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Abstract

In this paper we present some new results related to the higher order sigma point filter (HOSPoF),
introduced in [1] for filtering nonlinear multivariate time series. This paper makes two distinct
contributions. Firstly, we propose a new algorithm to generate a discrete statistical distribution
to match exactly a specified mean vector, a specified covariance matrix, the average of specified
marginal skewness and the average of specified marginal kurtosis. Both the sigma points and the
probability weights are given in closed-form and no numerical optimization is required. Combined
with HOSPoF, this random sigma point generation algorithm provides a new method for generating
proposal density which propagates the information about higher order moments. A numerical
example on nonlinear, multivariate time series involving real financial market data demonstrates the
utility of this new algorithm. Secondly, we show that HOSPoF achieves a higher order estimation
accuracy as compared to UKF for smooth scalar nonlinearities. We believe that this new filter
provides a new and powerful alternative heuristic to existing filtering algorithms and is useful
especially in econometrics and in engineering applications.

Keywords: State estimation, sigma point filters, moment matching, nonlinear time series

1. Introduction

Consider the following state space form for a nonlinear time series:
X (k + 1) = f(X (k)) + Q(X (k))w(k + 1), (1)

Y(k) = h(X (k)) + v(k), (2)
where X (k) and Y(k) are the respective state vector and measurement vector at time t(k); f, h
are given vector-valued deterministic functions; Q is a matrix valued deterministic function; and
v(k),w(k) are vector-valued random variables. The time increment t(k) − t(k − 1) is assumed
constant for all k. The latent state estimation problem is the problem of constructing an estimate
of the random vector X (k), k ≥ 1, based on the noisy time series data Y(1),Y(2), ...,Y(k). In
the special case when f, h are affine in X (k), Q is an identity matrix and v(k),w(k) are Gaussian,
the optimal recursive solution to the state estimation problem is given by linear Kalman filter, as
first outlined in [2]. The optimal recursive solution to the state estimation problem in nonlinear
systems is usually not available in closed form. The first current approach that addresses the
nonlinear filtering problems is extended Kalman filter (EKF), where equation (1) or its continuous
time analogue is locally linearized resulting in a linear state space system. A Kalman filter is
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then employed to obtain the conditional state density of X (k). Standard textbooks such as [3]
carry an extensive discussion of its theoretical underpinnings and implementation; also see [4]-[5].
The second method is unscented Kalman filter (UKF), where a set of particles - or sigma points
- and weights are used to evaluate the terms in closed-form expressions for updating the state
estimate. Several applications of UKF in communication, tracking and navigation are discussed
in [6]-[7], among others. The ensemble filter (EF) used in climatology is closely related to UKF;
see [8] and references therein. An algorithm which combines some of the desirable properties
of both UKF and EF has been proposed in [9]. In [10], approximate methods are developed to
deal with the multiplicative uncertainty in the observation equation under sigma point filtering
framework. The third common method is sequential Monte Carlo filter or particle filter (PF). For
this technique, the required conditional density function of X (k) given measurement Y(k) at time
t(k) is represented by a set of random samples (or particles) and associated probability weights;
see [11]-[12] and references therein for more details on PF. Particle filters need a specification of
approximate posterior density, called the proposal density. This may itself be derived from EKF,
UKF or the known state transition density. We will call the versions of particle filters as PF-EKF,
PF-UKF and PF-T respectively.

The rest of this paper is organized as follows. Section 2 briefly reviews the traditional un-
scented Kalman filter. Section 3 introduces the algorithm for the unscented filter with higher order
moment matching, which was first proposed by the authors in [1]. The traditional particle filter
is discussed in section 4.1. Sections 4.2 and 6 represent the main contribution of this paper. Sec-
tion 4.2 introduces the new proposal distribution that uses and propagates the information about
higher order moments. This section represents a major modification on the algorithm proposed
in [1] since it allows random draws of sigma points. We are aware that matching of the average
of higher order moments may not add value if the average is over a very large state dimension.
However, the class of applications where the dimension is five or less is still very large; in fact, it
is unusual to find time series models with more than four latent states in econometrics and finance.
The proposed algorithm can outperform traditional filtering algorithms in latent state estimation of
nonlinear time series models where the departure from conditional Gaussianity of prior distribution
is quite significant and the state dimension is low enough to make matching of the average kurtosis
and the average skewness useful. This is illustrated by an example in section 5, where the utility of
our method is compared with PF-T, PF-EKF and PF-UKF in a multivariate case. The theoretical
accuracy of the conditional mean and the conditional variance estimation using the new method
for the univariate case is discussed in section 6. Section 7 summarizes the results of the paper.

