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ABSTRACT Allostery offers a highly specific way to
modulate protein function. Therefore, understanding
this mechanism is of increasing interest for protein
science and drug discovery. However, allosteric signal
transmission is difficult to detect experimentally and to
model because it is often mediated by local structural
changes propagating along multiple pathways. To ad-
dress this, we developed a method to identify com-
munication pathways by an information-theoretical
analysis of molecular dynamics simulations. Signal
propagation was described as information exchange
through a network of correlated local motions, mod-
eled as transitions between canonical states of protein
fragments. The method was used to describe allostery
in two-component regulatory systems. In particular, the
transmission from the allosteric site to the signaling
surface of the receiver domain NtrC was shown to be
mediated by a layer of hub residues. The location of
hubs preferentially connected to the allosteric site was
found in close agreement with key residues experimen-
tally identified as involved in the signal transmission.
The comparison with the networks of the homologues
CheY and FixJ highlighted similarities in their dynamics.
In particular, we showed that a preorganized network of
fragment connections between the allosteric and func-
tional sites exists already in the inactive state of all three
proteins.—Pandini, A., Fornili, A., Fraternali, F., Klein-
jung, J. Detection of allosteric signal transmission by
information-theoretic analysis of protein dynamics.
FASEB J. 26, 868–881 (2012). www.fasebj.org
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Early studies of cellular metabolic regulation cul-
minated in the discovery of “allosteric transitions”
within regulatory protein structures (1). This transition
was characterized as a reversible conformational
change: binding of a regulatory effector molecule to
the allosteric site modulates the protein activity at the
functional site. Since these early insights, computa-
tional and experimental evidence has added much
detail at the atomic level. The currently emerging
picture of allostery is that of a preexisting equilibrium
among inactive and active states (2). Allosteric effectors
can modulate protein function by shifting the equilib-

rium toward particular states (2–4). The perturbation
of the free energy landscape on effector binding trig-
gers a change in the protein that propagates from the
allosteric to the functional site across the protein
structure. Signal propagation has been recently argued
to occur via multiple allosteric pathways, embedded in
the network of residue contacts (5). Moreover, it has
been recognized that the relative enthalpic and en-
tropic contributions to the allosteric transition may vary
greatly between systems. An extreme case is the purely
entropically driven and dynamically mediated allosteric
effect arising from rigidification of the macromolecule
on binding of a ligand (6, 7). This increased under-
standing of allosteric regulation has suggested new
directions in drug discovery. Allosteric inhibitors have
been shown to be effective in targeting multiple con-
formational states and to be more selective than com-
petitive inhibitors (8, 9).

While now better understood, allosteric modulation
is still challenging to model. Different strategies have
been recently proposed, on the basis of elastic networks
(10, 11), contact maps (12–15), force distributions
(16), evolutionary covariance (17), and correlations
between residue motions (18–20). They generally dif-
fer in the amount of required prior information and
use either single structures (10–13) or conformational
ensembles (14–16, 18–20). In addition, some of them
rely on the availability of data from both the inactive
and active state (12, 14, 16, 18).

Here, we present a novel method to identify allosteric
pathways in protein structures by an information-theo-
retical analysis of molecular dynamics (MD) simula-
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tions. Within the sampling limits, MD trajectories
contain a wide range of molecular motions, from
high-frequency harmonic oscillations to slow functional
conformational transitions. However, without prior
knowledge of the specific allosteric mechanism, it is still
difficult to single out the residues involved in the signal
propagation pathways. In our model, the dynamics of
the system is reduced to a network of correlated local
motions, and signal propagation is described as an
information exchange through the network. Local mo-
tions are modeled as transitions between canonical
states of protein fragments (21). Key residues are
identified by a network topological analysis, while a
time-resolved picture of their dynamical couplings is
obtained from the fragment state transitions.

We report the application of the method to the
receiver domains of the response regulators NtrC,
CheY, and FixJ. Response regulators are part of two-
component systems (TCSs), which are widespread in
bacterial signal transduction (22) and control many
different cellular processes, like chemotaxis (CheY; ref.
23), nitrogen fixation (FixJ; ref. 24), and nitrogen
metabolism (NtrC; ref. 25). In TCSs, an external stim-
ulus is detected by a sensor histidine kinase (the input
component), which triggers a phosphotransfer reac-
tion to the receiver domain of the response regulator
(the output component). The phosphorylation pro-
motes an allosteric conformational change that is prop-
agated to the receiver domain interface (or signaling
surface), regulating the affinity of the response regula-
tor and, in particular, of its effector domain for the
downstream targets (26). Receiver domains have a
conserved fold that is coupled with �60 different
effector domains, which are responsible for the specific
adaptive response to the external signal (26). In this
way, the same basic mechanism, a phosphorylation-
induced allosteric transition, is used as a switch to
modulate a variety of cellular pathways.

Since they are absent in animals, TCSs are considered
as ideal candidates for the development of new antibiotics
(27). However, receiver domains are of interest as proto-
types of allosteric transmission within single domains
(28). In particular, the role of a preexisting equilibrium in
the allosteric mechanism of NtrC has been supported by
strong experimental evidence (29–31).

According to our model, central network nodes are
found in the signaling regions of the three receiver
domains, and they are preferentially connected with
the allosteric site. Analysis of the interplay between
local and global motions detects strong correlations
between the local dynamics around the allosteric site
and the large amplitude motions of the protein.

MATERIALS AND METHODS

MD simulations

The GROMACS 4.0 program (32) was used to prepare the
initial system coordinates, run the MD simulations, and
analyze the resulting trajectories.

The starting coordinates for the MD simulation of unphos-
phorylated NtrC were extracted from the Protein Data Bank
(PDB) NMR structure 1DC7. The charge of the ionizable
residues was set to that of their standard protonation state at
pH 7. The protein was solvated with a cubic box of simple
point charge (SPC) water molecules. The initial minimal
distance between the protein and the box boundaries was set
to 12 Å, resulting in 9471 water molecules. The system was
neutralized by adding 7 Na� counterions.

The simulation of unphosphorylated CheY was started
from the PDB structure 3CHY (X-ray at 1.7 Å resolution). For
the residues with multiple orientations of the side chains, the
A structure was selected. In particular, the orientation most
exposed to the solvent was chosen for the Y106 side chain.
The crystallographic water molecules and the SO4

2� ions
were removed. The ionizable residues were treated as in NtrC.
The protein was then solvated with 8807 SPC water molecules
and 4 Na� counterions.

