5.6).
(2) If γ > 1, then for any nonzero eigenvalueλ of (5.6), we have

Re(λ) ≤ −c0 < 0.

(3) If γ 6= 1 andλ = 0, thenφ = c0w
′ for some constantc0.
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In our applications to the case whenτ > 0 or τ1 > 0, we need to handle the situation when the
coefficientγ is a complex function ofτλ. Let us suppose that

γ(0) ∈ R, |γ(τλ)| ≤ C for λR ≥ 0, τ ≥ 0, (5.7)

whereC is a generic constant independent ofτ, λ. Then we have

Theorem 5.3. (Theorem 3.2 of[38].)
Consider the nonlocal eigenvalue problem

φ′′ − φ+ 2wφ− γ(τλ)

´

R
wφ

´

R
w2

w2 = λφ, (5.8)

whereγ(τλ) satisfies (5.7). Then there existsτ0 > 0 such that for all0 ≤ τ < τ0,
(1) if γ(0) < 1, then there is a positive eigenvalue to (5.8);
(2) if γ(0) > 1, then for any nonzero eigenvalueλ of (5.8), we have

Re(λ) ≤ −c0 < 0.

Now we consider the stability of the eigenvalue problem (5.5).

Lemma 5.1. (1) If α < 1, the eigenvalue problem (5.5) has only stable eigenvalues,i.e. for any
nonzero eigenvalue of (5.5), we have

Re(λ) ≤ −c0 < 0.

If α > 1, the eigenvalue problem (5.5) has an eigenvalue with Re(λ) > 0.
(2) If α 6= 1 andλ = 0, thenφ = c0w

′ for some constantc0.

Proof of Lemma 5.1:
Proof of (1): Integrating (5.5), we derive

(λ+ 1− α)

ˆ

R

φ dy = 0.

Then for all the eigenvalues we have (i)λ+1−α = 0 or the corresponding eigenfunction satisfies
(ii)
´

R
φ dy = 0.

Let us first consider case (i). Ifα < 1 then (i) implies thatλ < 0 and this eigenvalueλ is stable
for (5.5). Ifα > 1, then we construct eigenfunction anφ with eigenvalueλ = α−1 > 0 as follows
and the eigenvalue problem (5.5) is unstable: first we set

φ = (L+ 1− α)−1
[
c1w

2 + c2w
]
, (5.9)

where
L : K⊥ → C⊥, Lφ := ∆φ− (1 + α)φ+ 2(1 + α)wφ,

K⊥ =

{

v ∈ H2(R) :

ˆ

vwy dy = 0

}

, C⊥ =

{

v ∈ L2(R) :

ˆ

vwy dy = 0

}

,

c1 =
2(1 + α)

´

R
wφ dy

´

R
w2 dy

, c2 = −2α
´

R
φ dy

´

R
w dy

.

Then we multiply (5.9) byw and1, respectively, and integrating we get a linear system for the
coefficients(

´

R
wφ dy,

´

R
φ dy) which has a unique nontrivial solution. Solving this system, using

the identities

Lw = (1 + α)w2, L

(
y
√
α + 1

2
wy + w

)

= (1 + α)w,

we can eliminateφ in the definitions ofc1 andc2. We finally get

c1 =

ˆ

R

w(L+ 1− α)−1w dy,
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c2 = −
ˆ

R

w(L+ 1− α)−1w2 dy +
3

1− α
.

Thus the eigenvalue problem is unstable forα >

Next we consider case (ii). Rescaling the spatial variable,NLEP (5.5) reduces to the familiar
NLEP considered in Theorem 5.2 withγ = 2 which implies that the real parts of all eigenvalues
are strictly negative and we have stability.

Proof of (2): Integrating (5.5), we derive
ˆ

R

φ dy = 0.

Rescaling the spatial variable, NLEP (5.5) reduces to the familiar NLEP considered in Theorem
5.2 withγ = 2 and we deriveφ = c0w

′ for some constantc0. �
Proof of Theorem 2.2:
By (3.11) we haveαl

ǫ < 1 andαs
ǫ > 1. Then the theorem follows by combining the results of

Theorem 5.1 and Lemma 5.1.�
We also need to consider the adjoint operatorL∗

ǫ to the linear operatorLǫ. ExpressingL∗
ǫ

explicitly, we can rewrite the adjoint eigenvalue problem as follows






D1∆ψ1,ǫ +
1

ǫ
(φǫ − a1ψ1,ǫ)u

2
1,ǫ = τλǫψ1,ǫ,

ǫ2∆φǫ − φǫ + 2Sǫu1,ǫ(φǫ − a1ψ1,ǫ) + (ψ2,ǫ − a2φǫ)u
2
2,ǫ = λǫφǫ,

D2∆ψ2,ǫ − ψ2,ǫ +
2

ǫ
u1,ǫu2,ǫ(ψ2,ǫ − a2φǫ) = τ1λǫψ2,ǫ.