2. Unscented Kalman Filter

Consider the system of equations (1)-(2) with nonlinear functions f and h. The unscented
filtering algorithm can be briefly described as follows. Suppose that at time t(k), the mean X̂ (k|k)
and the covariance Pxx(k|k) are available for the system in equation (1). Then 2n + 1 symmetric
sigma points are chosen in the following way:

X (0)(k|k) = X̂ (k|k), X (i)(k|k) = X̂ (k|k)± (
√

(n+ κ)Pxx)i, (3)
where i = 1, 2, ..., n, κ is a scaling parameter and (

√
Pxx)i is the ith column of the matrix square

root of Pxx. The probability weights vector W, where the ith component Wi is associated with the
ith sigma point X (i)(k|k), is defined as:

W0 =
κ

n+ κ
,Wi =

1

2(n+ κ)
, i = 1, 2, ..., 2n. (4)
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The following result can then be verified by a straightforward algebraic manipulation (see, e.g.
[11]):
Proposition 1
Sigma points and corresponding probability weights defined in (3) and (4) match the mean X̂ (k|k)
and the covariance Pxx(k|k) exactly.
We compute the predicted mean of X (k + 1|k) using

X (i)(k + 1|k) = f(X (i)(k|k)), X̂ (k + 1|k) =
2N∑
i=0

WiX (i)(k + 1|k), (5)

where Wi are defined in (4). Covariance matrices Pxy(k+ 1|k) and Pyy(k+ 1|k) are calculated as

Pxy(k + 1|k) =
2N∑
i=0

Wi(X (i)(k + 1|k)− X̂ (k + 1|k))v(i)(k)T , Pyy(k + 1|k) =
2N∑
i=0

Wiv(i)(k)v(i)(k)T ,

where v(i)(k) = Y(i)(k+1)−Ŷ(k+1), Y(i)(k+1) = h(X (i)(k+1|k)) and Ŷ(k+1) =
∑2N

i=0 WiY(i)(k+

1). Pxx(k + 1|k) is computed similarly. Once the true measurement Yk+1 becomes available, we
can update the mean estimate in (5) as X̂ (k+ 1|k+ 1) = X̂ (k+ 1|k) + K(k+ 1)(Yk+1 − Ŷ(k+ 1)),
where K(k + 1) = Pxy(k + 1|k)P−1yy (k + 1|k). More details on this algorithm can be found in [11].
UKF has been successfully used as an alternative to EKF; see [7]-[14] and references therein.
Besides being used as a stand-alone filtering algorithm, it has also been used to produce a proposal
distribution for PF, see [13].

Note that, while matching first and second moment accurately, UKF does not propagate any
information about the 3rd and the 4th moments. This information may provide a better idea of the
shape of the distribution and its departure from Gaussianity. Other suggested algorithms, which
try to match higher moments, either require optimization or rely heavily on analytical solver, as in
[15]. A new modification of generation of sigma points, first proposed in [1] is outlined in sections
3.1-3.2 for completeness.

3. A New Algorithm for Unscented Kalman Filtering
3.1. Sigma point generation with higher order moment matching

In [16], a method was proposed to match the mean vector, the covariance matrix and the average
marginal kurtosis of a multivariate distribution exactly, when the marginal densities are symmetric.
In [1], this algorithm was extended to asymmetric distributions, as outlined below. We introduce
additional parameters α and β in order to capture the 3rd and the 4th moments of X (k + 1|k + 1)
using augmented UKF, which has been shown in [14] to give more accurate results compared
to non-augmented UKF in the presence of significant noise terms. The augmentation method
incorporates noise into the augmented random state vector and from here onwards we will assume
f and h to be augmented functions. Suppose that we have X , a random n-vector with mean X̂
and covariance Pxx, and noise w, a random m-vector with zero mean and covariance Qxx, as in
equation (1). n 6= m is allowed for generality. Matrices P > 0, Q > 0 are such that Pxx=PP> and
Qxx=QQ>, where P> is transpose of P and Pi is the ith column of matrix P. We create 2(n+m)+1
sigma points as follows:

X (0) =
(
X̂ 0m×1

)>
= X̄ , W0 = 1−

2N∑
i=1

Wi

X (i) =
(
X̂ + α

√
NPi 0m×1

)>
,Wi =

1

α(α+ β)N
, i = 1, 2, ..., n,

X (i) =
(
X̂ − β

√
NPi 0m×1

)>
,Wi =

1

β(α+ β)N
, i = n+ 1, ..., 2n,
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X (i) =
(
X̂