The PDB structure 1DCK (X-ray at 2.0 Å resolution) was
used for the simulation of unphosphorylated FixJ. The initial
coordinates were prepared the same as Roche et al. (33). The
crystallographic water and PEG molecules were removed,
while the protein-bound Mn2� ion was modeled as Mg2�.
The ionizable residues were treated as in NtrC. The protein
was then solvated with 8646 SPC water molecules and 8 Na�

counterions.
The simulations were performed using the GROMOS-96

force field with the 43a1 set of parameters (34). Periodic
boundary conditions were imposed. The equations of motion
were integrated using the leap-frog method (35) with a 2-fs
time step. The Berendsen algorithm (36) was employed for
temperature and pressure regulation, with coupling constants
of 0.2 and 0.5 ps, respectively. All the protein covalent bonds
were frozen with the LINCS (37) method, while SETTLE (38)
was used for water molecules. The electrostatic interactions
were calculated with the particle mesh Ewald method (39),
with a 14-Å cutoff for the direct space sums, a 1.2-Å FFT grid
spacing, and a 4-order interpolation polynomial for the
reciprocal space sums. For van der Waals interactions, a 14-Å
cutoff was used. The neighbor list for noncovalent interac-
tions was updated every 5 steps.

The systems were first minimized with 1000 steps of steep-
est descent. Harmonic positional restraints with a force
constant of 4.8 kcal/mol/Å2 were imposed onto the protein
heavy atoms and gradually reduced to 1.2 kcal/mol/Å2 in 80
ps, while the temperature was increased from 200 to 300 K at
constant volume. The system was then simulated at constant
temperature (300 K) and pressure (1 bar) for 100 ps. After
removal of harmonic restraints, 2 ns of equilibration were run
in NPT conditions. NPT production simulations were then
run for 80 ns for each system. The RMSD from the starting
structure calculated over C� atoms stabilized around 4 Å after
�45 ns for NtrC, and around 2 Å after �10 ns for both CheY
and FixJ.

The solvation in the proximity of the allosteric site (within
4 Å of D54 or T82) at the end of the solvent equilibration
phase (0–180 ps) was compared with the X-ray one for CheY
and FixJ. The average distance between the crystallographic
water molecules and the closest simulated ones was 1 Å in
both cases.

Essential dynamics (40) was performed on the 80-ns trajec-
tories of the 3 receiver domains. Principal components (PCs)
were generated by diagonalizing the covariance matrix of C�

positions. Porcupine plots (41) were produced for PC1 and
PC2 in NtrC. We defined the essential space as the subset of
PCs, accounting for at least the 80% of the overall variance. It
was composed of the first 9, 25, and 20 PCs for NtrC, CheY
and FixJ, respectively. Convergence of the essential space was
monitored by calculating the overlap (42) between the essen-
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tial space PCs extracted from the first t ns and those extracted
from the entire simulation. The overlap at t � 50 ns was
between 0.8 and 0.91 for the 3 receiver domains, indicating
that the sampling in the last 30 ns did not modify significantly
the overall essential space.

Representative structures were extracted from the 3 trajec-
tories using the clustering method of Daura et al. (43) with a
1.2-Å cutoff on C� atoms. The most populated clusters,
accounting for 31, 65, and 26% of the overall population, had
the first occurrence at 41, 11, and 39 ns, and no new clusters
with a population �5% appeared after 46, 11, and 51 ns for
NtrC, CheY, and FixJ, respectively. This further confirms that
no significant sampling of new regions of the conformational
space occurred in the last 30 ns of simulation for all of the
proteins.

To check for reproducibility of the system dynamics, two
80-ns replicas with a different set of initial velocities were run
for each molecule. For NtrC, two more 80-ns replicas were
run from 2 refined structures extracted from the RECOORD
database (44).

The C� root mean square fluctuation (RMSF) from the
average position was calculated by superimposing each snap-
shot of the trajectory onto a reference structure to remove the
overall rototranslational motions of the whole protein. The
fragment RMSF was calculated by defining n � 3 sliding
windows or fragments of 4 adjacent C� atoms. For all of the
trajectory snapshots, each fragment was superimposed onto
the reference starting structure, independently from the rest
of the protein, to remove local rototranslational motions. The
fragment RMSF was then calculated as the quadratic mean of
the RMSF values of each C� in the window (21).

Conformational analysis of local structures

The dynamics of local structures in the MD ensembles was
analyzed with a fragment-based approach. The structural
alphabet (SA) M32K25 (21) was used to describe prototypical
backbone conformations. The SA comprises 25 representa-
tive fragments of 4 consecutive C� atoms. The SA was specif-
ically designed to include the most typical local structures, as
well as to correctly encode conformational transitions sam-
pled by molecular simulations (21). Each SA fragment repre-
sents a conformational state, and it is identified by a letter
(A-Y). Hence, any 4-residue-long segment in a protein struc-
ture can be labeled with a structural alphabet letter. In a
so-called local fit (45) approximation, labeling is performed
according to the most similar SA fragment in terms of RMSD.
It follows that the conformation of a protein of n residues can
be condensed to a structural string of length n � 3. We used
this encoding method to translate each MD ensemble in a set
of aligned structural strings. A column of this alignment
describes all the conformational states sampled by a protein
fragment along the simulation trajectory.

Correlation of local motions

In accordance with the proposed discrete state model, the
correlation of conformational changes in a pair of protein
fragments (i,j) was calculated as a normalized mutual infor-
mation (MI; ILL

n ), Eq. 1:

ILL
n �Ci ;Cj� �

I�Ci ;Cj� � ε�Ci ;Cj�

H�Ci ,Cj�
(1)

where Ci and Cj are the relevant columns in the structural
string alignment, I(Ci;Cj) is the MI, H(Ci,Cj) is the joint
entropy (46) and ε(Ci;Cj) is the expected finite size error
(47). General expressions for the MI and joint entropy (46)
of 2 random variables X and Y are presented in Eqs. 2 and 3:

I�X;Y � � �
y	Y

�
x	X

p�x,y�log2� p�x,y�
p1 �x�p2 �y�� (2)

H�X,Y � � ��
y	Y

�
x	X

p�x,y�log2 p�x,y� (3)

where x and y are the discrete states of the random variables
X and Y, p1(x) and p2(y) are the associated marginal proba-
bilities, and p(x,y) is the joint probability distribution.

The calculation of information theoretical quantities on
finite size samples is affected by random and systematic errors
(47). These are generally negligible in the case of the
Shannon entropy (48) but can significantly affect the calcu-
lated MI. To improve accuracy, the systematic error on MI can
be estimated and removed. In the present work, the expected
error ε(X;Y) used in Eq. 1 was calculated as proposed by
Roulston et al. (47):

ε�X;Y � �
BXY

* � BX
* � BY

* � 1
2N

where N is the sample size and BXY
* BX

*, BX
* are the number of

states with nonzero probabilities for the states of (X,Y), X, and
Y, respectively.