(5.10)

We need to consider the kernel of this adjoint eigenvalue problem. (In the proof of Proposi-
tion 4.1 we need the result that this kernel is trivial.) Taking the limit ǫ → 0 as in the proof of
Proposition 4.1, we derive the following nonlocal linear operator which is the adjoint operator of
(5.5):

L∗φ = ∆yφ− (1 + α)φ+ 2(1 + α)wφ− 2(1 + α)

´

R
w2φ dy
´

R
w2 dy

w + 2α

´

R
wφ dy
´

R
w dy

= 0. (5.11)

We are now going to show the following Lemma:

Lemma 5.2. The kernel of the operator (5.11) is trivial.

Proof of Lemma 5.2:
Integrating (5.11), we derive

´

R
wφ dy = 0 since otherwise there is an unbounded term. Further,

we get the relation
ˆ

R

φ dy + 2

ˆ

R

w2φ dy = 0. (5.12)

Multiplying (5.11) byw and integrating, we derive
ˆ

R

w2φ dy = 0. (5.13)

Then from (5.12) we get
´

R
φ dy = 0. Finally, going back to (5.11), all the nonlocal terms vanish

and by Theorem 5.2 in the special caseγ = 0 we deriveφ = c0w
′ for some constantc0. Thus the

kernel ofL∗ is trivial. �
Now we extend the consideration of the stability problem forthe linearized operator to the

conditionsτ ≥ 0 or τ1 ≥ 0 and prove Corollary 2.1.
Proof of Corollary 2.1:
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To emphasize the possible different behaviors ifτ ≥ 0 or τ1 ≥ 0, we consider the three cases
separately:

Proof of (1): 0 ≤ τ ≤ τ0 for someτ0 > 0 andτ1 = 0.
We first compute, using (3.5), (7.8),

ψ1,ǫ(0) = −a1
ǫ

ˆ 1

−1

GD1,τλ

[
ψ1,ǫu

2
1,ǫ + 2Sǫu1,ǫφǫ

]
dx

= −a1
ǫ
GD1,τλ(0, 0)

[

ψ1,ǫ(0)

ˆ 1

−1

u21,ǫ dx+ 2Sǫ(0)

ˆ 1

−1

u1,ǫφǫ dx

]

(1 +O(ǫ))

= −a1GD1,τλ(0, 0)

[

ψ1,ǫ(0)
ξ2ǫ√
1 + αǫ

ˆ

R

w2 dy + 2
√
1 + αǫ

ˆ

R

wφǫ dy

]

(1 +O(ǫ)).

This implies

ψ1,ǫ(0) = −2a1GD1,τλ(0, 0)
√
1 + αǫ

´

R
wφǫ dy

1 + a1GD1,τλ(0, 0)
ξ2ǫ√
1+αǫ

´

R
w2 dy

= − 2(1 + αǫ)
´

R
wφǫ dy

√
1+αǫ

a1GD1,τλ
(0,0)

+ ξ2ǫ
´

R
w2 dy

(1 +O(ǫ)). (5.14)

Putting everything together, we compute

ψ1,ǫ(0)u
2
1,ǫ = − 2(1 + αǫ)

´

R
wφǫ dy

√
1+αǫ

a1GD1,τλ
(0,0)

+ ξ2ǫ
´

R
w2 dy

ξ2ǫw
2 (1 +O(ǫ))

= − 2(1 + αǫ)

1 +
√
1+αǫ

6a1GD1,τλ
(0,0)ξ2ǫ

´

R
wφǫ dy
´

R
w2 dy

w2 (1 +O(ǫ))

= − 2(1 + αǫ)

1 + c3,ǫτλ

´

R
wφǫ dy
´

R
w2 dy

w2 (1 +O(ǫ+ |τλ|)) in H2(Ωǫ),

wherec3,ǫ =
√
1+αǫ

3a1ξ2ǫ
> 0, using formula (7.9). In particular, the factor

−2(1 + αǫ)

1 +
√
1+αǫ

6a1GD1,τλ
(0,0)ξ2ǫ

is bounded if Re(λ) ≥ 0. Therefore, by Theorem 5.3, both the stability and instability result extend
from τ = 0 to a range0 ≤ τ < τ0 (for some constantτ0 > 0).