√
NQi−2n

)>
, Wi =

(
1

2N

)
, i = 2n+ 1, ..., 2n+m,

X (i) =
(
X̂ −

√
NQi−2n

)>
, Wi =

(
1

2N

)
, i = 2n+m+ 1, ..., 2n+ 2m, (6)

where N = n + m, the jth element of a sigma point X (i) will be denoted as X (i)
j . Equations for α

and β are:
Definition 1

α =
1

2
φ1 ±

1

2

√
4φ2 − 3φ21, β = −1

2
φ1 ±

1

2

√
4φ2 − 3φ21, (7)

where the values of the same sign are taken, φ1 =
∑n

j=1 ωj√
N

∑n
l=1

∑n
k=1 P3

lk

and φ2 =
∑n

j=1ψj

N
∑n

l=1

∑n
k=1 P4

lk
.

Parameters ω and ψ are vectors of the marginal 3rd and 4th central moments respectively, where
ωj =

∑2N
i=0 Wi(X (i)

j − X̄ j)
3 and ψj =

∑2N
i=0 Wi(X (i)

j − X̄ j)
4 . Pij is the entry in the ith row and the

jth column of matrix P, so that φ1 and φ2 are known from data.
With the above choices of α, β, we can match the mean, covariance, the average central third and
fourth marginal moments as is stated in the next proposition:
Proposition 2
With X (i),W, α, β chosen as in (6)-(7), the following properties hold:

2N∑
i=0

Wi = 1,
2N∑
i=0

WiX (i) =
(
X̂ 0m×1

)>
, (8)

2N∑
i=0

Wi(X (i) − X̄ )(X (i) − X̄ )> =

(
Pxx 0n×m
0m×n Qxx

)
, (9)

1

n

n∑
j=1

2N∑
i=0

Wi(X (i)
j − X̄ j)

3 =
1

n

n∑
j=1

ωj , (10)

1

n

n∑
j=1

2N∑
i=0

Wi(X (i)
j − X̄ j)

4 =
1

n

n∑
j=1

ψj . (11)

Proof: Equations (8)-(9) follow by a straightforward algebraic manipulation. To prove equation
(10), substituting expression for X (i) and Wi from (6) into the left-hand side of equations (10)
gives:

1

n

n∑
j=1

2N∑
i=0

Wi(X (i)
j − X̄ j)

3 =

√
N

n

n∑
l=1

n∑
k=1

P3
lk

(α2 − β2)
α+ β

=

√
N

n

n∑
l=1

n∑
k=1

P3
lkφ1 =

1

n

n∑
j=1

ωj ,

as required, where the last equality uses the defintion of φ1. The equation (11) can similarly be
proven by noting that

1

n

n∑
j=1

2N∑
i=0

Wi(X (i)
j −X̄ j)

4 =
N

n

(α3 + β3)

α+ β

n∑
l=1

n∑
k=1

P4
lk =

N

n
(α2−αβ+β2)

n∑
l=1

n∑
k=1

P4
lk =

n∑
l=1

n∑
k=1

NP4
lkφ2
n

and using the definition of φ2 provides the required result.
Note that Wi ≥ 0 and

∑2N
i=0 Wi = 1 mean the set of probability weights and corresponding

sigma points {Wi,X (i)} forms a valid probability distribution. This is not always the case in
unscented Kalman filter, since κ in (4) is not restricted to be positive. Provided φ2 ≥ 3

4
φ2
1, (which

is trivially true for symmetric distributions), α and β allow us to capture and propagate the marginal
skewness and marginal kurtosis. Note also that the unscented filter in section 2 employs the same
weights Wi for all sigma points X (i) for i > 0. In comparison, we have different expressions
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for probability weights depending on i in (6). Higher order moment matching methods in the
literature, such as that proposed in [15] and more recently in [17], rely on numerical optimization
of nonlinear objective functions in several variables. In contrast, our algorithm presented here
provides matching of average higher order moments in roughly the same amount of numerical
effort as the UKF with augmented states, and further allows us to track changes in these higher
order moments.

3.2. Filtering Algorithm using higher order moments
The filtering algorithm for higher order sigma point filter (HOSPoF) can be described as fol-

lows.

1. Given X (i)(k|k), Pxx(k|k) and the newly measured Yk+1, propagate sigma points using (5)
to obtain X (i)(k + 1|k) = f(X (i)). Then using Ŷ(k + 1) =

∑2N
i=0 WiY(i)(k + 1), with Wi are

the weights as defined in (6), the covariance matrices Pxy(k + 1|k) and Pyy(k + 1|k) can be
calculated as described in section 2.