Correlation between local and global motions

Global collective motions are usually extracted from the
leading principal components (PCs) after essential dynamics
(40) analysis (see above, MD Simulation). The structural
change associated with a single collective motion was ob-
tained by projection of the MD trajectory onto the relevant
PC. The resulting vector contains the displacements along the
PC during the simulation. These values were discretized to
define a state model for the associated global motion. The
correlation between the motion of a protein fragment and a
given collective motion was then calculated as the normalized
MI (ILG

n ) between the array of fragment states and the array of
global motion states:

ILG
n �Ci ;sPCj� �

I�Ci ;sPCj�

H�Ci ,sPCj�
(4)

where Ci is the vector of states sampled by fragment f i, sPCj is
the vector of global states associated with the jth PC,
I(Ci;sPCj) is their MI (Eq. 2), and H(Ci,sPCj) is their joint
entropy (Eq. 3).

The vector sPCj was derived in the following way. The MD
trajectory was first projected onto the jth PC eigenvector,
producing the associated continuous collective variable (PCj).
The range of PCj values was divided into l small bins {b1,…,bl}
with the same size 
b. Adjacent bins were then combined to
produce m larger intervals, defining the global states pcsj

k (i.e.,
pcsj

1 � {b1,…,b3}, pcsj
2 � {b4,…,b8}, etc.). These states were used

to discretize PCj into sPCj. The aggregation of bins into global
states was optimized by maximizing the ILG

n value, so that the
resulting pcsj

k provide the maximal estimate of the local-global
correlation. A similar approach has been already used to
investigate the relations between primary structure, second-
ary structure and sidechain surface exposure (49). From the
algorithmic point of view, the global state definition can be
considered as a partition problem, which can be solved by
dynamic programming (49, 50). To this end, a modified
version of the algorithm described in ref. 50 was implemen-
ted in C. For comparison purposes, the PCj values were
rescaled in the interval (0, 1). The optimization was per-
formed separately for each pair (Ci;sPCj), using a bin size 
b of
0.01 and a target number of partitions m of 25, equivalent to
the number of structural alphabet states.
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Network model of local correlated motions

The interaction among the fragments can be inferred from
the correlated state changes and modeled as a network by an
undirected weighted graph, where each node represents a
protein fragment labeled with its starting residue i and the
correlated motion between a node pair (i,j) is recorded as an
edge with weight:

wij � 1 � ILL
n �Ci ;Cj� (5)

where ILL
n (Ci;Cj) is defined in Eq. 1.

To this end, the pairwise matrix of ILL
n values for all

fragment pairs in a protein was calculated, and the statistically
significant correlations were identified by the false discovery
rate (FDR) test (51) with � � 0.001. The p values for the test
were independently estimated for each pair (i,j) by genera-
tion of a random background distribution of 5000 samples.
To preserve the original state probabilities (and the associ-
ated Shannon entropy; ref. 48), the randomization was per-
formed by shuffling the letters in Ci. At the end, correlations
between fragments closer than 4 Å were also excluded to
remove the bias induced by fragment overlaps. The remain-
ing values of ILL

n were divided as contact (�12 Å) and
noncontact (�12 Å) according to the distance of the first C�

atoms in the fragment pair. This contact cutoff (12 Å) is the
upper limit of the optimal range suggested by a recent study
on the reconstruction of contact maps (52). The network was
built from the edges in the top 25% by ILL

n value for the
contact pairs and the top 5% for the noncontact pairs.

The importance of each node in the network was estimated
from the number and type of its connections with other
nodes using the eigenvector centrality score (53). This score
is designed to emphasize the connections that are made to
highly connected nodes. The centrality was obtained from the
first eigenvector of the adjacency matrix, where nonzero
values were set to ILL

n . Nodes with higher centrality represent
fragments that show correlated motions preferentially with
other highly correlated fragments. These are likely candidates
for contributing to global collective motions and signal
transmission.

The transmission pathway of conformational changes from
the allosteric site to other regions of the protein was modeled
as a set of shortest paths on the network. The analysis of these
paths was used to identify the protein regions that are
preferentially coupled to the allosteric site. First, the shortest
distances d ja(i) between each of the 4 fragments f ja (with ja �
[a � 3,a]) containing the allosteric site a (D54) and all the
protein fragments f i (with i � [1,n � 3]) were calculated with
the Dijkstra algorithm (53). For each fragment f ja, the
distribution of the shortest distances was standardized, pro-
ducing the z scores:

� ja�i� �
dja�i� � �dja

 ja

A unique z-score profile �a(i) was then built by calculating the
minimum value over the 4 fragments f ja:

�a�i� � minja	�a�3a��
ja�i� (6)

The fragments f i with a negative z score �a(i) can be consid-
ered to have a preferential dynamic connection to the
allosteric site with respect to the average. We defined as “ILL

n

neighbors” of the allosteric site the residues in the lowest
quartile (lowest 25% of data) of the z-score distribution
(Supplemental Fig. S2D), resulting in a z-score threshold of
�0.84, �0.94, and �1.26 for NtrC, CheY, and FixJ, respec-
tively.

Comparison of different models of correlated motions

The network of local correlated motions was compared with
other models of residue correlation. This comparison was
performed to assess the methodological improvement intro-
duced by using a discrete state representation of local dynam-
ics. To this end a contact map, a correlation matrix of C�

positions (�) and a fragment correlation matrix (�f) for a
window of 4 adjacent C� atoms were generated for each
protein.

The contact map was calculated on the experimental
structure, and residues were defined in contact if �2 of their
nonhydrogen atoms were within a distance of 5 Å. These are
the criteria reported in previous studies on allosteric modu-
lation using contact-based approaches (12, 13). The correla-
tion matrix � was calculated as described by Kormos et al.
(54). To generate the fragment correlation matrix �f, the
RMSD �i(t) of the structure of fragment i at time t from the
fragment average structure was calculated after least-squares
superposition. The correlation between fragments i and j was
then calculated as:

�ij
f �

���i�t� � �� i��� j�t� � �� j��

����i�t� � �� i�
2���� j�t� � �� j�

2�

where angle brackets and bars indicate time averaging. The
absolute value of the correlations for both � and �f was taken.

The signal-to-noise ratio (SNR) was estimated for the ILL
n ,

�f, and � matrices. The SNR value can be calculated as (55):

SNR �
�signal

noise

where �signal is the average value of the signal and noise is the
standard deviation of the noise. To estimate these contribu-
tions, the data were divided into 2 groups: values � 1.5
interquartile range over the upper quartile were considered
signal and the remainder data noise.