Proof of (2): We prove this case in two stages. In the first stage we only allow τ1 to be nonzero,
i.e. we assumeτ = 0 and0 < τ1 ≪ 1.

Similar to the derivation of (5.14), we have

ψ2,ǫ(0) = GD2,τ1λ(0, 0)

[

u22,ǫ(0)
1√

1 + αǫ

ˆ

R

φǫ dy + 2ψ2,ǫ(0)u2,ǫ(0)
ξǫ√

1 + αǫ

ˆ

R

w dy

]

(1 +O(ǫ))

= u2,ǫ(0)GD2,τ1λ(0, 0)
1√

1 + αǫ

[

u2,ǫ(0)

ˆ

R

φǫ dy + 2ψ2,ǫ(0)ξǫ

ˆ

R

w dy

]

which implies

ψ2,ǫ(0)

(
2GD2,τ1λ(0, 0)

GD2
(0, 0)

− 1

)

= −GD2,τ1λ(0, 0)

GD2
(0, 0)

u2,ǫ(0)

ξǫ

´

R
φǫ dy

´

R
w dy

(1 +O(ǫ)).

Thus we have

ψ2,ǫ(0) = − GD2,τ1λ(0, 0)

2GD2,τ1λ(0, 0)−GD2
(0, 0)

√
1 + αǫ

GD2
(0, 0)6ξ2ǫ

´

R
φǫ dy

´

R
w dy

(1 +O(ǫ)). (5.15)
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Finally, we get

−a2u1,ǫ2u2,ǫψ2,ǫ = 2αǫ
GD2,τ1λ(0, 0)

2GD2,τ1λ(0, 0)−GD2
(0, 0)

´

R
φǫ dy

´

R
w dy

w (1 +O(ǫ)) in H2(Ωǫ).

It is now essential to study the asymptotic behavior of the function

f(τ1λ,D2) =
GD2,τ1λ(0, 0)

2GD2,τ1λ(0, 0)−GD2
(0, 0)

=
1

2− GD2
(0,0)

GD2,τ1λ
(0,0)

=
1

2−
√
1+τ1λ coth θ2

coth(θ2
√
1+τ1λ)

,

using the formulas (7.19), (7.20), (7.24). Thus we have

f(0, D2) = 1, f(ρ,D2) → 0 asρ→ ∞;

f(ρ,D2) → ±∞ asρ→ ∓ρ0,
whereρ0 is the unique positive solution of

√

1 + ρ0 coth θ2 = 2 coth(θ2
√

1 + ρ0).

We expand the eigenvalue problem (5.1 ) with respect toτ1 for |τ1λ − ρ0| = O(τ1), Thus we get
the expansions

f(τ1λ) =
f1

ρ0 − τ1λ
+ f2 +O(τ1),

λ =
ρ0

τ1
+ λ1 + λ2τ1 +O(τ 21 ),

φǫ = w + φ1τ1 +O(τ 21 ) in H2(Ωǫ),

which satisfy

2αǫ

(
f1

ρ0 − τ1λ
+ f2

)

w + (1 + αǫ)w
2 − 2(1 + αǫ)

1 + c3,ǫτλ
w2

+∆φ1 − (1 + αǫ)φ1 + 2(1 + αǫ)wφ1 −
2(1 + αǫ)

1 + c3,ǫτλ

´

R
wφ1 dy
´

R
w2 dy

w2

+2αǫ

(
f1

ρ0 − τ1λ
+ f2

) ´

R
φǫ dy

´

R
w dy

w − 2(1 + αǫ)

1 + c3,ǫτλ

´

R
wφ1 dy
´

R
w2 dy

w2

=

(
λ0

τ1
+ λ1

)

(w + τ1φ1) +O(τ 21 ) in H2(Ωǫ).

Comparing powers ofτ1, we get

f(τ, λ) = − f1

τ1λ1
+ f1

λ2

λ21
+ f2 +O(τ1),

the eigenvalue

λ =
ρ0

τ1
+ λ1 + λ2τ1 +O(τ 21 ), (5.16)

where

λ1 = −2αǫf1

ρ0
, λ2 =

λ21
2αǫf1

− f2

f1
λ21 +

´

R
φ1 dy

´

R
w dy

λ1,

and the eigenfunction

φǫ = w +
1 + αǫ

λ0

(

1− 2

1 + c3,ǫτλǫ

)

w2τ1 +O(τ 21 ) in H2(Ωǫ). (5.17)
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In conclusion, the eigenvalue problem (5.1) is always unstable for0 < τ1 small enough, although
it is stable forτ1 = 0.