2. The propagated sigma points are updated as X (i)(k+1|k+1) = X (i)(k+1|k)+PxyP−1yy (Yk+1−
h(X (i)(k + 1|k))), and the state estimate is updated using X̂ (k + 1|k + 1) =

∑2N
i=0 WiX (i)(k +

1|k + 1).
3. The updated sigma points X (i)(k + 1|k + 1) are used for the calculation of the ω andl ψ, the

marginal 3rd and 4th central moments respectively at time t(k + 1) via equations (10)-(11).
4. Definition 1 is used to obtain φ1 and φ2. The updated values for α and β are generated via

equation (7).
5. The new set of sigma points and the corresponding weights at time t(k + 1) can now be

generated using (6).

4. A new proposal distribution
4.1. Traditional particle filter

One way to estimate the posterior distribution p(X (k)|Y(k)) of the unobserved state X (k) is
by using particles drawn from it. Often posterior density is not known or it might not be easy
to sample from it. We may instead choose to draw samples X (i)(k) from a known, easy-to-
sample, proposal distribution q(X (k)|Y(k)). Given samples X (i)(k), drawn from q(X (k)|X (k−
1),Y(k)), choosing the corresponding probability weights Wi(k) such that

Wi(k) ∝ p(X (i)(k)|Y(k))

q(X (i)(k)|Y(k))
, (12)

ensures that limM→∞
∑M

i=1 Wi(k)h(X (i)(k)) = E(h(X (i)(k))), holds for any measurable function h
for which E(h(x)) exists, where E(·) is expectation with respect to probability measure p(X (k)|Y(k)).
The discrete distribution in PF is represented by a set of random particles and associated probability
weights. The particles and weights are updated recursively as new measurements become avail-
able. In order to derive the recursive expression for updating the probability weights we assume
the following factorization:

q(X (k + 1)|Y(k + 1)) = q(X (k + 1)|X (k),Y(k + 1))q(X (k)|Y(k)). (13)
Remembering that state dynamics is a Markov process and observations are conditionally indepen-
dent given states p(X (k+1)|Y(k+1)) ∝ p(Y(k+1)|X (k+1))p(X (k+1)|X (k))p(X (k)|Y(k)), when
substituted together with (13) into (12) provides us with recursive estimates for the probability
weights
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Wi(k + 1) = Wi(k)
p(Y(k + 1)|X (i)(k + 1))p(X (i)(k + 1)|X (i)(k))

q(X (i)(k + 1)|X (i)(k),Y(k + 1))
. (14)

Here p(Y(k + 1)|X (i)(k + 1)) and p(X (i)(k + 1)|X (i)(k)) denote the observation density and the
state transition density respectively. Given X (i)(k), i = 1, 2, ...,M , X (i)(k + 1) and Wi(k + 1) are
obtained as:
(a) Sample particles X (i)(k + 1) from the proposal density q(X (k + 1)|X (k),Y(k + 1)).
(b) Compute the importance weights using (14).
(c) Normalize the importance weights to obtain the new probability weights W̃i(k+1) = Wi(k+1)∑M

i=1 Wi(k+1)
.

(d) Resample whenever a significant degeneracy is observed. Suitable criteria and algorithms for
resampling could be found in [18].
Choosing the right proposal distribution is very important for a successful particle filter. Using the
transition prior density p(X (i)(k + 1)|X (i)(k)) offers easy implementation due to (14), but does
not incorporate most recent observations. Usually, a more efficient choice is Gaussian poste-
rior density generated by the extended Kalman filter for the same system, i.e. q(X (k)|Y(k)) =

N(X (k|k),Pxx(k|k)). Implementing posterior density obtained by UKF as the proposal distribu-
tion has been considered in [13], which seems to outperform EKF-based proposal in terms of the
estimation accuracy.

We are interested in using information about higher order moments and not just mean and
covariance (as in UKF or EKF-based proposals) for generating random particles. Continuing with
Wi and X i(k+1|k+1), computed in HOSPoF, will limit us to a proposal with 2N+1 deterministic
points or particles. Since PF-type filters work best for a large number of randomly generated
particles, our aim is to find a non-Gaussian proposal which matches the given mean, the covariance
matrix, the average marginal skewness and the average marginal kurtosis. Further, we aim to obtain
the sigma points and the probability weights which achieve this moment matching in closed form,
e.g. without needing an analytic solver or an optimizer. A method to achieve this, inspired by the
particle filtering, is described next and is a further modification of HOSPoF outlined in section 3.