A network representation was built for each matrix. Edges
were drawn for nonzero values in the contact matrices and for
correlation � 0.25 in the � matrices (54). The networks for �f

matrices were built with the same contact/noncontact filter-
ing applied to the ILL

n matrix (see preceding section).
For each network, the transmission pathways from the

allosteric site to the other regions of the protein were
modeled by shortest paths. The connection of each position
of the protein to the allosteric site was estimated with the
score �a(i) (see preceding section and Eq. 6).

The ability of each correlation model to correctly describe
the allosteric communication pathways was assessed by a
performance test. The �a(i) index was used as a classifier to
predict the residues of the signaling surface according to
their connection with the allosteric site. For consistency, the
prediction target was defined on the fragment level for both
residue-based (contact map, �) and fragment-based (�f, ILL

n )
networks: a position belonged to the True set if any of the
residues of the associated fragment were listed in the signal-
ing surface.

Receiver operating characteristic (ROC) curve (56) and
the associated area under the curve (AUC) were calculated
for each network. The ROCR library (version 1.0.2) was used
for the performance analysis (57).

Software for data analysis and visualization

The R environment (58) was used for statistical data analyses.
Network analyses were performed with the igraph library (ver-
sion 0.5.4 for R; ref. 59). Network figures were generated with
Cytoscape 2.8 (60). Protein structure images were generated
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with VMD 1.8.6 (61) and PyMOL 1.2 (62). The software devel-
oped for this study was implemented in C and is available online
(http://mathbio.nimr.mrc.ac.uk/wiki/Software).

RESULTS

Intrinsic dynamics of NtrC

The largest structural changes experimentally observed
on activation of NtrC involve its signaling region (pur-
ple spheres in Fig. 1A), namely the �4 helix and its
connecting loops (refs. 25, 29, 63, 64; Supplemental
Fig. S1A). In particular, �4-�4 extends, allowing the
reorientation and rotation of �4, which also undergoes
a register shift by partial winding and unwinding at the
C and N termini, respectively. Although there is no
general consensus on the type and sequence of events
involved in NtrC activation (26), some key features have
emerged in the literature, partly by comparison with
other receiver domains. Particularly important is the
interaction between the conserved T82 residue and the
phosphorylated D54, together with the reorientation of
the Y101 residue that fills the cavity created by the
extension of the �4-�4 loop (23, 25, 26, 65).

Here, we present the results of 80 ns of unbiased MD
simulation, starting from the unphosphorylated inac-
tive conformation of NtrC. The activation of NtrC is
promoted by phosphorylation of its D54 residue (or-
ange sphere in Fig. 1A). However, experimental and
theoretical evidence asserts that the unphosphorylated
state exists as an equilibrium between inactive and
active-like conformations (29, 66). The possibility of
exchange between these forms is, therefore, part of the
intrinsic dynamics of unphosphorylated NtrC. Even if
the length of our simulations does not allow observa-
tion of a complete inactive-to-active transition, the

trajectory analysis highlights the occurrence of active-
like features (Fig. 2). Interactions between T82 and
D54 are detected transiently in the 11- to 17-ns interval,
and stably after 43 ns (Fig. 2D). An extension of �4-�4
is observed after 17 ns, together with a reorganization
of the secondary structure of �4 that unwinds the
N-terminal residues S85 and D86 (Fig. 2A, B). These
residues form a transient interaction in the 10- to 31-ns
interval (Fig. 2C), which has been suggested to lower
the energy barrier of the activation (30, 64). Moreover,
the mobile Y101 side chain visits different rotameric
states, including the active-like �1 trans orientation (Fig.
2E). The reproducibility of these features was checked
in the replicas (see Materials and Methods). The un-
winding of the N-terminal �4 was observed in all cases,
together with the S85–D86 interaction. The D54–T82
interaction was present in 3 of 4 replicas, while the Y101
active rotamer was found in 2. Interestingly, except for
one case, these two features were generally observed
together in the same simulation, suggesting a correla-
tion between them. Moreover, in the replica where they
were both absent, the unwinding of N-term �4 oc-
curred only in the last 16 ns of simulation.

The global motions of the protein are dominated by
the changes in �4-�4 and the restructuring of �4,
together with the large-amplitude fluctuations of the
�3-�3 loop (Supplemental Fig. S2A). Indeed, the first 2
PCs, accounting for the 64% of the overall fluctuation,
describe the partial rotation of the �4 C terminus along
the helix axis (PC1, PC2), together with the opening
(PC2) and upward elongation (PC1) of its N-terminal
turn (Fig. 3).

Network model of local correlated motions

In the following, we present a model of signal propa-
gation built on the analysis of local motions. These are

Figure 1. Functional and dynamical properties of NtrC mapped onto the energy-minimized NMR structure (PDB ID: 1DC7).
A) Phosphorylation site (D54) and signaling surface residues (63, 78), represented as orange and purple spheres, respectively,
centered on C� atoms. B) Network of ILL

n between fragment conformational transitions. Fragments that are coupled are
connected with blue edges drawn between their first C� atoms. Thick orange edges are used for the strongest 25% connections
in the ILL

n distribution. C) Eigenvector centrality score of the ILL
n network. Per-fragment scores are mapped onto the structure

by assigning to each residue the maximum value calculated over all the fragments that include it. Tube is colored (blue to red)
and sized according to the eigenvector centrality.
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extracted from an MD simulation by encoding the
trajectory into sequences of 4-residue fragment states
with the M32K25 structural alphabet (21). The commu-
nication between protein fragments is then detected by
the correlation of their conformational transitions,
measured by normalized MI (ILL

n ) between fragment
encodings (Eq. 1). The fragment couplings define a
network of interactions that is conveniently repre-
sented by an undirected weighted graph. The nodes
(fragments) are connected by edges when their confor-
mational transitions are correlated, and the edge
weight describes the correlation strength (Eq. 5). If the
ILL
n is calculated over the whole simulation, the network

becomes a comprehensive model of the average corre-
lated dynamics of the protein.