This behavior stands in marked contrast (1), where in the regime0 < τ < τ0 (for someτ0 > 0)
the stability behavior is the same as forτ = 0.

In the second stage we allow bothτ and τ1 to be nonzero. We assume0 ≤ τ < τ0 for some
τ0 > 0 small enough and0 < τ1 ≪ 1.

Combining the formulas in the proofs of (1) and (2), it follows that now we have the same
behavior as in (2) since the leading terms in (2) which are of exact order 1

τ1
dominate those in (1)

which are of exact order 1.
The analysis in the proof has been performed considering thelimiting eigenvalue problem for

ǫ = 0 and then lettingτ1 → 0. The proof extends to the case0 < ǫ ≪ τ1 ≪ 1 in (5.1) by a
perturbation argument as in Theorem 5.1.�

Remark 5.1. We expect that in the regime0 < τ1 ≪ ǫ≪ 1 and0 ≤ τ < τ0 for someτ0 > 0 small
enough the system will be stable.

6. STABILITY II: COMPUTATION OF THE SMALL EIGENVALUES

We now compute the small eigenvalues of the eigenvalue problem (5.1), i.e. we assume that
λǫ → 0 asǫ → 0. We will prove that these eigenvalues satisfyλǫ = O(ǫ2). We emphasize that
the analysis in this section applies to both(Ss

ǫ , u
s
1,ǫ, u

s
2,ǫ) and(Sl

ǫ, u
l
1,ǫ, u

l
2,ǫ). Further, it includes

nonzero values forτ or τ1 , i.e. we assume0 ≤ τ < τ0, whereτ0 > 0 is a constant which is small
enough and may be chosen independent ofǫ, and0 ≤ τ1 ≪ 1. Let us define

ũ1,ǫ(x) = χ(|x|)u1,ǫ(x). (6.1)

Then it follows easily that

u1,ǫ(x) = ũ1,ǫ(x) + e.s.t. inH2(Ωǫ). (6.2)

Taking the derivative of the system (2.1) w.r.t.y, we compute

ũ′′′1,ǫ − ũ′1,ǫ + 2Sǫu1,ǫũ
′
1,ǫ + ǫS ′

ǫu
2
1,ǫ − a2ũ

′
1,ǫu

2
2,ǫ − 2ǫa2u1,ǫu2,ǫũ

′
2,ǫ = e.s.t.. (6.3)

Here′ denotes derivative w.r.t. the variable of the corresponding function, i.e. it means derivative
w.r.t. x for Sǫ andu2,ǫ, and w.r.t.y for u1,ǫ.

Let us now decompose the eigenfunction(ψ1,ǫ, φǫ, ψ2,ǫ) as follows:

φǫ = aǫũ′1,ǫ + φ⊥
ǫ (6.4)

whereaǫ is a complex number to be determined and

φ⊥
ǫ ⊥ Kǫ = span{ũ′1,ǫ} ⊂ H2

N

(

−1

ǫ
,
1

ǫ

)

.

We decompose the eigenfunctionψ1,ǫ as follows:

ψ1,ǫ = aǫψ0
1,ǫ + ψ⊥

1,ǫ,

whereψ0
1,ǫ satisfies

{
D1∆ψ

0
1,ǫ − a1

ǫ
ψ0
1,ǫu

2
1,ǫ − 2a1

ǫ
Sǫu1,ǫũ

′
1,ǫ = τλǫψ

0
1,ǫ,

ψ0
1,ǫ

′
(±1) = 0

(6.5)
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andψ⊥
1,ǫ is given by

{
D1∆ψ

⊥
1,ǫ − a1

ǫ
ψ⊥
1,ǫu

2
1,ǫ − 2a1

ǫ
Sǫu1,ǫφ

⊥
ǫ = τλǫψ

⊥
1,ǫ,

ψ⊥
1,ǫ

′
(±1) = 0.

(6.6)

Similarly, we decompose the eigenfunctionψ2,ǫ as follows:

ψ2,ǫ = aǫψ0
2,ǫ + ψ⊥

2,ǫ,

whereψ0
2,ǫ satisfies

{
D2∆ψ

0
2,ǫ − ψ0

2,ǫ +
2
ǫ
u1,ǫu2,ǫψ

0
2,ǫ +

1
ǫ
ũ′1,ǫu

2
2,ǫ = τ1λǫψ

0
2,ǫ,

ψ0
2,ǫ

′
(±1) = 0

(6.7)

andψ⊥
2,ǫ is given by

{
D2∆ψ

⊥
2,ǫ − ψ⊥

2,ǫ +
2
ǫ
u1,ǫu2,ǫψ

⊥
2,ǫ +

1
ǫ
φ⊥
ǫ u

2
2,ǫ = τ1λǫψ

⊥
2,ǫ,

ψ⊥
2,ǫ

′
(±1) = 0.