4.2. A new moment-matching proposal distribution
We start by using the results from [9], where the authors defined a multivariate discrete distri-

bution over 2ns+ 1 points and associated probability weights as follows:
Definition 2

X (k) = X̂ ± 1√
2spi

Lj , Wk = pi, (15)

X (0) = X̂ , W0 = ps+1, (16)

where i = 1, 2, ..., s, j = 1, 2, ..., n, k = 1, 2, ..., 2ns, n is the dimension of the state vector X as
before, 2n

∑s
i=1 pi + ps+1 = 1 and Lj denotes the jth column of a matrix L.

By choosing the value of the parameter swe determine the size of the set of probability weights, pi.
If L is a symmetric positive definite matrix such that LLT = Pxx, then sigma point filter, based on
(15)-(16), matches the mean vector, the covariance matrix and zero third marginal moment exactly,
see [9] for the proofs. Extending this method to non-symmetric distributions, we change (16) to
introduce 2 new sigma points that would carry the information about average marginal third and
fourth moments:
Definition 3

X (k) = X̂ ± 1√
2spi

Lj , Wk = pi,

X (0) = X̂ , W0 = ps+1W̃0,
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X (2ns+1) = X̂ +
α̃

√ps+1

Z, W2ns+1 = ps+1W̃1,

X (2ns+2) = X̂ − β̃
√ps+1

Z, W2ns+2 = ps+1W̃2. (17)

Here i, j, k are as in definition 2 and pi satisfy 2n
∑s

i=1 pi + ps+1 = 1 , Z is an arbitrary non-zero
deterministic vector. However Z can also be randomly generated as long as it is non-zero and
Pxx − ZZT > 0. The matrix L is such that LLT + ZZT = Pxx and W̃i satisfy

∑2
i=0 W̃i = 1 and

are given by
W̃1 =

1

α̃(α̃+ β̃)
, W̃2 =

1

β̃(α̃+ β̃)
, W̃0 = 1− 1

α̃β̃
,

where the parameterization of W̃i follows the structure used in (6).
We aim to match the average marginal third and fourth moments, 1

n

∑n
j=1 ω̃j and 1

n

∑n
j=1 ψ̃j re-

spectively, which are defined in the same way as in section 3. The closed-form expression for α̃
and β̃ are:
Definition 4

α̃ =
1

2
φ̃1 ±

1

2

√
4φ̃2 − 3φ̃21, β̃ = −1

2
φ̃1 ±

1

2

√
4φ̃2 − 3φ̃21, (18)

where we take values of the same sign and

φ̃1 =

∑n
j=1 ω̃j

√ps+1∑n
k=1 Z3

k

, φ̃2 = ps+1

∑n
j=1 ψ̃j − 1

2s2

∑n
l=1

∑n
k=1 L4

lk(
∑s

i=1
1
pi

)∑n
k=1 Z4

k

.

2ns + 3 randomly generated sigma points and corresponding probability weights defined in (17)
match exactly the given mean, the covariance matrix, the average marginal third and fourth mo-
ments, irrespective of the precise choice of pi, as is stated in the next proposition:
Proposition 3
With X (i),Wi, α̃, β̃ chosen as in (17)-(18), the following properties hold:

2ns+2∑
i=0

Wi = 1,
2ns+2∑
i=0

WiX (i) = X̂ , (19)

2ns+2∑
i=0

Wi(X (i) − X̂ )(X (i) − X̂ )> = Pxx, (20)

1

n

n∑
j=1

2ns+2∑
i=0

Wi(X (i)
j − X̂ j)

3 =
1

n

n∑
j=1

ω̃j ,
1

n

n∑
j=1

2ns+2∑
i=0

Wi(X (i)
j − X̂ j)

4 =
1

n

n∑
j=1

ψ̃j . (21)

Proof: Equations (19)-(20) can be verified by a straightforward algebraic manipulation. Substitut-
ing expressions for X (i) and Wi from (17) into left-hand side of equations (21) we get

α̃− β̃ =

∑n
j=1 ω̃j

√ps+1∑n
k=1 Z3

k

, α̃2 − α̃β̃ + β̃2 = ps+1

∑n
j=1 ψ̃j − 1

2s2

∑n
l=1

∑n
k=1 L4

lk(
∑s

i=1
1
pi

)∑n
k=1 Z4

k

.