We calculated the ILL
n network of NtrC (Fig. 1B) from

its 80-ns MD trajectory. The mapping of the network
edges on the protein structure is not uniform, with
weak correlations (Fig. 1B, blue) connecting the major-
ity of the nodes and strong couplings (Fig. 1B orange)
concentrated in few regions. This is reflected by the

node eigenvector centrality (ref. 53; Fig. 1C and Sup-
plemental Fig. S3), which measures the relative impor-
tance of each node in the network. High-centrality
nodes have a large number of connections, preferen-
tially with other highly connected fragments. The con-
formational changes of these hub fragments are likely
to be involved in collective motions and allosteric signal
transmission, since they can efficiently receive and
transmit conformational perturbations in different
parts of the molecule and possibly amplify them
through their connection with other hub fragments. In
NtrC, most of the high-centrality nodes are found in
regions significantly involved in global collective mo-
tions (Figs. 1C and 3). Interestingly, all the top 5%
nodes by centrality score (Supplemental Fig. S2C) are
found on the signaling surface or close to it, namely f 80

(denoting the fragment spanning residues 80 to 83);
f 82, f 83, and f 85 in the �4-�4 loop; f 92 at the C terminus
of �4; and f 63 on the interface between �3 and �4.
Thus, the functional regions can be singled out from
those involved in global motions by using the topolog-

Figure 2. Structural description of NtrC, CheY, and FixJ during
the MD simulations. A) Representative structures of NtrC ex-
tracted from the cluster analysis of the MD trajectory (see
Materials and Methods). Representatives of the first 10 most
populated clusters are shown (cartoon), colored from blue to red
according to the time order. Time (ns) of each structure is
indicated, together with the relative population of the cluster (in
parentheses). D54, T82, and Y101 residues are shown as magenta
licorice. Note that the �4-�4 extension enhances the rototransla-
tional movements of �4, which, at the end of the simulation, has
its orientation changed with respect to the rest of the protein. In
the active state, this reorientation is forbidden by the winding of
the C terminus of �4, which is not observed here, most likely
because of the limited simulation length. B) Evolution of the
secondary structure (DSSP) of helix �4 in NtrC (residues 84–97)
during the MD simulation (color code at right). The whole

trajectory, including the equilibration (�2.18–0 ns) and production (0–80 ns) phases is shown. C) Distance between the
S85 and D86 side chains during the NtrC simulation. Distance is calculated as the minimum over all the possible pairs of
nonhydrogen atoms. D) Distance between the D54 and T82 residues (NtrC sequence) during the MD trajectories of NtrC
(orange), CheY (blue), and FixJ (purple). Equivalent residues in CheY are D57 and T87. E) �1 torsional angle
(N-CA-CB-CG) of Y101 (NtrC sequence). The equivalent residues in FixJ and CheY are F101 and Y106, respectively. Values
calculated from the experimental coordinates (see Supplemental Fig. S1 for PDB IDs) are reported as horizontal lines for
the active (solid line) and inactive (dotted line) structures. For NtrC, active(1) and active(2) values are derived from 1KRX
and 1DC8, where 2 orientations of Y101 are found.
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ical properties of the overall network. A more detailed
view can be obtained by the analysis of time-dependent
couplings within selected subnetworks, as described in
the following section.

Allosteric transmission across the network

We used the ILL
n network to study the allosteric signal

transmission in NtrC, assuming that allosteric motions
may arise from the combination of local fragment
couplings. To this end, we modeled the propagation of
conformational changes as a path of connected edges
on the network.

A first insight into the NtrC signal transmission was
obtained from the analysis of the network connections
between the allosteric site and the signaling surface. We
calculated a subnetwork including only the shortest
paths from the 4 allosteric fragments, containing resi-
due D54 (f 51 to f 54), to any fragment on the signaling
surface (Fig. 4A). The allosteric fragments show rela-
tively weak connections to the 3 main hubs (f 80, f 82,
f 83), which have stronger couplings to other fragments
on the signaling surface. The subnetwork describes a
3-layer topology on the protein structure (Fig. 4B)
where the hub nodes (Fig. 4B, red) in the middle layer
have the role of transmitting and amplifying the signal
from D54 (Fig. 4B, white) to the signaling surface (Fig.
4B, blue). These hub fragments are located on the C
terminus of �4 and on the �4-�4 loop. The regions
spanned by these fragments are rich in residues known
to affect the allosteric mechanism. In particular, mutat-
ing T82 (f 80 and f 82) to residues other than serine
generally abolishes the activity of receiver domains (67,
68). Indeed, the OH group in this position is consid-
ered to be involved in the signal propagation after the
phosphorylation event (refs. 24, 26; see above, Intrinsic
Dynamics of NtrC). Moreover, mutations of S85 (f 82

and f 83) impairing its hydrogen bond donor capacity

have been recently found to decrease the rate of
interconversion between the NtrC inactive and active
form (30). Finally, in D86N (f 83) mutants, the preequi-
librium has been observed to be shifted toward the
active conformation (30). These data support the valid-
ity of the pathways identified from the ILL

n subnetwork
connecting the allosteric site to the signaling surface.
Indeed, they show that modifications of critical nodes
in these pathways can affect the kinetics and thermo-
dynamics of the allosteric mechanism.

A deeper insight into the signal transmission was
provided by the analysis of fragment couplings along
the simulation time. We measured the incremental
value of ILL

n for pairs of fragments in the subnetwork to
detect how the conformational transitions are propa-
gated by consecutive fragment interactions. An exam-
ple of this mechanism is provided by the signal propa-
gation from D54 to L87 (Fig. 4C). After 14 ns, a
coupling between f 54 and f 83 arises. This triggers a
sudden increase in the correlation between f 83 and f 87,
which generates a transient communication between
D54 and L87 in the time interval 19–42 ns. The
coupling f 54-f 83 is driven by a conformational transition
of f 54 from state Q (Fig. 4D, a) to an ensemble,
including state Q and E (Fig. 4D, b). This relatively
modest change precedes a set of more dramatic re-
shapes in f 83, which exhibit two significant transitions
(Fig. 4D, d to e and f to g) from an helical structure
(mainly state U) to more extended geometries (Q and
M). These transitions are responsible for the coupling
with f87 that mirrors them with more subtle changes
(Fig. 4D, i to j and k to l).

The transitions undergone by f 83 are due to the
rearrangement of the �4-�4 loop observed after 17 ns,
while the f 87 transitions are related to the transient
reorganization of the central part of �4 in the 17- to
50-ns time interval (Fig. 2B). The analysis of the ILL

n

time dependence allows detection of a direct correla-
tion between these events, which dominate the global
collective motions of the protein (Fig. 3), and the local
transitions occurring at the allosteric site (f 54). Thus,
the combination of path detection and time-dependent
analysis provides a clear picture of signal propagation
and highlights mechanisms not easily detectable with
other methods.

Local and global conformational changes

We further investigated the relationship between the
local conformational transitions described in the previ-
ous sections and the global collective motions of the
protein. To this end, for each fragment, we calculated
the normalized MI (ILG

n ; see Eq. 4) between the se-
quence of its structural states extracted with the struc-
tural alphabet (local states) and a discrete model of the
most informative collective variables (PC states) derived
from essential dynamics (40).