(6.8)

Note thatψ1,ǫ andψ2,ǫ can be uniquely expressed in terms ofφǫ by solving the first and third
equation using the Green’s functionsGD1,τλǫ

andGD2,τλǫ
defined in (7.8) and (7.23), respectively,

ψ1,ǫ = aǫψ0
1,ǫ + ψ⊥

1,ǫ = aǫT ′
1,τλǫ

[ũ′1,ǫ] + T ′
1,τλǫ

[φ⊥
ǫ ]. (6.9)

ψ2,ǫ = aǫψ0
2,ǫ + ψ⊥

2,ǫ = aǫT ′
2,τ1λǫ

[ũ′1,ǫ] + T ′
2,τ1λǫ

[φ⊥
ǫ ]. (6.10)

Using the Green’s functionGD1
defined in (7.1) we computeS ′

ǫ near zero. We get

ǫS ′
ǫ(ǫy)− ǫS ′

ǫ(0)

= a1ǫ

ˆ 1/ǫ

−1/ǫ

[
1

2D1
(sgn(y − z)− sgn(−z)) +HD1,x(ǫy, ǫz)−HD1,x(0, ǫz)

]

Sǫ(ǫz)u
2
1,ǫ(ǫz) dz

+O(ǫ3|y|2)

= a1
ǫ

D1

ˆ y

0

Sǫ(ǫz)u
2
1,ǫ(ǫz) dz + a1ǫ

2y

ˆ 1/ǫ

−1/ǫ

HD1,xx(0, 0)Sǫ(ǫz)u
2
1,ǫ(ǫz) dz +O(ǫ3|y|2)

=
a1(1 + αǫ)

2

Sǫ(0)

ǫ

D1

[
ˆ y

0

w2(z) dz − ǫy

2

ˆ

R

w2(z) dz

]

+O(ǫ3|y|2)

=
a1(1 + αǫ)

2

Sǫ(0)

ǫ

D1

[
ˆ y

0

w2(z) dz − 3ǫy

]

+O(ǫ3|y|2), (6.11)

where sgn is the sign function (sgn(x) = 1 if x > 0, sgn(0) = 0, sgn(x) = −1 if x < 0.)
Similarly, we compute using the Green’s functionGD1,τλǫ

defined in (7.8) that

ψ0
1,ǫ(ǫy)− ψ0

1,ǫ(0)

= −a1ǫ
ˆ

Ωǫ

[GD1,τλǫ
(ǫy, ǫz)−GD1,τλǫ

(0, ǫz)]2Sǫu1,ǫ(z)
1

ǫ
ũ′1,ǫ(ǫz) dz +O(ǫ3|y|2)

=
ǫa1(1 + αǫ)

2

Sǫ(0)

[
ˆ 1/ǫ

−1/ǫ

1

D1
ǫ(|y − z| − |z|)zww′ dz

+2HD1,xz(0, 0)
︸ ︷︷ ︸

=0

ǫy

ˆ

R

zww′ dz

]

(1 +O((τ + τ1)|λǫ|) +O(ǫ|y|)). (6.12)

Note that from (6.5), we derive
ψ0
1,ǫ(0) = O(ǫ+ τ |λǫ|). (6.13)
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Adding the contributions from (6.11) and (6.12), we get

d

dy
[Sǫ(ǫy)− Sǫ(0)]− [ψ1,ǫ(ǫy)− ψ1,ǫ(0)]

= ǫ2 (HD1,xx(0, 0) +HD1,xz(0, 0))
6a1(1 + αǫ)

2

Sǫ(0)
y (1 +O(ǫ|y|+ (τ + τ1)|λǫ|))

= − ǫ2

D1

3a1(1 + αǫ)
2

Sǫ(0)
y (1 +O(ǫ|y|+ (τ + τ1)|λǫ|)). (6.14)

Similarly, we from (6.7) we get

ψ0
2,ǫ(0) = O(ǫ+ τ1|λǫ|). (6.15)

UsingGD2
, we compute that

d

dy
[u2,ǫ(ǫy)− u2,ǫ(0)]− [ψ2,ǫ(ǫy)− ψ2,ǫ(0)]

= ǫ2 (HD2,xx(0, 0) +HD2,xz(0, 0))
6u22,ǫ(0)(1 + αǫ)

Sǫ(0)
y (1 +O(ǫ|y|+ (τ + τ1)|λǫ|))

= − ǫ2

D2

3(1 + αǫ)

Sǫ(0)
u22,ǫ(0) θ2(coth θ2 − tanh θ2) y (1 +O(ǫ|y|+ (τ + τ1)|λǫ|)), (6.16)

whereθi = 1√
Di
, i = 1, 2.