On using definitions of α̃ and β̃ from (18), we get the required result.
By imposing a constraint φ̃2 ≥ 3

4
φ̃1

2
, we obtain an upper limit for

∑s
i=1

1
pi

, namely ζ . The follow-
ing proposition gives an expression for ζ .
Proposition 4

ζ = 2s2

∑n
j=1 ψ̃j − 3

4

∑n
k=1 Z4

k(
∑n

j=1 ω̃j∑n
k=1 Z3

k
)2∑n

l=1

∑n
k=1 L4

lk

. (22)
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Proof: Easy to verify by a straightforward algebraic manipulation.
Once ζ is determined, the algorithm for generating 2ns+3 sigma points, matching the given mean,
the covariance matrix and the average marginal third and the average marginal fourth moments
exactly, is provided below.

1. Choose an arbitrary vector Z and compute ζ using (22) and the given moments. Then gen-
erate pi > 0 for i=1,2,..., s such that

∑s
i=1

1
pi
< ζ , ps+1 = 1 − 2n

∑s
i=1 pi. Note that pi

can be generated using a random number generator, and s is an arbitrary positive integer.
Hence the number of sigma points is independent of the state dimension. Note also that the
distribution of pi is of no consequence since the moment-matching is independent of how pi

are generated.
2. Calculate φ̃1 and φ̃2 for the chosen vector Z using definition 3.
3. Closed form solution for α̃ and β̃ are given by (18).
4. Construct the 2ns+ 3 support points using (17).

The above sigma point generation algorithm can be used in the first step of the filtering algorithm
in the section 4.1. However, it is worth outlining the differences between the traditional particle
filter and the approach proposed here. First, while re-sampling is possible after moment matching
scenario generation, the moments will no longer be exactly matched after re-sampling. This limi-
tation is not specific to our method and is shared by all particle filters which use moment matching
to generate a proposal. Secondly, the generated samples are not i.i.d but are ‘almost independent’,
with some dependence introduced through the constraints on pi. For a large s, this dependence is
minimal, and it may be preferable than generating a fixed number of points using a deterministic
generator, as in the case of UKF. This intuition is supported by the numerical experiments in the
next section. We denote this new method of using moment-matching proposal as PF-HOSPoF.

5. Numerical Example - Multi-factor CIR model
For the empirical, ‘real-life’ example, we consider discretisation of a two-factor Cox-Ingersoll-

Ross (CIR) model with a nonlinear measurement equation. This is a multivariable extension of the
model first proposed in [19]; see [20] for more details on the use of this model in a filtering
context.The state evolution is X j(k + 1) = κjεjθj + (1 − κjεj)X j(k) + Qj(k + 1)wj(k + 1), for
j = 1, 2, where wj(k) are zero mean, unit variance and uncorrelated Gaussian random variables.
The standard deviation Q is given by Qj(k + 1) = σj

√
εj(

1
2θjκjεj + (1− κjεj)X j(k)), where κj ,

σj and θj are constants and εj = ( 1−e(−κj∆))
κj

, with ∆ = t(k+ 1)− t(k). The observable variables

are exponential in the latent states and are given by Y i(k) = Π2
j=1

(
Ai,j exp(−

∑2
j=1(Bi,jX j(k)))

)
+

zi(k), where Ai,j =
(

2γj exp((κj+γj+λj)Ti/2)

2γj+(κj+λj+γj)(exp(Tiγj)−1)

) 2κjθj

σ2
j , Bi,j =

2(exp(Tiγj)−1)
2γj+(κj+λj+γj)(exp(Tiγj)−1) and γj =√

(κj + λj)2 + 2σ2
j . The term zi(k) is observational noise with zero mean and is assumed to have a

constant variance h2 for each i and λi are constants. In practice, Ti represents time to maturity and
Y i(k) represents the price of a zero coupon bond with maturity Ti + t(k), at time t(k). Here, we
use three maturities, T1 = 1, T2 = 2 and T3 = 4. We use weekly data from February 2001 to July
2005 for UK government bonds. Here 180 observations were used for calibration and 52 were used
for out-of-sample validation. A 2-factor model was calibrated using EKF and the quasi-maximum
likelihood method. Table 1 presents the parameter values obtained as a result of calibration.
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Table 1. Parameter values
θ1 θ2 σ1 σ2 κ1 κ2 λ1 λ2 h

0.0254 0.0175 0.0710 0.1870 0.0978 0.8035 −0.0350 −0.0490 0.001

After calibration, we use the sigma point generation method described in section 3 to generate
sigma points at each t(k), with initial values for mean θj and diagonal elements of covariance

as
θjσ

2
j

2κj
. Eleven sigma points are generated at each t(k). We construct X̂ j(k|k), j = 1, 2 and