The resulting ILG
n profiles per fragment are not

related in a simple way to the atom displacements along
the PCs (Fig. 3). Indeed, in the global motions, the

Figure 3. Porcupine representation of the first and second
PC (amounting to 55 and 9% of the overall fluctuation,
respectively) extracted from the MD trajectory of NtrC (0–80
ns). Direction and relative amplitude of the motion of each
C� atom along the PC is represented by purple spikes. ILG

n

between local states and global PC states is color coded onto
the tube representation of the average MD structure. C�

atoms of fragment 80 and of the phosphorylation site (D54)
are represented as green and orange spheres, respectively.
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conformational change of a fragment is mixed with its
rigid rototranslation. Hence, regions with comparable
global displacements (spike length) show different
degrees of correlation with local changes (color), ac-
cording to the different proportion of flexible and rigid
motions contributing to the global fluctuation. This
parallels the differences observed in the overall C� and
fragment RMSF (Supplemental Fig. S2A, B). When only
local motions are taken into account, a general increase
of the relative flexibility of � strands with respect to �
helices is found (orange line in Supplemental Fig.
S2B).

For the first two PCs (Fig. 3 and Supplemental Fig.
S4), the highest ILG

n values are observed on the signaling
surface (�4, �4-�4 loop, and �4 termini) and, for PC1,
in the �1-�2 loop. This suggests that the local state
transitions found in these regions are significantly
coupled to the global changes with largest amplitude.
This is particularly evident for fragment f 80, which has
the maximum value of ILG

n . Its transition from an
extended conformation (state P and partially E) to an
ensemble of states dominated by E corresponds to the
largest variation of the global coordinate PC2 occurring
in the 10- to 20-ns interval (Fig. 5). The subsequent
motion along PC1 (30–50 ns) is coupled with the
fragment transition to the more angled state N. Thus,
in this case different types of global motion correspond
to different local transitions.

In the context of the NtrC activation process, the

initial P-to-E transition of f 80 is particularly important,
since it occurs in the time interval of the active-state-like
interaction between the f 80 residue T82 and D54
(11–17 ns in Fig. 2D). The difference between the P
and E structures is small, consistent with the relatively
small f 80 global displacements along PC2 (Fig. 3).
However, the strong coupling between this transition
and the collective variable suggests a central role for
fragment f 80 and provides a likely link between the
T82–D54 interaction and the global motion along PC2.

Similarity among related allosteric proteins

To validate the results on NtrC and identify similarities
with the behavior of related systems, we performed MD
simulations of the homologous FixJ and CheY receiver
domains. The conformational changes experimentally
observed in their activation involve smaller portions of
the molecule and are of lower amplitude than in NtrC
(Supplemental Fig. S1). However, the signaling surface
has a similar location, and the largest changes are still
found in the �4-�4 loop and in the �4 helix, together
with the �5-�5 loop for CheY (Supplemental Fig S1B, C;
refs. 23, 24). As for NtrC, the analysis of the 80-ns MD
trajectories of CheY and FixJ highlights the presence of
features typical of the active state, in particular, the
T82–D54 interaction (Fig. 2D) and the rotamer transi-
tions of residue Y101 (Fig. 2E). These events were

Figure 4. Analysis of the communication pathways between the allosteric site (D54) and the signaling surface of NtrC. A, B)
Subnetwork of shortest paths is reported (A) along with the mapping of its fragments (spheres) on the NtrC structure (B).
Fragments containing residues of the signaling surface are represented in red and blue. Hubs of the subnetwork are shown in
red. Edges are colored from blue (low ILL

n ) to red (high ILL
n ); their thickness is proportional to ILL

n value. Shortest path from f 54

to f 87 is highlighted in gray. Arrows (B) show the 3-layer topology of signal transmission. C) Plot of the incremental values of
ILL
n for the pairwise connection among f 53, f 83, and f 87. Gray bar indicates the cutoff value for edge connection (see Materials

and Methods). D) Sequence of states along the trajectory for fragments f 54, f 83, and f 87. Legend provides color code of the
structural alphabet. Same time scale as in C is used. Vertical white lines highlight transitions to ensembles of states with different
composition. Each ensemble is indicated with an italic lowercase letter. Corresponding fragment structures (selected each 100
ps) are shown at bottom.
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observed together also in one more replica simulation
for CheY (see Materials and Methods). FixJ seemed to
have a less pronounced tendency (further reduced in
the replicas) to sample active site features than NtrC
and CheY.

To compare the ILL
n networks generated from the MD

simulations, we analyzed the nodes in the allosteric
site’s neighborhood. In particular, we measured the
length of the shortest paths connecting this site to all
other fragments in the network and then defined as ILL

n

neighbors the nodes in the lowest quartile of the path
length distribution (see Materials and Methods). These
can be considered as preferentially connected to the
allosteric site and, hence, more likely to be involved in
the propagation of the signal.

The locations of the ILL
n neighbors of the allosteric

site are similar in the 3 proteins (Fig. 6). In particular,
a common core can be identified, composed by �4,
�4-�4, and �4 residues, together with the �3-�3 region.
A significant fraction of the signaling surface is in-
cluded (Fig. 6D), especially for NtrC and CheY. This
suggests that the network of fragment couplings in the
inactive form is preorganized to transmit the signal to
the functional region. Moreover, two of the key resi-
dues in the protein activation, T82 (�4) and Y101 (�5),
are preferentially connected to the allosteric site in
both NtrC and CheY, as is T82 in FixJ. Fragments from
�5 seem to be particularly important in the CheY
network, where they are also high-centrality nodes
(Supplemental Fig. S2C). The decreased functional
activity of CheY mutants in the positions Y101 (Y106 in
CheY numbering) and K104 (K109) has been previ-
ously related with an impairing of the transition to the

active conformation (68, 69). While the role of the
�3-�3 loop in the receiver domain activation is still
unclear, it has been suggested that its flexibility can be
modulated by phosphorylation and/or the presence of
a metal ion at the allosteric site (29, 63). Changes in its
conformation have been also related to a possible
self-inhibition mechanism (70).

Finally we note that in all the proteins, the ILL
n

neighborhood of the allosteric site includes nearly all
the fragments with a high centrality score (red residues
in Fig. 6D and top 5% in Supplemental Fig. S2C). Their
residues are in the same region of the receiver domain
alignment. This supports the importance of the net-
work centrality in detecting the functionally relevant
regions (see above, Network Model of Local Correlated
Motions). RMSF profiles seem less informative. Indeed,
the top 5% residues by C� or fragment RMSF show both
weaker similarity across the proteins and a smaller
overlap with the signaling regions (Supplemental Figs.
S2A, B, and S5). Moreover, when considering the
top-ranking C� RMSF values, the T82 and Y101 residues
are missed in all 3 cases (Supplemental Fig. S5A).