Suppose thatφǫ satisfies‖φǫ‖H2(Ωǫ) = 1. Then|aǫ| ≤ C.
Substituting the decompositions ofψ1,ǫ, φǫ andψ2,ǫ into (5.2) and subtracting (6.3), we have

aǫu21,ǫ (ψ1,ǫ − ǫS ′
ǫ)

−aǫ2a2u1,ǫu2,ǫ
(
ψ2,ǫ − ǫu′2,ǫ

)

+(φ⊥
ǫ )

′′ − φ⊥
ǫ + 2u1,ǫSǫφ

⊥
ǫ + u21,ǫψ

⊥
1,ǫ − 2a2u1,ǫu2,ǫψ

⊥
2,ǫ − 2a2φ

⊥
ǫ u

2
2 ǫ − λǫφ

⊥
ǫ

= λǫa
ǫũ′1,ǫ. (6.17)

Let us first compute, using (6.13) and (6.14),

I1 := aǫu21,ǫ (ψ1,ǫ − ǫS ′
ǫ)

= ǫ2aǫ
a1(1 + αǫ)

D1
(ξǫ)

3yw2(y)3 (1 +O(ǫ|y|+ (τ + τ1)|λǫ|)) (6.18)

Similarly, we compute from (6.15) and (6.16),

I2 := −aǫ2a2u1,ǫu2,ǫ
(
ψ2,ǫ − ǫu′2,ǫ

)

= ǫ2aǫ
2a2
D2

(ξǫ)
2u32,ǫ(0)θ2(coth θ2 − tanh θ2)yw(y)3 (1 +O(ǫ|y|+ (τ + τ1)|λǫ|)) (6.19)

We now estimate the orthogonal part of the eigenfunction which is given by(T ′
1,τλǫ

φ⊥
ǫ , φ

⊥
ǫ , T

′
2,τ1λǫ

φ⊥
ǫ ).

Expanding, we get
L̄ǫφ

⊥
ǫ = g1,ǫ + g2,ǫ

where
‖g1,ǫ‖L2(Ωǫ) = O(ǫ3 + ǫ(τ + τ1)|λǫ|).

and
g2,ǫ ⊥ C⊥

ǫ .

By Proposition 4.1 we conclude that

‖φ⊥
ǫ ‖H2(Ωǫ) = O(ǫ3 + ǫ(τ + τ1)|λǫ|). (6.20)
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This implies that

‖T ′
1,τλǫ

φ⊥
ǫ ‖H2(Ω) = O(ǫ3 + ǫ(τ + τ1)|λǫ|) (6.21)

and

‖T ′
2,τ1λǫ

φ⊥
ǫ ‖H2(Ω) = O(ǫ3 + ǫ(τ + τ1)|λǫ|) (6.22)

Multiplying the eigenvalue problem (5.2) byw′ and integrating, we get

l.h.s.=
ˆ

R

(I1 + I2)w
′ dy

= ǫ2aǫ
a1(1 + αǫ)

D1

(ξǫ)
33 (1 +O(ǫ+ (τ + τ1)|λǫ|))

ˆ

R

yw2(y)w′(y) dy

+ǫ2aǫ
2a2
D2

(ξǫ)
2u32,ǫ(0)θ2(coth θ2 − tanh θ2)3 (1 +O(ǫ+ (τ + τ1)|λǫ|))

ˆ

R

yw(y)w′(y) dy

= −ǫ2aǫ(ξǫ)2
[
7.2a1(1 + αǫ)

D1
ξǫ +

18a2
D2

u32,ǫ(0)θ2(coth θ2 − tanh θ2)

]

(1 +O(ǫ)).

Here we have used the elementary computations
ˆ

R

yw2(y)w′(y) dy = −
ˆ

R

w3

3
dy2 = −

ˆ

R

9

8 cosh6 y
2

dy = −2.4,

ˆ

R

yw(y)w′(y) dy = −
ˆ

R

w2

2
dy2 = −

ˆ

R

9

8 cosh4 y
2

dy = −3.

Further, the contributions to l.h.s. which coming from orthogonal part of the eigenfunction can be
estimated byO(ǫ3 + ǫ(τ + τ1)|λǫ|), using (6.20), (6.21), (6.22).