Pxx(k|k), which are employed as proposal density for particle filter in order to obtain predictions of
Y i(k), i = 1, 2, 3. As a benchmark for comparison, we use the predictions made using the generic
particle filter with approximate transition density with 1000 particles and traditional augmented
UKF combined with particle filter as described in section 2 and 4. In addition we run PF-HOSPoF
with 203 sigma points. Note that due to our unequal probability weights we can approximate the
‘shape’ of the density function by using a smaller number of points. Errors in this example are
computed as

MRAE(i) =
1

F

F∑
j=1

|Y i(j)− Ŷ i(j)|
Y i(j)

, RMSE(i) =

√√√√ 1

F

F∑
j=1

(Y i(j)− Ŷ i(j))2,

where the subscript i denotes ith time to maturity. The out-of-sample results for UKF and HOSPoF
as stand-alone filters (without a particle filtering procedure) are included in this paper for complete-
ness; see table 2 below. Tables 3-4 list the errors computed for one step ahead prediction, where
results are averaged over 100 runs. These are a particle filter with approximate transition density
as proposal (PF-T), a particle filter with Gaussian proposal generated by unscented Kalman fil-
ter (PF-UKF), by the extended Kalman filter (PF-EKF) and finally our new filter with a possibly
non-Gaussian proposal using the new moment matching heuristic proposed here (PF-HOSPoF).

From the tables, it can be seen that the PF-HOSPoF outperforms PF-T, PF-EKF and PF-UKF
for all the three times to maturity for out-of-sample data. The results on in-sample prediction
are consistent with those on out-of-sample prediction and are omitted for brevity. The average
improvement achieved with PF-HOSPoF is about 26% for all the maturities, as compared to PF-
UKF. This improvement is obtained with very little extra computational effort, viz. computing the
marginal 3rd and 4th moments and α, β using the closed-form expression in (7). All the numerical
experiments were performed using Matlab 7.2 on a desktop with a dual core Pentium IV processor,
2.40GHz and 3.24Gb RAM. We have also included in table 5 a summary of average (over 100 runs)
computational times taken for one run of PF-UKF and PF-HOSPoF, and the average improvement
for both types of errors achieved by PF-HOSPoF over PF-UKF.

Table 2. Average errors 1 step ahead out-of-sample prediction - standalone filters (without particle
filtering)

τk UKF-RMSE HOSPoF-RMSE UKF-MRAE HOSPoF-MRAE
1Y 0.00087 0.00083 0.00075 0.00066
2Y 0.00147 0.00140 0.00144 0.00125
4Y 0.00283 0.00266 0.00300 0.00268

Table 3. Average root mean squared error in 1 step ahead out-of-sample prediction
τk PF-T PF-EKF PF-UKF PF-HOSPoF
1Y 0.006950 0.000902 0.000162 0.000126
2Y 0.010574 0.001218 0.000220 0.000142
4Y 0.016215 0.002224 0.000257 0.000209
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Table 4. Average relative absolute error of 1-step ahead out-of-sample prediction
τk PF-T PF-EKF PF-UKF PF-HOSPoF
1Y 0.006789 0.000863 0.000141 0.000105
2Y 0.010422 0.001158 0.000191 0.000126
4Y 0.017335 0.002237 0.000244 0.000195

Table 5. Comparison of accuracy and computational time for PF-UKF and PF-HOSPoF
Time taken on average for one run, s Time improvement Accuracy improvement of PF-HOSPoF over PF-UKF
PF-UKF PF-HOSPoF of PF-HOSPoF over PF-UKF AvRMSE AvMRAE
29.1 5.7 80.4% 25.5% 26.5%

6. Theoretical Accuracy of higher order moment matching filter
In this section, we consider the theoretical accuracy of the sigma point generation algorithm

used in HOSPoF in the scalar case with smooth nonlinearities, in terms of estimating the condi-
tional mean and the conditional variance.

6.1. Mean Estimation
We consider univariate case and as in section 3 we start with a random variable X with mean

X̂ and variance Pxx. Suppose that the second random variable Z is related to X through the
nonlinear transformation Z = f(X ). Then the expected value of Z is:

Ẑ = f(X̂ ) +
1

2!
f′′Pxx +

1

3!
f′′′E(X − X̂ )3 +

1

4!
f′′′′E(X − X̂ )4 + · · · . (23)

Now using the new sigma points, X (i), and the corresponding probability weights, Wi introduced
in section 3, we analyze the accuracy in estimating the mean Ẑ =

∑2N
i=0 Wif(X (i)).