The present results suggest that the analysis of the ILL
n

pathways is useful to find candidate functional regions
in allosteric proteins.

Comparison of different models of correlated
motions

The ILL
n network describes the protein dynamics with a

discrete state model of local correlations. To quantify
the methodological improvement provided by this ap-
proach, we compared it with a static model based on

Figure 5. Coupling of local and global motions
in NtrC exemplified by f 80. MD trajectory is
projected onto the space spanned by the first
two PCs (Fig. 3). Each point is colored accord-
ing to the encoding of f 80 (legend provides
color code of the structural alphabet). Black
points highlight projections selected every 10
ns. Barplots showing the letter counts in each
0.1 PC bin are colored according to the frag-
ment letter. Three fragment ensembles are
shown (ball and stick). These are representative
of the 3 most populated regions of the projec-
tion, corresponding to consecutive segments of
the simulation (0–18, 18–38, and 38–80 ns).
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the residue contact map of the experimental structure,
a model of global dynamics based on the correlation
matrix of C� positions (�), and a continuum model of
local dynamics based on the fragment correlation ma-
trix (�f). The results are reported in Table 1.

For these matrices, the strongest correlations are
separated from the bulk of the value distribution. To
estimate this separation, a conventional measure of the
SNR was calculated (55). In networks built on matrices
with higher SNR, the dominant communication path-
ways are expected to be more easily singled out from
the background connectivity. The SNR values are al-
ways higher in �f than in � matrices, suggesting that
part of the noise is cancelled by removal of the rigid
rototranslational motions. The introduction of a dis-
crete model further reduces the noise, so that the ILL

n

matrices have the highest SNR values.
In the case of allosteric modulation, the network

organization should highlight preferential connections
between the allosteric and the functional site. To assess

the ability of the different matrices to extract the
biological function, we built the associated network
representation and we calculated the standardized
shortest path lengths, �a(i), from the allosteric site (see
Materials and Methods).

A direct measure of performance is provided by the
number (percentage) of fragments of the signaling
region connected to the allosteric site by pathways
shorter than a cutoff value (�a(i)��cutoff

a ). In Table 1,
we reported these values as hits (sensitivity), calculated
considering all the preferentially connected fragments
(�cutoff

a �0). For NtrC and FixJ, the ILL
n network is the

best performing, followed by the �f model. The sensi-
tivity of ILL

n is particularly high for NtrC, where 21 of 22
fragments are recovered (95.5%). The conservative
choice of �cutoff

a produces for all the models a relatively
low precision, i.e., the percentage of hits in all the
fragments with �a(i) � �cutoff

a . However, the ILL
n network

has still the highest value for both proteins. In CheY,
the sensitivity has similar values for all the models, with

Figure 6. Allosteric site neighbors in the ILL
n networks of

NtrC, CheY, and FixJ. A–C) Shortest path lengths (z scores)
from the allosteric site (Eq. 6) are mapped onto experi-
mental structures of NtrC (A, PDB ID: 1DC7), CheY (B,
PDB ID: 3CHY), and FixJ (C, PDB ID: 1DCK). A sausage
representation is used; tube size correlates to z-score abso-
lute value. D) Multiple sequence alignment of NtrC (1dc7),

CheY (3chy), and FixJ (1dck). The alignment was performed with T-COFFEE 7.7 (79) using default
parameters. ILL

n neighbors of the allosteric site (shown in orange) are highlighted in light blue; residues in
fragments with the highest centrality scores (top 5% values) are in red. Purple plus symbols indicate residues
of the signaling surfaces (see Supplemental Fig. S1 for mapping of the signaling surface onto the inactive
structure of the 3 proteins). Degree of residue conservation is shown using asterisks (full conservation), colons
(conserved substitutions), and periods (semiconserved substitutions). Sequence identity of 30% is shared
between NtrC and CheY, 32% between NtrC and FixJ, and 23% between CheY and FixJ.
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the � and �f models showing slightly higher scores than
ILL
n and the contact map. The � model has the highest

precision.
CheY is an interesting case in which the models based

on local and global dynamics give complementary
information. Indeed, the ILL

n network captures the
preferential connections between the allosteric site and
the key residues T87 (�4), Y106 (�5), and K109 (�5-�5)
better than the � network (Figure S6). Mutation of
these residues has been shown to affect the allosteric
mechanism in CheY (see preceding section). However,
ILL
n is less accurate in ranking the connections with

residues of the signaling surface belonging to the �4
helix (magenta points in Supplemental Fig. S6A),
which are instead very close to the allosteric site in the
ranking from the � network (Supplemental Fig. S6B).
These differences can be related to the fact that in
CheY the �4 helix undergoes an almost pure rototrans-
lational motion (Supplemental Fig. S2A), with minimal
local changes (Supplemental Fig. S2B). On the other
hand, the relevance of �5 movements, while properly
recognized when considering local motions (Supple-
mental Fig. S2B), can be missed if only the global
dynamics is analyzed (Supplemental Fig. S2A).

A stricter performance test can be obtained by assess-
ing the correct identification of the signaling surface
fragments at different values of �cutoff

a . This is usually
done with the ROC curve analysis, where all of the
possible �cutoff

a values are systematically tested. A concise
measure to analyze the ROC curve results is given by
the AUC, which is, in turn, the probability of reporting
a correct classification (56). It should be noted that the
aim of this test is only to compare the different models,
which were not optimized to be used as a predictive
tool. This would require an extensive parametrization
and the inclusion of other descriptive indices (e.g.,
solvent accessibility, residue conservation, etc.). How-
ever, the overall performance reported in Table 1 is
higher than expected, and in most cases better than the
random model (AUC�0.5). The ILL

n network is still the

best performing for NtrC and FixJ, while the � model
has the highest AUC for CheY. In all cases, the � model is
better than �f, in contrast with the SNR trend. This can be
explained by a balance of precision and sensitivity.

In summary, the different tests indicate that the local
models (ILL

n and �f) extract biologically relevant infor-
mation otherwise undetected by other approaches. The
discrete state representation (ILL

n ) has the best agree-
ment with the experimental data in 2 of 3 cases and
complements the global model (�) in the third one,
recovering specific functional information.

DISCUSSION

In this work, we have presented a method for the
detection of signal transmission in allosteric proteins
and its application to the NtrC receiver domain and its
homologues CheY and FixJ. Functionally implicated
residues and motions were extracted in 3 steps from
equilibrium simulations of the unphosphorylated state.