Further, we compute

r.h.s.= λǫa
ǫ

ˆ

R

(w′)2 dy (1 +O(ǫ))

= 1.2aǫλǫ (1 + o(1)) .

Note that in the previous calculation

(τ + τ1)|λǫ| = O(ǫ)

and thus the error terms involvingτ or τ1 can be neglected. Therefore

λǫ = −ǫ2ξ2ǫ
[
6a1(1 + αǫ)

D1

ξǫ +
15a2
D2

u32,ǫ(0)θ2(coth θ2 − tanh θ2)

]

+ o(ǫ2).

We summarize our result on the small eigenvalues in the following theorem.

Theorem 6.1. The eigenvalues of (5.1) withλǫ → 0 satisfy

λǫ = −ǫ2ξ2ǫ
[
6a1(1 + αǫ)

D1
ξǫ +

15a2
D2

u32,ǫ(0)θ2(coth θ2 − tanh θ2)

]

+ o(ǫ2). (6.23)

In particular these eigenvalues are stable.

This completes the proof of Theorem 2.2.�
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7. APPENDIX: TWO GREEN’ S FUNCTIONS

LetGD1
(x, z) be the Green’s function of the Laplace operator with Neumannboundary condi-

tions: 





D1GD1,xx(x, z)− 1
2
+ δz(x) = 0 in (−1, 1),

ˆ 1

−1

GD1
(x, z) dx = 0,

GD1,x(−1, z) = GD1,x(1, z) = 0.

(7.1)

Hereδz(x) denotes the Dirac delta distribution concentrated at the point z.
We can decomposeGD1

(x, z) as follows

GD1
(x, z) = − 1

2D1
|x− z| −HD1

(x, z) (7.2)

whereHD1
is the regular part ofGD1

.
Written explicitly, we have

GD1
(x, z) =







− 1
D1

[
1
3
− (x+1)2

4
− (1−z)2

4

]

, −1 < x ≤ z < 1,

− 1
D1

[
1
3
− (z+1)2

4
− (1−x)2

4

]

, −1 < z ≤ x < 1.
(7.3)

By simple computations, we have

HD1
(x, z) = − 1

2D1

[
1

3
+
x2

2
+
z2

2

]

. (7.4)

Forx 6= z, we calculate

∇x∇zGD1
(x, z) = 0.

Further, we have

∇x∇zGD1
(x, z) = 0, ∇xGD1

(x, z) =







x+1
2D1

, −1 < x < z < 1,

x−1
2D1

−1 < z < x < 1.
(7.5)

We further have

< ∇xGD1
(x, z)|x=z >= −∇xHD1

(x, z)|x=z =
z

2D1
, (7.6)

where< · > denotes the average of the limits from both sides.
Taking another derivative, we get

GD1,xx(0, 0) =
1

2D1
,

GD1,xz(0, 0) = 0.

Note that in particular

GD1,xx(0, 0) +GD1,xz(0, 0) =
1

2D1
> 0. (7.7)

Next we define
{
D1GD1,τλ,xx(x, z)− τλGD1,τλ(x, z) + δz(x) = 0 in (−1, 1),

GD1,τλ,x(−1, z) = GD1,τλ,x(1, z) = 0.
(7.8)

We calculate explicitly

GD1,τλ(x, z)
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=







θ1√
τλ sinh(2θ1

√
τλ)

cosh[θ1
√
τλ(1 + x)] cosh[θ1

√
τλ(1− z)],

−1 < x ≤ z < 1,

θ1√
τλ sinh(2θ1

√
τλ)

cosh[θ1
√
τλ(1− x)] cosh[θ1

√
τλ(1 + z)],

−1 < z ≤ x < 1,

(7.9)

where

θ1 =
1√
D1

. (7.10)

We can decomposeGD1,τλ(x, z) as follows

GD1,τλ(x, z) = − 1

2D1

|x− z| −HD1,τλ(x, z) (7.11)

whereHD1,τλ is the regular part ofGD1,τλ.
Closely related, let̃GD1,τλ(x, z) be the Green’s function given by

{
D1G̃D1,τλ,x(x, z)− τλG̃D1,τλ(x, z)− 1

2
+ δz(x) = 0 in (−1, 1),

G̃D1,τλ,x(−1, z) = G̃D1,τλ,x(1, z) = 0.
(7.12)

We calculate explicitly
G̃D1,τλ(x, z)