Proposition 5
If the function f is at least five times differentiable, then

Ẑ = f(X̂ ) +
1

2!
f′′Pxx +

1

3!
f′′′ω +

1

4!
f′′′′ψ + · · · , (24)

where, as per section 3, ω and ψ are the marginal 3rd and 4th central moments respectively, the
derivatives f ′′ etc are computed at X = X̂ .
Proof: Expanding the expression for Ẑ for the minimum possible number of sigma points (=
2N + 1 = 3), we get Ẑ =

∑2N
i=0 Wif(X (i)) = W0f(X̂ ) + W1f(X̂ + α

√
NPxx) + W2f(X̂ − β

√
NPxx).

Further expanding f around the mean X̂ ,

Ẑ = W0f(X̂ ) + W1

(
f(X̂ ) + f′α

√
Pxx +

1

2!
f′′(α

√
Pxx)2 +

1

3!
f′′′(α

√
Pxx)3 +

1

4!
f′′′′(α

√
Pxx)4 + · · ·

)
+W2

(
f(X̂ )− f′β

√
Pxx +

1

2!
f′′(β

√
Pxx)2 − 1

3!
f′′′(β

√
Pxx)3 +

1

4!
f′′′′(β

√
Pxx)4 + · · ·

)
.

Collecting similar powers of Pxx together gives Ẑ = f(X̂ ) + f′
√

Pxx[W1α−W2β]+
1

2!
f′′Pxx[W1α

2 + W2β
2] +

1

3!
f′′′
√

Pxx
3[W1α

3 −W2β
3] +

1

4!
f′′′′Pxx

2[W1α
4 + W2β

4],

and using (6) simplifies Ẑ to Ẑ = f(X̂ )+ 1
2! f
′′Pxx + 1

3! f
′′′√Pxx

3[α−β]+ 1
4! f
′′′′Pxx

2[α2−αβ+β2]+ ... .
Expression (7) helps us eliminate α and β and obtain the required result.
Comparing (23) with (24), we conclude that the mean Ẑ is calculated accurate up to 4th order using
our new method for generating sigma points. This 4th order accuracy is preserved in the univariate
augmented case as well. This is a great improvement compared to the 2nd order accuracy achieved
in [6].
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6.2. Variance Estimation
For accuracy in variance estimation for Z we first consider:

Pzz = (f′)2Pxx −
1

4
(f′′)2Pxx

2 + f′f′′E(X − X̂ )3 + (
1

3
f′f′′′ +

1

4
f′′2)E(X − X̂ )4 + ... . (25)

Using our sigma points and probability weights as in section 3 we can write covariance Pzz as
Proposition 6

Pzz = (f′)2Pxx −
1

4
(f′′)2P2

xx + f′f′′ω + (
1

4
(f′′)2 +

1

3
f′f′′′)ψ + ... . (26)

Proof: Start with Pzz =
∑2N

i=0 Wi(Z(i) − Ẑ)2 = W0(f(X̂ ))2 + W1(f(X̂ + α
√
NPxx))2 + W2(f(X̂ −

β
√
NPxx))2 − Ẑ2. Applying (24) for Ẑ and after simplifying we get

Pzz = (f′)2Pxx[W1α
2 + W2β

2] + f′f′′
√

Pxx
3[W1α

3 −W2β
3]− f′f′′

√
Pxx

3[W1α−W2β]

+ (
1

4
(f′′)2 +

1

3
f′f′′′)P2

xx[W1α
4 + W2β

4]− 1

4
(f′′)2Pxx

2 + ... .

Getting rid off α and β through (7) will yield the required result.
Comparing (25) with (26) we can conclude that our new sigma point filter estimates variance
correct up to the 4th order for the univariate case. This is an improvement not only over accuracy
to the 1st order of the traditional unscented transformation method in [6], but also over 2nd order
accuracy in scaled unscented transformation in [16].

7. Conclusion
The contribution of this paper is twofold. Firstly, we have proposed a new filtering algorithm,

in which the sigma points and the corresponding probability weights are modified at each step to
match exactly the predicted values of the average marginal skewness and the average marginal kur-
tosis, besides matching the mean and covariance matrix. We have further extended this heuristic
to a filter with a non-deterministic, possibly non-Gaussian moment matching proposal. Secondly,
in the univariate case, we have shown that the HOSPoF predicts mean and variance up to fourth
order of accuracy, which is a significant improvement on a similar result for UKF. A numerical
example on real financial market data illustrates the utility of the proposed algorithm. We believe
that HOSPoF and PF-HOSPoF would both be useful in engineering, econometrics and finance ap-
plications.
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