First, the structure ensembles are mapped onto a
canonical set of representative fragments, i.e., a set of
discrete states in conformational space. These were
previously derived from the most populated conforma-
tions in a representative subset of the PDB database and
can be considered as “low-energy” conformations (21).
Unlike other approaches based on residue fluctuations
in global motions (10, 11, 15, 18–20), here, the contri-
bution of rigid fragment rototranslations is removed.
Therefore, potentially relevant changes in local confor-
mations are easily detected, even if subtle. The impor-
tance of local motions in allosteric mechanisms was
demonstrated in a recent survey (71), where the major-
ity of the residues involved in conformational changes
showed significant variations in the backbone dihedral
angles. In these cases, the functional interpretation is
not affected by a potential loss of information from the
removal of fragment rigid motions. In other cases, in
which functional motions arise also from coupling

TABLE 1. Performance data from the signalling surface prediction test for the ILL
n , �f, �, and contact map matrices of NtrC, CheY,

and FixJ

Protein Matrix SNR Hits Sensitivity Precision AUC

NtrC ILL
n 9.89 21 95.5% 28.4% 0.69

�f 7.86 18 81.8% 23.9% 0.57
� 4.93 17 77.3% 25.0% 0.61

Contact map – 13 59.1% 13.0% 0.40
CheY ILL

n 11.19 21 72.4% 25.9% 0.56
�f 9.33 22 75.9% 24.4% 0.59
� 6.96 22 75.9% 27.2% 0.62

Contact map – 21 72.4% 21.6% 0.50
FixJ ILL

n 9.88 19 79.2% 24.1% 0.50
�f 8.61 18 75.0% 16.9% 0.38
� 6.09 13 54.2% 18.8% 0.48

Contact map – 16 66.7% 16.3% 0.46

SNR, signal-to-noise ratio. Hits, number of signaling surface fragments with �a (standardized shortest path length from the allosteric site)
�0. Sensitivity, percentage of hits in the total number of signaling surface fragments (22 for NtrC, 29 for CheY, and 24 for FixJ). Precision,
percentage of hits in the total number of fragments with �a � 0. AUC, area under the receiver operating characteristic curve. Highest values
of each column are in italic.

878 Vol. 26 February 2012 PANDINI ET AL.The FASEB Journal � www.fasebj.org

www.fasebj.org


between rigid rototranslations, our approach should be
combined with other methods to detect collective mo-
tions. An example of a complementary approach was
presented here in the comparison of the structural
alphabet encoding with the global motions extracted by
essential dynamics analysis (40). A unified approach
with a balanced inclusion of local and global dynamics
is a desirable feature of future methods.

Second, local motions are modeled as transitions
between the fragment states. The introduction of dis-
crete states removes harmonic high-frequency fluctua-
tions, which may be considered background noise in
terms of functional motion. Transitions between frag-
ment states are able to correctly describe the extent of
protein motions (21). Although rototranslation and
high-frequency fluctuations have been removed at this
stage, the detection of functional motions requires
additional information about residue correlations.

Third, the communication between different parts of
the molecule, an essential prerequisite for allosteric
conformational change, is modeled by the coupling
(correlation) of fragment transitions. Correlated tran-
sitions can be resolved spatially and temporally. The
(time-averaged) spatial couplings over a whole trajec-
tory are analyzed with a network model of fragment
correlations to identify the most important fragments
(nodes). Measures of node centrality have been previ-
ously used in the analysis of contact networks to rank
the importance of residues in allosteric proteins (12,
13). The time-resolved analysis of fragment couplings
between the allosteric and active sites reveals the se-
quence of local events along the main communication
pathways. This analysis sketches out the internal work-
ings of allosteric function and how they are encoded in
the protein structure.

The results are consistent with the emerging picture
of allosteric regulation (2, 5): a preorganized network
of fragment couplings and connections between the
allosteric and functional sites exists already in the
inactive state, and fragments with high network central-
ity (hubs) are mostly found in functionally relevant
regions. In addition, the use of discrete states from a
structural alphabet allows the detection of subtle rele-
vant motions. These can be important for the effective
identification of hidden similarities, as shown for the
dynamics of NtrC homologues. The methodological
improvement introduced by our approach was quanti-
fied by comparison with other models of residue cor-
relation, including contact maps, as well as global and
local dynamical correlation matrices. We estimated the
importance of the different elements constituting our
method: the inclusion of protein dynamics is essential;
the local description allows the extraction of otherwise
undetectable motions, and the discrete state model
significantly improves the identification of relevant
correlations. Our method has the best agreement with
the experimental data in 2 of 3 cases and complements
the other approaches in the third one, recovering
specific functional information.

We made the assumption that a signal at the alloste-

ric site is most likely propagated through the couplings
already available in the inactive state (19). Therefore,
the transmission pathways are considered as an intrinsic
property of the initial unperturbed state (5). This
assumption is supported by the experimentally found
preequilibrium between the inactive and active confor-
mation of the unphosphorylated NtrC (29). The intrin-
sic dynamics of the unphosphorylated proteins was
sampled by equilibrium MD simulations. The fragment
state transitions proved to be particularly suitable to
capture the subtle changes around the allosteric site.
Thus, it was possible to detect their correlation with the
motions at the functional region, even within the
sampling limits of the simulations performed here. Our
model could be applied to trajectories obtained from
other techniques, such as enhanced sampling methods
(72, 73), to explore a larger portion of the conforma-
tional space around the starting structure.

The good agreement between the experimental data
and our results suggests that the approach presented
could be used for functional prediction in the absence
of prior information about the allosteric mechanism. In
particular, the location of high-centrality fragments
could indicate the regions undergoing functionally
relevant conformational changes and the statistical
analysis of the shortest paths could identify potential
allosteric sites.

The combined information on functional dynamics
and transmission pathways has been recently exploited
to design allosteric inhibitors (74, 75). A detailed
knowledge of the local conformational states and tran-
sitions could guide the selection or design of allosteric
effectors, or alternatively guide the design of protein
mutants with altered dynamical and allosteric proper-
ties.

The method presented here was primarily designed
to analyze allosteric communication. However, the net-
work of fragment correlations can help in investigating
other types of distal effects in protein dynamics. An
example is the emergence of drug resistance due to
compensatory mutations, which are not in the proxim-
ity of the active site and do not physically interact with
the ligand. Computational studies have shown that
these mutations can dramatically affect inhibitor bind-
ing by modifying the functional dynamics of the pro-
tein (76, 77). The analysis of fragment correlations can
shed light on these modifications and suggest the local
dynamical requirements to design novel drugs.
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Leverhulme Trust (F/07 040/AL to A.F. and F.F.) and the
Biotechnology and Biological Sciences Research Council
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