=







θ1√
τλ sinh(2θ1

√
τλ)

cosh[θ1
√
τλ(1 + x)] cosh[θ1

√
τλ(1− z)]− 1

2τλ
, −1 < x ≤ z < 1,

θ1√
τλ sinh(2θ1

√
τλ)

cosh[θ1
√
τλ(1− x)] cosh[θ1

√
τλ(1 + z)]− 1

2τλ
, −1 < z ≤ x < 1,

(7.13)
We can decomposẽGD1,τλ(x, z) as follows

G̃D1,τλ(x, z) =
1

2D1
|x− z| − 1

2τλ
−HD1,τλ(x, z) (7.14)

whereHD1,τλ is the regular part of̃GD1,τλ. Then an elementary computation shows that
∣
∣
∣
∣
HD1

(x, z)−HD1,τλ(x, z)−
1

2τλ

∣
∣
∣
∣
≤ C|τλ| (7.15)

uniformly for all (x, z) ∈ Ω× Ω. For the first two derivatives we have

|∇[HD1
(x, z)−HD1,τλ(x, z)]| ≤ C|τλ| (7.16)

uniformly for all (x, z) ∈ Ω× Ω and
∣
∣∇2[HD1

(x, z)−HD1,τλ(x, z)]
∣
∣ ≤ C|τλ| (7.17)

uniformly for all (x, z) ∈ Ω×Ω, where∇ in (7.16) and (7.17) can mean derivative w.r.t. tox or z.
Further, letGD2

(x, z) be the following Green’s function:
{
D2GD2,xx(x, z)−GD2

(x, z) + δz(x) = 0 in (−1, 1),

GD2,x(−1, z) = GD2,x(1, z) = 0.
(7.18)

We calculate

GD2
(x, z) =







θ2
sinh(2θ2)

cosh[θ2(1 + x)] cosh[θ2(1− z)], −1 < x ≤ z < 1,

θ2
sinh(2θ2)

cosh[θ2(1− x)] cosh[θ2(1 + z)], −1 < z ≤ x < 1,
(7.19)
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where

θ2 =
1√
D2

. (7.20)

We set

KD2
(|x− z|) = θ2

2
e−θ2|x−z| (7.21)

to be the singular part ofGD2
(x, z). Then we decompose

GD2
(x, z) = KD2

(x, z)−HD2
(x, z), (x, z) ∈ Ω× Ω.

Note thatGD2
isC∞ for (x, z) ∈ Ω×Ω\{x = z} andHD2

isC∞ for all (x, z) ∈ Ω×Ω. Explicitly,
we calculate

HD2,xx(0, 0) = −θ
3
2

2
coth θ2,

HD2,xz(0, 0) =
θ32
2
tanh θ2.

Note that in particular

HD2,xx(0, 0) +HD2,xz(0, 0) =
θ32
2
(− coth θ2 + tanh θ2) < 0. (7.22)

Closely related, letGD2,τ1λ(x, z) be the Green’s function defined by
{
D2GD2,τ1λ,xx(x, z)− (1 + τ1λ)GD2,τ1λ(x, z) + δz(x) = 0 in (−1, 1),

GD2,τ1λ,x(−1, z) = GD2,τ1λ,x(1, z) = 0.
(7.23)

We calculate explicitly

GD2,τ1λ(x, z) =







θ2√
1+τ1λ sinh(2θ2

√
1+τ1λ)

cosh[θ2
√
1 + τ1λ(1 + x)] cosh[θ2

√
1 + τ1λ(1− z)],

−1 < x ≤ z < 1,

θ2√
1+τ1λ sinh(2θ2

√
1+τ1λ)

cosh[θ2
√
1 + τ1λ(1− x)] cosh[θ2

√
1 + τ1λ(1 + z)],

−1 < z ≤ x < 1,
(7.24)

We can decomposeGD2,τ1λ(x, z) as follows

GD2,τ1λ(x, z) = KD2
(|x− z|)−HD2,τ1λ(x, z), (7.25)

whereHD2,τ1λ is the regular part ofGD2,τ1λ. Then an elementary computation shows that

|HD2
(x, z)−HD2,τ1λ(x, z)| ≤ C|τ1λ| (7.26)

uniformly for all (x, z) ∈ Ω× Ω and

|∇[HD2
(x, z)−HD2,τ1λ(x, z)]| ≤ C|τ1λ| (7.27)

uniformly for all (x, z) ∈ Ω× Ω

|∇2[HD2
(x, z)−HD2,τ1λ(x, z)]| ≤ C|τ1λ| (7.28)

uniformly for all (x, z) ∈ Ω×Ω, where∇ in (7.27) and (7.28) can mean derivative w.r.t. tox or z.
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